

Safe and Automatic
Live Update

Ph.D. Thesis

Cristiano Giuffrida

VU University Amsterdam, 2014

This work was funded by European Research Council under ERC Advanced Grant
227874.

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 300.

Copyright © 2014 by Cristiano Giuffrida.

ISBN 978-90-5383-072-7

Cover design by Dirk Vogt.
Printed by Wöhrmann Print Service.

VRIJE UNIVERSITEIT

SAFE AND AUTOMATIC
LIVE UPDATE

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. F.A. van der Duyn Schouten,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Exacte Wetenschappen
op donderdag 10 april 2014 om 13.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

CRISTIANO GIUFFRIDA

geboren te Rome, Italië

promotor: prof.dr. A.S. Tanenbaum

“All problems in computer science can be solved
by another level of indirection.”

Butler Lampson, quoting David Wheeler.

Acknowledgements

“Yesterday I learned that I received a 3-million euro grant from the EU—all for
myself [. . .]. Might you be interested?”. This is the email that started it all, on
the now-distant date of August 15, 2008. I cannot recall many more details from
that email, but I do recall that glancing over its first and last sentence was enough
for me to conclude that my spam filter was far less aggressive than I had hoped
for. I was literally about to discard the message, when the signature at the bottom
caught my attention. It read “Andy Tanenbaum”, which initially only reinforced my
belief that targeted phishing attacks had grown to become astonishingly common
and sophisticated. After a sudden epiphany, I finally decided to keep on reading.

That was the beginning of my Ph.D. journey at the Vrije Universiteit Amsterdam.
A challenging and rewarding journey which ultimately culminated in this disserta-
tion, but which would not have been possible without the help of others. First and
foremost, I would like to thank my supervisor, Andy Tanenbaum, for his constant
guidance and support during all these years. Not only did he teach me how to do
research and write papers, but he helped me develop passion for simple and elegant
solutions and showed me that critical thinking, dedication, and perseverance can
take you a long way. I am deeply indebted to him for providing me with an excellent
topic, while allowing me, at the same time, to independently explore many exciting
research directions that have gradually shaped my scientific interests over the years.

Next, I would like to express my gratitude to all the members of my Ph.D. thesis
committee: Herbert Bos, Cristian Cadar, Bruno Crispo, Orran Krieger, and Liuba
Shira. Their valuable comments greatly contributed to improving the quality of this
dissertation. I am especially grateful to Orran Krieger, for his extensive and in-
sightful comments on the text, and Cristian Cadar, for fruitful early discussions and
feedback on the techniques presented in this dissertation. A special mention is in or-
der for my internal referees. I am extremely grateful to Herbert Bos, for his constant

vii

viii ACKNOWLEDGEMENTS

support and excellent suggestions throughout my research work, and Bruno Crispo,
for strongly encouraging me to expand my research interests into systems security.

I would also like to acknowledge the many other people I had the pleasure to
work or spend time with at the Vrije Universiteit Amsterdam. First, I would like to
thank those who shared their Ph.D. journeys with me, especially Stefano Ortolani,
for his friendship and engagement in many joint “not-so-side” research projects,
and my P4.69 office mates, Raja Appuswamy, Jorrit Herder, Tomas Hruby, Erik van
der Kouwe, David van Moolenbroek, and Dirk Vogt, for creating an inspiring and
enjoyable work environment. Next, I would like to thank all the other members of the
MINIX 3 team, including Ben Gras, Philip Homburg, Lionel Sambuc, Arun Thomas,
and Thomas Veerman, for their ability to challenge my most ambitious ideas and
provide very valuable support on short notice. Needless to say, I will never forget the
movie nights and the other team events we shared together. I am also grateful to the
many excellent students who contributed to our research projects, especially Calin
Iorgulescu and Anton Kuijsten, with whom I shared many sleepless nights before a
paper deadline. Finally, I would like to thank all the other people from the Computer
Systems group, who substantially contributed to making my doctoral years special
both professionally and personally, Willem de Bruijn, Albana Gaba, Ana Oprescu,
Georgios Portokalidis, Asia Slowinska, and Spyros Voulgaris, in particular.

I am also grateful to Divyesh Shah, for inviting me to join the kernel memory
team at Google and for providing me with all the necessary support during my in-
ternship time in Mountain View, California. I would also like to thank all the other
members of the kernel memory team, especially Ying Han and Greg Thelen, for
their dedication and support. My experience at Google has further strengthened my
interest in operating systems and memory management, while providing much in-
spiration for the RCU-based quiescence detection protocol presented in Chapter 7.

I would also like to extend my gratitude to the many friends who provided the
much needed distraction and support during my Ph.D. journey, including: all my
fellow “Djangonians”, especially the pioneers, Albana, Christian, Dirk, Stefano,
and Steve, for the unforgettable moments shared together; Raja, for the way-too-
many “Lost” evenings; Flavio, for being always there for me in the difficult times.

Last but not least, I would like to thank my family for supporting me all these
years. My mother, among so many other things, for being a constant source of inspi-
ration throughout my life, encouraging me to pursue my passion for research, and
getting me interested in computers at a young age—despite her passion for archeol-
ogy. My uncle and aunt, for guiding me through important decisions in my life. My
cousins, Chiara and Matteo, for joining me on so many adventures. Finally, Laura,
for her love, support, and much needed patience throughout this endeavor.

Cristiano Giuffrida
Amsterdam, The Netherlands, December 2013

Contents

Acknowledgements vii

Contents ix

List of Figures xv

List of Tables xvii

Publications xix

1 Introduction 1

2 Safe and Automatic Live Update for Operating Systems 9
2.1 Introduction . 10

2.1.1 Contribution . 12
2.2 Background . 12

2.2.1 Safe Update State . 12
2.2.2 State Transfer . 13
2.2.3 Stability of the update process 15

2.3 Overview . 16
2.3.1 Architecture . 16
2.3.2 Update example . 17
2.3.3 Limitations . 18

2.4 Live Update Support . 19
2.4.1 Programming model . 19
2.4.2 Virtual IPC endpoints . 20
2.4.3 State filters . 20

ix

x ACKNOWLEDGEMENTS

2.4.4 Interface filters . 21
2.4.5 Multicomponent updates 21
2.4.6 Hot rollback . 22

2.5 State Management . 22
2.5.1 State transfer . 23
2.5.2 Metadata instrumentation 24
2.5.3 Pointer transfer . 25
2.5.4 Transfer strategy . 26
2.5.5 State checking . 27

2.6 Evaluation . 28
2.6.1 Experience . 28
2.6.2 Performance . 31
2.6.3 Service disruption . 34
2.6.4 Memory footprint . 34

2.7 Related work . 35
2.8 Conclusion . 37
2.9 Acknowledgments . 37

3 Enhanced Operating System Security Through Efficient and Fine-grained
Address Space Randomization 39
3.1 Introduction . 40

3.1.1 Contributions . 41
3.2 Background . 41

3.2.1 Attacks on code pointers 41
3.2.2 Attacks on data pointers 42
3.2.3 Attacks on nonpointer data 42

3.3 Challenges in OS-level ASR . 42
3.3.1 W⊕X . 42
3.3.2 Instrumentation . 43
3.3.3 Run-time constraints . 43
3.3.4 Attack model . 43
3.3.5 Information leakage . 44
3.3.6 Brute forcing . 44

3.4 A design for OS-level ASR . 45
3.5 ASR transformations . 47

3.5.1 Code randomization . 48
3.5.2 Static data randomization 49
3.5.3 Stack randomization . 51
3.5.4 Dynamic data randomization 52
3.5.5 Kernel modules randomization 52

3.6 Live rerandomization . 53
3.6.1 Metadata transformation 53
3.6.2 The rerandomization process 54

ACKNOWLEDGEMENTS xi

3.6.3 State migration . 55
3.6.4 Pointer migration . 56

3.7 Evaluation . 57
3.7.1 Performance . 57
3.7.2 Memory usage . 60
3.7.3 Effectiveness . 60

3.8 Related work . 63
3.8.1 Randomization . 63
3.8.2 Operating system defenses 64
3.8.3 Live rerandomization . 64

3.9 Conclusion . 65
3.10 Acknowledgments . 65

4 Practical Automated Vulnerability Monitoring Using Program State In-
variants 67
4.1 Introduction . 68
4.2 Program State Invariants . 69
4.3 Architecture . 70

4.3.1 Static Instrumentation . 71
4.3.2 Indexing pointer casts . 72
4.3.3 Indexing value sets . 72
4.3.4 Memory management instrumentation 73
4.3.5 Metadata Framework . 73
4.3.6 Dynamic Instrumentation 74
4.3.7 Run-time Analyzer . 75
4.3.8 State introspection . 76
4.3.9 Invariants analysis . 76
4.3.10 Recording . 77
4.3.11 Reporting . 77
4.3.12 Feedback generation . 78
4.3.13 Debugging . 78

4.4 Memory Errors Detected . 78
4.4.1 Dangling pointers . 78
4.4.2 Off-by-one pointers . 78
4.4.3 Overflows/underflows . 79
4.4.4 Double and invalid frees 79
4.4.5 Uninitialized reads . 79

4.5 Evaluation . 79
4.5.1 Performance . 80
4.5.2 Detection Accuracy . 83
4.5.3 Effectiveness . 84

4.6 Limitations . 85
4.7 Related Work . 86

xii ACKNOWLEDGEMENTS

4.8 Conclusion . 87
4.9 Acknowledgments . 88

5 EDFI: A Dependable Fault Injection Tool for Dependability Benchmark-
ing Experiments 89
5.1 Introduction . 90
5.2 Background . 91
5.3 System Overview . 93
5.4 Execution-driven Fault Injection 95
5.5 Static Fault Model . 97
5.6 Dynamic Fault Model . 100
5.7 Evaluation . 103

5.7.1 Performance . 104
5.7.2 Memory usage . 105
5.7.3 Precision . 106
5.7.4 Controllability . 108

5.8 Conclusion . 110
5.9 Acknowledgments . 110

6 Back to the Future: Fault-tolerant Live Update with Time-traveling State
Transfer 111
6.1 Introduction . 112
6.2 The State Transfer Problem . 114
6.3 System Overview . 116
6.4 Time-traveling State Transfer . 118

6.4.1 Fault model . 118
6.4.2 State validation surface . 119
6.4.3 Blackbox validation . 121
6.4.4 State transfer interface . 122

6.5 State Transfer Framework . 122
6.5.1 Overview . 123
6.5.2 State transfer strategy . 124
6.5.3 Shared libraries . 125
6.5.4 Error detection . 126

6.6 Evaluation . 126
6.6.1 Performance . 127
6.6.2 Memory usage . 129
6.6.3 RCB size . 129
6.6.4 Fault tolerance . 130
6.6.5 Engineering effort . 133

6.7 Related Work . 134
6.7.1 Live update systems . 134
6.7.2 Live update safety . 134

CONTENTS xiii

6.7.3 Update testing . 135
6.8 Conclusion . 135
6.9 Acknowledgments . 136

7 Mutable Checkpoint-Restart: Automating Live Update for Generic Long-
running C Programs 137
7.1 Introduction . 138
7.2 Background and Related Work . 139

7.2.1 Quiescence detection . 139
7.2.2 Control migration . 140
7.2.3 State transfer . 140

7.3 Overview . 140
7.4 Profile-guided Quiescence Detection 142

7.4.1 Quiescent points . 142
7.4.2 Instrumentation . 143
7.4.3 Quiescence detection . 144

7.5 State-driven Mutable Record-replay 146
7.5.1 Control migration . 147
7.5.2 Mapping operations . 147
7.5.3 Immutable state objects . 148

7.6 Mutable GC-style Tracing . 150
7.6.1 Mapping program state . 150
7.6.2 Precise GC-style tracing 152
7.6.3 Conservative GC-style tracing 153

7.7 Violating Assumptions . 154
7.8 Evaluation . 155

7.8.1 Engineering effort . 155
7.8.2 Performance . 158
7.8.3 Update time . 160
7.8.4 Memory usage . 162

7.9 Conclusion . 163
7.10 Acknowledgments . 163

8 Conclusion 165

References 171

Summary 197

Samenvatting 199

List of Figures

2.1 An unsafe live update using function quiescence. 13
2.2 Examples of live update security vulnerabilities. 14
2.3 The architecture of PROTEOS. 16
2.4 The state transfer process. 23
2.5 Automating type and pointer transformations. 26
2.6 Update time vs. run-time state size. 32
2.7 Run-time overhead vs. update frequency for our benchmarks. 33

3.1 The OS architecture for our ASR design. 46
3.2 The transformed stack layout. 50
3.3 The rerandomization process. 54
3.4 Execution time of SPEC CPU2600 and our devtools benchmark. 57
3.5 Rerandomization time against coverage of internal layout rerandomization. 58
3.6 Run-time overhead against periodic rerandomization latency. 59
3.7 ROP probability vs. number of known functions. 62

4.1 The RCORE architecture. 71
4.2 Run-time overhead for the SPEC CPU2006 benchmarks. 80
4.3 Performance results for the nginx benchmark. 81
4.4 Detection accuracy for decreasing CPU utilization (nginx). 83

5.1 Architecture of the EDFI fault injector. 93
5.2 Basic block cloning example. 96
5.3 Comparative faultload degradation for Apache httpd (static HTML). . . 107
5.4 Comparative number of spurious faults (Apache httpd). 108
5.5 Impact of fault coverage on location-based strategies (Apache httpd). . . 109

xv

xvi LIST OF FIGURES

6.1 Time-traveling state transfer overview. 117
6.2 State differencing pseudocode. 121
6.3 State transfer framework overview. 124
6.4 Automated state transfer example. 125
6.5 Update time vs. type transformation coverage. 128
6.6 Fault injection results for varying fault types. 131

7.1 MCR overview. 141
7.2 Pseudocode of our quiescence detection protocol. 145
7.3 A sample run of our quiescence detection protocol. 146
7.4 State mapping using mutable GC-style tracing. 151
7.5 Quiescence time vs. number of worker threads. 160
7.6 State transfer time vs. number of connections. 161

List of Tables

2.1 Overview of all the updates analyzed in our evaluation. 29
2.2 Execution time of instrumented allocator operations. 31

3.1 Average run-time virtual memory overhead for our benchmarks. . . 60
3.2 Comparison of ASR techniques. 61

5.1 Time to complete the Apache benchmark (AB). 104
5.2 MySQL throughput normalized against the baseline. 105
5.3 Memory usage normalized against the baseline. 106

6.1 ST impact (normalized after 100 updates) for prior solutions. 116
6.2 State validation and error detection surface. 120
6.3 Memory usage normalized against the baseline. 129
6.4 Contribution to the RCB size (LOC). 130
6.5 Engineering effort for all the updates analyzed in our evaluation. . . 132

7.1 Overview of all the programs and updates used in our evaluation. . . 157
7.2 Mutable GC-style tracing statistics. 157
7.3 Benchmark run time normalized against the baseline. 159
7.4 Dirty memory objects after the execution of our benchmarks. 162
7.5 Memory usage normalized against the baseline. 162

xvii

Publications

This dissertation includes a number of research papers, as appeared in the following
conference proceedings 1:

Cristiano Giuffrida, Calin Iorgulescu, and Andrew S. Tanenbaum. Mutable Checkpoint-Restart:
Automating Live Update for Generic Server Programs2. In Proceedings of the ACM/I-
FIP/USENIX Middleware Conference (Middleware ’14). December 8-12, 2014, Bordeaux,
France.

Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. EDFI: A Dependable Fault
Injection Tool for Dependability Benchmarking Experiments3. In Proceedings of the Pacific
Rim International Symposium on Dependable Computing (PRDC ’13), pages 1–10. Decem-
ber 2-4, 2013, Vancouver, BC, Canada.

Cristiano Giuffrida, Calin Iorgulescu, Anton Kuijsten, and Andrew S. Tanenbaum. Back to the
Future: Fault-tolerant Live Update with Time-traveling State Transfer4. In Proceedings of
the 27th USENIX Systems Administration Conference (LISA ’13), pages 89–104. November
3-8, 2013, Washington, D.C., USA.
Awarded Best Student Paper.

Cristiano Giuffrida, Lorenzo Cavallaro, and Andrew S. Tanenbaum. Practical Automated Vul-
nerability Monitoring Using Program State Invariants5. In Proceedings of the 43rd Interna-
tional Conference on Dependable Systems and Networks (DSN ’13), pages 1–12. June 24-27,
2013, Budapest, Hungary.

1The text differs from the original version in minor editorial changes made to improve readability.
2An extended version appears in Chapter 7.
3Appears in Chapter 5.
4Appears in Chapter 6.
5Appears in Chapter 4.

xix

xx PUBLICATIONS

Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Safe and Automatic Live
Update for Operating Systems6. In Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS ’13),
pages 279–292. March 16-20, 2013, Houston, TX, USA.

Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Enhanced Operating System
Security Through Efficient and Fine-grained Address Space Randomization7. In Proceed-
ings of the 21st USENIX Security Symposium (USENIX Security ’12), pages 40–55. August
8-10, 2012, Bellevue, WA, USA.

Related publications not included in the dissertation are listed in the following:

Cristiano Giuffrida, and Andrew S. Tanenbaum. Safe and Automated State Transfer for Secure
and Reliable Live Update. In Proceedings of the Fourth International Workshop on Hot Top-
ics in Software Upgrades (HotSWUp ’12), pages 16–20. June 3, 2012, Zurich, Switzerland.

Cristiano Giuffrida, Lorenzo Cavallaro, and Andrew S. Tanenbaum. We Crashed, Now What?
In Proceedings of the Sixth Workshop on Hot Topics in System Dependability (HotDep ’10),
pages 1–8. October 3, 2010, Vancouver, BC, Canada.

Cristiano Giuffrida, and Andrew S. Tanenbaum. A Taxonomy of Live Updates. In Proceedings
of the 16th Annual ASCI Conference (ASCI ’10), pages 1–8. November 1-3, 2010, Veld-
hoven, The Netherlands.

Cristiano Giuffrida, and Andrew S. Tanenbaum. Cooperative Update: A New Model for De-
pendable Live Update. In Proceedings of the Second International Workshop on Hot Topics
in Software Upgrades (HotSWUp ’09), pages 1–6. October 25, 2009, Orlando, FL, USA.

Publications not related to this dissertation, but published in refereed conferences,
journals, or workshops are listed in the following:

Cristiano Giuffrida, Kamil Majdanik, Mauro Conti, and Herbert Bos. I Sensed It Was You:
Authenticating Mobile Users with Sensor-enhanced Keystroke Dynamics. In Proceedings of
the 11th Conference on Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA ’14). July 10-11, 2014, Egham, UK.

Erik van der Kouwe, Cristiano Giuffrida, and Andrew S. Tanenbaum. On the Soundness of
Silence: Investigating Silent Failures Using Fault Injection Experiments. In Proceedings
of the Tenth European Dependable Computing Conference (EDCC ’14). May 13-16, 2014,
Newcastle upon Tyne, UK.

6Appears in Chapter 2.
7Appears in Chapter 3.

PUBLICATIONS xxi

Erik van der Kouwe, Cristiano Giuffrida, and Andrew S. Tanenbaum. Evaluating Distortion in
Fault Injection Experiments. In Proceedings of the 15th IEEE Symposium on High-Assurance
Systems Engineering (HASE ’14), pages 1–8. January 9-11, 2014, Miami, FL, USA.
Awarded Best Paper.

Dirk Vogt, Cristiano Giuffrida, Herbert Bos, and Andrew S. Tanenbaum. Techniques for Ef-
ficient In-Memory Checkpointing. In Proceedings of the Ninth Workshop on Hot Topics in
System Dependability (HotDep ’13), pages 1–5. November 3, 2013, Farmington, PA, USA.

Stefano Ortolani, Cristiano Giuffrida, and Bruno Crispo. Unprivileged Black-box Detection
of User-space Keyloggers. In IEEE Transactions on Dependable and Secure Computing
(TDSC), Volume 10, Issue 1, pages 40–52, January-February 2013.

Cristiano Giuffrida, Stefano Ortolani, and Bruno Crispo. Memoirs of a Browser: A Cross-
browser Detection Model for Privacy-breaching Extensions. In Proceedings of the Seventh
ACM Symposium on Information, Computer and Communications Security (ASIACCS ’12),
pages 132–152. May 1-3, 2012, Seoul, South Korea.

Ciriaco Andrea D’Angelo, Cristiano Giuffrida, and Giovanni Abramo. A Heuristic Approach to
Author Name Disambiguation in Bibliometrics Databases for Large-scale Research Assess-
ments. In Journal of the American Society for Information Science and Technology (JASIST),
Volume 62, Issue 2, pages 257–269, February 2011.

Stefano Ortolani, Cristiano Giuffrida, and Bruno Crispo. KLIMAX: Profiling Memory Write
Patterns to Detect Keystroke-Harvesting Malware. In Proceedings of the 14th International
Symposium on Recent Advances in Intrusion Detection (RAID ’11), pages 81–100. Septem-
ber 20-21, 2011, Menlo Park, CA, USA.

Stefano Ortolani, Cristiano Giuffrida, and Bruno Crispo. Bait your Hook: A Novel Detection
Technique for Keyloggers. In Proceedings of the 13th International Symposium on Recent
Advances in Intrusion Detection (RAID ’10), pages 198–217. September 15-17, 2010, Ot-
tawa, ON, Canada.

Cristiano Giuffrida, and Stefano Ortolani. A Gossip-based Churn Estimator for Large Dynamic
Networks. In Proceedings of the 16th Annual ASCI Conference (ASCI ’10), pages 1–8.
November 1-3, 2010, Veldhoven, The Netherlands.

C
ha

pt
er

1

1
Introduction

“In a system made up of many modules, it is often necessary to update one of the
modules so as to provide new features or an improvement in the internal organization
[. . .]. If the module does manage permanent data structures which must be modified
and the system is one which is expected to continue operation throughout the change,
the problem is more difficult, but it can be solved.” With these words, in 1976,
Robert Fabry introduced the first known live update solution able to deploy software
updates on a running system without discontinuing its operations or disrupting its
internal state [99]. Since then, many research and commercial live update solutions
have been proposed over the years. As Fabry originally envisioned, live updates are
nowadays used to improve the general organization of a running software system—
for example, to fix bugs—without compromising its availability guarantees.

What Fabry could have hardly envisioned at the time is the importance of live
update technologies in today’s always-on society, with the need for continuous op-
eration rapidly emerging in many application areas with different levels of impact.
Mass market software, not initially conceived with high availability in mind, attracts
more and more consumers who expect nonstop operation. For instance, many unso-
phisticated users find it very annoying to reboot their system after a software update.
In addition, with the advent of ubiquitous computing, software tailored to ordinary
devices will become more sophisticated, thus naturally incurring frequent mainte-
nance updates. It is very unlikely that most people will understand the need to turn
off their car as a consequence of a high-priority security update. Even worse, one
could envision legal consequences when a user is forced to update and restart his TV
set while watching an expensive pay-per-view sporting event. For workstation users
in companies, in turn, reduced availability directly translates to productivity loss.

In industrial systems, the need for continuous operation is even more evident.
In many cases, high availability is required by design. As an example, the tele-

1

2 CHAPTER 1. INTRODUCTION

phone network, a 99.999% availability system, can tolerate at most five minutes of
downtime per year [117]. In other applications, such as factories and power plants,
availability constraints are even more tight.

In business systems, absence of service leads to revenue loss. It has been esti-
mated that the cost of an hour of downtime can be as high as hundreds of thousands
of dollars for e-commerce service providers like Amazon and eBay and millions of
dollars for brokerages and credit card companies [234]. In addition, long-lasting pe-
riods of downtime for popular services are newsworthy and affect user loyalty and
investor confidence. For example, when eBay suffered its longest (22-hour) outage
in 1999, the impact on the public image of the company caused 26% decline in its
stock price and an estimated revenue loss between $3 million and $5 million [102].

In mission-critical and safety-critical systems, downtime or unexpected behav-
ior can lead to catastrophic consequences. For example, unplanned downtime in a
widely deployed energy management system caused a blackout affecting 50 million
people in U.S. and Canada in August 2004 [242]. Another famous episode relates
to the Patriot missile defense system used during the Gulf War. A software flaw
prevented the interception of an incoming Scud missile, leading to the death of 28
American soldiers [52]. Many other examples of mission-critical systems can be
found in aerospace, telecommunication, transportation, and medical applications.

The growing need for high availability in several real-world software systems is,
however, on a collision course with the vertiginous evolution of modern software.
Despite decades of research and advances in technology and software engineering,
the majority of cost and effort spent during software lifetime still goes to mainte-
nance [118]. The introduction of new features, enhancements, bug fixes, and se-
curity patches are the norm rather then the exception in widely adopted software
solutions in use nowadays. In addition, current trends in software development sug-
gest that this tendency will likely grow in the future. The complexity of modern
software systems is increasing dramatically, and so are the number of bugs, security
vulnerabilities, and unanticipated changes. Prior studies have determined that the
number of bugs in commercial software ranges from 1 bug per 1000 lines of code
to 20 bugs per 1000 lines of code [227]. As a result, software vendors continuously
release new updates and publish recommendations.

With more and more frequent software releases, the traditional halt-update-restart
cycle constitutes a major problem for the management of systems that must provide
strong availability guarantees. A common alternative—often termed ”rolling up-
grades” [90]—is to replicate local installations across multiple machines and deploy
updates on one node at the time. This approach, however, is only applicable to par-
ticular categories of systems and cannot alone preserve nonpersistent system state.
In addition, a long-lasting incremental update process may expose different service
requests to different—and possibly incompatible—system versions, potentially in-
troducing logical inconsistencies or silent data corruption [92]. Even in distributed
systems, where replication naturally occurs, more compelling alternatives to rolling
upgrades have been proposed in the literature [92]. Note, however, that the focus

3

C
ha

pt
er

1of this dissertation is specifically on live update in a local context and we refer the
interested reader to [26; 279; 173; 90; 25] for distributed live update systems.

In practice, replication and downtime are ill-affordable options for many real-
world systems. Not surprisingly, studies have shown that many organizations choose
to forego installing updates or not to install them at all [245]. This strategy, in turn,
increases the risk of unplanned downtime caused by bugs or security exploits, a
concrete concern given that studies show that 75% of the attacks exploit known
security vulnerabilities [190]. Emblematic is the case of SCADA systems in the
post-Stuxnet era, with organizations struggling to reconcile their annual maintenance
shutdowns and the need to promptly patch discovered security vulnerabilities [156].

In this complex landscape, live update technologies are increasingly gaining
momentum as the most promising solution to support software evolution in high-
availability environments. A major challenge to foster widespread adoption, how-
ever, is to build trustworthy live update systems which come as close to the usabil-
ity and dependability guarantees of regular software updates as possible. Unfortu-
nately, existing live update solutions for widely deployed systems programs written
in C [32; 68; 214; 194; 69; 213; 36; 193; 132] fall short in both regards.

Usability is primarily threatened by the heroic effort required to support live
update functionalities over time. Prior solutions largely delegate challenging tasks
like state transfer and update safety to the user. Another threat stems from the update
mechanisms adopted in prior solutions, which typically advocate patching changes
in place—directly into the running version [32; 43; 69; 68; 194; 36; 214; 213]. This
strategy may significantly complicate testing and debugging, other than potentially
introducing address space fragmentation and run-time overhead over time [214].

Dependability is primarily threatened by the lack of mechanisms to safeguard
and validate the live update process. Existing solutions make no effort to recover
from programming errors at live update time or minimize the amount of trusted
code. Another threat stems from the mechanisms adopted to determine safe update
states. Prior solutions suffer from important limitations in this regard, ranging from
low predictability to poor convergence guarantees or deadlock-prone behavior.

Current practices to mitigate these problems are largely unsatisfactory. An op-
tion is to limit live update support to simple and small security patches [36; 32],
which can drastically reduce the engineering effort required to support live update
functionalities over time and the probability of programming errors plaguing the
live update code. This strategy, however, has no general applicability and still fails
to provide strong dependability guarantees at live update time. Another option is to
limit live update functionalities to programs written in safe languages [89; 269; 286],
which naturally provide a somewhat simpler and safer programming environment.
Unfortunately, while much modern software is now written in safe languages like
Java, C still dominates the scene in systems programming, largely due to versatility,
performance concerns, and direct control over low-level resources. In addition, the
abundance of legacy C and C++ code discourages porting, which also suggests that
a complete switch to safe higher-level languages is not on the horizon.

4 CHAPTER 1. INTRODUCTION

Safe and Automatic Live Update

In this dissertation, we argue that live update solutions should be truly safe and au-
tomatic, with general applicability to several possible classes of updates—ranging
from security patches to complex version updates—and generic systems software
written in C. Our investigation focuses on important system properties largely ne-
glected by prior work in the area, including security, reliability, performance, in-
tegrity, and maintainability. To substantiate our claims, we present several major
contributions and demonstrate the viability of the proposed techniques in practice.
In particular, this dissertation introduces the first end-to-end live update design for
the entire software stack, with support for safely and automatically updating both the
operating system as well as long-running legacy programs at the application level.

At the heart of our live update mechanisms lies a novel process-level update strat-
egy, which confines the different program versions in distinct processes and transfers
the execution state between them. When an update becomes available, our frame-
work allows the new version to start up and connect to the old version to request all
the information from the old state it needs (e.g., data structures, even if they have
changed between versions). When all the necessary data have been transferred over
and the old state completely remapped into the new version (including pointers and
the data pointed to), our framework terminates the old version and allows the new
version to atomically and transparently resume execution. This approach allows
users to install version updates in the most natural way and without affecting the
original internal representation of the program. Compared to prior in-place live up-
date solutions the tradeoff lies in generally higher memory usage and longer update
times for simple updates—since we replace entire processes instead of individual
functions or objects—which is arguably a modest price to pay given the increasingly
low cost of RAM and the relatively infrequent occurrence of software updates.

Our state transfer framework automates the entire state transfer process, inspect-
ing the state of the two program versions and seamlessly operating the necessary
type and memory layout transformations, even in face of complex state changes.
This strategy is empowered by a new instrumentation pass in the LLVM compiler
framework [179] that maintains metadata about all the data structures in memory.
Compared to prior solutions, our state transfer strategy dramatically reduces the en-
gineering effort required to adopt and support live update functionalities over time.

Our hot rollback support, in turn, safeguards the live update process, allowing
the system to recover from common update-time errors. When an error is detected
during the update process, our framework automatically rolls back the update, termi-
nating the new version and allowing the old version to resume execution normally,
similar to an aborted atomic transaction. Thanks to our process-level update strategy,
update-time errors in the new version are structurally prevented from propagating
back to the old version and hindering its integrity, allowing for safe and automatic
error recovery at live update time. This is in stark contrast with prior live update
solutions, which offer no fallback to a working version should the update fail.

5

C
ha

pt
er

1To identify update-time errors, our framework incorporates three error detection
mechanisms. Run-time error detection relies on hardware/software exceptions to
detect crashes, panics, and other abnormal run-time events. Invariants-based de-
tection can automatically detect state corruption from violations of static program
state invariants recorded by our LLVM-based instrumentation. Time-traveling state
transfer, finally, can automatically detect generic memory errors from state differ-
ences between distinct process versions known to be equivalent by construction.
When any of these errors are detected, the update is immediately aborted, prevent-
ing the new version from resuming execution in an invalid state. Instead, the system
continues executing normally as if no update had been attempted. Compared to prior
solutions, our error detection techniques provide a unique fault-tolerant design, able
to safeguard the live update process against a broad range of update-time errors.

At the OS level, we demonstrate the effectiveness of our techniques in PROTEOS,
a new research operating system designed with live update in mind. PROTEOS na-
tively supports process-level updates on top of a multiserver OS architecture based
on MINIX 3 [141], which confines all the core operating system components in sepa-
rate, event-driven processes, each individually protected by the MMU. The rigorous
event-driven programming model adopted in the individual operating system com-
ponents allows updates to happen only in predictable and controllable system states.

Our event-driven design integrates support for state quiescence, a new technique
that gives users fine-grained control over the live update transaction, with the ability
to specify safe update state constraints on a per-update basis. This strategy dramati-
cally simplifies reasoning about update safety, reducing the effort required to support
complex updates. Thanks to our design, PROTEOS can atomically replace as many
OS components as necessary in a single fault-tolerant live update transaction, safely
and automatically supporting very large updates with no user-perceived impact.

Furthermore, PROTEOS combines our live update design with a compiler-based
fine-grained address space randomization strategy to support live rerandomization,
a new technique that allows individual operating system components to periodically
rerandomize their memory layout at run time. This strategy seeks to harden the op-
erating system against memory error exploits that rely on known memory locations.
Live rerandomization is a novel application of live update to systems security.

At the application level, we demonstrate the effectiveness of our techniques in
Mutable Checkpoint-Restart (MCR), a new live update framework for generic (mul-
tiprocess and multithreaded) long-running C programs. MCR extends our instru-
mentation techniques to allow legacy user programs to support safe and automatic
live update with little manual effort. In particular, MCR addresses three major con-
cerns: (i) how to enable legacy user programs to automatically reach and detect safe
update states; (ii) how to enable legacy user programs to automatically remap their
own state and data structures; (iii) how to enable legacy user programs to automati-
cally reinitialize the individual execution threads in the new version.

To address the first concern, MCR relies on standard profiling techniques to in-
strument all the quiescent points [135] in the application and export their properties

6 CHAPTER 1. INTRODUCTION

to the runtime. Our profile-guided quiescence detection technique uses this infor-
mation to control all the in-flight events processed by the application, automatically
detecting a safe update state when no event is in progress. This approach reduces the
annotation effort and provides strong convergence guarantees to safe update states.

To address the second concern, MCR relies on garbage collection techniques
to conservatively trace all the data structures in memory with no user annotations
required. Our mutable GC-style tracing technique uses this information to formulate
constraints on the memory layout of the new version for the benefit of our automated
state transfer strategy. This approach drastically reduces the annotation effort to
implement state transfer and allows our framework to automatically remap the state
across versions even with partial knowledge on global pointers and data structures.

To address the third concern, MCR allows the new version to (re)initialize in a
natural but controlled way, with predetermined events replayed, as needed, from the
prior initialization of the old version. Our state-driven mutable record-replay tech-
nique relies on this strategy to prevent the new version from disrupting the old state
at initialization time, while exploiting existing code paths to automatically reinitial-
ize the individual execution threads correctly. This approach reduces the annotation
effort to implement control migration functionalities, allowing our framework to re-
store a quiescent thread configuration in the new version with little user intervention.

We have evaluated our live update techniques both at the operating system and
at the application level, focusing our experimental investigation on performance,
memory usage, fault tolerance, and engineering effort. Our results evidence impor-
tant limitations in prior approaches and confirm the effectiveness of our techniques
in building safe and automatic live update solutions for the entire software stack.

Organization of the Dissertation

This dissertation makes several contributions, with results published in refereed con-
ferences and workshops (Page xix). The remainder is organized as follows:

• Chapter 2 presents PROTEOS, a new research operating system designed with live
update in mind. In PROTEOS, process-level updates are a first-class abstraction
implemented on top of a multiserver microkernel-based operating system archi-
tecture. PROTEOS combines our live update techniques with an event-driven
programming model adopted in the individual operating system components,
simplifying state management and live update safety. Chapter 2 appeared in
Proceedings of the 18th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’13) [112].

• Chapter 3 presents ASR3, a third-generation address space randomization (ASR)
technique which significantly improves the security and performance of prior so-
lutions. At the heart of ASR3 lies live rerandomization, a technique which com-
bines fine-grained link-time ASR strategies with our live update design to enable

7

C
ha

pt
er

1process-level randomization (and rerandomization) at runtime. We demonstrate
the benefits of live rerandomization in the context of OS-level address space ran-
domization and evaluate our techniques in PROTEOS. Chapter 3 appeared in Pro-
ceedings of the 21st USENIX Security Symposium (USENIX Security ’12) [108].

• Chapter 4 presents RCORE, an efficient dynamic program monitoring infrastruc-
ture to perform automated security vulnerability monitoring. This chapter details
the program state invariants adopted by our live update techniques and gener-
alizes their application to concurrent memory error monitoring. The key idea
is to perform our invariants analysis concurrently to the execution of the target
program and rely on invariants violation to detect memory errors that affect the
global application state. Chapter 4 appeared in Proceedings of the 43rd Interna-
tional Conference on Dependable Systems and Networks (DSN ’13) [109].

• Chapter 5 presents EDFI, a new tool for general-purpose fault injection experi-
ments which improves the dependability of prior tools. In detail, EDFI relies on
program instrumentation strategies to perform execution-driven fault injection,
a technique which allows realistic software faults to be injected in a controlled
way at runtime. Our focus on fault injection is motivated by our interest in eval-
uating the fault-tolerance properties of the proposed live update techniques. In
particular, we used EDFI to conduct the first fault injection campaign on live
update code (Chapter 6). Chapter 5 appeared in Proceedings of the Pacific Rim
International Symposium on Dependable Computing (PRDC ’13) [111].

• Chapter 6 presents time-traveling state transfer, a technique to strengthen the
fault-tolerance properties of process-level updates and significantly reduce the
amount of trusted live update code involved. The key idea is to rely on semantics-
preserving state transfer transactions across multiple past, future, and reversed
versions to detect memory errors introduced in the process using a simple state
differencing strategy. We implemented and evaluated time-traveling state trans-
fer on popular server programs on Linux, conducting fault injection experiments
to assess the effectiveness of our techniques. Chapter 6 appeared in Proceedings
of the 27th USENIX Systems Administration Conference (LISA ’13) [110].

• Chapter 7 presents Mutable Checkpoint-Restart (MCR), a new technique to sup-
port live update in generic legacy C programs with very low engineering effort.
This chapter introduces profile-guided quiescence detection, state-driven muta-
ble record-replay, and mutable GC-style tracing. We implemented and evaluated
MCR on popular server programs on Linux, assessing the overhead and the en-
gineering effort required to deploy our techniques on long-running C programs
found “in the wild”. Parts of Chapter 7 appeared in Proceedings of the ACM/I-
FIP/USENIX Middleware Conference (Middleware ’14) [113].

• Chapter 8 concludes the dissertation, summarizing key results, analyzing current
limitations, and highlighting opportunities for future research directions.

C
ha

pt
er

22
Safe and Automatic Live Update

for Operating Systems

Abstract

Increasingly many systems have to run all the time with no downtime allowed. Con-
sider, for example, systems controlling electric power plants and e-banking servers.
Nevertheless, security patches and a constant stream of new operating system ver-
sions need to be deployed without stopping running programs. These factors natu-
rally lead to a pressing demand for live update—upgrading all or parts of the oper-
ating system without rebooting. Unfortunately, existing solutions require significant
manual intervention and thus work reliably only for small operating system patches.

In this paper, we describe an automated system for live update that can safely
and automatically handle major upgrades without rebooting. We have implemented
our ideas in PROTEOS, a new research OS designed with live update in mind. PRO-
TEOS relies on system support and nonintrusive instrumentation to handle even very
complex updates with minimal manual effort. The key novelty is the idea of state
quiescence, which allows updates to happen only in safe and predictable system
states. A second novelty is the ability to automatically perform transactional live
updates at the process level, ensuring a safe and stable update process. Unlike prior
solutions, PROTEOS supports automated state transfer, state checking, and hot roll-
back. We have evaluated PROTEOS on 50 real updates and on novel live update
scenarios. The results show that our techniques can effectively support both sim-
ple and complex updates, while outperforming prior solutions in terms of flexibility,
security, reliability, and stability of the update process.

9

10 CHAPTER 2. PROTEOS

2.1 Introduction

Modern operating systems evolve rapidly. Studies on the Linux kernel have shown
that its size has more than doubled in the last 10 years, with a growth of more than
6 MLOC and over 300 official versions released [231]. This trend leads to many
frequently released updates that implement new features, improve performance, or
fix important bugs and security vulnerabilities. With today’s pervasive demand for
24/7 operation, however, the traditional patch-install-reboot cycle introduces unac-
ceptable downtime for the operating system (OS) and all the running applications.
To mitigate this problem, enterprise users often rely on “rolling upgrades” [90]—
upgrading one node at a time in a highly replicated software system—which, how-
ever, require redundant hardware (or virtualized environments), cannot normally
preserve program state across system versions, and may introduce a very large up-
date window with high exposure to mixed version races [92].

Live update (sometimes also called hot or dynamic update) is a potential solution
to this problem, due to its ability to upgrade a running system on the fly with no
service interruption. To reach widespread adoption, however, a live update solution
should be practical and trustworthy. We found that existing solutions for operating
systems [42; 43; 194; 36; 68] and generic C programs [214; 193; 32; 69; 193; 213]
meet these requirements only for simple updates. Not surprisingly, many live update
solutions explicitly target small security patches [36; 32]. While security patches
are a critical application for live update—as also demonstrated by the commercial
success of solutions like Ksplice [36]—we believe there is a need for solutions that
can effectively handle more complex updates, such as upgrading between operating
system versions with hundreds or thousands of changes.

We note two key limiting factors in existing solutions. First, they scale poorly
with the size and complexity of the update. This limitation stems from the limited
system support to ensure update safety and transfer the run-time state from one sys-
tem version to another. Existing solutions largely delegate these challenging tasks to
the programmer. When applied to updates that install a new OS version with major
code and data structure changes, this strategy requires an unbearable effort and is
inevitably error prone.

Second, they scale poorly with the number of live updates applied to the system.
This limitation stems from the update mechanisms employed in existing solutions,
which assume a rigid address space layout, and glue code and data changes directly
into the running version. This strategy typically leads to an unstable live update
process, with memory leakage and performance overhead growing linearly over time
(§2.2.3). We found that both limiting factors introduce important reliability and
security issues, which inevitably discourage acceptance of live update.

This paper presents PROTEOS, a new research operating system designed to
safely and automatically support many classes of live updates. To meet this chal-
lenge, PROTEOS introduces several novel techniques. First, it replaces the long-used
notion of function [36] and object [43] quiescence with the more general idea of

2.1. INTRODUCTION 11

C
ha

pt
er

2

state quiescence, allowing programmer-provided state filters to specify constraints
on the update state. The key intuition is that operating systems quickly transition
through many states with different properties. Restricting the update to be installed
only in specific states dramatically simplifies reasoning on update safety.

Further, PROTEOS employs transactional process-level live updates, which reli-
ably replace entire processes instead of individual objects or functions. To increase
the update surface and support complex updates, we explore this idea in a design
with all the core OS subsystems running as independent event-driven processes on
top of a minimal message-passing substrate running in kernel mode. Using pro-
cesses as updatable units ensures a stable update process and eliminates the need for
complex patch analysis and preparation tools. In addition, PROTEOS uses hardware-
isolated processes to sandbox the state transfer execution in the new process version
and support hot rollback in case of run-time errors.

Finally, PROTEOS relies on compiler-generated instrumentation to automate state
transfer (migrating the state between processes), state checking (checking the state
for consistency), and tainted state management (recovering from a corrupted state),
with minimal run-time overhead. Our state transfer framework is designed to au-
tomatically handle common structural state changes (e.g., adding a new field to a
struct) and recover from particular tainted states (i.e., memory leakage), while
supporting a convenient programming model for extensions. As an example, pro-
grammers can register their own callbacks to handle corrupted pointers or override
the default transfer strategy for state objects of a particular type.

Our current PROTEOS implementation runs on the x86 platform and supports a
complete POSIX interface. Our state management framework supports C and as-
sembly code. Its instrumentation component is implemented as a link-time pass
using the LLVM compiler framework [179]. We evaluated PROTEOS on 50 real up-
dates (randomly sampled in the course of over 2 years of development) and novel
live update scenarios: online diversification, memory leakage reclaiming, and up-
date failures (§2.6.2). Our results show that: (i) PROTEOS provides an effective and
easy-to-use update model for both small and very complex updates. Most live up-
dates required minimal effort to be deployed, compared to the “tedious engineering
effort” reported in prior work [68]; (ii) PROTEOS is reliable and secure. Our state
transfer framework reduces manual effort to the bare minimum and can safely roll-
back the update when detecting unsafe conditions or run-time errors (e.g., crashes,
timeouts, assertion failures). Despite the complexity of some of the 50 updates ana-
lyzed, live update required only 265 lines of custom state transfer code in total. (iii)
The update techniques used in PROTEOS are stable and efficient. The run-time over-
head is well isolated in allocator operations and only visible in microbenchmarks
(6-130% overhead on allocator operations). The service disruption at update time is
minimal (less than 5% macrobenchmark overhead while replacing an OS component
every 20s) and the update time modest (3.55s to replace all the OS components). (iv)
The update mechanisms used in PROTEOS significantly increase the update surface
and enable novel live update scenarios. In our experiments, we were able to update

12 CHAPTER 2. PROTEOS

all the OS components in a single fault-tolerant transaction and completely auto-
mate live update of as many as 4,873,735 type transformations throughout the entire
operating system (§2.6.2).

2.1.1 Contribution

This paper makes several contributions. First, we identify the key limitations in
existing live update solutions and present practical examples of reliability and se-
curity problems. Second, we introduce a new update model based on state quies-
cence, which generalizes existing models but allows updates to be deployed only in
predictable system states. Third, we introduce transactional process-level updates,
which allow safe hot rollback in case of update failures, and present their appli-
cation to operating systems. Fourth, we introduce a new reliable and secure state
transfer framework that automates state transfer, state checking, and tainted state
management. Finally, we have implemented and evaluated these ideas in PROTEOS,
a new research operating system designed with live update in mind. We believe our
work raises several important issues on existing techniques and provides effective
solutions that can drive future research in the field.

2.2 Background

Gupta has determined that the validity of a live update applied in an arbitrary state
S and using a state transfer function T is undecidable in the general case [125].
Hence, system support and manual intervention are needed. Unfortunately, existing
solutions offer both limited control over the update state S and poor support to build
the state transfer function T .

2.2.1 Safe Update State

Prior work has generally focused on an update-agnostic definition of a safe update
state. A number of solutions permit both the old and the new version to coex-
ist [194; 69; 68], many others disallow updates to active code [103; 124; 32; 43; 36].
The first approach yields an highly unpredictable update process, making it hard to
give strong safety guarantees. The second approach relies on the general notion of
function (or object) quiescence, which only allows updates to functions that are not
on the call stack of some active thread.

Figure 2.1 shows that quiescence is a weak requirement for a safe update state.
The example proposed (inspired by real code from the Linux fork implementation)
simply moves the call prepare_creds() from the function dup_task_struct
to the function copy_creds. Since copy_process is unchanged, function qui-
escence would allow the update to happen at any of the update points (1, 2, 3).
It is easy to show, however, that the update point (2) is unsafe, since it may al-
low a single invocation of the function copy_process() to call (i) the old ver-

2.2. BACKGROUND 13

C
ha

pt
er

2

Figure 2.1: An unsafe live update using function quiescence.

sion of the function dup_task_struct() and (ii) the new version of the function
copy_creds(). Due to the nature of the update, the resulting execution would in-
correctly call prepare_creds() twice—and not once, as expected during normal
update-free execution.

To address this problem, prior live update solutions have proposed pre-annotated
transactions [215], update points [214], or static analysis [213]. These strategies do
not easily scale to complex operating system updates and always expose the pro-
grammer to the significant effort of manually verifying update correctness in all the
possible system states. PROTEOS addresses this problem using our new notion of
state quiescence, which generalizes prior update safety mechanisms and allows the
programmer to dynamically express update constraints on a per-update basis. In the
example, the programmer can simply specify a state filter (§2.4.3) requesting no
fork to be in progress at update time.

2.2.2 State Transfer

Prior work has generally focused on supporting data type transformations in a rigid
address space organization. Three approaches are dominant: type wrapping [214;
213], object replacement [43; 69; 68; 193], and shadow data structures [194; 36].
Type wrapping instruments data objects with extra padding and performs in-place
type transformations. Object replacement dynamically loads the new objects into
the address space and transfers the state from the old objects to the new ones.

14 CHAPTER 2. PROTEOS

B
ef

o
re

 U
p

d
at

e
A

ft
er

 U
p

d
at

e
Type Wrapping

((int)interior_p) = 0;

void *interior_p = (void*)&c.magic;

interior_p
0xf010 &c.magic

c'.uid
0

(a) Overriding uid instead of magic

interior_p
0xf010 &c.magic

struct cred {
 atomic_t usage;
 atomic_t subscribers;
 void *put_addr;
 int flags;
 unsigned magic;
 uid_t uid;
 ...
} c;

0xf000
0xf004
0xf008
0xf00c
0xf010
0xf014
0xf018

struct cred {
 atomic_t usage;
 atomic_t subscribers;
 void *put_addr;
 unsigned magic;
 uid_t uid;
 ...
 unsigned securebits;
} c';

0xf000
0xf004
0xf008
0xf00c
0xf010
0xf014
0xf024

Shadow Data Structures

void *base_p = (void*)&c;
size_t size_p = sizeof(c);

base_p
0xf000 &c

memset(base_p, 0, size_p);
bits = SHADOW(c', securebits);

c'.securebits
0xdeadbeef

bits
0xdeadbeef

(c) Reading uninitialized securebits

Object Replacement

void *base_p = (void*)&c;
void *interior_p = (void*)&c.uid;

base_p
0xf000 &c

interior_p
0xf014 &c.uid

id = ((struct cred*)base_p)->uid;
id = *((int*)interior_p);

base_p
0xf000 &c

interior_p
0xf014 &c.uid

id
c.uid

id
c.magic

(b) Reading stale magic and uid

B
ef

o
re

 U
p

d
at

e
A

ft
er

 U
p

d
at

e

Figure 2.2: Examples of live update security vulnerabilities introduced by unhandled pointers into
updated data structures: (a) Type-unsafe memory writes; (b) Misplaced reads of stale object data;
(c) Uninitialized reads.

Shadow data structures are similar, but preserve the old objects and only load the
new fields of the new objects. While some have automated the generation of type
transformers [214; 213], none of the existing live update solutions for C provides
automated support for transforming pointers and reallocating dynamic objects. Fig-
ure 2.2 demonstrates that failure to properly handle pointers into updated objects can
introduce several problems, ranging from subtle logical errors to security vulnera-
bilities. Type wrapping may introduce type-unsafe memory reads/writes for stale

2.2. BACKGROUND 15

C
ha

pt
er

2

interior pointers into updated objects. This is similar to a typical dangling pointer
vulnerability [27], which, in the example, causes the pointer interior_p to erro-
neously write into the field uid instead of the field magic. Object replacement may
introduce similar vulnerabilities for stale base pointers to updated objects. In the
example, this causes the pointer base_p to erroneously read from the field magic
in the old object instead of the field uid in the new one. It may also introduce mis-
placed reads/writes for stale interior pointers into updated objects. In the example,
this causes the pointer interior_p to read the field uid from the old object instead
of the new one. Finally, shadow data structures may introduce missing read/write
errors for nonupdated code accessing updated objects as raw data. This may, for
example, lead to uninitialized read vulnerabilities, as shown in the example for the
field securebits.

Prior live update solutions have proposed static analysis to identify all these cases
correctly [214]. This strategy, however, requires sophisticated program analysis that
scales poorly with the size of the program, limits the use of some legal C idioms (e.g.,
void* pointers), and only provides the ability to disallow updates as long as there
are some live pointers into updated objects. Thus, extensive manual effort is still
required to locate and transfer all the pointers correctly in the common case of long-
lived pointers into updated objects. In our experience, this effort is unrealistic for
nontrivial changes. PROTEOS addresses this problem by migrating the entire state
from one process version to another, automating pointer transfer and object reallo-
cation with none of the limitations above. This is possible using our run-time state
introspection strategy implemented on top of LLVM-based instrumentation (§2.5.2).

2.2.3 Stability of the update process

We say that a live update process is stable if version τ of the system with no live
update applied behaves no differently than version τ − k of the same system after
k live updates. This property is crucial for realistic long-term deployment of live
update. Unfortunately, the update mechanisms used in existing live update solutions
for C repeatedly violate the stability assumption. This is primarily due to the rigid
address space organization used, with every update loading new code and data di-
rectly into the running version. This in-place strategy typically introduces memory
leakage (due to the difficulties to reclaim dead code and data) and poorer spatial
locality (due to address space fragmentation). For example, prior work on server ap-
plications reported 40% memory footprint increase and 29% performance overhead
after 10 updates [214]. Further, solutions that redirect execution to the new code
via binary rewriting [194; 36; 69; 32] introduce a number of trampolines (and thus
overhead) that grows linearly with the number and the size of the updates. Finally,
shadow data structures change the code representation and force future updates to
track all the changes previously applied to the system, complicating version man-
agement over time. PROTEOS’ process-level updates eliminate all these issues and
ensure a stable live update process (§2.5).

16 CHAPTER 2. PROTEOS

Figure 2.3: The architecture of PROTEOS.

2.3 Overview

Our design adheres to 3 key principles: (i) security and reliability: updates are only
installed in predictable system states and the update process is safeguarded against
errors and unsafe conditions; (ii) large update surface: no constraints on the size,
complexity, and number of updates applied to the system; (iii) minimal manual ef-
fort: state filters minimize code inspection effort to ensure safety; automated state
transfer minimizes programming effort for the update; process-level updates make
deploying live updates as natural as installing a new release, with no need for spe-
cialized toolchains or complex patch analysis tools.

2.3.1 Architecture

Figure 2.3 shows the overall architecture of PROTEOS. Our design uses a minimalis-
tic approach with a thin kernel only managing the hardware and providing basic
IPC functionalities. All the core operating system subsystems are confined into
hardware-isolated processes, including drivers, scheduling, process management,
memory management, storage, and network stack. The OS processes communi-
cate through message passing and adhere to a well-defined event-driven model. This
design is advantageous for a number of reasons. First, it introduces clear module
boundaries and interfaces to simplify updatability and reasoning on update safety.
Second, live updates are installed by replacing entire processes, with a new code
and data representation that is no different from a freshly installed version of the
system. This strategy fulfills the stability requirement and simplifies deployment of
live updates. Third, the MMU-based isolation sandboxes the execution of the entire

2.3. OVERVIEW 17

C
ha

pt
er

2

state transfer code in the new version, simplifying detection and isolation of run-time
errors and allowing for safe hot rollback and no memory leakage. Finally, our event-
driven update model facilitates state management and allows the system to actively
cooperate at update time, a strategy which translates to a much more predictable and
controllable live update process [105].

The update process is orchestrated by the update manager (UM), which provides
the interface to deploy live updates for all the OS processes (including itself). When
an update is available, the update manager loads the new process instances in mem-
ory and requests all the processes involved in the update to converge to the required
update state. When done, every process reports back to UM and blocks. At the end
of the preparation phase, UM atomically replaces all the processes with their new
counterparts. The new processes perform state transfer and report back to the update
manager when done. At the end of the state transfer phase, the old processes are
cleaned up and the new processes are allowed to resume execution. Synchroniza-
tion between the update manager and the OS processes is entirely based on message
passing. Live updates use atomic transactions: the update manager can safely abort
and rollback the update during any stage of the update process, since no changes are
made to the original process. Figure 2.3 depicts the steps of the update process for
single-component live updates (multicomponent updates are discussed in §2.4.5).

2.3.2 Update example

In PROTEOS, building a live update is as simple as recompiling all the updated com-
ponents using our LLVM compiler plugin. To apply the update, programmers use
prctl, a simple command-line utility that interfaces with the update manager. For
example, the following command instructs the update manager to install a new ver-
sion of the memory manager in the default live update state (no event in progress):

prctl update mm /bin/mm.new

In our evaluation, we used this update to apply important changes to page fault han-
dling code. An example of a multicomponent update is the following:

prctl mupdate net /bin/net.new \
-state ’num_pending_writes == 0’

prctl mupdate e1000 /bin/e1000.new
prctl mupdate-start

In our evaluation, we used this update to change the interface between the network
stack and the network drivers. The state filter for the variable num_pending_writes
is used to ensure that no affected interface interactions are in progress at update time.
In our experiments, this change was applied automatically, with no manual effort re-
quired. Without the filter, the change would have required several lines of manual

18 CHAPTER 2. PROTEOS

and error-prone state transfer code. Since interface changes between versions are
common in modern operating systems [229; 230], we consider this an important im-
provement over the state of the art. While it should be clear that not all the updates
can be so smoothly expressed with a simple state filter, this example does show that,
when the state is well-captured in the form of global data structures, programmers
can much more easily reason on update safety in terms of state quiescence, which
frees them from the heroic effort of validating the update in many transient (and po-
tentially unsafe) system states. In our model, identifying a single and well-defined
safe update state is sufficient to guarantee a predictable and reliable update process.

2.3.3 Limitations

The OS design adopted in PROTEOS is not applicable as-is to commodity operating
systems. Nonetheless, our end-to-end design can be easily applied to: (i) micro-
kernel architectures used in common embedded OSes, such as L4 [178], Green Hills
Integrity [8], and QNX [143]; (ii) research OSes using process-like abstractions,
such as Singularity [152]; (iii) commodity OS subsystems running in user space,
such as filesystems [7] and user-mode drivers in Windows [202] or Linux [60]; (iv)
long-running user-space C programs. We make no claim that our OS design is the
only possible design for a live update system. PROTEOS merely illustrates one way
to implement several novel techniques that enable truly safe and automatic live up-
dates. For instance, our single-component live update strategy could be also applied
to monolithic OS architectures, using shadow kernel techniques [84] to enable state
transfer between versions. The reduced modularity, however, would complicate rea-
soning on update safety for nontrivial updates. Failure to provide proper process-like
isolation for the state transfer code, in turn, would lower the dependability of our hot
rollback strategy.

We stress that the individual techniques described in the paper (e.g., state quies-
cence, automated state transfer, and automated state checking) have general appli-
cability, and we expect existing live update solutions for commodity OSes or user-
space programs to directly benefit from their integration. To encourage adoption and
retrofit existing OSes and widely deployed applications, we explicitly tailored our
techniques to the C programming language.

A practical limitation of our approach is the need for annotations to handle am-
biguous pointer transfer scenarios (§2.5.3). Our experience, however, shows that the
impact of these cases is minimal in practice (§2.6.1). Moreover, we see this as a
feature rather than a limitation. Annotations compensate for the effort to manually
perform state transfer and readjust all the pointers. Failing to do so leads to the
reliability and security problems pointed out earlier.

Finally, a limitation of our current implementation is the inability to live update
the message-passing substrate running in kernel mode. Given its small size and
relatively stable code base, we felt this was not a feature to particularly prioritize.
The techniques presented here, however, are equally applicable to the kernel code

2.4. LIVE UPDATE SUPPORT 19

C
ha

pt
er

2

static int my_init () {
... // initialization code
return 0;

}
int main () {

event_eh_t my_ehs = { init : my_init };
sys_startup (& my_ehs);
while (1) { // event loop

msg_t m;
sys_receive (&m);
process_msg (&m);

}
return 0;

}

Listing 2.1: The event-driven programming model.

itself. We expect extending our current implementation to pose no more challenges
than enabling live update for the update manager, which PROTEOS already supports
in its current form (§2.4.5).

2.4 Live Update Support

This section describes the fundamental mechanisms used to implement safe and au-
tomatic live update in PROTEOS.

2.4.1 Programming model

Figure 2.1 exemplifies the event-driven model used in our OS processes. The struc-
ture is similar to a long-running server program, but with special system events
managed by the run-time system—implemented as a library transparently linked
against every OS process as part of our instrumentation strategy. At startup, each
process registers any custom event handlers and gives control to the runtime (i.e.,
sys_startup()).

At boot time, the runtime transparently invokes the init handler (my_init in the
example) to run regular initialization code. In case of live update, in contrast, the
runtime invokes the state transfer handler, responsible for initializing the new pro-
cess from the old state. The default state transfer handler (also used in the example)
automatically transfers all the old state to the new process, following a default state
transfer strategy (§2.5.4). This is done by applying LLVM-based state instrumenta-
tion at compile time and automatically migrating data between processes at runtime.

After startup, each process enters an endless event loop to process IPC messages.
The call sys_receive() dispatches regular messages to the loop, while transpar-
ently intercepting the special system events part of the update protocol and handling
all the interactions with the update manager. The event loop is designed to be short
lived, thanks to the extensive use of asynchronous IPC. This ensures scalability and
fast convergence to the update state. Fast state quiescence is important to replace

20 CHAPTER 2. PROTEOS

many OS processes in a single atomic transaction, eliminating the need for unsafe
cross-version execution in complex updates. Note that this property does not equally
apply to function quiescence, given that many OS subsystems never quiesce [194].
In PROTEOS, all the nonquiescent subsystems are isolated in event loops with well-
defined mappings across versions. This makes it possible to update any nonquies-
cent part of the OS with no restriction. The top of the loop is the only possible
update point, with an update logically transferring control flow from an invocation
of sys_receive() in the old process to its counterpart in the new process (and back
in case of hot rollback).

2.4.2 Virtual IPC endpoints

Two properties make it possible to support transactional process-level updates for
the entire OS. First, updates are transparent to any nonupdated OS process or user
program. Second, updates are atomic: only one version at the time is logically visi-
ble to the rest of the system. To meet these goals, PROTEOS uses virtual endpoints in
its IPC implementation. A virtual endpoint is a unique version-agnostic IPC identi-
fier assigned to the only active instance of an OS process. At update time, the kernel
atomically rebinds all the virtual endpoints to the new instances. The switchover,
which occurs at the end of the preparation phase, transparently redirects all the IPC
invocations to the new version.

2.4.3 State filters

Unlike prior solutions, PROTEOS relies on state quiescence to detect a safe update
state. This property allows updates to be installed only when particular constraints
are met by the global state of the system. State filters make it possible to specify
these constraints on a per-update basis. A state filter is a generic boolean expres-
sion written in a C-like language and evaluated at runtime. Our state filter evaluator
supports the arithmetic, comparison, and logical operators allowed by C. It can also
handle pointers to dynamically allocated objects, compute the value of any glob-
al/static variable (and subelements), and invoke read-only functions with a predeter-
mined naming scheme. State filters reflect our belief that specifying a safe update
state should be as easy as writing an assertion to check the state for consistency. Our
evaluator is implemented as a simple extension to our state management framework
(§2.5), which already provides the ability to perform run-time state introspection.

At the beginning of the preparation phase, every to-be-updated OS process re-
ceives a string containing a state filter, which is installed and transparently evaluated
at the end of every following event loop iteration. When the process transitions to the
required state, the expression evaluates to true, causing the process to report back
to the update manager and block at the top of the event loop. The default state filter
forces the process to block immediately. To support complex state filters that can-
not be easily specified in a simple expression, PROTEOS can automatically compile

2.4. LIVE UPDATE SUPPORT 21

C
ha

pt
er

2

generic state filter functions (written in C) into binary form. This is simply accom-
plished by generating intermediate process versions that only differ from the old
ones by a new filter function sf_custom. Since the change is semantics-preserving,
the intermediate versions can be automatically installed in the default update state
before the actual update process takes place. State filter functions give the program-
mer the flexibility to express complex state constraints using any valid C code. On
the other hand, regular state filters, are a simpler and smoother solution for online
development and fast prototyping. They are also safer, since the state expression is
checked for correctness by our state transfer framework.

2.4.4 Interface filters

Our short-lived event loop design is not alone sufficient to guarantee convergence
to the update state in the general case, especially when the system is under heavy
load. To give stronger convergence guarantees in particular scenarios, PROTEOS

supports (optional) interface filters for every to-be-updated OS process. Each filter
is transparently installed into the kernel at the beginning of the preparation phase.
Its goal is to monitor the incoming IPC traffic and temporarily block delivery of
messages that would otherwise delay state quiescence. Programmers can specify
filtering rules similar to those used in packet filters [130], to selectively blacklist or
whitelist delivery of particular IPC messages by source or type.

2.4.5 Multicomponent updates

Changes that affect IPC interactions require the system to atomically update mul-
tiple processes in a single update transaction. To support multicomponent updates,
the update manager orderly runs the preparation protocol with every to-be-updated
OS process. The overall preparation phase is strictly sequential, namely the process
i in the update transaction is only requested to start the preparation phase after the
process i − 1 has already reached state quiescence and blocked. The state transfer
phase is, in contrast, completely parallel. Parallelism is allowed to avoid placing
any restrictions on state transfer extensions that require updated processes to ini-
tialize some mutual state. Our sequential preparation strategy, in turn, ensures a
predictable live update process and gives the programmer full control over the up-
date transaction, while preserving the ability to safely and automatically rollback
the update in case of programming errors (i.e., deadlocks or other synchronization
issues). Our design introduces a new structured definition of the live update prob-
lem: a live update is feasible if it is possible to identify a sequence of state and
interface filters able to drive the system into a state with a valid mapping—and state
transfer function—in the new version. Our experience shows that this approach is
effective and scales to complex updates. For instance, following a top-down update
strategy, we were successfully able to implement a fault-tolerant update transaction
that atomically replaces all the OS processes, including the update manager itself.

22 CHAPTER 2. PROTEOS

To update the update manager, PROTEOS uses two simple ideas. First, the update
manager is constrained to be the last process in the update transaction to obey the
semantics of the update process. At the end of the preparation phase, kernel support
allows the update manager to block and atomically yield control to its new process
version. Second, the new version completes the update process as part of its own
state transfer phase. Once the automated state transfer process completes (§2.5.1),
the new manager updates its state to account for its own update and normally waits
for the other OS processes to synchronize. This simple strategy added less than 200
lines of code to our original update manager implementation.

2.4.6 Hot rollback

In case of unexpected errors, hot rollback enables the update manager to abort the
update process and safely allow the old version to resume execution. Our manager
can detect and automatically recover from the following errors: (i) timeouts in the
preparation phase (e.g., due to broken dependencies in the update transaction or
poorly designed state/interface filters which lead to deadlocks or other synchroniza-
tion errors); (ii) timeouts in the state transfer phase (e.g., due to synchronization er-
rors or infinite loops); (iii) fatal errors in the state transfer phase (e.g., due to crashes,
panics, or error conditions automatically detected by our state checking framework).
The MMU-based protection prevents any run-time errors from propagating back to
the old version. Fatal errors are ultimately intercepted by the kernel, which sim-
ply notifies the update manager—or its old instance, which is automatically revived
by the kernel when the update manager itself is updating—to perform rollback. To
atomically rollback the update during the state transfer phase, the update manager
simply requests the kernel to freeze all the new instances, rebind all the virtual end-
points to the old instances, and unblock them. The new instances are cleaned up next
in cooperation with the old version of the system.

2.5 State Management

To automate process-level updates, PROTEOS needs to automatically migrate the
state between the old and the new process. Our migration strategy makes no assump-
tions about compiler optimizations or number of code or data structures changed
between versions. In other words, the two processes are allowed to have arbitrar-
ily different memory layouts. This allows us to support arbitrarily complex state
changes with no impact on the stability of the update process. To address this chal-
lenge, PROTEOS implements precise run-time state introspection, which makes it
possible to automate pointer transfer and dynamic object reallocation even in face of
type changes. Our goal is to require help from the programmers only in the unde-
cidable cases, for example, ambiguous pointer scenarios (§2.5.3), semantic changes
that cannot be automatically settled by our state mapping and migration strategy

2.5. STATE MANAGEMENT 23

C
ha

pt
er

2

Figure 2.4: The state transfer process.

(e.g., an update renumbering the error codes stored in global variables), and changes
that also require updating external state (e.g., an update modifying the representation
of some on-disk data structures).

2.5.1 State transfer

To support run-time state introspection, every OS process is instrumented using an
LLVM link-time pass, which embeds state metadata in a predefined section of the
final ELF binary. The metadata contains the relocation and type information required
to introspect all the state objects in the process at runtime. The metadata structures
use a fixed layout and are located in a randomized location only known to the process
and the kernel.

Figure 2.4 depicts the state transfer process. The migration phase starts with the
state transfer framework transferring all the metadata from the old version to the new
version (local address space). This is done using a capability-based design, with the
kernel granting (only) the new process read-only access to the address space of the
old process. At the end of the metadata migration phase, both the old and the new
metadata are available locally. This allows the framework to introspect both the old
and the new state and remap all the state objects across versions. The mapping relies
on a version-agnostic naming scheme established at compile time. This enables the
framework to unambiguously pair functions, variables, strings, and dynamic objects
across versions.

At the end of the pairing phase, all the paired objects are scheduled for transfer
by default. Programmers can register extensions to change the pairing rules (e.g., in
case of variable renaming) or instruct the framework to avoid transferring particular
objects (§2.5.4).

In the data migration phase, the framework traverses all the old state objects
(and their inner pointers) scheduled for transfer and ordinately migrates the data to
their counterparts in the new version. Our traversal strategy is similar, in spirit, to

24 CHAPTER 2. PROTEOS

a precise garbage collector that relocates objects [243]. There are, however, impor-
tant differences to point out. First, all the dynamic (and static) objects are reallo-
cated (loaded) in the new process. Second, our event loop design allows no state
objects on the stack at update time. This eliminates the need to create dynamic
metadata for all the local variables, which would degrade performance. Note that,
to encourage adoption of our state transfer framework in other update and execution
contexts (e.g., multithreaded server applications), however, our instrumentation can
already support dynamic metadata generation for local variables (disabled in PRO-
TEOS), using stack instrumentation strategies similar to those adopted by garbage
collectors [243]. Finally, objects are possibly reallocated (or loaded) with a different
run-time type. Unlike prior solutions, our framework applies type transformations
(for both objects and pointers) on-the-fly, analyzing the type differences between
paired objects at runtime. This eliminates the need for complex patch analysis tools
and exposes a powerful programming model to state transfer extensions. We clarify
this claim with an example. To deploy a live update that added a new field in the
middle of the struct buf_desc (a core data structure of the buffer cache) in our
evaluation, we only had to write a simple type-based state transfer callback (§2.5.4)
that reinitialized the new field in every object in the new version. The latter is a
programmer-provided function automatically invoked by the framework on every
transferred object of the requested type (e.g., struct buf_desc). This allows the
programmer to focus on the data transformation logic while the framework automat-
ically performs dynamic object reallocation and updates all the live pointers into the
new objects. Since this struct was used in complex data structures like hash tables
and linked lists (chained together by several base and inner pointers), this is a signif-
icant improvement over existing techniques, which would have required extensive
and error-prone manual effort to implement state transfer.

2.5.2 Metadata instrumentation

Our LLVM transformation pass operates at the LLVM IR level and generates meta-
data for global/static variables (and constants), functions, and strings. Although
functions and strings need not be normally transferred to the new version, their
metadata is necessary to transfer pointers correctly. For each object, the pass records
information on the address, the name, and the type. To create unique and version-
coherent identifiers to pair static state objects across versions, our pass uses both
naming (e.g., global variable name) and contextual (e.g., module name for static
functions/variables) information derived from debug symbols. Note that this strategy
does not prevent debug symbols from being completely stripped with no restriction
from the final binary. To create metadata for dynamically allocated objects, in turn,
the pass analyzes and instruments each allocation site found in the original code.
Our static analysis can automatically identify malloc/free and mmap/munmap al-
locator abstractions, which PROTEOS natively supports for every OS process. For
each allocation site, the pass records the name (derived from the caller and the allo-

2.5. STATE MANAGEMENT 25

C
ha

pt
er

2

cation variable), the allocator name, and the static type. The name and the allocator
name are used to pair (and reallocate) allocation sites across versions. The static
type is used to dynamically determine the run-time type of every allocated object.
For example, an allocation of the form ptr = malloc(sizeof(msg_t)*4) will be
associated a static type msg_t and a run-time type [4 x msg_t]. The pass replaces
every allocation/deallocation call with a call to a wrapper function responsible to dy-
namically create/destroy metadata for every dynamic object. To minimize the perfor-
mance impact, the wrappers normally use in-band descriptors to store the metadata
for the dynamic state objects. The allocators, however, support special flags to let
the programmer control the allocation behavior (e.g., use out-of-band metadata for
special I/O regions, or remap DMA buffers at state transfer time instead of explicitly
reallocating them).

2.5.3 Pointer transfer

Pointers pose a fundamental challenge to automating state transfer for C programs.
To transfer base and interior pointers correctly, our framework implements dynamic
points-to analysis on top of the precise type information provided by our instrumen-
tation. Our analysis is cast-insensitive and does not forbid or limit the use of any
legal C programming idiom (e.g., void*), a problem in prior work [214; 213]. Our
pointer transfer strategy follows 5 steps (an example is presented in Figure 2.5): (i)
locate the target object (and the inner element, for interior pointers); (ii) locate the
target object counterpart in the new version according to the output of the pairing
phase; (iii) remap the inner element counterpart in case of type changes; (iv) reini-
tialize the pointer according to the target object (and element) counterpart identified;
(v) schedule the target object for transfer. The last step is necessary to preserve the
shape of arbitrarily complex data structures. In addition, the traversal allows our
framework to structurally prevent any memory leakages (i.e., unreachable dynamic
objects) in the old version from propagating to the new version. Note that our pointer
traversal strategy relies only on the run-time type of the target object (and element),
with no assumptions on the original pointer type. This strategy can seamlessly sup-
port generic void* pointers and eliminates the need to explicitly deal with pointer
casting. Our framework can also automatically handle pointers with special integer
values (e.g., NULL or MAP_FAILED (-1)) and guard pointers that mark buffer bound-
aries. Uninitialized pointers are structurally prevented in the allocators and dangling
pointers disallowed by design. While our pointer analysis can handle all these com-
mon scenarios automatically, we have identified practical cases of pointer ambiguity
that always require (typically one-time) user intervention, pointers stored as inte-
gers and unions with inner pointers, in particular. Manually handling these cases
via annotations or callbacks (§2.5.4) is necessary to ensure precise pointer analysis.
More details on our points-to analysis and our pointer transfer strategy are published
elsewhere [104].

26 CHAPTER 2. PROTEOS

Figure 2.5: Automating type and pointer transformations.

2.5.4 Transfer strategy

Our framework follows a well-defined default state transfer strategy, while allowing
programmer-provided extensions to arbitrarily override the default behavior.

Figure 2.5 shows an example of the transfer strategy followed by our framework
for a simple update. All the objects and the pointers are automatically transferred
(and reallocated on demand) to the new version in spite of type changes. Our default
transfer strategy automates state transfer for many common structural changes, such
as: (i) primitive type transformations, (ii) array truncation/expansion, and (iii) ad-
dition/deletion/reordering of struct fields. Extensions can be used to handle more
complex state changes (and cases of pointer ambiguity) with minimal effort. The
latter are supported in the form of type- or object-based annotations or callbacks,
evaluated every time the framework traverses or remaps the intended type (or ob-
ject). Annotations are implemented at the preprocessor level with no changes in the
compiler. Figure 2.5 shows an example, with the IXFER and PXFER type-based an-
notations forcing the framework to memcpy the union u (without introspecting it)
and perform pointer transfer of the integer addr.

Programmer-provided state transfer callbacks, in turn, provide a more generic
extension mechanism to override the default state transfer behavior during any stage
of the state transfer process and at several possible levels of abstraction. For instance,
programmers can register object-level and element-level callbacks—evaluated when
the framework performs a particular action on a given object or an element part
of an object, respectively. To specify the trigger entity in the most flexible way,
callbacks can be registered by object/element storage (e.g., data, heap), object/ele-
ment name (e.g., my_var_namespace_*), and object/element type (e.g., struct

2.5. STATE MANAGEMENT 27

C
ha

pt
er

2

my_struct_s), or using any combination thereof. To support many possible trig-
ger events, programmers can register object/element pairing callbacks (to override
the default name-based pairing strategy adopted by the framework), object/element
transfer callbacks (to override the default transfer strategy or selectively schedule in-
dividual objects for transfer), and pointer transfer callbacks (to override the default
pointer transfer strategy). Note that the callbacks are automatically and logically
chained together by the framework. For example, a user-defined element pairing
callback that remaps a struct field in a nonstandard way in the new version is au-
tomatically invoked by the framework when either transferring the original field to
the new version or remapping an inner pointer to the field into an updated object.
The callbacks all run in the context of the new process version after completing the
metadata migration phase, allowing the programmer to seamlessly access objects in
the old and the new version (and their metadata information) with no restriction. The
callbacks are written directly in C, providing the ability to operate arbitrary trans-
formations in the state transfer code—even changing external state on the disk, for
example. In addition, this allows the programmer to remap complex data structures
that significantly change their representation across versions (e.g., a hash table trans-
formed into multiple balanced BSTs) and cannot be automatically paired (nor trans-
ferred) by our framework. Even in such complex state transformation scenarios, our
programming model can provide a generic callback-driven interface to locate and
traverse all the objects (and pointers) to transfer, allowing the programmer to select
the best level of abstraction to operate and concentrate on data transformations rather
than on manual and error-prone state introspection.

2.5.5 State checking

Our state management framework supports automated state checking using generic
state invariants. The idea is to detect an invalid state when conservatively defined
invariants are violated. Target-based invariants are naturally enforced by our points-
to analysis (i.e., a pointer not pointing to any valid object is invalid). Other invariants
are determined by static analysis. We support value-based invariants (derived from
value set analysis of integer variables) and type-based invariants, which verify that a
pointer points to a target of a valid type at runtime. This is done by recording meta-
data on all the valid implicit and explicit pointer casts (i.e., bitcast and inttoptr
LLVM instructions). State checking is performed on the old version before the trans-
fer and on the new version after the transfer. In both cases, the transfer is atomically
aborted when invariants violations are found (unless extensions change the default
behavior). Checking both the old and the new state allows the framework to detect:
(i) a tainted state in the old version (i.e., arbitrary memory corruption) and possibly
let extensions recover from it; (ii) corruption in the new state introduced by the state
transfer code itself; (iii) violating assumptions in the state transfer process. An ex-
ample in the latter category is the attempt to transfer a pointer to an old object that
no longer exists (or no longer has its address taken) in the new version.

28 CHAPTER 2. PROTEOS

2.6 Evaluation

We have implemented PROTEOS on the x86 platform. The current PROTEOS imple-
mentation is a major rewrite of the original MINIX 3 microkernel-based operating
system, which only provided process-based isolation for all the core OS components
and restartability support for stateless device drivers [141]. Our current prototype in-
cludes 22 OS processes (8 drivers and 14 servers) and supports a complete POSIX
interface. The static instrumentation is implemented as an LLVM pass in 6550
LOC 1. The state management framework is implemented as a static library written
in C in 8840 LOC. We evaluated PROTEOS on a workstation equipped with a 12-
core 1.3Ghz AMD Opteron processor and 4GB of RAM. For evaluation purposes,
we ported the C programs in the SPEC CPU 2006 benchmark suite to PROTEOS.
We also put together an sdtools macrobenchmark, which emulates a typical syscall-
intensive workload with common development operations (compilation, text pro-
cessing, copying) performed on the entire OS source tree. We repeated all our exper-
iments 21 times and reported the median. Our evaluation focuses on 4 key aspects:
(i) Experience: Can PROTEOS support both simple and complex updates with min-
imal effort? (ii) Performance: Do our techniques yield low run-time overhead and
realistic update times? (iii) Service disruption: Do live updates introduce low service
disruption? (iv) Memory footprint: How much memory do our techniques use?

2.6.1 Experience

To evaluate the effort in deploying live updates, we randomly sampled 50 real up-
dates produced by the team of core MINIX 3 developers in the course of over 2
years. The live update infrastructure, in turn, was developed independently to ensure
a fair and realistic update evaluation. We carefully analyzed each update considered,
prepared it for live update, and finally deployed it online during the execution of
our SPEC and sdtools benchmarks. We successfully deployed all the live updates
considered and checked that the system was fully functional before and aftereach
experiment. In 4 cases, our first update attempt failed due to bugs in the state trans-
fer code. The resulting (pointer) errors, however, were immediately detected by our
state transfer framework and the update safely rolled back with no consequences for
the system. We also verified that the update process was stable (no performance/s-
pace overhead increase over time) and that our live update infrastructure could with-
stand arbitrary compiler optimization changes between versions (e.g., from -O1 to
-O3). Table 2.1 presents our findings.

The first three grouped columns provide an overview of all the updates analyzed,
with the number of updates considered per category. The New features category
has the highest number of updates, given that MINIX 3 is under active development.
Of the 50 updates considered, 16 involved multiple OS processes. This confirmed
the importance of supporting multicomponent live updates. The second group of

1Source lines of code reported by David Wheeler’s SLOCCount.

2.6. EVALUATION 29

C
ha

pt
er

2

U
pd

at
e

L
O

C
C

ha
ng

es
M

an
ua

le
ffo

rt
Ti

m
e

(m
s)

C
at

eg
or

y
#

M
ul

ti
To

ta
l

M
ed

ia
n

90
th

P
Fu

n
Va

r
Ty

A
nn

SF
ST

L
O

C
M

ed
U

pd

B
ug

fix
es

15
4

15
93

18
12

31
27

2
2

-
2

55
39

7
M

ai
nt

en
an

ce
12

5
22

06
62

87
2

16
7

8
-

1
16

23
0

N
ew

fe
at

ur
es

19
6

10
12

2
19

5
24

35
19

9
45

10
1

-
1

63
20

2
Pe

rf
or

m
an

ce
4

1
65

2
17

9
29

1
10

2
7

-
0

13
1

35
8

To
ta

l
50

16
14

57
3

63
70

9
25

2
56

11
8

14
4

26
5

27
2

Ta
bl

e
2.

1:
O

ve
rv

ie
w

of
al

lt
he

up
da

te
s

an
al

yz
ed

in
ou

re
va

lu
at

io
n.

30 CHAPTER 2. PROTEOS

columns shows the number of lines of code (total, median, 90th percentile) changed
across all the updates, with a total of nearly 15,000 LOC. The third group shows the
number of functions, variables, and types changed (i.e., added/deleted/modified).
For example, New features updates introduced 199 function changes, 45 variable
changes, and 101 type changes. The fourth group, in turn, shows the manual effort
required in terms of annotations, state filters, and lines of code for state transfer ex-
tensions. We only had to annotate 14 declarations (using 3 object-based annotations,
10 type-based annotations, and 1 type-based callback) throughout the entire PRO-
TEOS source code. Encouragingly, this was a modest one-time effort that required
less than 1 man week. The annotations were only necessary for unions with inner
pointers and special nontransferrable state objects (e.g., allocator variables). Cus-
tom state filters, in turn, were only required for 4 updates. We found that, for most
updates, our event loop design gave sufficient predictability guarantees in the default
update state. In the remaining cases, however, we faced complex interface changes
that would have required extensive manual effort without support for custom state
filters. From empirical evidence, we also believe that more than half of the updates
would have been extremely hard to reason about using only function quiescence.
Despite the many variable and type changes, all the updates required only 265 LOC
of state transfer extensions. We found that our state transfer framework was able to
fully automate most data structure changes (i.e., addition/removal). In addition, our
type-based state transfer callbacks minimized the effort to handle cross-cutting type
changes. Finally, the last column reports the median update time, with a value of
272ms across all the updates. We also measured a maximum update time of 3550ms
for cross-cutting updates that replaced all the OS processes (individually or in a
single multicomponent and fault-tolerant transaction).

We now compare our results with prior solutions. Before ours, Ksplice was the
only OS-level live update solution evaluated with a comprehensive list of updates
over a time interval [36]. Compared to ours, however, their evaluation is based on
security patches of much smaller size. Their median patch size is less than 5 LOC,
and the 90th percentile less than 30 LOC. As Table 2.1 demonstrates, PROTEOS

was evaluated with much more complex updates, while only requiring 265 LOC for
state transfer extensions (compared to 132 LOC for Ksplice’s 64 small patches [9]).
Many other live update solutions for C present only case studies [42; 68; 194; 43]
or lack a proper quantitative analysis of the manual effort required [32; 69; 193].
Many researchers, however, have reported “tedious implementation of the transfer
code” [42], “tedious engineering efforts” [68], “tedious work” [69], and “an arduous
testing process that spanned several weeks of concentrated work” [32]. In contrast,
we found our techniques to reduce the live update effort to the bare minimum. In
particular, our entire update evaluation required only 10 man days. Ginseng [214]
and Stump [213] are the only prior solutions for C that provide quantitative measure-
ments for the manual effort. Ginseng (Stump) required 140 (186) source changes and
336 (173) state transfer LOC to apply 30 (13) server application updates introduc-
ing 21919 (5817) new LOC in total. While it is difficult to directly compare their

2.6. EVALUATION 31

C
ha

pt
er

2

PROTEOS Linux

malloc 2.30 1.41
free 1.19 1.09
mmap 1.41 1.77
munmap 1.06 1.42

Table 2.2: Execution time of instrumented allocator operations normalized against the baseline.

results on server applications with ours, we believe that our techniques applied to
the same set of updates would have significantly reduced the effort, avoiding man-
ual inspection or code restructuring to eliminate unsupported C idioms, posing no
restriction on the nature of the data structure changes, and assisting the programmer
in challenging tasks like heap traversal, pointer transfer, and state checking.

2.6.2 Performance

We evaluated the run-time overhead imposed by the update mechanisms used in
PROTEOS. Virtual endpoints introduce only update-time costs and no extra run-time
overhead on IPC. Transparent interception of special system events introduces only 3
additional cycles per event loop iteration. An important impact comes also from the
microkernel-based design itself. Much prior work has been dedicated to improving
the performance of IPC [186] and microkernel-based systems in general [185; 153].
Our focus here is on the update techniques rather than on microkernel performance.
For instance, our current measurements show that the gettimeofday, open, read,
write, close system calls are 1.05-8.27x slower than on Linux due to our micro-
kernel design. These numbers are, however, pessimistic, given that we have not yet
operated many optimizations described in the literature [186; 185; 153].

Much more critical is to assess the cost of our state instrumentation, which di-
rectly affects the applicability of our techniques to other OS architectures or user-
space applications. To this end, we first ran our SPEC and sdtools macrobenchmarks
to compare the base PROTEOS implementation with its instrumented version. Our
repeated experiments reported no noticeable performance degradation. This is ex-
pected since static metadata, used only at update time, is isolated in a separate ELF
section with no impact on spatial locality. The use of in-band descriptors to generate
dynamic metadata, in turn, minimizes the run-time overhead on allocator operations.
To isolate this overhead, we measured the cost of our instrumentation on 10,000
malloc/free and mmap/munmap repeated allocator operations. We ran the experi-
ments for multiple allocation sizes (0-16MB) and reported the median overhead for
malloc/free (the overhead does not generally depend on the allocation size) and
the maximum overhead for mmap/munmap (the overhead generally decreases with
the allocation size). For comparison, we also ported our instrumentation to Linux
user-space programs and ran the same microbenchmarks on Ubuntu 10.04 LTS 32-
bit (libc allocators). Table 2.2 depicts our results, with a different (but comparable)

32 CHAPTER 2. PROTEOS

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 500 1000 1500 2000 2500 3000 3500

U
pd

at
e

tim
e

(m
s)

State size (KB)

Update time
State checking time

Figure 2.6: Update time vs. run-time state size.

impact of our state instrumentation in the two allocator implementations. The high-
est overheads in PROTEOS and Linux are incurred by malloc (130%) and mmap
(77%), respectively. Note that these results are overly pessimistic, since common
allocation patterns typically yield poorer spatial locality, which will likely mask the
overhead on allocator operations further.

We now compare our results with prior techniques. Live update solutions based
on (more intrusive) instrumentation strategies have reported macrobenchmark re-
sults with worst-case overheads of 6% [214], 6.71%[213], and 96.4% [193]. Solu-
tions based on binary rewriting, in turn, have reported microbenchmark results with
1%-8% invocation overhead [194] for updated functions. Unlike all the prior tech-
niques, our overhead is well-isolated in allocator operations and never increases with
the number and the size of the updates applied to the system (stability assumption).

To assess the impact of live updates on the system, we analyzed the distribution
of the update time in more detail. Figure 2.6 depicts the update time (the time from
the moment the update is signaled to the moment the new version resumes execution)
as a function of the run-time state size (total size of all the static and dynamic state
objects). These (interpolated) results reflect average measurements obtained during
the execution of our macrobenchmarks for all the single-component updates used in
our evaluation. The figure shows that the update time grows approximately linearly
with the state size. This behavior stems from the fact that the update time is heavily
dominated by state transfer and state checking (isolated in the figure). The time to
load the new processes in memory and complete the preparation phase is normally
marginal. We experimented with many state filters to quiesce all the common OS
process interactions and found that the time to reach state quiescence was only a few
milliseconds in the worst case. This property makes any overhead associated to eval-
uating state and interface filters in the preparation phase marginal. While our overall
update times are generally higher than prior solutions for simple updates (since we

2.6. EVALUATION 33

C
ha

pt
er

2

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 1 2 4 8 16 32

R
un

-ti
m

e
ov

er
he

ad
 (%

)

Update frequency (s)

SPEC benchmarks
sdtools benchmark

(a): Online diversification.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

 1 2 4 8 16 32

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200
 220
 240
 260

R
un

-ti
m

e
ov

er
he

ad
 (%

)

M
em

or
y

le
ak

 s
iz

e
(M

B
)

Update frequency (s)

SPEC overhead
sdtools overhead

SPEC memory leak
sdtools memory leak

(b): Memory leakage reclaiming.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 1 2 4 8 16 32

R
un

-ti
m

e
ov

er
he

ad
 (%

)

Update frequency (s)

SPEC benchmarks
sdtools benchmark

(c): Update failures.

Figure 2.7: Run-time overhead vs. update frequency for our benchmarks.

34 CHAPTER 2. PROTEOS

replace entire processes instead of individual functions), the resulting impact is still
orders of magnitude shorter than any reboot and bearable for most systems.

2.6.3 Service disruption

To substantiate our last claim, we evaluated the service disruption caused by live
update. Figure 2.7 shows the run-time overhead incurred by our macrobenchmarks
when periodically updating OS processes in a round-robin fashion. The overhead
increases for shorter update intervals, with more disruption incurred by sdtools. The
figures present three novel live update scenarios. Figure 2.7a presents results for
an online diversification scenario—an idea we have also developed further in [108].
We implemented a source-to-source transformation able to safely and automatically
change 3872 type definitions (adding/reordering struct elements and expanding
arrays/primitive types) throughout the entire operating system. The changes were
randomized for each generated OS version, introducing a heavily diversified mem-
ory layout across updates. This scenario stressed the capabilities of our state transfer
framework, introducing an average of 4,873,735 type transformations at each up-
date cycle and approximating an upper bound for the service disruption. Figure 2.7b
presents a memory leakage reclaiming scenario. Updates were performed between
identical OS versions (approximating a lower bound for the service disruption), but
we deliberately introduced a memory leak bug (similar to one found during develop-
ment) that caused the virtual filesystem not to free the allocated memory at exec()
time. Shorter update intervals increase the overhead but allow our state transfer
framework to automatically repair leaks more quickly. The tradeoff is evident for
sdtools, which exec()ed several programs during the experiment. Figure 2.7c pre-
sents an update failures scenario. We deliberately simulated state transfer crashes
or 2-second timeouts (in equal measure) for each update, resulting in more severe
service disruption for the syscall-intensive benchmark sdtools, but with no system-
perceived impact. This scenario stressed the unique fault-tolerant capabilities of our
live update infrastructure, able to withstand significant update failures and automat-
ically rollback the entire update transaction with no consequences for the operating
system and all the running programs. Overall, our experiments reported a negligible
overhead for update intervals larger than 20s. Given that updates are relatively rare
events, we expect the update-induced service disruption to be minimal in practice.

2.6.4 Memory footprint

Our metadata instrumentation naturally leads to a larger memory footprint at run-
time. Our current implementation required an average of 65 bytes for each type,
27 extra bytes for each variable/constant/string, 38 extra bytes for each function
with address taken, 10 extra bytes for each allocation, and 38 bytes for each alloca-
tion site. During the execution of our macrobenchmarks, we measured an average
state overhead (i.e., metadata size vs. run-time state size) of 18% and an overall

2.7. RELATED WORK 35

C
ha

pt
er

2

memory overhead of 35% across all the OS processes. While comparable to prior
instrumentation-based techniques [214; 213; 194], our memory overhead never in-
creases with the number and the size of the updates applied to the system. This is
ensured by our stable live update strategy. For comparison, we also ported the Linux
ACPI driver to PROTEOS. Despite the very complex code base, adding updatability
only required 2 type-based callbacks for 2 unions. In this case, the state overhead
and the overall memory overhead measured were 41% and 37%, respectively.

2.7 Related work

Several live update solutions are described in the literature, with techniques targeting
operating systems [42; 43; 194; 68; 36], C programs [214; 213; 69; 32; 193], object-
oriented programs [147; 269], programming languages [267; 89; 34], database sys-
tems [59], and distributed systems [53; 54; 25; 26; 30; 279; 173; 91; 90]. We focus
here on live update for operating systems and generic C programs, but we refer the
interested reader to [142; 24; 123; 257] for more complete surveys.

K42 [265; 42; 43] is a research OS that supports live update functionalities us-
ing object-oriented design patterns. To update live objects, K42 relies on system-
enforced quiescence, transparently blocking all the threads calling into updated ob-
jects. Unfortunately, this strategy leads to a poorly predictable update process, with
hidden thread dependencies potentially leading to unrecoverable deadlocks. In con-
trast, PROTEOS gives programmers full control over the update process and can auto-
matically recover from synchronization errors (e.g., deadlocks) introduced by poorly
designed update transactions using a predefined timeout. In addition, K42 provides
no support for automated state transfer. Unlike existing live update techniques for
C, however, their object-oriented approach offers a solution to the stability problem.
The downside is that their techniques are limited to object-oriented programs. In
contrast, the techniques we propose have more general applicability. For instance,
state filters and our state management framework can be used to improve existing
live update solutions for the Linux kernel [194; 68; 36] and generic C programs [214;
213; 69; 32; 193]. Our framework could be, for example, integrated in existing solu-
tions to automatically track pointers to updated data structures or abort the update in
case of unsafe behavior. Our process-level updates, in turn, are an elegant solution
to the stability problem for user-level live update solutions. Also note that, while ex-
plicitly conceived to simplify state management—no need for explicit update points
and stack instrumentation—and minimize manual effort—simpler to reason on up-
date safety and control multicomponent live update transactions—our event-loop
design is not strictly required for the applicability of our techniques. For instance,
our event-driven model can be easily extended to multithreaded execution using an-
notated per-thread update points, as previously suggested in [213]. When backward
compatibility is not a primary concern, however, we believe our event-driven strat-
egy to offer a superior design for safe and automatic live update. For this reason, we
opted for a pure event-driven model for our current PROTEOS implementation.

36 CHAPTER 2. PROTEOS

DynaMOS [194] and LUCOS [68] are two live update solutions for the Linux
kernel. They both apply code updates using binary rewriting techniques. To han-
dle data updates, DynaMOS relies on shadow data structures, while LUCOS relies
on virtualization to synchronize old and new data structure versions at each write
access. Both solutions advocate running the old and the new version in parallel.
Unlike ours, their cross-version execution strategy leads to a highly unpredictable
update process. In addition, state transfer is delegated entirely to the programmer.

Ksplice [36] is an important step forward over its predecessors. Similar to Dy-
naMOS [194], Ksplice uses binary rewriting and shadow data structures to perform
live updates. Unlike all the other live update solutions for C, however, Ksplice pre-
pares live updates at the object code layer. This strategy simplifies patch analysis
and does not inhibit any compiler optimizations or language features. Process-level
updates used in PROTEOS take these important guarantees one step further. Not only
are the two versions allowed to have arbitrarily different code and data layout, but
patch analysis and preparation tools are no longer necessary. The new version is
compiled and deployed as-is, with changes between versions automatically tracked
by our state transfer framework at runtime. Moreover, Ksplice does not support up-
date states other than function quiescence and provides no support for automated
state transfer, state checking, or hot rollback.

Related to OS-level live update solutions is also work on extensible operating
systems [76; 47; 259; 258] (which only allow predetermined OS extensions), dy-
namic kernel instrumentation [273; 203] (which is primarily concerned with debug-
ging and performance monitoring), microkernel architectures [178; 263; 82; 140]
(which can replace OS subsystems but not without causing service loss [82]), and
online maintenance techniques [189; 241] (which require virtualization and domain-
specific migration tools).

Similar to OS-level solutions, existing live update techniques for user-space C
programs all assume an in-place update model, with code and data changes loaded
directly into the running version. Redirection of execution is accomplished with
compiler-based techniques [214; 213], binary rewriting [32; 69], or stack reconstruc-
tion [193]. Some techniques assume quiescence [32], others rely on predetermined
update points [214; 213; 193] or allow unrestricted cross-version execution [69].
Unlike PROTEOS, these solutions offer no support to specify safe update states on
a per-update basis, do not attempt to fully automate state transfer or state checking,
and fail to ensure a transactional and stable update process.

Recent efforts on user-space C programs by Hayden et al. [132], developed in-
dependently from our work, also suggest using entire programs as live updatable
units. Unlike our process-level updates, however, their update strategy encapsulates
every program version inside a shared library and allows the old and the new ver-
sion to share the same process address space with no restriction at live update time.
This strategy requires every program to be compiled with only position-independent
code—which may be particularly inefficient on some architectures—and also fails
to properly isolate, detect, and recover from errors in the state transfer code. In ad-

2.8. CONCLUSION 37

C
ha

pt
er

2

dition, their state transfer strategy does not support interior pointers and unrestricted
use of void* pointers, nor does it attempt to automate pointer transfer for heap-
allocated objects with no user intervention. Finally, their system includes xfgen, a
tool to generate state transformers using a domain-specific language. While a high-
level language may reduce the programming effort, we found much more natural to
express state transfer extensions for C programs directly in C, using a convenient
and well-defined callback interface.

The techniques used in PROTEOS draw inspiration from prior work in different
research areas. Our state filters are inspired by DYMOS [181], an early dynamic
modification system that allowed programmers to specify procedures required to be
inactive at update time. State filters are more general and easier to use, allowing
programmers to specify safe update states in the most natural way. The idea of
state transfer between processes was first explored by Gupta [124], but his work
assumed a fixed memory layout and delegated state transfer entirely to the program-
mer. Our state introspection strategy is inspired by garbage collector-style object
tracking, a technique also explored in live update solutions for managed languages
like Java [269]. Similarly, our update-time memory leakage reclaiming strategy is
inspired by prior precise garbage collection techniques for C programs [243]. Fi-
nally, state checking is inspired by invariants-based techniques to detect anomalous
program behavior [97; 127; 300; 88; 22; 233]. Unlike prior techniques, our state
invariants are conservatively derived from static analysis, eliminating false positives
that arise from learning likely invariants at runtime.

2.8 Conclusion

In this paper, we presented PROTEOS, a new research OS designed with live update
in mind. Unlike existing solutions, the techniques implemented in PROTEOS can ef-
ficiently and reliably support several classes of updates with minimal manual effort.
State and interface filters allow updates to happen only in predictable system states
and give programmers full control over the update process. Process-level updates
completely eliminate the need for complex toolchains, enable safe hot rollback, and
ensure a stable update process. Our state management framework reduces the state
transfer burden to the bare minimum, fully automating state transfer for common
structural state changes and exposing a convenient programming model for exten-
sions. Finally, our state checking framework can automatically identify errors in a
tainted state and detect violating assumptions in the state transfer process itself.

2.9 Acknowledgments

We would like to thank the anonymous reviewers for their comments. This work has
been supported by European Research Council under ERC Advanced Grant 227874.

C
ha

pt
er

3

3
Enhanced Operating System Security

Through Efficient and Fine-grained
Address Space Randomization

Abstract

In recent years, the deployment of many application-level countermeasures against
memory errors and the increasing number of vulnerabilities discovered in the kernel
has fostered a renewed interest in kernel-level exploitation. Unfortunately, no com-
prehensive and well-established mechanism exists to protect the operating system
from arbitrary attacks, due to the relatively new development of the area and the
challenges involved.

In this paper, we propose the first design for fine-grained address space random-
ization (ASR) inside the operating system (OS), providing an efficient and com-
prehensive countermeasure against classic and emerging attacks, such as return-
oriented programming. To motivate our design, we investigate the differences with
application-level ASR and find that some of the well-established assumptions in
existing solutions are no longer valid inside the OS; above all, perhaps, that infor-
mation leakage becomes a major concern in the new context. We show that our
ASR strategy outperforms state-of-the-art solutions in terms of both performance
and security without affecting the software distribution model. Finally, we present
the first comprehensive live rerandomization strategy, which we found to be particu-
larly important inside the OS. Experimental results demonstrate that our techniques
yield low run-time performance overhead (less than 5% on average on both SPEC
and syscall-intensive benchmarks) and limited run-time memory footprint increase
(around 15% during the execution of our benchmarks). We believe our techniques
can greatly enhance the level of OS security without compromising the performance
and reliability of the OS.

39

40 CHAPTER 3. ASR3

3.1 Introduction

Kernel-level exploitation is becoming increasingly popular among attackers, with
local and remote exploits surfacing for Windows [11], Linux [10], Mac OS X [14],
BSD variants [157; 20], and embedded operating systems [98]. This emerging trend
stems from a number of important factors. First, the deployment of defense mecha-
nisms for user programs has made application-level exploitation more challenging.
Second, the kernel codebase is complex, large, and in continuous evolution, with
many new vulnerabilities inevitably introduced over time. Studies on the Linux ker-
nel have shown that its codebase has more than doubled with a steady fault rate
over the past 10 years [231] and that many known but potentially critical bugs are at
times left unpatched indefinitely [121]. Third, the number of targets in large-scale
attacks is significant, with a plethora of internet-connected machines running the
same kernel version independently of the particular applications deployed. Finally,
an attacker has generally more opportunities inside the OS, for example the ability to
disable in-kernel defense mechanisms or the option to execute shellcode at the user
level (similar to classic application-level attacks) or at the kernel level (approach
taken by kernel rootkits).

Unfortunately, existing OS-level countermeasures fail to provide a comprehen-
sive defense mechanism against generic memory error exploits. A number of tech-
niques aim to thwart code injection attacks [260; 116; 246], but are alone insuffi-
cient to prevent return-into-kernel-text attacks [236] and return-oriented program-
ming (ROP) in general [151]. Other approaches protect kernel hooks or generally
aim at preserving control-flow integrity [281; 291; 183; 237]. Unfortunately, this
does not prevent attackers from tampering with noncontrol data, which may lead to
privilege escalation or allow other attacks. In addition, most of these techniques in-
cur high overhead and require virtualization support, thus increasing the size of the
trusted computing base (TCB).

In this paper, we explore the benefits of address space randomization (ASR)
inside the operating system and present the first comprehensive design to defend
against classic and emerging OS-level attacks. ASR is a well-established defense
mechanism to protect user programs against memory error exploits [49; 167; 50;
288; 289]; all the major operating systems include some support for it at the ap-
plication level [2; 274]. Unfortunately, the OS itself is typically not randomized at
all. Recent Windows releases are of exception, as they at least randomize the base
address of the text segment [236]. This randomization strategy, however, is wholly
insufficient to counter many sophisticated classes of attacks (e.g., noncontrol data
attacks) and is extremely vulnerable to information leakage, as better detailed later.
To date, no strategy has been proposed for comprehensive and fine-grained OS-level
ASR. Our effort lays the ground work to fill the gap between application-level ASR
and ASR inside the OS, identifying the key requirements in the new context and
proposing effective solutions to the challenges involved.

3.2. BACKGROUND 41

C
ha

pt
er

3

3.1.1 Contributions

The contributions of this paper are threefold. First, we identify the challenges and
the key requirements for a comprehensive OS-level ASR solution. We show that a
number of assumptions in existing solutions are no longer valid inside the OS, due
to the more constrained environment and the different attack models. Second, we
present the first design for fine-grained ASR for operating systems. Our approach ad-
dresses all the challenges considered and improves existing ASR solutions in terms
of both performance and security, especially in light of emerging ROP-based attacks.
In addition, we consider the application of our design to component-based OS ar-
chitectures, presenting a fully fledged prototype system and discussing real-world
applications of our ASR technique. Finally, we present the first generic live reran-
domization strategy, particularly central in our design. Unlike existing techniques,
our strategy is based on run-time state migration and can transparently rerandomize
arbitrary code and data with no state loss. In addition, our rerandomization code runs
completely sandboxed. Any run-time error at rerandomization time simply results
in restoring normal execution without endangering the reliability of the OS.

3.2 Background

The goal of address space randomization is to ensure that code and data locations are
unpredictable in memory, thus preventing attackers from making precise assump-
tions on the memory layout. To this end, fine-grained ASR implementations [50;
167; 288] permute the order of individual memory objects, making both their ad-
dresses and their relative positioning unpredictable. This strategy attempts to counter
several classes of attacks.

3.2.1 Attacks on code pointers

The goal of these attacks is to override a function pointer or the return address on
the stack with attacker-controlled data and subvert control flow. Common mem-
ory errors that can directly allow these attacks are buffer overflows, format bugs,
use-after-free, and uninitialized reads. In the first two cases, the attack requires as-
sumptions on the relative distance between two memory objects (e.g., a vulnerable
buffer and a target object) to locate the code pointer correctly. In the other cases,
the attack requires assumptions on the relative alignment between two memory ob-
jects in case of memory reuse. For example, use-after-free attacks require control
over the memory allocator to induce the allocation of an object in the same location
of a freed object still pointed by a vulnerable dangling pointer. Similarly, attacks
based on stack/heap uninitialized reads require predictable allocation strategies to
reuse attacker-controlled data from a previously deallocated object. All these at-
tacks also rely on the absolute location of the code the attacker wants to execute,
in order to adjust the value of the code pointer correctly. In detail, code injection

42 CHAPTER 3. ASR3

attacks rely on the location of attacker-injected shellcode. Attacks using return-
into-libc strategies [85] rely on the location of a particular function—or multiple
functions in case of chained return-into-libc attacks [216]. More generic attacks
based on return-oriented programming [261] rely on the exact location of a number
of gadgets statically extracted from the program binary.

3.2.2 Attacks on data pointers

These attacks commonly exploit one of the memory errors detailed above to override
the value of a data pointer and perform an arbitrary memory read/write. Arbitrary
memory reads are often used to steal sensitive data or information on the memory
layout. Arbitrary memory writes can also be used to override particular memory
locations and indirectly mount other attacks (e.g., control-flow attacks). Attacks on
data pointers require the same assumptions detailed for code pointers, except the
attacker needs to locate the address of some data (instead of code) in memory.

3.2.3 Attacks on nonpointer data

Attacks in this category target noncontrol data containing sensitive information (e.g.,
uid). These attacks can be induced by an arbitrary memory write or commonly orig-
inate from buffer overflows, format bugs, integer overflows, signedness bugs, and
use-after-free memory errors. While unable to directly subvert control flow, they
can often lead to privilege escalation or indirectly allow other classes of attacks. For
example, an attacker may be able to perform an arbitrary memory write by corrupt-
ing an array index which is later used to store attacker-controlled data. In contrast
to all the classes of attacks presented earlier, nonpointer data attacks only require
assumptions on the relative distance or alignment between memory objects.

3.3 Challenges in OS-level ASR

This section investigates the key challenges in OS-level address space randomiza-
tion, analyzing the differences with application-level ASR and reconsidering some
of the well-established assumptions in existing solutions. We consider the following
key issues in our analysis.

3.3.1 W⊕X

A number of ASR implementations complement their design with W⊕X protec-
tion [274]. The idea is to prevent code injection attacks by ensuring that no memory
page is ever writable and executable at the same time. Studies on the Linux ker-
nel [184], however, have shown that enforcing the same property for kernel pages
introduces implementation issues and potential sources of overhead. In addition,
protecting kernel pages in a combined user/kernel address space design does not

3.3. CHALLENGES IN OS-LEVEL ASR 43

C
ha

pt
er

3

prevent an attacker from placing shellcode in an attacker-controlled application and
redirecting execution there. Alternatively, the attacker may inject code into W∧X re-
gions with double mappings that operating systems share with user programs (e.g.,
vsyscall page on Linux) [236].

3.3.2 Instrumentation

Fine-grained ASR techniques typically rely on code instrumentation to implement a
comprehensive randomization strategy. For example, Bhaktar et al. [50] heavily in-
strument the program to create self-randomizing binaries that completely rearrange
their memory layout at load time. While complex instrumentation strategies have
been proven practical for application-level solutions, their applicability to OS-level
ASR raises a number of important concerns. First, heavyweight instrumentation
may introduce significant run-time overhead which is ill-affordable for the OS. Sec-
ond, these load-time ASR strategies are hardly sustainable, given the limited opera-
tions they would be able to perform and the delay they would introduce in the boot
process. Finally, complex instrumentation may introduce a lot of untrusted code ex-
ecuted with no restriction at runtime, thus endangering the reliability of the OS or
even opening up new opportunities for attack.

3.3.3 Run-time constraints

There are a number of constraints that significantly affect the design of an OS-level
ASR solution. First, making strong assumptions on the memory layout at load time
simplifies the boot process. This means that some parts of the operating system may
be particularly hard to randomize. In addition, existing rerandomization techniques
are unsuitable for operating systems. They all assume a stateless model in which
a program can gracefully exit and restart with a fresh rerandomized layout. Loss
of critical state is not an option for an OS and neither is a full reboot, which intro-
duces unacceptable downtime and loss of all the running processes. Luckily, simi-
lar restrictions also apply to an adversary determined to attack the system. Unlike
application-level attacks, an exploit needs to explicitly recover any critical memory
object corrupted during the attack or the system will immediately crash after suc-
cessful exploitation.

3.3.4 Attack model

Kernel-level exploitation allows for a powerful attack model. Both remote and lo-
cal attacks are possible, although local attacks mounted from a compromised or
attacker-controlled application are more common. In addition, many known attack
strategies become significantly more effective inside the OS. For example, noncon-
trol data attacks are more appealing given the amount of sensitive data available. In
addition, ROP-based control-flow attacks can benefit from the large codebase and

44 CHAPTER 3. ASR3

easily find all the necessary gadgets to perform arbitrary computations, as demon-
strated in [151]. This means that disclosing information on the locations of “useful”
text fragments can drastically increase the odds of successful ROP-based attacks. Fi-
nally, the particular context opens up more attack opportunities than those detailed
in §3.2. First, unchecked pointer dereferences with user-provided data—a common
vulnerability in kernel development [67]—can become a vector of arbitrary kernel
memory reads/writes with no assumption on the location of the original pointer. Sec-
ond, the combined user/kernel address space design used in most operating systems
may allow an attacker controlling a user program to directly leverage known appli-
cation code or data for the attack. The conclusion is that making both the relative
positioning between any two memory objects and the location of individual objects
unpredictable becomes much more critical inside the OS.

3.3.5 Information leakage

Prior work on ASR has often dismissed information leakage attacks—in which the
attacker is able to acquire information about the internal memory layout and carry
out an exploit in spite of ASR—as relatively rare for user applications [50; 262; 288].
Unfortunately, the situation is completely different inside the OS. First, there are
several possible entry points and a larger leakage surface than user applications.
For instance, a recent study has shown that uninitialized data leading to information
leakage is the most common vulnerability in the Linux kernel [67]. In addition, the
common combined user/kernel address space design allows arbitrary memory writes
to easily become a vector of information leakage for attacker-controlled applications.
To make things worse, modern operating systems often disclose sensitive informa-
tion to unprivileged applications voluntarily, in an attempt to simplify deployment
and debugging. An example is the /proc file system, which has already been used
in several attacks that exploit the exposed information in conventional [236] and
nonconventional [297] ways. For instance, the /proc implementation on Linux dis-
closes details on kernel symbols (i.e., /proc/kallsyms) and slab-level memory
information (i.e., /proc/slabinfo). To compensate for the greater chances of in-
formation leakage, ASR at the finest level of granularity possible and continuous
rerandomization become both crucial to minimize the knowledge acquired by an
attacker while probing the system.

3.3.6 Brute forcing

Prior work has shown that many existing application-level ASR solutions are vul-
nerable to simple brute-force attacks due to the low randomization entropy of shared
libraries [262]. The attack presented in [262] exploits the crash recovery capabilities
of the Apache web server and simply reissues the same return-into-libc attack with
a newly guessed address after every crash. Unlike many long-running user appli-
cations, crash recovery cannot be normally taken for granted inside the OS. An OS

3.4. A DESIGN FOR OS-LEVEL ASR 45

C
ha

pt
er

3

crash is normally fatal and immediately hinders the attack while prompting the at-
tention of the system administrator. Even assuming some crash recovery mechanism
inside the OS [182; 107], brute-force attacks need to be far less aggressive to remain
unnoticed. In addition, compared to remote clients hiding their identity and mount-
ing a brute-force attack against a server application, the source of an OS crash can
be usually tracked down. In this context, blacklisting the offensive endpoint/request
becomes a realistic option.

3.4 A design for OS-level ASR

Our fine-grained ASR design requires confining different OS subsystems into iso-
lated event-driven components. This strategy is advantageous for a number of rea-
sons. First, this enables selective randomization and rerandomization for individual
subsystems. This is important to fully control the randomization and rerandomiza-
tion process with per-component ASR policies. For example, it should be possible
to retune the rerandomization frequency of only the virtual filesystem after noticing
a performance impact under particular workloads. Second, the event-driven nature
of the OS components greatly simplifies synchronization and state management at
rerandomization time. Finally, direct intercomponent control transfer can be more
easily prevented, thus limiting the freedom of a control-flow attack and reducing the
number of potential ROP gadgets by design.

Our ASR design is currently implemented by a microkernel-based OS architec-
ture running on top of the MINIX 3 microkernel [140]. The OS components are con-
fined in independent hardware-isolated processes. Hardware isolation is beneficial to
overcome the problems of a combined user/kernel address space design introduced
earlier and limit the options of an attacker. In addition, the MMU-based protection
can be used to completely sandbox the execution of the untrusted rerandomization
code. Our ASR design, however, is not bound to its current implementation and has
more general applicability.

For example, our ASR design can be directly applied to other component-based
OS architectures, including microkernel-based architectures used in common em-
bedded OSes—such as L4 [178], Green Hills Integrity [8], and QNX [143]—and
research operating systems using software-based component isolation schemes—
such as Singularity [152]. Commodity operating systems, in contrast, are tradition-
ally based on monolithic architectures and lack well-defined component boundaries.
While this does not prevent adoption of our randomization technique, it does elim-
inate the ability to selectively rerandomize specific parts of the OS, yielding poorer
flexibility and longer rerandomization times to perform whole-OS state migration.
Encouragingly, there is an emerging trend towards allowing important commodity
OS subsystems to run as isolated user-space processes, including filesystems [7] and
user-mode drivers in Windows [202] or Linux [60]. Our end-to-end design can be
used to protect all these subsystems as well as other operating system services from

46 CHAPTER 3. ASR3

MicrokernelIPC Hw interface

Proc Mgr ...SchedMem Mgr

Storage RM...Network
rand()

rand()

Disk Driver ...KBD DriverNIC Driver

rand()

User applications

Figure 3.1: The OS architecture for our ASR design.

several classes of attacks. Note that, while running in user space, operating sys-
tem services are typically trusted by the kernel and allowed to perform a variety of
critical system operations. An example is udev, the device manager for the Linux
kernel, which has already been target of several different exploits [61]. Finally, given
the appropriate run-time support, our design could also be used to improve existing
application-level ASR techniques and offer better protection against memory error
exploits for generic user-space programs.

Figure 3.1 shows the OS architecture implementing our ASR design. At the
heart lies the microkernel, providing only IPC functionalities and low-level resource
management. All the other core subsystems are confined into isolated OS processes,
including drivers, memory management, process management, scheduling, storage
and network stack. In our design, all the OS processes (and the microkernel) are
randomized using a link-time transformation implemented with the LLVM compiler
framework [179]. The transformation operates on prelinked LLVM bitcode to avoid
any lengthy recompilation process at runtime. Our link-time strategy avoids the
need for fine-grained load-time ASR, eliminating delays in the boot process and
the run-time overhead introduced by the indirection mechanisms adopted [50]. In
addition, this strategy reduces the instrumentation complexity to the bare minimum,
with negligible amount of untrusted code exposed to the runtime. The vast majority
of our ASR transformations are statically verified by LLVM at the bitcode level.
As a result, our approach is also safer than prior ASR solutions relying on binary
rewriting [167].

As pointed out in [50], load-time ASR has a clear advantage over alternative
strategies: the ability to create self-randomizing binaries distributed to every user in
identical copies, thus preserving today’s software distribution model. Fortunately,
our novel live rerandomization strategy can fully address this concern. In our model,
every user receives the same (unrandomized) binary version of the OS, as well as
the prelinked LLVM bitcode of each OS component. The bitcode files are stored in

3.5. ASR TRANSFORMATIONS 47

C
ha

pt
er

3

a protected disk partition inaccessible to regular user programs, where a background
process periodically creates new randomized variants of the OS components using
our link-time ASR transformation (and any valid LLVM backend to generate the
final binary). The generated variants are consumed by the randomization manager
(RM), a special component that periodically rerandomizes every OS process (includ-
ing itself). Unlike all the existing solutions, rerandomization is applied transparently
online, with no system reboot or downtime required. The conclusion is that we can
directly leverage our live rerandomization technique to randomize the original OS
binary distributed to the user. This strategy retains the advantages of link-time ASR
without affecting the software distribution model.

When the OS boots up for the first time, a full rerandomization round is per-
formed to relinquish any unrandomized code and data present in the original binary.
To avoid slowing down the first boot process, an option is to perform the reran-
domization lazily, for example replacing one OS process at the time at regular time
intervals. After the first round, we continuously perform live rerandomization of
individual OS components in the background. Currently, the microkernel is the only
piece of the OS that does not support live rerandomization. Rerandomization can
only be performed after a full reboot, with a different variant loaded every time.
While it is possible to extend our current implementation to support live rerandom-
ization for the microkernel, we believe this should be hardly a concern. Microkernel
implementations are typically in the order of 10kLOC, a vastly smaller TCB than
most hypervisors used for security enforcement, as well as a candidate for formal
verification, as demonstrated in prior work [168].

Our live rerandomization strategy for an OS process, in turn, is based on run-time
state migration, with the entire execution state transparently transferred to the new
randomized process variant. The untrusted rerandomization code runs completely
sandboxed in the new variant and, in case of run-time errors, the old variant imme-
diately resumes execution with no disruption of service or state loss. To support live
migration, we rely on another LLVM link-time transformation to embed relocation
and type information into the final process binary. This information is exposed to
the runtime to accurately introspect the state of the two variants and migrate all the
randomized memory objects in a layout-independent way.

3.5 ASR transformations

The goal of our link-time ASR transformation is to randomize all the code and data
for every OS component. Our link-time strategy minimizes the time to produce new
randomized OS variants on the deployment platform and automatically provides ran-
domization for the program and all the statically linked libraries. Our transformation
design is based on five key principles: (i) minimal performance impact; (ii) minimal
amount of untrusted code exposed to the runtime; (iii) architecture-independence;
(iv) no restriction on compiler optimizations; (v) maximum randomization granular-

48 CHAPTER 3. ASR3

ity possible. The first two principles are particularly critical for the OS, as discussed
earlier. Architecture-independence enhances portability and eliminates the need for
complex binary rewriting techniques. The fourth principle dictates compiler-friendly
strategies, for example avoiding indirection mechanisms used in prior solutions [49],
which inhibit a number of standard optimizations (e.g., inlining). Eliminating the
need for indirection mechanisms is also important for debuggability reasons. Our
transformations are all debug-friendly, as they do not significantly change the code
representation—only allocation sites are transformed to support live rerandomiza-
tion, as detailed later—and preserve the consistency of symbol table and stack infor-
mation. Finally, the last principle is crucial to provide lower predictability and better
security than existing techniques.

Traditional ASR techniques [2; 274; 49] focus on randomizing the base address
of code and data regions. This strategy is ineffective against all the attacks that make
assumptions only about relative distances/alignments between memory objects, is
prone to brute forcing [262], and is extremely vulnerable to information leakage.
For instance, many examples of application-level information leakage have emerged
on Linux over the years, and experience shows that, even by acquiring minimal
knowledge on the memory layout, an attacker can completely bypass these basic
ASR techniques [96].

To overcome these limitations, second-generation ASR techniques [50; 167;
288] propose fine-grained strategies to permute individual memory objects and ran-
domize their relative distances/alignments. While certainly an improvement over
prior techniques, these strategies are still vulnerable to information leakage, raising
serious concerns on their applicability at the OS level. Unlike traditional ASR tech-
niques, these strategies make it normally impossible for an attacker to make strong
assumptions on the locations of arbitrary memory objects after learning the location
of a single object. They are completely ineffective, however, in inhibiting precise
assumptions on the layout of the leaked object itself. This is a serious concern inside
the OS, where information leakage is the norm rather than the exception.

To address all the challenges presented, our ASR transformation is implemented
by an LLVM link-time pass which supports fine-grained randomization of both the
relative distance (or alignment) between any two memory objects and the internal
layout of individual objects. We now present our transformations in detail and draw
comparisons with prior techniques.

3.5.1 Code randomization

The code-transformation pass performs three primary tasks. First, it enforces a ran-
dom permutation of all the program functions. In LLVM, this is possible by shuffling
the symbol table in the intended order and setting the appropriate linkage to pre-
serve the permutation at code generation time. Second, it introduces (configurable)
random-sized padding before the first function and between any two functions in
the bitcode, making the layout even more unpredictable. To generate the padding,

3.5. ASR TRANSFORMATIONS 49

C
ha

pt
er

3

we create dummy functions with a random number of instructions and add them
to the symbol table in the intended position. Thanks to demand paging, even very
large padding sizes do not significantly increase the run-time physical memory us-
age. Finally, unlike existing ASR solutions, we randomize the internal layout of
every function.

To randomize the function layout, an option is to permute the basic blocks and
the instructions in the function. This strategy, however, would hinder important
compiler optimizations like branch alignment [294] and optimal instruction schedul-
ing [195]. Nonoptimal placements can result in poor instruction cache utilization and
inadequate instruction pipelining, potentially introducing significant run-time over-
head. To address this challenge, our pass performs basic block shifting, injecting a
dummy basic block with a random number of instructions at the top of every func-
tion. The block is never executed at runtime and simply skipped over, at the cost of
only one additional jump instruction. Note that the order of the original instructions
and basic blocks is left untouched, with no noticeable impact on run-time perfor-
mance. The offset of every instruction with respect to the address of the function
entry point is, however, no longer predictable.

This strategy is crucial to limit the power of an attacker in face of information
leakage. Suppose the attacker acquires knowledge on the absolute location of a num-
ber of kernel functions (e.g., using /proc/kallsyms). While return-into-kernel-text
attacks for these functions are still conceivable (assuming the attacker can subvert
control flow), arbitrary ROP-based computations are structurally prevented, since
the location of individual gadgets is no longer predictable. While the dummy ba-
sic block is in a predictable location, it is sufficient to cherrypick its instructions to
avoid giving rise to any new useful gadget. It is easy to show that a sequence of nop
instructions does not yield any useful gadget on the x86 [225], but other strategies
may be necessary on other architectures.

3.5.2 Static data randomization

The data-transformation pass randomly permutes all the static variables and read-
only data on the symbol table, as done before for functions. We also employ the same
padding strategy, except random-sized dummy variables are used for the padding.
Buffer variables are also separated from other variables to limit the power of buffer
overflows. In addition, unlike existing ASR solutions, we randomize the internal
layout of static data, when possible.

All the aggregate types in the C programming language are potential candidates
for layout randomization. In practice, there are a number of restrictions. First, the
order of the elements in an array cannot be easily randomized without changing
large portions of the code and resorting to complex program analysis techniques that
would still fail in the general case. Even when possible, the transformation would
require indirection tables that translate many sequential accesses into random array
accesses, sensibly changing the run-time cache behavior and introducing overhead.

50 CHAPTER 3. ASR3

Stack frame

Parameters
Previous frame

Saved base pointer
Return address

Local variables

New stack frame

Inter-frame padding
Previous frame

Return address
Parameters

Saved base pointer
Nonbuffer variables

Intra-frame padding
Buffer variables

Figure 3.2: The transformed stack layout.

Second, unions are currently not supported natively by LLVM and randomizing
their layout would introduce unnecessary complications, given their rare occurrence
in critical system data structures and their inherent ambiguity that already weakens
the assumptions made by an attacker. Finally, packed structs cannot be random-
ized, since the code makes explicit assumptions on their internal layout.

In light of these observations, our transformation focuses on randomizing the
layout of regular struct types, which are pervasively used in critical system data
structures. The layout randomization permutes the order of the struct members
and adds random-sized padding between them. To support all the low-level pro-
gramming idioms allowed by C, the type transformations are operated uniformly
for all the static and dynamic objects of the same struct type. To deal with code
which treats nonpacked structs as implicit unions through pointer casting, our
transformation pass can be instructed to detect unsafe pointer accesses and refrain
from randomizing the corresponding struct types.

Layout randomization of system data structures is important for two reasons.
First, it makes the relative distance/alignment between two struct members un-
predictable. For example, an overflow in a buffer allocated inside a struct cannot
make precise assumptions about which other members will be corrupted by the over-
flow. Second, this strategy is crucial to limit the assumptions of an attacker in face
of information leakage. Suppose an attacker is armed with a reliable arbitrary kernel
memory write generated by a missing pointer check. If the attacker acquires knowl-
edge on the location of the data structure holding user credentials (e.g., struct
cred on Linux) for an attacker-controlled unprivileged process, the offset of the uid
member is normally sufficient to surgically override the user ID and escalate priv-
ileges. All the existing ASR solutions fail to thwart this attack. In contrast, our
layout randomization hinders any precise assumptions on the final location of the
uid. While brute forcing is still possible, this strategy will likely compromise other
data structures and trigger a system crash.

3.5. ASR TRANSFORMATIONS 51

C
ha

pt
er

3

3.5.3 Stack randomization

The stack randomization pass performs two primary tasks. First, it randomizes the
base address of the stack to make the absolute location of any stack object un-
predictable. In LLVM, this can be accomplished by creating a dummy alloca
instruction—which allocates memory on the stack frame of the currently execut-
ing function—at the beginning of the program, which is later expanded by the code
generator. This strategy provides a portable and efficient mechanism to introduce
random-sized padding for the initial stack placement. Second, the pass randomizes
the relative distance/alignment between any two objects allocated on the stack. Prior
ASR solutions have either ignored this issue [167; 288] or relied on a shadow stack
and dynamically generated random padding [50], which introduces high run-time
overhead (10% in the worst case in their experiments for user applications).

To overcome these limitations, our approach is completely static, resulting in
good performance and code which is statically verified by LLVM. In addition, this
strategy makes it realistic to use cryptographically random number generators (e.g.,
/dev/random) instead of pseudo-random generators to generate the padding. While
care should be taken not to exhaust the randomness pool used by other user pro-
grams, this approach yields much stronger security guarantees than pseudo-random
generators, like recent attacks on ASR demonstrate [96]. Our transformations can be
configured to use cryptographically random number generators for code, data, and
stack instrumentation, while, similar to prior approaches [50], we always resort to
pseudo-random generation in the other cases for efficiency reasons.

When adopting a static stack padding strategy, great care should be taken not to
degrade the quality of the randomization and the resulting security guarantees. To
randomize the relative distances between the objects in a stack frame, we permute all
the alloca instructions used to allocate local variables (and function parameters).
The layout of every stack-allocated struct is also randomized as described earlier.
Nonbuffer variables are all grouped and pushed to the top of the frame, close to
the base pointer and the return address. Buffer variables, in turn, are pushed to the
bottom, with random-sized padding (i.e., dummy alloca instructions) added before
and between them. This strategy matches our requirements while allowing the code
generator to emit a maximally efficient function prologue.

To randomize the relative alignment between any two stack frame allocations of
the same function (and thus the relative alignment between their objects), we create
random-sized padding before every function call. Albeit static, this strategy faith-
fully emulates dynamically generated padding, given the level of unpredictability
introduced across different function calls. Function calls inside loops are an excep-
tion and need to be handled separately. Loop unrolling is a possible solution, but
enforcing this optimization in the general case may be expensive. Our approach is
instead to precompute N random numbers for each loop, and cycle through them
before each function call. Figure 3.2 shows the randomized stack layout generated
by our transformation.

52 CHAPTER 3. ASR3

3.5.4 Dynamic data randomization

Our operating system provides malloc/mmap-like abstractions to every OS process.
Ideally, we would like to create memory allocation wrappers to accomplish the
following tasks for both heap and memory-mapped regions: (i) add random-sized
padding before the first allocated object; (ii) add random-sized padding between ob-
jects; (iii) permute the order of the objects. For memory-mapped regions, all these
strategies are possible and can be implemented efficiently [167]. We simply need to
intercept all the new allocations and randomly place them in any available location
in the address space. The only restriction is for fixed OS component-specific virtual
memory mappings, which cannot be randomized and need to be explicitly reserved
at initialization time.

For heap allocations, we instrument the code to randomize the heap base ad-
dress and introduce random-sized padding at allocation time. Permuting heap ob-
jects, however, is normally impractical in standard allocation schemes. While other
schemes are possible—for example, the slab allocator in our memory manager ran-
domizes block allocations within a slab page—state-of-the-art allocators that enforce
a fully and globally randomized heap organization incur high overhead (117% worst-
case performance penalty) [222]. This limitation is particularly unfortunate for ker-
nel Heap Feng Shui attacks [98], which aim to carefully drive the allocator into a
deterministic exploitation-friendly state. While random interobject padding makes
these attacks more difficult, it is possible for an attacker to rely on more aggressive
exploitation strategies (i.e., heap spraying [244]) in this context. Suppose an attacker
can drive the allocator into a state with a very large unallocated gap followed by only
two allocated buffers, with the latter vulnerable to underflow. Despite the padding,
the attacker can induce a large underflow to override all the traversed memory loca-
tions with the same target value. Unlike stack-based overflows, this strategy could
lead to successful exploitation without the attacker worrying about corrupting other
critical data structures and crashing the system. Unlike prior ASR solutions, how-
ever, our design can mitigate these attacks by periodically rerandomizing every OS
process and enforcing a new unpredictable heap permutation. We also rerandomize
the layout of all the dynamically allocated structs, as discussed earlier.

3.5.5 Kernel modules randomization

Traditional loadable kernel module designs share many similarities—and drawbacks,
from a security standpoint—with user-level shared libraries. The attack presented
in [250] shows that the data structures used for dynamic linking are a major source
of information leakage and can be easily exploited to bypass any form of random-
ization for shared libraries. Prior work on ASR [262; 50] discusses the difficulties
of reconciling sharing with fine-grained randomization. Unfortunately, the inability
to perform fine-grained randomization on shared libraries opens up opportunities for
attacks, including probing, brute forcing [262], and partial pointer overwrites [94].

3.6. LIVE RERANDOMIZATION 53

C
ha

pt
er

3

To overcome these limitations, our design allows only statically linked libraries
for OS components and inhibits any form of dynamic linking inside the operating
system. Note that this requirement does by no means limit the use of loadable mod-
ules, which our design simply isolates in independent OS processes following the
same distribution and deployment model of the core operating system. This ap-
proach enables sharing and lazy loading/unloading of individual modules with no
restriction, while allowing our rerandomization strategy to randomize (and reran-
domize) every module in a fine-grained manner. In addition, the process-based iso-
lation prevents direct control-flow and data-flow transfer between a particular mod-
ule and the rest of the OS (i.e., the access is always IPC- or capability-mediated).
Finally, this strategy can be used to limit the power of untrusted loadable kernel
modules, an idea also explored in prior work on commodity operating systems [60].

3.6 Live rerandomization

Our live rerandomization design is based on novel automated run-time migration of
the execution state between two OS process variants. The variants share the same
operational semantics but have arbitrarily different memory layouts. To migrate
the state from one variant to the other at runtime, we need a way to remap all the
corresponding global state objects. Our approach is to transform the bitcode with
another LLVM link-time pass, which embeds metadata information into the binary
and makes run-time state introspection and automated migration possible.

3.6.1 Metadata transformation

The goal of our pass is to record metadata describing all the static state objects in
the program and instrument the code to create metadata for dynamic state objects at
runtime. Access to these objects at the bitcode level is granted by the LLVM API.
In particular, the pass creates static metadata nodes for all the static variables, read-
only data, and functions whose address is taken. Each metadata node contains three
key pieces of information: node ID, relocation information, and type. The node
ID provides a layout-independent mechanism to map corresponding metadata nodes
across different variants. This is necessary because we randomize the order and the
location of the metadata nodes (and write-protect them) to hinder new opportunities
for attacks. The relocation information, in turn, is used by our run-time migration
component to locate every state object in a particular variant correctly. Finally, the
type is used to introspect any given state object and migrate the contained elements
(e.g., pointers) correctly at runtime.

To create a metadata node for every dynamic state object, our pass instruments
all the memory allocation and deallocation function calls. The node is stored be-
fore the allocated data, with canaries to protect the in-band metadata against buffer
overflows. All the dynamic metadata nodes are stored in a singly-linked list, with

54 CHAPTER 3. ASR3

Figure 3.3: The rerandomization process.

each node containing relocation information, allocation flags, and a pointer to an al-
location descriptor. Allocation flags define the nature of a particular allocation (e.g.,
heap) to reallocate memory in the new variant correctly at migration time. The al-
location descriptors, in turn, are statically created by the pass for all the allocation
sites in the program. A descriptor contains a site ID and a type. Similar to the node
ID, the site ID provides a layout-independent mechanism to map corresponding al-
location descriptors (also randomized and write-protected) across different variants.
The type, in contrast, is determined via static analysis and used to correctly iden-
tify the run-time type of the allocated object (e.g., a char type with an allocation of
7 bytes results in a [7 x char] run-time type). Our static analysis can automati-
cally identify the type for all the standard memory allocators and custom allocators
that use simple allocation wrappers. More advanced custom allocation schemes,
e.g., region-based memory allocators [46], require instructing the pass to locate the
proper allocation wrappers correctly.

3.6.2 The rerandomization process

Our OS processes follow a typical event-driven model based on message passing. At
startup, each process initializes its state and immediately jumps to the top of a long-
running event-processing loop, waiting for IPC messages to serve. Each message
can be processed in cooperation with other OS processes or the microkernel. The
message dispatcher, isolated in a static library linked to every OS process, can trans-
parently intercept two special system messages sent by the randomization manager
(RM): sync and init. These messages cannot be spoofed by other processes because
the IPC is mediated by the microkernel.

The rerandomization process starts with RM loading a new variant in memory, in
cooperation with the microkernel. Subsequently, it sends a sync message to the des-
ignated OS process, which causes the current variant to immediately block in a well-
defined execution point. A carefully selected synchronization point (e.g., in main)

3.6. LIVE RERANDOMIZATION 55

C
ha

pt
er

3

eliminates the need to instrument transient stack regions to migrate additional state,
thus reducing the run-time overhead and simplifying the rerandomization strategy.
The new variant is then allowed to run and delivered an init message with detailed in-
structions. The purpose of the init message is to discriminate between fresh start and
rerandomization init. In the latter scenario, the message contains a capability created
by the microkernel, allowing the new variant to read arbitrary data and metadata from
the old variant. The capability is attached to the IPC endpoint of the designated OS
process and can thus only be consumed by the new variant, which by design inherits
the old variant’s endpoint. This is crucial to transparently rerandomize individual
operating system processes without exposing the change to the rest of the system.

When the rerandomization init message is intercepted, the message dispatcher
requests the run-time migration component to initialize the new variant properly and
then jumps to the top of the event-processing loop to resume execution. This pre-
serves the original control flow semantics and transparently restores the correct ex-
ecution state. The migration component is isolated in a library and runs completely
sandboxed in the new variant. RM monitors the execution for run-time errors (i.e.,
panics, crashes, timeouts). When an error is detected, the new variant is immediately
cleaned up, while the old variant is given back control to resume execution normally.
When the migration completes correctly, in contrast, the old variant is cleaned up,
while the new variant resumes execution with a rerandomized memory layout. We
have also implemented rerandomization for RM itself, which only required some
extra microkernel changes to detect run-time errors and arbitrate control transfer
between the two variants. Our run-time error detection mechanism allows for safe
rerandomization without trusting the (complex) migration code. Moreover, the re-
versibility of the rerandomization process makes detecting semantic errors in the
migration code a viable option. For example, one could migrate the state from one
variant to another, migrate it again to another instance of the original variant, and
then compare the results. Figure 3.3 depicts the proposed rerandomization process.

3.6.3 State migration

The migration starts by transferring all the metadata from the old variant to a local
cache in the new variant. Our capability-based design allows the migration code to
locate a root metadata descriptor in the old variant and recursively copy all the meta-
data nodes and allocation descriptors to the new variant. To automate the metadata
transfer, all the data structures copied use a fixed and predetermined layout. At the
end, both the old and the new metadata are available locally, allowing the code to
arbitrarily introspect the state of the two variants correctly. To automate the data
transfer, we map every old metadata node in the local cache with its counterpart in
the new variant. This is done by pairing nodes by ID and carefully reallocating every
old dynamic state object in the new variant. Reallocations are performed in random
order, thus enforcing a new unpredictable permutation of heap and memory-mapped
regions. An interesting side effect of the reallocation process is the compaction of all

56 CHAPTER 3. ASR3

the live heap objects, an operation that reduces heap fragmentation over time. Our
strategy is indeed inspired by the way a compacting garbage collector operates [283].

The mapping phase generates all the perfect pairs of state objects in the two vari-
ants, ready for data migration. Note that paired state objects may not reflect the
same type or size, due to the internal layout rerandomization. To transfer the data,
the migration code introspects every state object in the old variant by walking its type
recursively and examining each inner state element found. Nonpointer elements are
simply transferred by value, while pointer elements require a more careful transfer
strategy. To deal with layout randomization, each recursive step requires mapping
the current state element to its counterpart (and location) in the new variant. This
can be easily accomplished because the old type and the new type have isomorphic
structures and only differ in terms of member offsets for randomized struct types.
For example, to transfer a struct variable with 3 primitive members, the migra-
tion code walks the original struct type to locate all the members, computes their
offsets in the two variants, and recursively transfers the corresponding data.

3.6.4 Pointer migration

The C programming language allows several programming idioms that make pointer
migration particularly challenging in the general case. Our approach is to fully au-
tomate migration of all the common cases and only delegate the undecidable cases
to the programmer. The first case to consider is a pointer to a valid static or dynamic
state object. When the pointer points to the beginning of the object, we simply reini-
tialize the pointer with the address of the pointed object in the new variant. Interior
pointers (i.e., pointers into the middle of an object) in face of internal layout reran-
domization require a more sophisticated strategy. Similar to our introspection strat-
egy, we walk the type of the pointed object and recursively remap the offset of the
target element to its counterpart. This strategy is resilient to layout rerandomization
and makes it easy to reinitialize the pointer in the new variant correctly.

Another scenario of interest is a pointer which is assigned a special integer value
(e.g., NULL or MAP_FAILED (-1)). Our migration code can explicitly recognize spe-
cial ranges and transfer the corresponding pointers by value. Currently, all the ad-
dresses in reserved memory ranges (e.g., zero pages) are marked as special values.

In another direction, memory addresses or other layout-specific information may
be occasionally stored in integer variables. This is, unfortunately, a case of unsolv-
able ambiguity which cannot be automatically settled without programmer assis-
tance. To this end, we support annotations to mark “hidden” pointers in the code.

Pointers stored in unions are another case of unsolvable ambiguity. Since C
does not support tagged unions, it is impossible to resolve these cases automati-
cally. In our experiments with OS code, unions with pointers were the only case of
ambiguity that required manual intervention. Other cases are, however, possible. For
example, any form of pointer encoding or obfuscation [48] would require knowledge
on the particular encoding to migrate pointers correctly. Other classes of pointers—

3.7. EVALUATION 57

C
ha

pt
er

3

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

bzip2
perlbench

gcc
mcf

milc
gobmk

hmmer

sjeng
libquantum

h264ref

lbm sphinx3

SPEC average

devtools

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

ASR instrumentation
ASR+ASRR instrumentation

Figure 3.4: Execution time of the SPEC CPU2600 benchmarks and our devtools benchmark
normalized against the baseline (no OS/benchmark instrumentation).

guard pointers, uninitialized pointers, dangling pointers—are instead automatically
handled in our implementation. In the last two cases, the general strategy is to try to
transfer the pointer as a regular pointer, and simply reinitialize it to NULL in the new
variant whenever our dynamic pointer analysis reports an error.

3.7 Evaluation

We have implemented our ASR design on the MINIX 3 microkernel-based OS [140],
which already guarantees process-based isolation for all the core operating system
components. The OS is x86-based and exposes a complete POSIX interface to user
applications. We have heavily modified and redesigned the original OS to implement
support for our ASR techniques for all the possible OS processes. The resulting
operating system comprises a total of 20 OS processes (7 drivers and 13 servers),
including process management, memory management, storage and network stack.
Subsequently, we have applied our ASR transformations to the system and evaluated
the resulting solution.

3.7.1 Performance

To evaluate the performance of our ASR technique, we ported the C programs in
the SPEC CPU 2006 benchmark suite to our prototype system. We also put together
a devtools macrobenchmark, which emulates a typical syscall-intensive workload
with the following operations performed on the OS source tree: compilation, find,
grep, copying, and deleting. We performed repeated experiments on a workstation
equipped with a 12-core 1.9Ghz AMD Opteron “Magny-Cours” processor and 4GB

58 CHAPTER 3. ASR3

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

Average

Median

Max
Average

Median

Max
Average

Median

Max

R
er

an
do

m
iz

at
io

n
tim

e
(m

s)
ILR Coverage: 0%
ILR Coverage: 50%
ILR Coverage: 100%

DRIVERSSERVERSALL

Figure 3.5: Rerandomization time against coverage of internal layout rerandomization.

of RAM, and averaged the results. All the OS code and our benchmarks were com-
piled using Clang/LLVM 2.8 with -O2 optimization level. To thoroughly stress the
system and identify all the possible bottlenecks, we instrumented both the OS and
the benchmarks using the same transformation in each run. The default padding
strategy used in the experiments extends the memory occupancy of every state ob-
ject or struct member by 0-30%, similar to the default values suggested in [50].
Figure 3.4 depicts the resulting execution times.

The ASR instrumentation alone introduces 0.9% run-time overhead on average
on SPEC benchmarks and 1.1% on devtools. The average run-time overhead in-
creases to 4.8% and 1.6% respectively with ASRR instrumentation. The maximum
overhead reported across all the benchmarks was found for perlbench (36% ASRR
overhead). Profiling revealed this was caused by a massive amount of memory al-
locations. This test case pinpoints a potential source of overhead introduced by our
technique, which, similar to prior approaches, relies on memory allocation wrappers
to instrument dynamically allocated objects. Unlike prior comprehensive solutions,
however, our run-time overhead is barely noticeable on average (1.9% for ASRR
without perlbench). The most comprehensive second-generation technique pre-
sented in [50]—which, compared to other techniques, also provides fine-grained
stack randomization—introduces a run-time overhead of 11% on average and 23%
in the worst case, even by instrumenting only the test programs. The main reasons
for the much higher overheads are the use of heavyweight stack instrumentation and
indirection mechanisms that inhibit compiler optimizations and introduce additional
pointer dereferences for every access to code and data objects. Their stack instru-
mentation, however, includes a shadow stack implementation that could complement
our techniques to offer stronger protection against stack spraying attacks.

3.7. EVALUATION 59

C
ha

pt
er

3

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 1 2 4 8 16 32

R
un

tim
e

ov
er

he
ad

 (%
)

Rerandomization latency (s)

SPEC CPU 2006 benchmarks
devtools benchmark

Figure 3.6: Run-time overhead against periodic rerandomization latency.

Although we have not observed strong variations in our macrobenchmark perfor-
mance across different runs, our randomization technique can potentially affect the
original spatial locality and yield nonoptimal cache usage at runtime. The possible
performance impact introduced—inherent in all the fine-grained ASR techniques—
is subject to the particular compiler and system adopted and should be carefully
evaluated in each particular deployment scenario.

Figure 3.5 shows the rerandomization time (average, median, max) measured
across all the OS components. With no internal layout rerandomization (ILR), a
generic component completes the rerandomization process in 272ms on average.
A higher ILR coverage increases the average rerandomization time only slightly
(297ms at 100% coverage). The impact is more noticeable for OS servers than
drivers, due to the higher concentration of complex rerandomized structs (and
pointers to them) that need to be remapped during migration. Albeit satisfactory, we
believe these times can be further reduced, for example using indexes to speed up
our pointer analysis. Unfortunately, we cannot compare our current results against
existing solutions, given that no other live rerandomization strategy exists to date.

Finally, Figure 3.6 shows the impact of periodic rerandomization on the execu-
tion time of SPEC and devtools. The experiment was performed by rerandomizing a
single OS component at the end of every predetermined time interval. To ensure uni-
form coverage, the OS components were all rerandomized in a round-robin fashion.
Figure 3.6 reports a barely noticeable overhead for rerandomization latencies higher
than 20s. For lower latencies, the overhead increases steadily, reaching the value of
42.7% for SPEC and 51.9% for devtools at 1s. The rerandomization latency defines
a clear tradeoff between performance and unobservability of the system. Reasonable
choices of the rerandomization latencies introduce no performance impact and leave
a small window with a stable view of the system to the attacker. In some cases,

60 CHAPTER 3. ASR3

Type Overhead

ASRR state 16.1%
ASRR overall 14.6%
ASR paddinga ((8as + 2ah + 4af)·10−4 + cbase)%
ASR paddingr ((2rs+0.6rh+3rf)·10−1 + cbase)%

Table 3.1: Average run-time virtual memory overhead for our benchmarks.

a performance penalty may also be affordable to offer extra protection in face of
particularly untrusted components.

3.7.2 Memory usage

Table 3.1 shows the average run-time virtual memory overhead introduced by our
technique inside the OS during the execution of our benchmarks. The overhead
measured is comparable to the space overhead we observed for the OS binaries on
the disk. In the table, we report the virtual memory overhead to also account for dy-
namic state object overhead at runtime. For the average OS component, support for
rerandomization introduces 16.1% state overhead (the extra memory necessary to
store state metadata with respect to the original memory occupancy of all the static
and dynamic static objects) and 14.6% overall memory overhead (the extra mem-
ory necessary to store state metadata and migration code with respect to the original
memory footprint) on average. The virtual memory overhead (not directly translated
to physical memory overhead, as noted earlier) introduced by our randomization
strategy is only due to padding. Table 3.1 reports the overhead for two padding
schemes using byte granularity (but others are possible): (i) paddinga, generating an
inter-object padding of a bytes, with a uniformly distributed in [0; as,h,f] for static,
heap, and function objects, respectively; (ii) paddingr, generating an inter-object
padding of r ·s bytes, with a preceding object of size s, and r uniformly distributed
in [0; rs,h,f] for static, heap, and function objects, respectively. The coefficient cbase

is the overhead introduced by the one-time padding used to randomize the base ad-
dresses. The formulations presented here omit stack frame padding, which does not
introduce persistent memory overhead.

3.7.3 Effectiveness

As pointed out in [50], an analytical analysis is more general and effective than em-
pirical evaluation in measuring the effectiveness of ASR. Bhaktar et al. [50] present
an excellent analysis on the probability of exploitation for different vulnerability
classes. Their entropy analysis applies also to other second-generation ASR tech-
niques, and, similarly, to our technique, which, however, provides additional entropy
thanks to internal layout randomization and live rerandomization. Their analysis,
however, is mostly useful in evaluating the effectiveness of ASR techniques against

3.7. EVALUATION 61

C
ha

pt
er

3

ASR1 ASR2 ASR3

Vulnerability

Buffer overflows Ar Ro Re

Format string bugs Ar Ro Re

Use-after-free Ar Ro Re

Uninitialized reads Ar Ro Re

Effect

Arbitrary memory R|W Ar Ao Ae

Controlled code injection Ar Ao Ae

Return-into-libc/text Ar N · Ao N · Ao

Return-oriented programming Ar N · Ao -

Ar = Known region address
Ao = Known object address
Ae = Known element address
Ro = Known relative distance/alignment between objects
Re = Known relative distance/alignment between elements

Table 3.2: Comparison of ASR techniques.

guessing and brute-force attacks. As discussed earlier, these attacks are far less at-
tractive inside the OS. In contrast, information leakage dominates the scene.

For this reason, we explore another direction in our analysis, answering the ques-
tion: “How much information does the attacker need to acquire for successful ex-
ploitation?”. In this respect, Table 3.2 compares our ASR technique (ASR3) with
first-generation techniques like PaX [274] and second-generation techniques like the
one presented in [50]. Most attacks require at least some knowledge of a memory
area to corrupt and of another target area to achieve the intended effect (missing
kernel pointer checks and non control data attacks are examples of exceptions in the
two cases). Table 3.2 shows that first-generation techniques only require the attacker
to learn the address of a memory region (e.g., stack) to locate the target correctly.
Second-generation techniques, in turn, allow the attacker to corrupt the right location
by learning the relative distance/alignment between two memory objects.

In this respect, our internal layout randomization provides better protection, forc-
ing the attacker to learn the relative distance/alignment between two memory ele-
ments in the general case. For example, if the attacker learns the relative alignment
between two heap-allocated data structures S1 and S2 and wants to exploit a vulner-
able dangling pointer to hijack a write intended for a member of S1 to a member of
S2, he still needs to acquire information on the relative positioning of the members.

Similarly, our technique constraints attacks based on arbitrary memory read-
s/writes to learn the address of the target element. In contrast, second-generation
techniques only require knowledge of the target memory object. This is easier to
acquire, because individual objects can be exposed by symbol information (e.g.,

62 CHAPTER 3. ASR3

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 4 8 16 32 64 128

 0

 20

 40

 60

 80

 100

 120

 140

P
(R

O
P

 P
ay

lo
ad

)

A
ve

ra
ge

 F
ile

 S
iz

e
(K

B
)

Number of Functions

Call/Store Payload

Source File Size

Figure 3.7: The probability that state-of-the-art techniques [256] can successfully generate valid
ROP payloads to call linked functions or perform attacker-controlled arbitrary memory writes. The
(fitted) distribution is plotted against the number of known functions in the program.

/proc/kallsyms) and are generally more likely to have their address taken (and
leaked) than interior elements. Controlled code injection shows similar differences—
spraying attacks are normally “Ar”, in contrast. Return-into-libc/text, in turn, re-
quires the attacker to learn the location ofN chosen functions in both cases, because
our function layout randomization has no effect.

Things are different in more general ROP-based attacks. Our strategy completely
hinders these attacks by making the location of the gadgets inside a function unpre-
dictable. Given that individual gadgets cannot have their address taken and function
pointer arithmetic is generally disallowed in a program, the location of a gadget
cannot be explicitly leaked. This makes information leakage attacks ineffective in
acquiring any useful knowledge for ROP-based exploitation. In contrast, prior tech-
niques only require the attacker to learn the address of any N functions with useful
gadgets to mount a successful ROP-based attack. To estimate N , we made an anal-
ysis on GNU coreutils (v7.4), building on the results presented in [256]. Figure 3.7
correlates the number of program functions with the probability of locating all the
necessary ROP gadgets, and shows, for example, that learning 16 function addresses
is sufficient to carry out an attack in more than 80% of the cases.

Another interesting question is: “How fast can the attacker acquire the required
information?”. Our live rerandomization technique can periodically invalidate the
knowledge acquired by an attacker probing the system (e.g., using an arbitrary kernel
memory read). Shacham et al. [262] have shown that rerandomization slows down
single-target probing attacks by only a factor of 2. As shown in Table 3.2, how-
ever, many attacks require knowledge of multiple targets when fine-grained ASR
is in place. In addition, other attacks (e.g., Heap Feng Shui) may require multiple

3.8. RELATED WORK 63

C
ha

pt
er

3

probing rounds to assert intermediate system states. When multiple rounds are re-
quired, the attacker is greatly limited by our rerandomization strategy because any
knowledge acquired is only useful in the current rerandomization window. In partic-
ular, let us assume the duration of every round to be distributed according to some
probability distribution p(t) (e.g., computed from the probabilities given in [50]).
Hence, the time to complete an n-round probing phase is distributed according to
the convolution of the individual pi(t). Assuming the same pi(t) in every round for
simplicity, it can be shown that the expected time before the attacker can complete
the probing phase in a single rerandomization window (and thus the attack) is:

Tattack = T ·
(∫ T

0
p∗n(τ)dτ

)−1
,

where T is the size (ms) of the rerandomization window, n is the number of prob-
ing rounds, and p∗n(t) is the n-fold convolution power of p(t). Since the convolution
power decreases rapidly with the number of targets n, the attack can quickly become
impractical. Given a vulnerability and an attack model characterized by some p(t),
this formula gives a practical way to evaluate the impact of a given rerandomization
frequency on attack prevention. When a new vulnerability is discovered, this for-
mula can also be used to retune the rerandomization frequency (perhaps accepting a
performance penalty) and make the attack immediately impractical, even before an
appropriate patch is developed and made available. This property suggests that our
ASR design can also be used as the first “live-workaround” system for security vul-
nerabilities, similar, in spirit, to other systems that provide immediate workarounds
to bypass races at runtime [285].

3.8 Related work

3.8.1 Randomization

Prior work on ASR focuses on randomizing the memory layout of user programs,
with solutions based on kernel support [167; 2; 274], linker support [289], compiler-
based techniques [49; 50; 288], and binary rewriting [167; 57]. A number of studies
have investigated attacks against poorly-randomized programs, including brute forc-
ing [262], partial pointer overwrites [94], and return-oriented programming [256;
250]. Our ASR design is more fine-grained than existing techniques and robust
against these attacks and information leakage. In addition, none of the existing
approaches can support stateful live rerandomization. The general idea of ran-
domization has also been applied to instruction sets (to thwart code injection at-
tacks) [166; 238; 149], data representation (to protect noncontrol data) [48], data
structures (to mitigate rootkits) [187], memory allocators (to protect against heap ex-
ploits) [222] Our struct layout randomization is similar to the one presented in [187],

64 CHAPTER 3. ASR3

but our ASR design generalizes this strategy to the internal layout of any mem-
ory object (including code) and also allows live layout rerandomization. Finally,
randomization as a general form of diversification [101] has been proposed to exe-
cute multiple program variants in parallel and detect attacks from divergent behav-
ior [78; 253; 254].

3.8.2 Operating system defenses

Prior work on OS defenses against memory exploits focuses on control-flow at-
tacks. SecVisor [260] is a hypervisor-based solution which uses memory virtual-
ization to enforce W⊕X protection and prevent code injection attacks. Similarly,
NICKLE [246] is a VMM-based solution which stores authenticated kernel code
in guest-isolated shadow memory regions and transparently redirects execution to
these regions at runtime. Unlike SecVisor, NICKLE can support unmodified OSes
and seamlessly handle mixed kernel pages with code and data. hvmHarvard [116] is
a hypervisor-based solution similar to NICKLE, but improves its performance with
a more efficient instruction fetch redirection strategy at the page level. The idea of
memory shadowing is also explored in HookSafe [281], a hypervisor-based solution
which relocates kernel hooks to dedicated memory pages and employs a hook indi-
rection layer to disallow unauthorized overrides. Other techniques to defend against
kernel hook hijacking have suggested dynamic monitoring strategies [291; 237] and
compiler-based indirection mechanisms [183] Finally, Dalton et al. [81] present a
buffer overflow detection technique based on data flow tracking and demonstrate its
practical applicability to the Linux kernel. None of the techniques discussed here
provides a comprehensive solution to OS-level attacks. Remarkably, none of them
protects noncontrol data, a common target of attacks in local exploitation scenarios.

3.8.3 Live rerandomization

Unlike our solution, none of the existing ASR techniques can support live rerandom-
ization with no state loss. Prior work that comes closest to our live rerandomization
technique is in the general area of dynamic software updating. Many solutions have
been proposed to apply run-time updates to user programs [214; 193; 32; 69] and
operating systems [194; 43; 36] Our rerandomization technique shares with these so-
lutions the ability to modify code and data of a running system without service inter-
ruption. The fundamental difference is that these solutions apply run-time changes
in place, essentially assuming a fixed memory layout where any state transforma-
tion is completely delegated to the programmer. Our solution, in contrast, is generic
and automated, and can seamlessly support arbitrary memory layout transformations
between variants at runtime. Other solutions have proposed process-level run-time
updates to release some of the assumptions on the memory layout [124; 131], but
they still delegate the state transfer process completely to the programmer. This

3.9. CONCLUSION 65

C
ha

pt
er

3

completely hinders their applicability in live rerandomization scenarios where arbi-
trary layout transformations are allowed.

3.9 Conclusion

In this paper, we introduced the first ASR design for operating systems. To fully
explore the design space, we presented an analysis of the different constraints and
attack models inside the OS, while highlighting the challenges of OS-level ASR.
Our analysis reveals a fundamental gap with long-standing assumptions in existing
application-level solutions. For example, we show that information leakage, tradi-
tionally dismissed as a relatively rare event, becomes a major concern inside the OS.
Building on these observations, our design takes the first step towards truly fine-
grained ASR for OSes. While our prototype system is targeted towards component-
based OS architectures, the principles and the techniques presented are of much
more general applicability. Our technique can also be applied to generic user pro-
grams, improving existing application-level techniques in terms of both performance
and security, and opening up opportunities for third-generation ASR systems. The
key to good performance (and no impact on the distribution model) is our link-time
ASR strategy used in combination with live rerandomization. In addition, this strat-
egy is more portable and much safer than existing techniques, which either rely on
complex binary rewriting or require a substantial amount of untrusted code exposed
to the runtime. In our technique, the complex rerandomization code runs completely
sandboxed and any unexpected run-time error has no impact on normal execution.
The key to good security is the better randomization granularity combined with pe-
riodic live rerandomization. Unlike existing techniques, we can (re)randomize the
internal layout of memory objects and periodically rerandomize the system with no
service interruption or state loss. These properties are critical to counter information
leakage attacks and truly maximize the unobservability of the system.

3.10 Acknowledgments

We would like to thank the anonymous reviewers for their insightful comments. This
work has been supported by European Research Council under grant ERC Advanced
Grant 227874.

C
ha

pt
er

4

4
Practical Automated Vulnerability Monitoring

Using Program State Invariants

Abstract

Despite the growing attention to security concerns and advances in code verification
tools, many memory errors still escape testing and plague production applications
with security vulnerabilities. We present RCORE, an efficient dynamic program
monitoring infrastructure to perform automated security vulnerability monitoring.
Our approach is to perform extensive static analysis at compile time to automati-
cally index program state invariants (PSIs). At runtime, our novel dynamic analysis
continuously inspects the program state and produces a report when PSI violations
are found. Our technique retrofits existing applications and is designed for both
offline and production runs. To avoid slowing down production applications, we
can perform our dynamic analysis on idle cores to detect suspicious behavior in the
background. The alerts raised by our analysis are symptoms of memory corruption
or other—potentially exploitable—dangerous behavior. Our experimental evalua-
tion confirms that RCORE can report on several classes of vulnerabilities with very
low overhead.

67

68 CHAPTER 4. RCORE

4.1 Introduction

Memory errors represent a major source of security vulnerabilities for widely de-
ployed programs written in type-unsafe languages like C. According to the NIST’s
National Vulnerability Database [221], 662 memory error vulnerabilities were pub-
lished in 2011 and 724 in 2012. While software engineers strive to identify memory
errors and other vulnerabilities as part of the development process, dynamic vulner-
ability monitoring and identification in production runs is a compelling option for
two important reasons.

First, many security vulnerabilities escape software testing and are only later
discovered in production applications at a steady rate every year [154]. This is due
to the limited power of code analysis tools and the inability to test all the possible
execution scenarios effectively in offline runs. Given the large-scale deployment of
today’s production applications, it is no wonder that the testing surface can increase
drastically in production runs, with different installations subject to very different
environments and workloads. This gives a much better chance for zero-day vulner-
abilities to emerge.

In addition, experience suggests that the number of unpatched vulnerabilities is
substantial every year. A recent study [154] has shown that only 53% of the vulnera-
bilities disclosed in 2012 were patched by the end of the year. When prioritizing the
known security vulnerabilities to go after becomes a necessity, a dynamic vulnera-
bility monitoring infrastructure can provide a useful feedback to analyze the impact
of those vulnerabilities in production.

Unfortunately, state-of-the-art solutions designed to detect and protect against
different classes of memory errors [29; 21; 50; 293; 65; 73; 87; 251; 146] are not
well-suited to be used for comprehensive vulnerability monitoring in production
runs. Despite significant effort, they still incur substantial overhead and often fail
to provide any meaningful feedback.
This paper presents RCORE, a new dynamic program monitoring infrastructure that
continuously inspects the state of a running program and provides informative feed-
back about generic memory errors and potential security vulnerabilities. Our solu-
tion barely impacts running applications and retrofits existing programs and already
deployed shared libraries. Our low-overhead design can completely decouple the
execution of a target program and the execution of the monitor, isolating the moni-
toring thread on a separate core.

To detect many classes of memory errors, our approach builds on a combination
of static and dynamic analysis. Static analysis is performed at compile time to embed
in the final binary all the program state invariants, which specify inviolable safety
constraints for the different components of the program state (i.e., objects, types,
values). The key idea is to detect memory errors and suspicious behavior from run-
time violations of the prerecorded invariants maintained in memory. To accomplish
this task, our run-time monitor continuously inspects the program state in the back-
ground and reports every violation found, along with all the necessary information

4.2. PROGRAM STATE INVARIANTS 69

C
ha

pt
er

4

to track down the original problem. Our analysis is concerned with security and not
space overhead, given that RAM is hardly a scarce resource nowadays.

To achieve the lowest possible overhead—at the cost of reduced precision—
in production runs, our default invariants analysis strategy is fully asynchronous.
This approach results in a probabilistic detection model specifically designed to de-
tect forms of global state corruption. This category covers a significant fraction of
emerging vulnerabilities, which produce latent errors or silent data corruption and
may normally go undetected [100]. This trend is reflected in a growing number of
exploits moving from stack-based attacks to data or heap-based attacks [222]. Our
ultimate goal is to build an automated security vulnerability reporting service, simi-
lar, in spirit, to widely used remote crash reporting tools.

The contribution of this paper is threefold. First, we introduce a novel program
state invariants analysis which is used as basis for our detection technique. Second,
we show that our invariants analysis can be effectively used to infer both suspicious
behavior that can cause memory errors and memory corruption caused by a memory
error, even when the root cause is unknown. Our analysis covers the entire global
program state (i.e., data, heap, and memory-mapped regions) and can detect a broad
class of memory errors, including buffer overflows, dangling pointers, double or
invalid frees, and uninitialized reads. Compared to existing techniques, we support
detection of memory corruption caused by the libraries, application-specific memory
management, and memory errors that do not spread across data structure boundaries
(e.g., buffer overflow inside a struct). Third, we have developed a system, termed
RCORE, which can reuse dedicated spare cores to perform our invariants analysis on
a running program in real time. Our prototype shows that our analysis can be effi-
ciently parallelized and used in practical vulnerability monitoring scenarios. To the
best of our knowledge, we are the first to support such a fine-grained vulnerability
analysis and show that it can be performed in real time with very low overhead.

4.2 Program State Invariants

Program state invariants (PSIs) represent global safety constraints that restrain the
run-time behavior of every state element in the program in an execution-agnostic
fashion. We use the term state element (or s-element) to refer to typed memory ob-
jects (i.e., variables or dynamically allocated objects) and their recursively defined
members (e.g., struct fields or array elements) indiscriminately. We consider PSIs
for both pointer and nonpointer s-elements for programs written in type-unsafe lan-
guages like C.

Our current system supports three types of PSIs: value-based PSIs, target-based
PSIs, and type-based PSIs. Value-based PSIs restrict the set of legal values for both
pointer and nonpointer s-elements. Target-based PSIs specify the set of valid targets
a pointer s-element can point to (i.e., a pointer must point to a valid s-element in
memory). Finally, type-based PSIs restrict the set of legal types a pointer s-element

70 CHAPTER 4. RCORE

can point to (e.g., a function pointer must point to a valid function s-element with a
matching type).

Unlike other invariant-based techniques [97; 127; 300; 88; 75; 22; 233] or more
general learning-based techniques [247; 206] that aim to automatically detect anoma-
lous behavior, our invariants are execution-agnostic and solely determined from
static analysis. While this strategy might miss some valid invariants that can only be
determined by fine-grained dynamic monitoring, our approach eliminates the cover-
age problems that arise when learning invariants at runtime and results in a more con-
servative invariants analysis, ruling out false alarms at detection time—other tech-
niques incorrectly raise an alert whenever a program element reports a legitimate
value never observed in the training phase. In particular, when not using proac-
tive detection of suspicious behavior like long-lived dangling or off-by-N pointers,
RCORE’s conservative analysis squarely meets the goal of zero false positives.

Another advantage of using static compile-time information to learn properties
of the program behavior is the ability to derive restrictive and fine-grained PSIs.
This immediately suggests that run-time PSI violations can be used as an accurate
predictor for memory errors. The key intuition is that, when some form of arbitrary
state corruption occurs, the probability of no PSI being violated is low. This is true
independently of the particular memory error that caused the corruption. For exam-
ple, when a global data pointer is corrupted with arbitrary data, the chance that the
pointer is still pointing to an object of a valid type (as determined by static analysis)
is negligible—equivalent to the probability of randomly guessing the address of a
valid memory object. Similarly, a global function pointer corrupted with arbitrary
data by a memory error is unlikely to still point to a valid function with a valid type
(as determined by static analysis). As a result, both scenarios will allow RCORE to
detect a target- or type-based PSI violation with high probability for the corrupted
pointer s-elements and immediately generate a report on the memory errors found.

Finally, the violation patterns reported can be used to classify the memory errors
detected (e.g., contiguous s-elements with PSI violations in a buffer overflow).

4.3 Architecture

Our architecture comprises 5 main components: compiler driver, static instrumen-
tation component, metadata framework, dynamic instrumentation component, and
run-time analyzer. The compiler driver is designed to support static analysis and
instrumentation of existing applications and libraries, integrating seamlessly with
existing build systems.

The static instrumentation component—implemented on top of the LLVM com-
piler framework [179]—inspects the program to identify all the s-elements and PSIs
at compile time and instruments the final binary to store the corresponding meta-
data. The latter are used to validate the program state against all the prerecorded
invariants at runtime. For this purpose, the metadata framework provides an API to

4.3. ARCHITECTURE 71

C
ha

pt
er

4

R
un

tim
e

Li
nk

-ti
m

e

Instrumented Program

Instrumented-Code
Metadata-Framework

Data
Metadata

Instrumented-Code

Original Program

Data
Code

Static Instrumentation

Core 1 Core 2

Application Code

Application-Threads

Dynamic-
Instrumentation

Library-Wrapper

Modify-Metadata

Run-time
Analyzer

Monitoring-Threads

Lookup-Metadata

Metadata-Framework

Figure 4.1: The RCORE architecture.

query and manage statically and dynamically created metadata. The framework is
transparently linked to the program by the compiler driver during the build process.

The dynamic instrumentation component creates and destroys dynamic metadata
to support uninstrumented shared libraries. This step is necessary to perform a con-
servative target-based analysis and avoid spurious alerts. In contrast, using only the
dynamic instrumentation component without any static instrumentation as done in
state-of-the-art memory allocators [27; 222], would degrade the effectiveness of our
analysis, as explained later. The run-time analyzer is responsible for monitoring the
behavior of the program in real time and detecting PSI violations. At each monitor-
ing cycle, the analyzer uses the metadata framework to introspect the program state
and check annotated PSIs for each s-element found. Figure 4.1 depicts RCORE’s
architecture and the interactions between the components at runtime.

4.3.1 Static Instrumentation

The static instrumentation component is an LLVM link-time pass that analyzes and
instruments the program and statically linked libraries to embed state metadata into
the resulting LLVM bitcode. The latter is then processed by a valid LLVM back end
to produce the final binary.

Our static analysis starts by extracting relocation and type information on vari-
ables and functions used in the program. These objects will become part of the
embedded metadata that index all the s-elements and the corresponding PSIs.

To index types, we extract all the relevant type information available using the
LLVM API. The language- and architecture-independent LLVM type hierarchy found
in the original bitcode is extracted and then stored directly into the program using a
convenient format. Our data structures use a compact tree-like representation with
leaf nodes representing primitive types. For example, similar to the original LLVM
type system, an array of 10 float* pointers is represented by 3 distinct type nodes

72 CHAPTER 4. RCORE

linked together: array ([10 x float*]), pointer (float*), and primitive (float),
respectively. Only types referring to state entities are made part of the type hierarchy.

Global variables extracted from the program represent the first important state
entity. Metadata information about global variables is stored in a number of state en-
tries (or s-entries) made available at runtime. Each s-entry contains the name, type,
and address of the variable. In addition, flags are used to mark constants and vari-
ables that have their address taken. Size and padding information for aggregate vari-
ables are computed at runtime (for portability reasons) and stored directly in the type
hierarchy. This is important to efficiently support target-based and type-based PSIs.

A similar approach is adopted for functions, but only functions that have their
address taken are made part of the embedded metadata information. This is possible
since functions are only used to enforce target-based and type-based PSIs and not to
introspect the state of the program.

4.3.2 Indexing pointer casts

To enforce type-based PSIs for pointer s-elements we need knowledge of pointer
types that are allowed for each s-element at runtime. Unfortunately, type-unsafe
languages like C allow for arbitrary casts between different types and recording
metadata on static pointer types is not sufficient for a conservative analysis. To
address this problem, our static analysis extracts all the pointer casts from the origi-
nal program and enriches the type hierarchy with casts-to links between compatible
type nodes. Luckily, LLVM explicitly represents both implicit and explicit pointer
casts in the intermediate representation. The bitcast instruction is used to repre-
sent pointer-to-pointer casts, while the inttoptr and the ptrtoint instructions are
used to handle integer-to-pointer casts and vice versa.

4.3.3 Indexing value sets

To enforce value-based PSIs it is necessary to store metadata for the set of legal val-
ues allowed for a given s-element at runtime. When possible, our static instrumenta-
tion annotates each type of the type hierarchy with the set of the legal values allowed.
The value set is directly stored in a type node to simplify sharing and metadata man-
agement. Our current value analysis module supports basic value-set analysis (VSA)
and can annotate both pointer and nonpointer s-elements. For pointer s-elements,
we analyze inttoptr instructions and attempt to determine the set of all the le-
gal integer values. When our conservative analysis fails, no value set is recorded
but the pointer is marked as an integer candidate. Our simple analysis is, however,
very often successful in real-world scenarios, where integer values usually refer to
some special constants (e.g., SIG_IGN defined for the POSIX sigaction system
call). For nonpointer s-elements, our current module records metadata for enums,
constants, and variables assigned to constant expressions, but it would be straight-
forward to incorporate more sophisticated value analyses (e.g. range analysis).

4.3. ARCHITECTURE 73

C
ha

pt
er

4

4.3.4 Memory management instrumentation

To index dynamically allocated memory objects, we replace all the memory manage-
ment functions in the program with our own wrappers to create and destroy meta-
data at runtime. Our current implementation supports all the POSIX malloc-like
and free-like functions, including the mmap family, the mem_align family, and
shared memory functions. Each memory allocation wrapper takes, along with the
original arguments, an additional parameter that describes the run-time type of the
to-be-created dynamic state entry (or ds-entry). Each ds-entry provides metadata for
a dynamically allocated memory object represented as a typed array and contains
similar information to the one included in a s-entry.

To determine the run-time type of a ds-entry correctly, we devised a conservative
type inference algorithm for our static instrumentation component. Our algorithm
recursively walks through all the possible uses of the value returned by each memory
allocation function and considers all the global and local variables in the caller to
which the value can be possibly assigned. When the run-time type can be determined
unambiguously, the type node and all the relevant casts encountered are added to the
type hierarchy. This approach allows introspecting dynamically allocated objects at
the finest level of granularity possible at runtime, while dealing with the ambiguous
cases in a conservative way by indexing all the pointer casts encountered.

Our type inference algorithm can also recognize and handle application-specific
memory allocation wrappers (e.g., my_malloc) with arbitrary levels of nesting by
analyzing the interprocedural propagation of weak pointer types (i.e., void*). In
these cases, the algorithm is repeated recursively and the final run-time type propa-
gated throughout all the wrappers encountered. When the type cannot be correctly
determined, the instrumentation component resorts to the special void type used to
describe a block of untyped memory, which, however, hampers the ability to intro-
spect the memory object at runtime. In our current prototype, this scenario can occur
in practice with programs relying on region-based memory management implemen-
tations [46]. To deal with such schemes and improve the coverage of our run-time
analysis, our static instrumentation can be instructed to locate and automatically con-
struct typed wrappers for region-based memory allocation/deallocation functions.

4.3.5 Metadata Framework

The metadata framework provides the data structures for all the metadata entities
(i.e., types, functions, s-entries, and ds-entries) and the API to manage them at run-
time. The metadata API provided by the framework offers 3 primary functionalities.
First, API functions are available to introspect the entire program state. For ex-
ample, a callback-based mechanism is used to process s-entries and ds-entries and
conveniently operate on all the s-elements found therein. Second, a lookup API is
available to locate any metadata entity given an appropriate search key. For example,
the points-to lookup API—used to check target-based PSIs—locates a target s-entry

74 CHAPTER 4. RCORE

given a valid pointer s-element. Finally, the framework provides an API to create
and destroy metadata at runtime. This is used in the predefined memory manage-
ment wrappers included in the framework.

To achieve good performance, our wrappers store the ds-entries using in-band
metadata. Similar to prior approaches, we use canaries [248] to detect metadata
corruption due to overflows, and optionally flip the top bit of every metadata word
before and after use as suggested in [27] to mitigate dangling pointers. If necessary,
strategies adopted by out-of-band memory allocators [27; 222] can be incorporated
in our implementation to offer additional protection at the cost of more overhead.
Note that the metadata canaries are continuously checked for consistency by the
run-time analyzer. This eliminates the need to determine application points to check
the canaries, which hampered the effectiveness of this approach in prior work, as
evidenced in [222].

To achieve loose synchronization between memory wrappers executed in the ap-
plication context and run-time analyzers executed on a separate monitoring thread,
our design provides a lock-free interface for metadata management operations. This
avoids any lock contention overhead and guarantees a scalable implementation. Our
design arranges the ds-entries in a singly-linked list with newly-created ds-entries al-
ways added to the top. With the top of the list maintained stable, this strategy offers a
lock-free stack interface to the memory allocation wrappers. A push-only lock-free
stack can be implemented very efficiently using compare-and-swap (CAS) primi-
tives, avoiding extra implementation complexities to ensure scalability in face of
significant push and pop contention for the top of the stack or to deal with the “ABA
problem" [139]. To maintain the top of the ds-entry list stable, the application threads
are never allowed to perform a pop operation on the stack. This is accomplished by
marking the state of the corresponding ds-entry as “dead” in the memory deallo-
cation wrappers (e.g. free) without actually removing the ds-entry from the list.
This allows metadata destroy operations to be completely lock-free, using lockless
ds-entry state updates. The monitoring thread, in turn, periodically deallocates all
the dead ds-entries and the corresponding data. To maintain the top of the list stable,
a removal operation on the top is always deferred until the next ds-entry is pushed
onto the stack. Multiple monitoring threads can concurrently operate and check PSIs
on the same ds-entry list using lock-based synchronization (not exposed to the ap-
plication threads).Note that this does not interfere with our memory wrappers and
introduces no additional lock-contention overhead for the application threads.

4.3.6 Dynamic Instrumentation

The dynamic instrumentation component is an interposition library responsible for
indexing deployed uninstrumented libraries at runtime to avoid spurious alerts in
our invariants analysis. The component provides three key functionalities. First,
the component creates ds-entries for dynamically linked libraries at program ini-
tialization time. This step is necessary to enforce target-based invariants in case of

4.3. ARCHITECTURE 75

C
ha

pt
er

4

application pointers pointing to text or data regions created by the dynamic linker. To
address this problem, we rely on the same data structures used by the dynamic linker
to introspect the address space of the program and locate all the dynamic objects that
belong to uninstrumented libraries.

Our current implementation is based on the ELF binary format. To introspect
dynamic objects, it is sufficient to parse the ELF header to locate the GOT and the
link_map data structure used by the linker. For each text region found, we extract all
the symbols and create a single untyped ds-entry (i.e., a ds-entry with the special type
void) for each library function. Note that we need to index all the uninstrumented
library functions, since the knowledge of whether a function can have its address
taken is irretrievably lost, and so are the original symbol types. For each data region
found, in turn, we create a single untyped ds-entry describing the region.

The second important responsibility of the dynamic instrumentation component
is to keep track of dynamically loaded shared libraries at runtime and create and
destroy the corresponding ds-entries when necessary. For this purpose, the inter-
position library includes wrappers for the programming interface to the dynamic
linking loader provided by POSIX. We use a dlopen wrapper to create or update
ds-entries—POSIX defines a reference counter to reuse existing library mappings—
and a dlclose wrapper to destroy existing ds-entries when the reference counter
drops to zero.

For dynamically loaded libraries, our wrappers follow the same approach adopted
to index dynamically linked libraries. New ds-entries are similarly created for the
new memory regions, and each ds-entry is marked as text or data depending on
the particular region type considered. Finally, the dynamic instrumentation com-
ponent needs to handle all the memory management functions invoked at runtime
from uninstrumented libraries. For this purpose, the interposition library includes
dynamic wrappers for all the memory management functions supported by the meta-
data framework and redirects execution to the original static wrappers accordingly.
Since the type information is lost for uninstrumented libraries, the run-time type
provided to the original wrappers is always void. This explains why it is crucial to
combine static and dynamic instrumentation to handle memory management func-
tions. Dynamic instrumentation is necessary to create metadata for all the possible
dynamic memory objects and avoid proliferation of spurious alerts. At the same
time, dynamic instrumentation alone would produce only untyped ds-entries, mak-
ing it harder to reason about dynamically allocated memory blocks, a common prob-
lem in prior work [27]. In our approach, untyped memory objects hamper state
introspection—as for example expected for uninstrumented libraries—and decrease
the accuracy of our target-based and type-based PSIs.

4.3.7 Run-time Analyzer

The run-time analyzer is responsible for sampling the program state periodically and
checking PSIs to detect any violation. The initialization code prepares all the data

76 CHAPTER 4. RCORE

structures used in the analysis and transparently allocates the monitoring thread on
a predefined core. Depending on the configuration given, it is possible to allocate
multiple monitoring threads on the same or different cores to increase the frequency
PSIs are checked. In the other direction, it is also possible to reduce the frequency
of monitoring cycles to reduce CPU utilization. This allows us to trade off security
and CPU utilization when power consumption is of concern. If strict backward com-
patibility is not required, the application could also be slightly modified to start the
analysis only in face of particular events, saving monitoring cycles when the appli-
cation is idle. The analyzer runs the monitoring thread in an endless loop, although
the analysis can be interrupted and restarted on demand, if necessary. At each cycle,
the program state is sampled to check PSIs. The analyzer cycle comprises 5 (not
necessarily sequential) phases: state introspection, invariants analysis, recording,
reporting, and feedback generation.

4.3.8 State introspection

The analyzer locates all the indexed s-entries (and ds-entries) and recursively walks
through all the s-elements found using the functions provided by the metadata frame-
work. All the s-elements that have candidate PSIs are considered for analysis. Our
default strategy analyzes all the relevant s-elements sequentially but, depending on
the threat model considered, additional policies can be used to prioritize particular
state regions (e.g., heap) and check corresponding PSIs at a higher frequency.

4.3.9 Invariants analysis

The analysis is performed for all the PSIs supported for any given s-element. First,
the value of the s-element is atomically checked for value-based PSIs whenever a
value set is available. If the value is not part of the value set, a violation is flagged.

We also analyze pointer s-elements that have been marked as integer candidates
with no value set provided. In particular, if the pointer points anywhere in the set
of reserved pages at the beginning or at the end of the address space, our analysis
marks the pointer as safe. This strategy reflects the knowledge that pointers marked
as integer candidates are typically assigned to special constants that do not reflect
valid memory addresses. Although some corrupted pointer in this category may go
undetected, when the pointer is dereferenced a fault will immediately be triggered.
If an integer candidate points to an address outside the reserved range, the pointer is
promoted to a regular pointer and further PSIs are normally checked for violations.

For all the pointer s-elements considered for further analysis, target-based PSIs
are checked next. The metadata API is used to look up the s-entry or ds-entry each
s-element points to. If no valid entry can be found or the entry refers to an object
that does not have its address taken, a violation is flagged. Upon successful lookup,
the target entry is recursively analyzed to determine the run-time type or types the
pointer is pointing to. If the analysis fails, for example the pointer is illegitimately

4.3. ARCHITECTURE 77

C
ha

pt
er

4

pointing to padding data of a struct, a violation is flagged. When valid target types
are found, type-based PSIs are considered.

For type-based PSIs, we first check the static pointer type and determine whether
it matches any of the run-time types the pointer is pointing to. When no match with
the static pointer type is found, the analyzer examines the set of compatible pointer
types retrieved from our linked type hierarchy. If no match is found, a PSI violation
is flagged. When the target s-entry is untyped, the nature of the target is considered.
If the original pointer is a data pointer and points to a s-entry referring to a text
memory region (or vice versa), a violation is flagged.

4.3.10 Recording

The results of our analysis are recorded to collect fine-grained statistics on each s-
element with annotated PSIs. For each s-element, we record the PSI violations found.
For pointers, we also record the distribution of target types found (with the number
of occurrences sampled for each type) and the corresponding memory regions (i.e.,
data, heap, mmap, shared memory, text).

4.3.11 Reporting

To be effective in different scenarios, RCORE supports policy-based detection mech-
anisms. Policies decide what events indicate suspicious behavior and need to be re-
ported. RCORE supports two default detection mechanisms: synchronous detection
and window-based detection. The synchronous detection mechanism simply logs all
the PSI violations found. While useful in development mode, this mode of operation
is not always desirable in production. Some short-lived PSI violations may be some-
times acceptable and expected in the normal execution of the program. For example,
consider a pointer that is freed and then immediately set to NULL. The asynchronous
analysis performed by the monitoring thread might sample the pointer value right
after the free call. In this case, a dangling pointer would be immediately reported
as dangerous although the pointer is dangling only for a very short period of time
and never used. To address this issue and reduce the number of alerts in produc-
tion, RCORE defaults to another (window-based) detection mechanism for dangling
pointers. In this mode of operation a sliding window is used to collect a number
of state samples over a time interval. The resulting distribution is used to enforce
detection policies and log suspicious events on a per s-element basis. The size of the
window is configurable, and so are the policies supported for each particular event.
The default policy is to report only the PSI violations that occur for all the samples in
a single detection window, but more sophisticated policies are possible. This simple
policy is effective in real-world scenarios, allowing one to tune the number of alerts
logged by simply varying the window size. Reasonably short detection windows
avoid logging common dangling pointer violations and provide accurate detection
for the suspicious cases.

78 CHAPTER 4. RCORE

4.3.12 Feedback generation

For each logged event, we generate accurate information on the PSIs violated and
report all the statistics gathered on a per s-element basis. The detailed information
provided in the feedback can help developers track and reproduce the original prob-
lem for debugging purposes. In addition, the feedback can be used to automatically
classify the violations basing on the patterns observed. For example, a common pat-
tern we have observed for the distribution of target types of a dangling pointer is
NULL, type x, target-based PSI violation.

4.3.13 Debugging

RCORE includes a flexible debugging interface to support offline analysis of all the
PSI violations found. Our asynchronous detection strategy provides a debug-friendly
environment for offline runs, with the run-time analyzer imposing minimal disrup-
tion on the application threads and the static instrumentation preserving symbol table
and stack information. To quickly locate and fix the original problem, developers can
use the debugging interface to set arbitrary breakpoints and interrupt the program
execution upon specific PSI violations (e.g., break on any PSI violation found for
the pointer my_ptr). Debugging support reflects our goal of simplifying the entire
vulnerability discovery and patch development-deployment lifecycle.

4.4 Memory Errors Detected

4.4.1 Dangling pointers

RCORE supports proactive detection of memory errors derived from dangling point-
ers, which are explicitly recognized using PSI violations and knowledge of known
heap regions. Dangling pointers can be detected immediately, even before they are
actually dereferenced. This is crucial for a dynamic vulnerability monitoring infras-
tructure. Common are cases where even extensive dynamic analysis fails to trigger
corruption caused by a vulnerable dangling pointer. For instance, the pointer may
be dereferenced only in code paths that are rarely triggered during normal execu-
tion. For this reason, RCORE uses window-based detection to report all the suspi-
cious long-lived dangling pointers, which can then be further inspected offline. In
addition, arbitrary corruption caused by incorrect use of dangling pointers can be
detected by PSI violations on the corrupted target region.

4.4.2 Off-by-one pointers

RCORE supports proactive detection of off-by-one pointers, which are often legit-
imately used to mark buffer boundaries. If incorrectly used, however, they can in-
troduce overflows or indirectly cause other memory errors. RCORE’s target-based
analysis can explicitly recognize generic off-by-N pointers even before they can do

4.5. EVALUATION 79

C
ha

pt
er

4

any harm. A policy determines whether our analysis should report (immediately or
using window-based detection) or ignore these cases. Similar to dangling pointers,
memory corruption caused by incorrect use of these pointers is still always reported
by our invariants analysis.

4.4.3 Overflows/underflows

RCORE supports detection of buffer overflows (and underflows) using invariants
analysis to detect the resulting memory corruption occurred. Note that, in contrast
to existing source-level approaches, our fine-grained analysis allows RCORE to de-
tect arbitrary overflows, even those for buffers inside a struct or buffers allocated
using application-specific dynamic memory allocation. In most cases, it is very easy
to classify a suspicious event as a buffer overflow or underflow, depending on the
patterns observed. This is reflected by a number of PSI violations reported for con-
tiguously allocated s-elements.

4.4.4 Double and invalid frees

Like other common memory allocators, RCORE detects most double and invalid
frees directly in the memory management wrappers, using in-band metadata ca-
naries. In the remaining cases, arbitrary memory corruption caused by the illegal
operation can still be detected by PSI violations on the corrupted region.

4.4.5 Uninitialized reads

RCORE supports probabilistic detection of uninitialized reads. Our default strategy
is to start checking PSIs for s-elements described by a given ds-entry as soon as the
ds-entry is created. Dynamically allocated s-elements, however, may not have been
initialized yet when the analysis starts and the random garbage contained therein
would likely trigger PSI violations. To address this issue, we allow a configurable
grace period before introspecting new ds-entries in the analysis. This strategy fol-
lows the intuition that new s-elements that are left uninitialized for too long increase
the probability of uninitialized reads and should therefore be considered for offline
inspection. This strategy is effective even for reasonably short grace periods. As
in other cases, memory corruption indirectly caused by uninitialized reads—for ex-
ample dereferencing an uninitialized pointer and write data to an arbitrary memory
region—can be detected by PSI violations on the corrupted region.

4.5 Evaluation

The current RCORE implementation runs on Linux, but most components can be
easily ported to other operating systems and binary formats other than ELF. Our
compiler driver is implemented in python in 1200 lines of code (LOC). The static

80 CHAPTER 4. RCORE

1.00

1.20

1.40

1.60

1.80

2.00

2.20

bzip2
perlbench

gcc
mcf

milc
gobmk

hmmer

sjeng
libquantum

h264ref

lbm sphinx3

g-mean

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Instrumentation only
Instr. and 1 analyzer on 1 core

Instr. and 7 analyzers on 4 cores
Instr. and 15 analyzers on 8 cores

Figure 4.2: Run-time overhead introduced by RCORE for the SPEC CPU2006 benchmarks.

instrumentation component is implemented as an LLVM pass in 6000 LOC, and sup-
ports all the standard LLVM optimizations. The metadata framework is implemented
as a static library written in C in 3700 LOC. The dynamic instrumentation compo-
nent and the run-time analyzer are implemented as shared libraries written in C in
800 LOC and 2300 LOC, respectively. The libraries are preloaded using platform-
specific support offered by the dynamic linker (e.g., the LD_PRELOAD UNIX envi-
ronment variable) to override the default run-time program behavior.

4.5.1 Performance

We evaluated the overhead of our solution using the C programs in the SPEC CPU2006
benchmarks. We ran our experiments on a Dell Precision workstation with two
2.27GHz Intel Xeon E5520 quad-core processors and 4GB of RAM running a 2.6.35
Linux kernel. Each core has two hyper-threads sharing the L1 and L2 cache, whereas
the four cores on the same die share an 8-MB L3 cache.

We executed each experiment 11 times and reported the median. We evaluated
both the overhead introduced by our static and dynamic instrumentation and the
one introduced by these components and the RCORE run-time analyzer allocated on
dedicated cores. Figure 4.2 shows the execution time of the RCORE version of our
benchmarks normalized against the baseline.

The static and dynamic instrumentation components of RCORE introduce 3%
run-time overhead on average (geometric mean). The whole framework in its de-
fault configuration (one run-time analyzer) introduces 8% overhead on average. The
average, however, is heavily influenced by benchmarks like perlbench due to the
massive use of dynamic memory allocations, which inevitably results in high mem-
ory management instrumentation overhead and significantly increased contention

4.5. EVALUATION 81

C
ha

pt
er

4

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

R
ep

ly
/s

R
es

po
ns

e
tim

e
(m

s)

Request/s

Connection rate
Avg reply rate

Response time (ms)

(a): Uninstrumented version.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

R
ep

ly
/s

R
es

po
ns

e
tim

e
(m

s)

Request/s

Connection rate
Avg reply rate

Response time (ms)

(b): RCORE version.

Figure 4.3: Performance results for the nginx benchmark.

for memory bandwidth between application and monitoring threads. Encouragingly,
for the majority of the benchmarks RCORE introduces a negligible overhead with a
median value of only 1.5%.

The last two bars in each benchmark show the overhead imposed by RCORE
when configured with 7 and 15 run-time analyzers assigned to 4 and 8 independent
cores with hyper-threading (9% and 24% on average, respectively). The significantly
higher overhead introduced in the latter scenario acknowledges the impact of the
increased contention for memory bandwidth caused by multiple monitoring threads
scheduled on different dies with no cache shared. Our results confirm the importance
of a shared cache to achieve good performance in concurrent dynamic monitoring
applications, as also recognized in prior work [126].

82 CHAPTER 4. RCORE

We now compare our SPEC results with WIT [28] and Cruiser [296], two re-
cent low-overhead solutions to detect memory errors. RCORE reports lower over-
heads than WIT on average, which shows an average overhead of 10% on SPEC
CPU2000 benchmarks. WIT’s object-level analysis for memory writes is also more
coarse-grained than ours, although WIT’s run-time checks follow the main appli-
cation flow and are thus less probabilistic than RCORE’s asynchronous detection
model. RCORE reports lower average overhead than Cruiser, which shows an aver-
age overhead of 12.5% on SPEC CPU2006 Integer benchmarks in its lazy version.
The overhead drops to 5% for Eager Cruiser, which, however, requires recovery
techniques and may incur false positives. Cruiser’s detection model is asynchronous
like ours, but focuses only on heap-based buffer overflows.

Our second set of experiments evaluated the throughput and latency degradations
introduced by RCORE on nginx [19] (version 0.8.54) and lighttpd [17] (version
1.4.28), two popular web servers. The web servers were independently deployed on
the same Dell Precision workstation used above. A number of clients were deployed
on different Dell workstations with a 3.33GHz Intel Core 2 Duo CPU and 4GB
of RAM, each running a 32-bit 2.6.35 Linux kernel and connected to the servers
through a Gbit link.

Figure 4.3 shows the average throughput and latency of nginx under different
workloads (i.e., requests per second) while retrieving a 50KB file. In particular, we
started with a rate of 100 req/s up to 1000 req/s, increasing the request rate by 100
req/s on each subsequent run. Each request opened a connection to download the re-
quested file. Each run lasted for at least 75 seconds and issued as many connections
as needed to match the request rate for the duration of the whole run considered.
This allowed httperf [16], our web benchmarking tool, to collect enough evidence
(i.e., samples) needed to produce statistically sound results. Figure 4.3(a) refers
to tests performed on an unmodified version of nginx and represents our baseline.
Figure 4.3(b), in contrast, refers to tests performed on the RCORE (1 run-time ana-
lyzer on a dedicated core) version of nginx. Figure 4.3(a) shows that the baseline
achieved the maximum throughput at around 500 requests per second, at which time
httperf issued 37500 connections in total. As we further increased the request rate,
the server became saturated, as shown by the gradual throughput and latency degra-
dation. We have checked that the server was the bottleneck by performing a number
of additional experiments to verify that all the clients could keep up with that maxi-
mum request rate. Similarly, Figure 4.3(b) shows that the RCORE version of nginx
was able to match the same maximum rate and response time of the baseline, intro-
ducing only a negligible overhead. We have performed the same set of experiments
on lighttpd and under different workload scenarios and obtained similar results
with negligible overhead. We omit the figures of such experiments due to lack of
space. The overall results here outlined are encouraging and show that our approach
introduces negligible overhead on the end performance of the RCORE version of the
program operating at full capacity. This enables a practical and realistic deployment
of our solution in production systems.

4.5. EVALUATION 83

C
ha

pt
er

4

 0

 20

 40

 60

 80

 100

 120

300500700 20 40 60 80 100

 0

 20

 40

 60

 80

 100

 120

M
on

ito
rin

g
cy

cl
e

tim
e

(m
s)

P
S

I v
io

la
tio

ns
 d

et
ec

te
d

(%
)

Overall CPU utilization allowed (%)

Monitoring cycle time (ms)
PSI violations detected (%)

Figure 4.4: Monitoring cycle time and PSI violations in nginx for decreasing CPU utilization.

4.5.2 Detection Accuracy

Decoupling security checks from the main application flow guarantees low overhead
but inevitably introduces a latency in the detection of PSI violations. The latency
depends on the monitoring frequency and the number of run-time analyzers used.
Lower detection latencies are desirable for better accuracy. Higher detection laten-
cies, on the other hand, reduce power consumption. The appropriate tradeoff can be
tuned for each particular scenario considered.

Figure 4.4 depicts the monitoring cycle time achieved by RCORE and the result-
ing number of PSI violations detected when injecting into the program 100 memory
corruptions with a lifetime uniformly distributed in [1, 200]ms. The values are plot-
ted as a function of the overall CPU utilization allowed to the run-time analyzers,
with one or more dedicated hyper-threads hosting a single analyzer each. At 100%
CPU utilization, the default configuration (1 run-time analyzer on 1 thread) com-
pletes a monitoring cycle and checks the PSIs of a given s-element every 24ms.
Conversely, the time elapsed between any two checks with 1 run-time analyzer at
20% CPU utilization is around 110ms. The configuration with 7 analyzers allo-
cated on 7 threads sharing the L3 cache (700% CPU utilization) with the application
achieves the lowest detection latency of 10ms. The resulting percentage of PSI vio-
lations detected in these 3 configurations is 94%, 72%, and 98%, respectively. These
results have been obtained for nginx, but similar behavior can be observed for other
programs, with the detection latency dependent on the number and the complexity
of the data structures used. When compared to the simpler canary-based detection
strategy used in Cruiser [296], our analysis incurs higher detection latencies, but
encompasses many more memory errors than only heap-based buffer overflows. To
further improve RCORE detection latency, we can increase the number of monitor-
ing threads or instruct the run-time analyzers to focus on particular portions of the
program state, for example, on those that are observed to change more often.

84 CHAPTER 4. RCORE

4.5.3 Effectiveness

To evaluate the effectiveness of RCORE in detecting memory errors using our in-
variants analysis, we performed two complementary experiments: (1) a feedback
evaluation, which measured the accuracy achieved by RCORE during testing runs
of proftpd version 1.3.3e and exim version 4.69, two well-known FTP and SMTP
servers; (2) a CVE (Common Vulnerabilities and Exposures) evaluation, which as-
sessed the ability of RCORE to detect representative memory error vulnerabilities
related to nginx and openssl. Our ultimate goal is to evaluate RCORE’s effective-
ness at detecting real-world memory errors as PSI violations and providing useful
feedback to pinpoint the original problem.

The feedback evaluation performed on exim allowed us to find a previously un-
known, potentially exploitable, vulnerability. In particular, the vulnerability is rep-
resented by an out-of-bounds pointer, mainlog_datestamp (log.c), that is deref-
erenced for reading. This may potentially lead to a denial of service situation,
such as, process crash or file resource exhaustion. Conversely, proftpd’s feed-
back evaluation reported an interesting long-lived dangling pointer, capabilities
(mod_cap.c). Even a careful code inspection was insufficient to assess whether this
dangling pointer could lead to a vulnerability, but the code should probably be better
restructured to avoid problems.

We then proceeded to assess whether RCORE is able to detect real-world vul-
nerabilities. To this end, we selected the CVE advisory 2009-2629, which describes
a buffer underflow vulnerability that affects several versions of nginx, including
those from 0.6.x before 0.6.39, among others (our analysis was performed on nginx
version 0.6.38), and the CVE advisory 2010-2939, which describes a double-free
vulnerability affecting openssl version 1.0.0a.

The CVE 2009-2629 advisory states that a specially crafted HTTP request may
produce memory corruption enabling the execution of arbitrary code. We selected
this CVE because it was a particularly representative case of global state corrup-
tion introduced by a typical memory underflow vulnerability. In addition, nginx
relies heavily on application-specific memory management and uses many struct
types with buffer variables; all elements that make the detection of memory cor-
ruption hard in the general case. The execution flow that triggers the vulnerability
starts with nginx invoking ngx_http_init_request() when processing network
input. This function allocates a 1024-byte pool using application-specific memory
allocation functions and fills the pool with a number of data structures containing
several nested pointers and the parsed input I at the end (e.g., ngx_table_elt_t).
The underflow causes a temporary pointer, initially pointing to I, to traverse back up
to the next ’/’ character encountered (ngx_http_parse_complex_uri). Depend-
ing on the particular memory layout at the moment of the underflow, the temporary
pointer may land within the same struct that included the original input buffer
(e.g., ngx_str_t), within the same pool-dedicated block, or on a different memory
block. Depending on the input provided, the pointer is then used to write garbage

4.6. LIMITATIONS 85

C
ha

pt
er

4

that overrides a number of consecutive s-elements. In our multiple experiments with
different input distributions, the observed memory corruption repeatedly triggered
several PSI violations, given the significant number of pointers corrupted. As a re-
sult, RCORE was able to detect the corruption in all our tests, no matter where the
temporary pointer initially landed. Existing approaches would have failed to de-
tect the corruption in the general case. We were also positively impressed by the
accuracy of our invariants analysis. In particular, our type-based invariants were ex-
tremely accurate in detecting type violations for all the corrupted function pointers,
given the small fraction of s-elements referring to the same given function type.

Conversely, the CVE 2010-2939 advisory states that a specially crafted private
key may allow context-dependent attackers to execute arbitrary code due to a double-
free vulnerability in the function ssl3_get_key_exchange of openssl version
1.0.0a. In our experiments, RCORE repeatedly detected the vulnerability in the
memory management wrappers using in-band metadata canaries. To simulate the
scenario of a new valid memory block overriding the memory location of the orig-
inal canary with a legal canary value, we disabled all our checks in the memory
management wrappers and only checked for PSI violations instead. When the allo-
cator happened to allocate a new memory block in the same memory region as the
old block’s metadata, the unchecked double free corrupted arbitrary data in the new
block. Similarly to what was observed for nginx, our experiments in this scenario
promptly reported type- and target-based PSI violations on the corrupted data.

4.6 Limitations

RCORE is primarily targeted at reporting on known or unknown vulnerabilities
during normal in-the-field execution. Due to the probabilistic nature of our asyn-
chronous detection model (crucial to achieve low overhead), however, we can make
no claim that RCORE can identify all the short-lived vulnerabilities or attacks that
affect the global program state. Attacks, in particular, can only be detected under the
following conditions. First, memory corruption induced by the attacker must trigger
some PSI violations. This is often the case when the attacker cannot make strong
assumptions on the layout of the corrupted region. In this scenario, RCORE is very
likely to identify PSI violations, especially for pointers corrupted with arbitrary data.
On the other hand, even if the attacker can reliably craft a request that produces no
PSI violation, his exploitation power is clearly reduced. For example, our PSI anal-
ysis would only allow an attacker to corrupt a function pointer with the address of a
function of the same type.

Second, the lifetime of the corruption introduced should be no shorter than a
monitoring cycle. To evade detection, the attacker may be able to execute arbi-
trary code shortly after corrupting critical data and quickly perform recovery ac-
tions. In our experience, while generally practical for stack smashing and other
short-lived attacks, this strategy cannot be taken for granted for attacks that exploit

86 CHAPTER 4. RCORE

global state corruption. Our claim is also supported by other similar (but less gene-
ric) asynchronous detection models which have been successfully applied to heap-
spraying [244] and heap-based buffer overflow [296] attacks.

In our future work, we intend to improve our attack detection accuracy by re-
ducing RCORE’s monitoring cycle and further investigate the different security-
performance tradeoffs, e.g., by switching to a more deterministic “stop-the-world”
detection model under particular conditions.

4.7 Related Work

Memory errors represent a major category of vulnerabilities and have received much
attention in recent years. Bounds checking is a largely explored solution devised to
address common memory errors in C programs, but traditional approaches [251; 87;
73] suffer from significant overhead. More recent bounds checkers have used effi-
cient checks and static analysis [29; 293] to achieve better performance but are still
unsuitable for large-scale adoption. More widespread adoption has been gained by
StackGuard [77], which uses “canaries” before the return address of a function to
detect buffer-overflow errors. Other techniques [70; 292] have used a shadow stack
to separate the return address and other sensitive data from buffer variables that are
subject to overflow. More recent approaches, in contrast, are specific to heap-based
memory errors. Some suggest a particular memory allocator design [27; 222; 45],
others use canaries to detect heap-based overflows [248; 278]. ValueGuard [278]
instruments the original code to add canaries for both global and local variables.
LibsafePlus [38] detects overflows that occur in particular unsafe C library functions
(e.g., strcpy). This is done by analyzing debugging information and instrument-
ing the code to describe ranges for local, global, and dynamically allocated buffers.
The metadata collected, however, is coarse grained and only used to perform range
checking. In a similar direction, MEDS [146] uses a basic low-level type system to
perform run-time detection of memory errors, but requires software dynamic trans-
lation incurring extremely high overhead. Like ours, other approaches have used
the general idea of enforcing static analysis results at runtime. Control-flow in-
tegrity [21] computes the program control-flow graph and prevents deviations from
it at runtime. Similarly, Castro et al. [65] present an approach to enforce data-flow
integrity at runtime using a precomputed data-flow graph.

WIT [28] is a low-overhead solution that uses static analysis to determine the
set of objects that can be written by each instruction in the program and instruments
the code to enforce write integrity at runtime. Albeit static, their points-to analysis
presents similarities with our target-based PSI analysis. Their checks, however, are
always performed at the object level and subject to the precision of static analysis
to identify accurate object sets. In contrast, our invariants analysis is fine-grained
and generalizes their approach with generic program invariants. The approach we
propose is more radical. Our static analysis extracts as much information as possi-

4.8. CONCLUSION 87

C
ha

pt
er

4

ble from the program and enforces all the PSIs found at runtime. In addition, WIT
cannot support out-of-bound reads without incurring additional overhead.

None of the approaches examined is general and fine-grained enough to sup-
port several classes of memory errors, with low overhead. Our PSI analysis can be
used to detect arbitrary memory corruption, even when the source of the corruption
is unknown. For example, RCORE can also detect hardware memory errors when
the resulting corruption leads to PSI violations. Moreover, we support fine-grained
analysis of both static and dynamically allocated objects, including introspection
of structs and objects managed by custom memory allocators. None of the ap-
proaches considered can support either. Finally, while RCORE was designed to op-
erate in a fully asynchronous fashion, we believe our invariants analysis can be used
in different contexts as a generic state checking mechanism, as also demonstrated by
our prior work in the context of live update [112].

We conclude by briefly surveying a number of relevant multicore security ap-
plications. He et al. [137] describe dynamic multicore-based program monitoring
and compare the performance of their compiler optimizations with instrumentation-
based monitoring. Ruwase et al. [252] show how to efficiently parallelize dynamic
information flow tracking with several threads running on different cores. Aftandil-
ian et al. [23] propose asynchronous assertions to inexpensively evaluate heavy-
weight programmer-provided checks concurrently to the execution of the program.

Other approaches [254; 253] explore parallel execution of program variants to
detect attacks from divergent behavior. Finally, Cruiser [296] is a low-overhead so-
lution for concurrent heap buffer overflow monitoring. Their work is similar in spirit
to ours, but they focus only on a particular class of memory errors using a detec-
tion mechanism based on canaries. Our invariants analysis, in contrast, is much
more general and targeted toward several classes of memory errors. Their imple-
mentation, however, includes a very efficient lock-free dynamic memory allocator
that maintains out-of-band metadata, which could also be incorporated in RCORE if
using out-of-band metadata is required.

4.8 Conclusion

Current approaches that aim to detect memory error vulnerabilities are either specific
to particular categories of memory errors or incur significant overhead, which hin-
ders their widespread adoption in vulnerability monitoring scenarios in production.
Despite claiming backward compatibility, prior solutions make also strong assump-
tions on the nature of the program under analysis, for example that no application-
specific memory management is used.

In this paper, we presented RCORE, a low-overhead dynamic program monitor-
ing infrastructure that can leverage available cores to continuously inspect running
programs and report on a broad class of memory errors. RCORE uses extensive
static analysis to extract as many PSIs as possible from a given program and make

88 CHAPTER 4. RCORE

them available at runtime for fine-grained invariants analysis. RCORE covers all
the standard C features and explicitly supports application-specific memory man-
agement not to lower the accuracy of the results at invariants checking time. Our
investigation demonstrates that common memory errors can all be mapped to PSI
violations and classified to provide an informative feedback to the developers. Our
invariants analysis can be used to detect both dangerous behavior (e.g., long-lived
dangling pointers) and memory corruption. In the latter case, our dynamic analysis
concentrates on the effect of the corruption rather than on the cause, enabling proba-
bilistic detection of arbitrary memory errors, even when the cause is unknown or not
directly controlled. As a result, RCORE can seamlessly detect memory corruptions
in the program state caused by the libraries or by arbitrary hardware memory errors.

4.9 Acknowledgments

We would like to thank the anonymous reviewers for their comments. This work has
been supported by European Research Council under ERC Advanced Grant 227874.

C
ha

pt
er

5

5
EDFI: A Dependable Fault Injection Tool for
Dependability Benchmarking Experiments

Abstract

Fault injection is a pivotal technique in dependability benchmarking. Unfortunately,
existing general-purpose fault injection tools either inject faults in predetermined
memory locations or resort to random injection, approaches that generally result in
poor fault coverage and controllability guarantees. This makes it difficult to repro-
duce or compare experiments across different systems or workloads.

This paper presents EDFI, a new tool for dependable general-purpose fault in-
jection experiments. EDFI combines static and dynamic program instrumentation to
perform execution-driven fault injection, a technique which allows realistic software
faults to be injected in a controlled way as the target system executes. Our instrumen-
tation strategy guarantees a predetermined faultload distribution during the entirety
of the experiment, independently of the particular system or workload considered.
Our evaluation confirms that EDFI significantly improves the precision and control-
lability of prior tools, at the cost of only modest memory and performance overhead
during fault-free execution.

89

90 CHAPTER 5. EDFI

5.1 Introduction

As we enter the pervasive computing era, complex software systems play an in-
creasingly important role in our everyday life. In this emerging landscape, assess-
ing the dependability properties of a software system becomes a growing concern.
For dependability benchmarking purposes, researchers have traditionally relied on
software-implemented fault injection (SWIFI) tools, which provide a relatively in-
expensive strategy to mimic real-world faults in a synthetic experimental setting.

In the past decades, fault injection campaigns have been applied to several classes
of software, including distributed systems [165], user applications [40; 198; 196],
operating systems [119; 172], device drivers [272; 299; 141], and file caches [219].
These experiments have served a number of different purposes, including: (i) analyz-
ing the behavior of different systems under a given faultload [119; 172]; (ii) evaluat-
ing the effectiveness of fault-tolerance mechanisms [272; 299; 141]; (iii) performing
high-coverage testing of error detection and recovery mechanisms [40; 163; 120].

Recent research efforts to build practical fault injection tools are largely focused
on the latter scenario [198; 196; 163]. In this context, experiments are designed
to surgically inject targeted faults into the system and trigger rarely executed code
paths, rather than mimicking real-world software faults. The ultimate goal is typ-
ically to increase the code coverage explored during automated testing. Ironically,
earlier efforts, which are instead focused on designing general-purpose fault injec-
tion tools, are, in turn, heavily affected by limited program code coverage achieved
during the experiment.

In detail, the dominant approach followed by existing general-purpose tools is to
inject faults into predetermined (or random) memory locations [164; 41; 299; 219;
93; 275; 64; 165], a location-based strategy which cannot guarantee that faults are
actually “covered”—with a predetermined faultload distribution, i.e., characteriza-
tion of fault locations and types (§5.5)—at runtime. Not surprisingly, prior studies
have reported fault injection campaigns with no faults activated in as many as 40%
of the experiments [219; 165]. A way to address this problem is to substantially in-
crease the number of faults injected, but at the cost of more experiments invalidated
by spurious faults activated before even starting the test workload. An alternative is
to surgically inject faults into hot spots stressed by the test workload [276; 161; 160],
a strategy which, however, requires a deterministic workload and does not account
for code covered only during faulty execution (e.g., error handling code).

Other approaches, in turn, periodically interrupt the system at random execution
points (i.e., typically using a timer) and inject faults into the current runtime con-
text [275; 164; 64]. This time-based strategy, however, biases the experiment toward
hot code paths and severely limits the nature of the faults that can actually be injected
at runtime, ultimately producing poorly representative software faults [155; 191; 74].
We believe all these shortcomings have significantly affected the “dependability" of
existing tools, often even prompting researchers to question the validity of fault in-
jection as a dependability benchmarking technique [171].

5.2. BACKGROUND 91

C
ha

pt
er

5

This paper presents EDFI, a new tool for dependable general-purpose fault injec-
tion experiments. Unlike all the prior tools, EDFI implements execution-driven fault
injection, a novel technique which allows injecting a controlled and predetermined
faultload distribution as the system executes at runtime. To address this challenge,
EDFI relies on a combination of static and dynamic instrumentation, which trans-
forms the original code into multiple heterogeneous versions at compile time and
provides the ability to interleave them in a controlled way during the experiment.
This strategy allows EDFI to (i) statically inject multiple simultaneous [284] faults
over the entire code—with a predetermined faultload distribution—to avoid cover-
age problems during the experiment and (ii) seamlessly switch between fault-free
and faulty execution to allow fault activation only in a user-controlled fault injection
window at runtime.

EDFI’s hybrid instrumentation strategy delivers precise (i.e., how well the tool
follows the original fault model), controllable (i.e., how well the user can mark the
beginning/end of an experiment with no spurious faults activated before/after then),
and observable (i.e., how well the user can observe the output of an experiment) fault
injection experiments with negligible system impact during normal execution. Un-
like all the existing tools, EDFI offers strong guarantees that a predetermined fault
characterization given in input (i.e., input faultload distribution) will be precisely re-
flected in the observed output of the experiment (i.e., output faultload distribution)
without introducing spurious faults that may compromise the validity of the results.

5.2 Background

Software-implemented fault injection (SWIFI) is a well-established technique in de-
pendability benchmarking experiments. Its merit lies in emulating real-world faults
in a synthetic setting with relatively simple tools.

SWIFI tools are typically designed to either inject generic faults into the origi-
nal program or emulate error conditions at the library interfaces. The latter scenario
is popular in robustness testing campaigns, which aim to analyze the behavior of
the system in face of error codes returned by the libraries [198; 196] or invalid ar-
guments supplied to library (or system) calls [172]. While important in robustness
testing applications, these strategies are orthogonal to general-purpose fault injec-
tion techniques in terms of both goals and representativeness, as also demonstrated
in prior work [205].

General-purpose SWIFI tools, in turn, are traditionally classified into two main
categories, depending on whether fault injection is performed at preruntime or at
runtime. The former approach injects faults by statically mutating the original pro-
gram via compiler-based techniques [150; 299] or binary rewriting [164; 41; 219;
93]. Mutations can affect code or data and follow a predetermined location-based
strategy. Locations are either user-defined or selected at random. Early approaches,
such as [164; 41], corrupt the program image with hardware-like faults (e.g., bit

92 CHAPTER 5. EDFI

flips). More recent approaches, such as [219; 299; 191; 93; 211], in contrast, explic-
itly aim at emulating realistic software faults. G-SWFIT [93], for example, injects
only fault types obtained from the analysis of 668 real-world bugs found in the field.

In both cases, preruntime location-based approaches have a number of impor-
tant shortcomings. First, fault activation cannot be easily guaranteed, as it is subject
to code coverage induced by the test workload. Even when faults are activated,
limited coverage immediately translates to very weak guarantees on the dynamic
faultload distribution actually injected at runtime. Second, it is infeasible to prevent
faults from being activated outside the user-controlled fault injection window, which
should, however, clearly mark the boundaries of the experiment. This greatly lim-
its the controllability of the approach. For example, the system may inadvertently
crash at initialization time before even starting the test workload considered in the
experiment.

Runtime location-based SWIFI strategies, such as those explored in [275; 164;
64; 165], seek to address the controllability issues of preruntime techniques. These
strategies rely on hardware or software traps to interrupt the execution at predeter-
mined (or random) memory locations and inject faults. This approach, however,
is still inherently prone to the coverage problems discussed earlier. In addition,
prior studies have shown that the low-level nature of these (and other) runtime tech-
niques offers poor representativeness guarantees when emulating realistic software
faults [191].

Other runtime SWIFI strategies, such as those explored in [275; 164; 64], have
resorted to time-based fault triggers to periodically interrupt the execution (e.g.,
every 2 seconds) and inject faults into the current runtime context. While a po-
tential solution to the coverage problems that plague all the other fault injection
approaches, this strategy is hardly free from important shortcomings. First, the in-
jection is heavily influenced by the workload and biased toward code paths that are
executed more often during the experiment. Second, given that interruptions occur
at random execution points, the nature of the faults that can effectively be injected
is significantly constrained. This typically results in a weak and poorly predictable
faultload distribution injected into the program at runtime. Not surprisingly, prior
studies have found time-based approaches to be the least representative fault injec-
tion strategies [155]. Finally, the unpredictability of the injection events makes it
really difficult to reproduce and compare the results across different experiments.

To conclude, a number of approaches have been devised to mitigate the coverage
problems incurred by location-based techniques. The general idea is to profile the
behavior of the system under the test workload and inject faults into hot spots with
high probability of fault activation [276; 161; 160]. The main problem with these
approaches is the inability to account for code paths only covered during faulty ex-
ecution and the high sensitiveness to the workload. The latter, in particular, results
in weak fault activation guarantees and also limits the reproducibility and compa-
rability of the experiments. These issues have often emerged in prior studies. For
example, the analysis presented in [161] assumes a deterministic test workload to

5.3. SYSTEM OVERVIEW 93

C
ha

pt
er

5

Figure 5.1: Architecture of the EDFI fault injector.

obtain stable experimental results. DEFINE [165] reports no fault activation in as
many as 40% of the experiments even with faults explicitly designed to match the test
workload. Finally, the analysis presented in [155] reports a high-variance faultload
distribution observed across repeated fault injection experiments with only slight
variations in the workload.

In contrast to all the prior SWIFI strategies, EDFI’s hybrid instrumentation ap-
proach provides a dependable fault injection environment, combining and outper-
forming existing preruntime and runtime approaches. Unlike traditional preruntime
strategies, EDFI provides full controllability of the experiment, with faults only ac-
tivated (and observed) within a user-controlled fault injection window. Unlike all
the location-based strategies, EDFI is robust to limited coverage induced by the test
workload. Faults are injected (and activated) directly into the currently executed
code paths, independently of the particular system or workload considered. Un-
like time-based strategies, EDFI imposes no restrictions on fault representativeness,
nor does it yield a biased or poorly predictable fault injection experiment. Overall,
EDFI’s execution-driven strategy offers much stronger guarantees on the precision
of the dynamic faultload, naturally yielding more reproducible and comparable fault
injection results. Its LLVM-based architecture, in turn, provides a powerful, exten-
sible, and portable framework suitable for several fault injection scenarios.

5.3 System Overview

The goal of EDFI is to provide a generic and extensible fault injection framework
which dependability researchers and practitioners can easily adapt to their needs
in many different contexts and usage scenarios. This vision is reflected in EDFI’s
modular architecture (Figure 5.1).

To use EDFI, users need to statically instrument the target program with a link-
time transformation pass, implemented using the LLVM compiler framework [179].

94 CHAPTER 5. EDFI

The pass accepts several command-line arguments to allow the user to specify the
static fault model (§5.5), which describes the input faultload distribution to inject
into the program, for example, a distribution mimicking fault types found in the
field [93] and locations that are representative of residual faults [210; 211]. The pass
translates the static fault model requested into targeted code mutations and prepares
the program for execution-driven fault injection (§5.4). The transformations are
all performed at the LLVM IR (intermediate representation) level before optimiza-
tions are applied. This strategy preserves the fundamental source-level abstractions
required to inject realistic and representative faults [74]. In addition, the LLVM IR-
level strategy seamlessly provides fault injection capabilities for all the architectures
supported by LLVM.

If the source code is not available, our fault injection strategy could also be ap-
plied starting from legacy binaries, for example using recently proposed techniques
to translate generic binaries into LLVM IR [33]. Great care should, however, be
taken when using this strategy, given that the resulting LLVM IR would no longer
reflect the structure and the abstractions of the original source code. This issue has
been also recognized in prior studies, which demonstrated the representativeness
problems of binary-level fault injection [74]. In particular, the analysis in [74] found
inlining and C-style preprocessor macro expansion to be the most disrupting factors
for fault injection representativeness.

To avoid the representativeness problems introduced by inlined functions, our
instrumentation strategy ensures that program mutations are always applied before
inlining (or any other optimizations). Preprocessor macro expansion, however, is
always performed in the language front end, with the original macro information
irremediably lost in the LLVM IR. In its current implementation, EDFI opts for a
pure LLVM IR-based strategy, losing the ability to identify the original preproces-
sor macros, but at the benefit of a uniform instrumentation strategy across all the
source languages supported by LLVM. If macro-level representativeness is an is-
sue in particular scenarios, a simple source-to-source transformation could be used
to automatically transform function-like macros into inline functions. Recent work
on source code rejuvenation demonstrates how to implement this strategy in C++11
using perfect forwarding [176].

A similar warning is in order for shared libraries. Our link-time transformation
pass can automatically instrument the program and all the statically linked libraries.
Shared libraries, however, must be separately instrumented. Nevertheless, EDFI
can automatically corrupt the arguments supplied to library calls or emulate error
codes returned by shared libraries, similar to the library-level strategy adopted by
LFI [198].

Once instrumented, the binaries can run without deviating from their original
runtime behavior. The instrumentation, however, allows the user to initiate and ter-
minate a fault injection experiment at any point during the execution of the target
system. To control the experiment at runtime, EDFI relies on two control libraries,
which together coordinate the communication between the system and an external

5.4. EXECUTION-DRIVEN FAULT INJECTION 95

C
ha

pt
er

5

controller. The control server library—which listens for external fault injection
events in the background—is transparently linked against the program binary as part
of our instrumentation process. The control client library—which delivers fault in-
jection events to the server—provides a generic client-side interface to initialize,
start, and stop a fault injection experiment on demand. EDFI already includes a
simple stock controller (i.e., edfi-ctl), which relies on the control client library to
expose a convenient command-line interface to the user. The client library, however,
can be also as easily embedded in other complex systems to build more sophisticated
controllers. Note that the control libraries are the only platform-specific compo-
nents in our architecture, also designed to be easily extended and support new fault
injection settings. Our current implementation includes support for UNIX appli-
cations, using UNIX domain sockets to establish the client-server communication.
A portable sysctl-based implementation to perform fault injection into Linux and
BSD OS kernels is underway.

To initiate an experiment, the user typically starts the target program, activates
a test workload, and finally instructs the controller to start (and later stop) the fault
injection experiment in well-known system states. To configure the experiment, the
user can specify a number of parameters and a custom dynamic fault library (or use
the stock library included in our framework), dynamically loaded into the program
immediately before starting the experiment. The input to the controller defines the
dynamic fault model (§5.6) adopted, which gives the user fine-grained control over
the experiment and the ability to emulate special dynamic conditions at runtime.

The user can also specify the logging mechanism to use among those supported
by the control libraries. At the end of the entire process, the user can inspect the logs
to determine the number, locations, types, and faultload distribution of all the faults
injected during the fault injection experiment.

5.4 Execution-driven Fault Injection

Execution-driven fault injection is a new fault injection technique which ensures
predetermined faults to be systematically injected, activated, and observed as the
system executes at runtime. This strategy entails several challenges. First, the faults
injected during the experiment should accurately follow the faultload distribution
defined by the static fault model. Second, it should be possible to seamlessly switch
between faulty and fault-free execution during an experiment, as dictated by the
dynamic fault model. Finally, the switching strategy should guarantee fine-grained
control over the execution during the experiment, but also minimize the impact on
the system during normal execution. This property is particularly important to avoid
perturbing the system before initiating the experiment.

To address these challenges, our instrumentation uses the basic block cloning
idea, which replicates and transforms the original code into multiple heterogeneous
and interchangeable code versions. The general idea has been explored in prior work

96 CHAPTER 5. EDFI

(b) CFG after function entry instrumentation(a) Original CFG

Entry

ExitBody

Loop

F T

FDP(Loop)

F T

Loop

F T

Loop'

F T

FDP(Body)

F T

FDP(Exit)

F T

Loop

F T

ExitBody

Entry

F T

Body Exit Exit'Body'

Switch?

Figure 5.2: Basic block cloning example.

in different forms, using either static [285] or dynamic [239] program instrumenta-
tion strategies. EDFI embraces a new static approach to implement an efficient and
flexible cloning strategy. Our transformation pass translates a generic basic block in
the original control flow graph (CFG) of the program into the following basic blocks:

• The pristine basic block. This is the original basic block found in the input
CFG. This block is always executed during normal execution at runtime when
no fault injection experiment is in progress.

• The fault-free basic block. This is a semantically-equivalent copy of the pris-
tine basic block, but with different predecessor and successor blocks. This ba-
sic block emulates fault-free execution within the fault injection window and
can only be actively executed when a fault injection experiment is in progress.

• The faulty basic block. This is a transformed version of the original basic
block found in the input CFG, instrumented with the faultload distribution
defined by the static fault model. This block emulates faulty execution within
the fault injection window and can only be executed when an experiment is in
progress.

• The FDP basic block. This is a newly generated basic block which im-
plements the fault decision point (FDP) for the benefit of the dynamic fault
model. This block determines the basic block to run next within the fault injec-
tion window, allowing the experiment to seamlessly switch between fault-free
and faulty execution.

Figure 5.2 shows a simplified example of EDFI’s basic block cloning strategy.
The original CFG in the example was generated from a simple function with a sin-

5.5. STATIC FAULT MODEL 97

C
ha

pt
er

5

gle loop summing all the elements of an array. As exemplified in the figure, the
transformation preserves the basic structure of the original CFG, but a number of
pristine basic blocks are modified to check the value of a special switch flag and
redirect execution to a different code version when necessary. To minimize the run-
time overhead, the flag is only checked at function entries and loop back edges (not
shown in the figure, for simplicity), similar to [285]. While efficient, this approach
provides only coarse-grained control over the execution with no ability to switch to
a different code version at every basic block. To address this challenge, EDFI only
relies on the switch flag to interrupt (and restore) normal execution at the beginning
(and at the end) of the fault injection window, but introduces FDP blocks to support
basic block-level switching granularity during the experiment. Note that supporting
instruction-level switching granularity is also an option, but we found this strategy
to drastically increase the complexity of the CFG—hindering optimizations and en-
couraging memory overhead—without significantly improving the expressiveness
of the dynamic fault model. If more expressiveness is necessary, our basic block
cloning strategy could also be configured to generate multiple faulty basic block ver-
sions rather than just one for each pristine basic block, also providing the ability to
switch between different static fault models at runtime.

At the beginning of the fault injection experiment, the control library sets the
switch flag to allow the execution to switch to a different code version at the next
function entry or loop back edge—the latter is necessary to support execution-driven
fault injection in face of long-running loops. From that moment, the execution perco-
lates through a network of FDP blocks, which reflects the original CFG structure but
can selectively redirect the execution flow to faulty or fault-free basic block versions
according to the dynamic fault model. When the switch flag is unset to terminate the
experiment—as dictated by the dynamic fault model or by the controller—the FDP
blocks channel the execution exclusively into fault-free basic blocks, while allowing
the system to restore normal execution at the next function entry or loop back edge.

5.5 Static Fault Model

The goal of the static fault model is to shape the faultload distribution adopted at
runtime for the fault injection experiments. In particular, the model should give the
user the ability to accurately specify what faults to inject and with what distribution,
according to the particular fault scenario considered. For this purpose, EDFI relies
on generic static fault handlers (SFHs). A single SFH implements a particular fault
injection strategy, characterized by a static fault trigger (SFT) (i.e., conditions that
designate particular code locations for fault injection) and fault type (i.e., actions to
inject the fault into the program). SFHs are implemented by pluggable objects that
adhere to a well-defined C++ programming interface, shown in Listing 5.1.

The abstract C++ class StaticFaultHandler defines a number of virtual meth-
ods for the benefit of the subclasses. The optional init() method can be used to

98 CHAPTER 5. EDFI

class StaticFaultHandler {
virtual void init (Module &M, string & params) {}
virtual bool canInject (Value * faultLocation ,

double faultProb) = 0;
virtual void inject (Value * faultLocation) = 0;

};

class StaticFaultAnalyzer {
static double getMaxSFIF (void);
virtual void init (Module &M, string & params) {}
virtual double getSFIF (Value * faultLocation) = 0;

};

Listing 5.1: Static fault C++ programming interface.

perform one-time initialization operations. The inject() method is used to imple-
ment the fault injection strategy. Finally, the canInject() method is used to imple-
ment the static fault trigger. Our static fault triggers are similar, in spirit, to generic
fault triggers proposed in prior work [196; 66]. Our SFTs, however, are completely
static—dynamic triggers are, in contrast, used in our dynamic fault model (§5.6).

At the end of the basic block cloning process, our transformation pass locates
all the StaticFaultHandler implementations (built-in or user-defined) scheduled
for injection according to the static fault model specified by the user. Next, the
pass scans the entire LLVM IR program to identify all the candidate fault loca-
tions (e.g., store instruction). Our current implementation supports fault locations
at three different levels of granularity, reflected in the Function, BasicBlock, and
Instruction LLVM IR objects. For each candidate fault location, the pass in-
vokes the canInject() method on all the designated SFH objects. Our current
StaticFaultHandler implementations consider only instruction-level fault loca-
tions, but it is straightforward to implement more complex fault injection strategies
that operate at the function or basic block level.

The canInject() method accepts two arguments: the current candidate fault
location and the fault probability. The latter determines the probability that a par-
ticular fault type will be injected in a candidate fault location. The fault types (i.e.,
SFHs) to consider, their corresponding probabilities, and any other optional parame-
ters (i.e., params) are specified by the user via command-line arguments to our pass.
These arguments reflect our definition of faultload distribution, which is fundamen-
tally different from prior characterizations adopted in the literature [93].

Traditional faultload characterizations describe the set of fault types in terms
of the fraction of the total faults each fault type represents [93]. While convenient
for location-based approaches and single-fault injection strategies, this definition of-
ten translates to a weak faultload characterization, which ignores the structure and
size of the program. Our probability-based characterization, in contrast, is inher-
ently code size-agnostic and enables simultaneous fault injection [284]. The former
property is particularly important to compare fault injection results across different
programs, while also giving strong guarantees that the given fault probabilities will

5.5. STATIC FAULT MODEL 99

C
ha

pt
er

5

be reflected in the output at runtime—precision problems should only be expected
in cases of very limited coverage (§5.6).

As acknowledged in the analysis presented in [228], however, there are many
factors that may nontrivially increase the fault density in particular code locations.
For example, prior studies have shown that the fault density is statistically correlated
with code complexity measures [208]. Other studies have presented empirical ev-
idence that imports and function calls correlate with security vulnerabilities [217].
To alter the original faultload distribution and express more sophisticated fault mod-
els that consider these (and other) conditions, EDFI relies on generic static fault
impact factors (SFIFs). These factors can be used to amplify or (reduce) the fault
probabilities in particular code locations, orthogonally to the original fault types con-
sidered. The SFIFs are computed on a per-fault location basis by pluggable static
fault analyzer (SFAs) objects, which also adhere to a well-defined C++ programming
interface (Listing 5.1).

In addition to the conventional initialization method (i.e., init()), the abstract
C++ class StaticFaultAnalyzer exposes two methods to the transformation pass.
The virtual method getSFIF() returns the fault impact factor of the current candi-
date fault location. The static method getMaxSFIF() returns the maximum fault
impact factor possible across all the user-specified SFAs. For each candidate fault
location in the program, the pass invokes the getSFIF() method on each desig-
nated SFA and stops when the first valid SFIF for the current location is found (if
any). The priority of application of a particular SFA is determined by the original
order specified by the user. The final fault probability given to the canInject()
method of each StaticFaultHandler object is the normalized version of the orig-
inal fault probability, which is simply computed as:

faultProb *= SFA.getSFIF()/SFA.getMaxSFIF()

Unlike SFIFs, static fault triggers are never evaluated in a priority-based fashion.
After calling the canInject() method on all the designated SFHs, the pass selects
only those that have returned a positive answer and performs random selection to re-
solve eventual collisions. This strategy is necessary to avoid perturbing the faultload
distribution specified by the user and also eliminate duplicate faults that can intro-
duce representativeness problems. The selected SFH (if any) is finally requested to
inject the fault into the program (i.e., with a call to the inject() method). At the
end of the process, the pass reports accurate statistics on the faultload distribution
injected. This is important to give the user a feedback on the quality of the final static
fault model applied (e.g., a high fault collision rate may introduce discrepancies in
the original faultload distribution).

EDFI includes a number of built-in SFHs and SFAs that users can combine (and
extend) to express several different static fault models. In particular, EDFI imple-
ments SFHs for all the standard software fault types described in the literature and
commonly found in the field [93; 72; 270]. In addition, EDFI can specifically emu-

100 CHAPTER 5. EDFI

late several memory errors, including buffer overflows, off-by-N errors, uninitialized
reads, memory leaks, invalid free() errors, and use-after-free errors. Finally, EDFI
can emulate interface errors similar to those described in [198; 172] (although we
have not yet implemented LFI’s return code analysis [198]), while also generalizing
these strategies to generic function interfaces.

The built-in SFAs implemented in EDFI, in turn, can be used and combined
to emulate a number of sophisticated fault scenarios. The most basic SFA (i.e.,
RandomFaultAnalyzer) allows the user to override the default fault impact fac-
tor for a predetermined number of basic blocks selected at random in the program.
This strategy can be used to mimic the behavior of existing location-based fault in-
jection strategies, as also done in our evaluation. The FunctionFaultAnalyzer
and ModuleFaultAnalyzer SFAs, in turn, allow the user to override the fault im-
pact factors of a set of predetermined functions or modules, respectively. This is
useful, for example, to emulate and analyze the impact of particularly faulty compo-
nents. Finally, the CallerFaultAnalyzer SFA allows the user to override the fault
impact factors of all the instructions (or basic blocks) which call a particular set of
functions. This is useful, for example, to emulate interface-level fault injection at
the library interfaces [198].

Other than using the built-in SFHs and SFAs, users can easily implement their
own. Using the programming interface introduced earlier, users can add new SFHs
and SFAs directly to the existing framework or include them in separate LLVM plu-
gins. The LLVM API provides several opportunities to implement complex exten-
sions with minimal effort. For example, implementing a SFA that amplifies the SFIF
according to the number of lines of code in a module or the McCabe’s cyclomatic
complexity computed over the current function (one of the best fault predictors, ac-
cording to [208]) is straightforward.

5.6 Dynamic Fault Model

The static fault model describes a systematic faultload distribution for the fault in-
jection experiment, but cannot alone express more sophisticated dynamic conditions
that affect the runtime system behavior. This is the main goal of the dynamic fault
model. The users specify a dynamic fault model for fault scenarios that need to alter
or control the faultload distribution during the experiment at runtime. In particular,
the model can be used to specify when to switch to faulty execution and what to do
when faults are injected into the execution. In addition, the model defines all the ac-
tions to perform at the beginning and at the end of the fault injection experiment. To
meet these goals, EDFI supports a convenient event-driven interface to customize
and control the runtime behavior of the experiment.

In detail, EDFI’s dynamic instrumentation model defines four primary events:
start event (triggered at the beginning of the experiment, as dictated by the con-
troller), fdp event (triggered at every fault decision point encountered), fault event

5.6. DYNAMIC FAULT MODEL 101

C
ha

pt
er

5

void edfi_onstart (edfi_context_t * context);
int edfi_onfdp (edfi_context_t *context ,

const char *file , int line);
void edfi_onfault (edfi_context_t *context ,

const char *file , int line ,
int num_fault_types , ...);

void edfi_onstop (edfi_context_t * context);

Listing 5.2: Dynamic fault C programming interface.

(triggered when switching to faulty execution), stop event (triggered at the end of
the experiment). For each of these events, EDFI defines a corresponding event han-
dler in the C programming interface exported by the dynamic fault library. The four
event handlers are shown in Listing 5.2.

Every event handler receives as an argument a pointer to the fault injection con-
text (i.e., edfi_context_t object). The context includes all the fault injection vari-
ables that are normally used to initialize, track, and influence the state of the ex-
periment. For example, the context holds the counters to provide statistics on the
faultload distribution observed at runtime, as well as the policies to control the be-
havior of our stock dynamic fault library. To prevent corruption of the fault injection
variables during the experiment, the control libraries guarantee that the context is
always mapped high in memory and protected with guard pages.

The edfi_onstart() handler, automatically called when the controller sig-
nals the beginning of the experiment, initializes the fault injection context and other
implementation-specific data structures. The default implementation in the stock dy-
namic fault library initializes the context with default values, while allowing the user
to override these values through the control interface. The edfi_onstop() handler,
automatically called at the end of the experiment, performs implementation-specific
cleanup operations and outputs statistics. Our default implementation logs the ter-
mination event along with all the statistics on the faultload distribution observed.
The end of the experiment can be triggered by any of the other event handlers or
determined by the control libraries—in response to a user event or when a termi-
nation event is detected. To detect termination events, the current implementation
of the control server library (tailored to UNIX applications) can register atexit()
functions and abnormal termination signal handlers (e.g., SIGSEGV, SIGABRT, etc.).

The edfi_onfdp() handler, automatically called by our instrumentation at fault
decision points, implements EDFI’s dynamic fault trigger (DFT). The DFT returns
a nonzero value to request switching to faulty execution in the next basic block. The
edfi_onfault() handler, automatically called by our instrumentation at the begin-
ning of a faulty basic block, implements EDFI’s dynamic fault logger (DFL). The
DFL receives as arguments the static callsite information and a variable number of
arguments that indicate the types and the number of the faults injected in the cur-
rent basic block. Our default implementation simply updates faultload distribution
statistics in the fault injection context.

102 CHAPTER 5. EDFI

EDFI includes three main built-in DFT implementations:

• Time-based DFT. This DFT can be configured to ensure a minimum prede-
termined time interval between faulty execution blocks. The time interval is
initialized in the fault injection context and can be dynamically adjusted to
specify more complex time distributions. Albeit not necessarily useful to rep-
resent realistic fault scenarios, this DFT can be used to analyze the behavior
of existing time-based fault injection approaches.

• FDP-based DFT. This DFT can be configured to ensure a minimum prede-
termined FDP interval between faulty execution blocks. This is similar to the
time-based DFT above, but the time is measured in terms of number of FDPs
executed instead of microseconds. This DFT can be used to accurately specify
the timing of runtime faulty behavior in an execution-driven fashion. Unlike
time-based DFTs, this strategy translates to reproducible and unbiased fault
injection experiments.

• Probability-based DFT. This DFT can be configured to express a predeter-
mined dynamic probability of switching to faulty execution. As for the other
DFTs, the probability is initialized in the context and can be dynamically ad-
justed to specify complex distributions. This DFT can be used to accurately
specify the likelihood of runtime faulty execution and emulate particular fault
scenarios (e.g., bug clustering effects). In addition, dynamic probabilities can
be used to adjust (or replace) the static probabilities given for the static fault
model in case of limited or highly polarized code coverage—which may affect
the precision of the resulting output faultload distribution. For example, a pro-
gram executing only a few in-loop basic blocks may result in poor precision
and fault activation guarantees with particular static fault models. A possi-
ble solution is to instruct the static fault model to inject faults in every fault
location candidate and rely exclusively on dynamic probabilities to shape the
resulting faultload distribution.

The default DFT implementation in our stock dynamic fault library evaluates all
the built-in DFTs which have been parametrized by the user (if any). Further, our
default implementation allows the user to specify conditions that can automatically
terminate the experiment. Termination can be triggered basing on time, FDPs, and
faults observed from the beginning of the experiment. To parametrize the experi-
ment, users can, for example, rely on our stock controller:

edfi-ctl <start|stop> [options]

The optional [options] argument allows the user to configure the fault injection
context for the experiment and the dynamic fault library to use. When no option is
given, EDFI resorts to the stock library implementation and systematically switches
to faulty execution with no restriction during the experiment.

5.7. EVALUATION 103

C
ha

pt
er

5

Other than configuring and combining the built-in DFTs and DFLs, users can
easily implement their own dynamic fault library. Our C programming interface pro-
vides convenient access to the fault injection context and the entire program state.
For example, it would be straightforward to implement a DFT that switches to faulty
execution only when the program reaches a particular state, similar to [66; 196]. Fur-
ther, EDFI exposes static fault IDs (derived by callsite information) and dynamic
fault IDs (derived by calltrace information) directly to the DFTs and DFLs, gener-
alizing failure IDs in [120]. Other than supporting simple call stack-based or call
count-based triggers as in [196], this interface can be used to implement more com-
plex dynamic fault models, including:

• Emulate transient (or intermittent) faults. In this scenario, the DFL im-
plementation logs all the fault IDs in memory, allowing the DFT to identify
duplicate fault IDs. To emulate transient (or intermittent) faults, the DFT im-
plementation discards (or selectively enables/disables) duplicate fault IDs in a
single run.

• Record/replay a fault injection experiment. In this scenario, the DFL im-
plementation logs all the fault IDs to persistent storage. In subsequent fault
injection runs, the DFT implementation systematically replays a previously
logged run. If necessary, deterministic replay can be enforced using third-
party frameworks [122].

• Implement high-coverage fault exploration. In this scenario, the DFL im-
plementation logs all the fault IDs to persistent storage. The DFT implementa-
tion, in turn, discards duplicate fault IDs across different runs. More advanced
fault exploration strategies, such as those in [40; 163; 120] are also possible.

5.7 Evaluation

Our current EDFI implementation runs on standard UNIX systems, being specifi-
cally designed to support fault injection for user-space UNIX programs. Its porta-
bility, however, is only subject to the platform-specific control libraries, which are
easy to retarget given their small size (234 LOC 1). The static instrumentation, in
turn, is implemented as an LLVM pass in 1150 LOC. The stock dynamic fault li-
brary and the command-line controller, finally, are implemented in C in 259 and 55
LOC, respectively.

We evaluated EDFI on a workstation running Linux v2.6.32 and equipped with a
12-core 1.3Ghz AMD Opteron processor and 4GB of RAM. For our evaluation, we
considered MySQL (v5.1.65) and Apache httpd (v2.2.23), a popular open-source
DBMS and web server, respectively. To directly compare our results with recent
fault injection techniques [198], we performed our tests using the SysBench OLTP

1Source lines of code reported by David Wheeler’s SLOCCount.

104 CHAPTER 5. EDFI

Test scenario Static HTML PHP

Normal execution 1.024 1.007
FDPs only 1.052 1.018
Default DFL only 2.091 1.138
Default DFT (nonparametrized) 2.416 1.185
FDP-based DFT 4.190 1.468
Time-based DFT 4.206 1.472
Probability-based DFT 4.464 1.521

Table 5.1: Time to complete the Apache benchmark (AB) normalized against the baseline.

benchmark [15] (MySQL) and the AB benchmark [1] (Apache httpd). We config-
ured our programs and benchmarks using the default settings. To obtain unbiased
results toward particular fault types, we allowed EDFI to use the same static fault
probability P = Φ (with Φ = 0.5, unless otherwise noted) in all our tests. We
repeated all our experiments 21 times and report the median.

Our evaluation answers four questions: (i) Performance: Does EDFI yield low
runtime overhead during normal execution and reasonable slowdown during the ex-
periment? (ii) Memory usage: How much memory does EDFI use? (iii) Precision:
Does EDFI yield more precise faultload distributions than prior tools? (iv) Control-
lability: Does EDFI yield more controllable experiments than prior tools?

5.7.1 Performance

We evaluated the runtime overhead imposed by the fault injection mechanisms used
in EDFI. To this end, we evaluated our application benchmarks in a number of test
scenarios. In the first scenario, we instrumented the applications and measured the
overhead imposed on our benchmarks during normal execution. The question we
wish to address is whether our instrumentation introduces minimal impact on nor-
mal execution and the overhead of checking the switch flag is effectively amortized
by hardware caches and branch prediction mechanisms. In the second scenario, we
measured the overhead imposed on our benchmarks during a fault injection exper-
iment with no DFTs and DFLs used. This scenario isolates the overhead of basic
block-level switching introduced by the FDPs. The third and fourth scenarios, in
turn, add the default DFL and the default nonparametrized DFT (respectively) to the
previous configuration, isolating their overheads for comparison. Finally, the last
three scenarios measure the overhead of FDP-based, time-based, and probability-
based DFTs, respectively. In all the experiments, EDFI’s instrumentation is config-
ured to skip (only) the code mutations that inject the actual faults. This is necessary
to allow our benchmarks to complete and obtain representative performance results.

We first evaluated our test scenarios with Apache httpd, measuring the time
to complete the AB benchmark compared to the baseline. Similar to [198], we

5.7. EVALUATION 105

C
ha

pt
er

5

Test scenario Read-only Read-write

Normal execution 1.053 1.054
FDPs only 1.095 1.060
Default DFL only 1.161 1.070
Default DFT (nonparametrized) 1.213 1.116
FDP-based DFT 1.509 1.408
Time-based DFT 5.201 3.920
Probability-based DFT 7.448 5.638

Table 5.2: MySQL throughput normalized against the baseline.

ran 1,000 requests—designed to retrieve a 1 KB file—and two different workloads
(static HTML and PHP) with AB in each test scenario. For the PHP workload,
we did not instrument mod_php to evaluate the impact of uninstrumented shared
libraries. Table 5.1 presents our results. As shown in the table, the overhead in-
troduced by our instrumentation during normal execution is negligible for the two
workloads (2.4% and 0.7%), directly comparable, for example, to LFI executing
with 4 triggers [196]. The other test scenarios, in turn, highlight the overhead of our
FDPs, DFLs, and DFTs during the fault injection experiment. Compared to LFI, the
overhead grows considerably when evaluating additional triggers (and event han-
dlers in general), reaching maximum values of 346.4% and 52.1% with the stock
DFL and probability-based DFT enabled. This behavior is, however, to be expected,
given that LFI solely operates at the library interfaces. EDFI’s execution-driven fault
injection strategy, in contrast, aims at full execution coverage. While nontrivial, this
overhead is strictly confined in the fault injection window and always conditioned
by the complexity of the dynamic fault model adopted by the user. For example, the
basic EDFI configuration with no DFTs and no DFLs reported an overhead of only
5.2% and 1.8%.

In our second run of experiments, we evaluated our test scenarios with MySQL,
measuring the throughput during the execution of the SysBench OLTP benchmark
compared to the baseline. Similar to [198], we ran two different workloads (read-
only queries and read-write queries) in each test scenario. Table 5.2 presents our
findings. As shown in the table, the results match the behavior of our earlier ex-
periments performed on Apache httpd, with negligible performance overhead re-
ported during normal execution (5.3% and 5.4%) and maximum performance over-
head (644.8% and 463.8%) with the stock DFL and probability-based DFT enabled.

5.7.2 Memory usage

Our hybrid instrumentation leads to larger binary sizes and larger runtime memory
footprints. This stems from our basic block cloning strategy and the libraries re-
quired to support fault injection capabilities. To evaluate their impact, we measured

106 CHAPTER 5. EDFI

Type Apache httpd MySQL

Static 1.919 1.418
Runtime (idle) 1.015 1.445
Experiment initialization 1.015 1.445
Experiment in progress 1.015 1.329

Table 5.3: Memory usage normalized against the baseline.

the memory overhead incurred by Apache httpd and MySQL when instrumented
with our stock EDFI components in their default configuration. Table 5.3 presents
our results. The static memory overhead (91.9% and 41.8%, respectively) measures
the impact of our basic block cloning strategy and our stock control server library on
the binary size. The runtime (idle) overhead (1.5% and 44.5%, respectively) mea-
sures the impact of the same instrumentation on the virtual memory size observed at
runtime, right after initialization. The next row in the table is similar, but shows the
virtual memory overhead at the beginning of the experiment, with our stock dynamic
fault library already loaded in memory and only marginally impacting Apache httpd
and MySQL’s memory footprint. The last row, finally, shows the average virtual
memory overhead observed within the fault injection window during the execution
of our benchmarks (1.5% and 32.9%, respectively). As expected, the memory over-
head introduced by EDFI is heavily influenced by the structure of the application.
For example, Apache httpd reports a very low virtual memory overhead due to its
large memory footprint—234MB after initialization, compared to only 42MB for
MySQL. Overall, EDFI’s memory overhead is modest, confirming the realistic and
practical deployment of our techniques.

5.7.3 Precision

To assess the effectiveness of EDFI’s execution-driven fault injection strategy, we
evaluated the precision of the faultload distribution observed in the output of a fault
injection experiment. For this purpose, we performed repeated experiments with
increasing values of the fault probability Φ. In each experiment, we synchronized
the fault injection window with the execution of our benchmarks, while collecting
statistics on the faultload distribution observed in output. From the statistics, we
directly computed the output fault probabilities for each fault type and compared
their values with the input fault probabilities statically applied by our instrumenta-
tion. From the input and output probabilities collected, we computed—in each test
scenario—the faultload degradation, which we define as the median relative error
(MRE) across all the output fault type probabilities observed in the experiment. The
faultload degradation gives an indication of the error the tool introduces when repre-

5.7. EVALUATION 107

C
ha

pt
er

5

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100

Fa
ut

lo
ad

 d
eg

ra
da

tio
n

(%
)

Fault probability (%)

EDFI
Location-based

Interface-level

Figure 5.3: Comparative faultload degradation for Apache httpd (static HTML).

senting the output faultload distribution starting from the original input distribution
specified by the user. We selected faultload degradation as a measure of precision,
since it captures both (i) the ability of a tool to actually activate the faults specified
by the user without being affected by code coverage problems and (ii) its ability to
preserve the original distribution of fault types considered.

To allow our benchmarks to complete correctly, we again configured EDFI’s
instrumentation to skip (only) the code mutations that inject the actual faults. To
compare EDFI’s fault injection strategy with prior approaches, we also simulated
location-based strategies and interface-level strategies using our built-in SFAs. We
did not consider runtime time-based strategies in our evaluation, given that prior
studies have already demonstrated their serious representativeness problems [155].
Using the CallerFaultAnalyzer SFA, we simulated interface-level strategies by
instructing EDFI to inject faults only into basic blocks that contained library calls
into libc. We specifically selected libc as a reference library for our experiments
to obtain general and unbiased results. Using the RandomFaultAnalyzer SFA, we
simulated location-based strategies by instructing EDFI to inject faults only into β
basic blocks selected at random at every run (averaging the results over 201 runs).
For comparability purposes, we selected the value of β according to the number
of basic blocks that contained at least one library call into libc (1689 and 1808 for
Apache httpd and MySQL, respectively). Figure 5.3 presents our results for the
Apache benchmark (AB) (static HTML). We omit the results obtained for the PHP
workload and for MySQL (read-only queries and read-write queries), since they
matched the behavior observed for Apache httpd with no significant difference.

As shown in the figure, EDFI generated a very precise faultload distribution in
output, with almost no faultload degradation for any choice of the fault probability

108 CHAPTER 5. EDFI

0

101

102

103

104

105

106

107

108

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f s
pu

rio
us

 fa
ul

ts

Fault probability (%)

EDFI
Location-based

Interface-level

Figure 5.4: Comparative number of spurious faults activated during Apache httpd initialization.

Φ. This demonstrates the benefits of injecting faults over the entirety of the program
code. The other fault injection strategies, in contrast, generated imprecise faultload
distributions in output, with much higher faultload degradation across all the exper-
iments. This behavior stems from the limited coverage achieved by existing strate-
gies. Interestingly, the location-based strategy reported lower faultload degradation
(30% on average) compared to the interface-level strategy (57% on average). We
interpret this behavior as the ability of random injection to achieve better coverage
(on average) than injection into predetermined interface-level locations.

5.7.4 Controllability

We also evaluated the controllability properties of EDFI when compared to prior ap-
proaches. In particular, the question we wish to address is how well EDFI improves
prior strategies in terms of user control over the fault injection experiment. For this
purpose, we evaluated the number of spurious faults (i.e., faults activated before
starting the experiment) introduced by the different strategies during the initializa-
tion of Apache httpd. The rationale is that every reasonable fault injection strategy
should allow the target program to complete initialization before starting the fault
injection experiment under a user-specified test workload. If spurious initialization-
time faults are activated, however, the target program may prematurely crash (or
reach a tainted and nonrepresentative state), thus compromising the validity of the
entire fault injection experiment.

As done earlier, we performed repeated experiments with increasing values of
the fault probability Φ. We also simulated location-based and interface-level strate-
gies using our built-in SFAs and the same configuration adopted earlier. A word
of warning is in order for the interpretation of the results in this particular test sce-

5.7. EVALUATION 109

C
ha

pt
er

5

0

101

102

103

104

105

106

107

108

 0 10 20 30 40 50 60 70 80 90 100

 0

 2

 4

 6

 8

 10

 12

 14

N
um

be
r o

f s
pu

rio
us

 fa
ul

ts

Fa
ul

tlo
ad

 d
eg

ra
da

tio
n

(%
)

Fault coverage (%)

Number of spurious faults
Faultload degradation

Figure 5.5: Impact of fault coverage on location-based strategies (Apache httpd).

nario. Our controllability analysis is only applicable to static (location-based and
interface-level) fault injection strategies. Dynamic strategies—such as LFI [198]—
are not affected by controllability issues, given that faults are always injected on
demand and under direct control of the user. Figure 5.4 presents our results.

As expected, EDFI reported no spurious faults during the initialization of Apache
httpd. For the other strategies, in contrast, the number of spurious faults increases
with the value of the fault probability Φ. This behavior is expected, given the higher
chances of fault activation in various (and arbitrary) parts of the program. As the
figure shows, the interface-level strategy reported a consistently higher number of
spurious faults compared to the location-based strategy, with 12120 and 5309 faults
(respectively), for Φ = 100%. We interpret this behavior as a result of the particu-
larly high density of libc calls during initialization.

This test scenario also highlights the precision-controllability tradeoff for ex-
isting static fault injection strategies. A larger number of faults injected results in
better precision but, at the same time, lower controllability. To better investigate
this tradeoff, we evaluated the impact of varying the value of the number of faulty
basic blocks β in location-based strategies. This experiment was useful to under-
stand the impact of fault coverage on static fault injection strategies, location-based
approaches in particular. Figure 5.5 presents our findings. For low fault coverage
values (e.g., around 10%), the number of spurious faults is more limited (around
7550), but faultload degradation is high (around 13%), thus resulting in poor preci-
sion. Conversely, for high fault coverage values (e.g., around 90%), faultload degra-
dation is much lower (around 2%), but the number of spurious faults observed is
substantial (around 270850), thus resulting in poor controllability. This experiment
efficaciously pinpoints important limitations in existing strategies, while highlight-
ing the better controllability and precision properties of EDFI’s execution-driven
fault injection strategy.

110 CHAPTER 5. EDFI

5.8 Conclusion

Fault injection experiments have been long proposed as an answer to a key question
in the dependability community: “How can we thoroughly assess the dependability
of a software system?” Undoubtedly, another equally important question is: “How
can we thoroughly assess the dependability of fault injection experiments?” We be-
lieve the answer lies in building a new generation of general-purpose fault injection
tools that can support truly precise, controllable, and observable fault injection ex-
periments in a controlled setting. EDFI represents an important step in this direction.

EDFI injects faults in a controlled way during the execution to ensure a predeter-
mined faultload distribution at runtime. Its hybrid instrumentation strategy provides
fine-grained control over the experiment, while avoiding unnecessary perturbations
to the system—or its performance—during fault-free execution. Its portable and ex-
tensible LLVM-based architecture can support several possible static and dynamic
fault models, generalizing existing general-purpose fault injection tools while pro-
viding the ability to adapt to different execution contexts.

Our ultimate goal is to foster the development of a common fault injection frame-
work for dependability researchers and practitioners, in order to support dependable,
reproducible, and comparable experiments in fault injection campaigns.

5.9 Acknowledgments

We would like to thank the anonymous reviewers for their comments. This work has
been supported by European Research Council under ERC Advanced Grant 227874.

C
ha

pt
er

6

6
Back to the Future: Fault-tolerant Live Update

with Time-traveling State Transfer

Abstract

Live update is a promising solution to bridge the need to frequently update a software
system with the pressing demand for high availability in mission-critical environ-
ments. While many research solutions have been proposed over the years, systems
that allow software to be updated on the fly are still far from reaching widespread
adoption in the system administration community. We believe this trend is largely
motivated by the lack of tools to automate and validate the live update process. A
major obstacle, in particular, is represented by state transfer, which existing live
update tools largely delegate to the programmer despite the great effort involved.

This paper presents time-traveling state transfer, a new automated and fault-
tolerant live update technique. Our approach isolates different program versions into
independent processes and uses a semantics-preserving state transfer transaction—
across multiple past, future, and reversed versions—to validate the program state of
the updated version. To automate the process, we complement our live update tech-
nique with a generic state transfer framework explicitly designed to minimize the
overall programming effort. Our time-traveling technique can seamlessly integrate
with existing live update tools and automatically recover from arbitrary run-time
and memory errors in any part of the state transfer code, regardless of the partic-
ular implementation used. Our evaluation confirms that our update techniques can
withstand arbitrary failures within our fault model, at the cost of only modest per-
formance and memory overhead.

111

112 CHAPTER 6. TIME-TRAVELING STATE TRANSFER

6.1 Introduction

In the era of pervasive and cloud computing, we are witnessing a major paradigm
shift in the way software is developed and released. The growing demand for new
features, performance enhancements, and security fixes translates to more and more
frequent software updates made available to the end users. In less than a decade, we
quickly transitioned from Microsoft’s “Patch Tuesday” [115] to Google’s “perpetual
beta” development model [226] and Facebook’s tight release cycle [212], with an
update interval ranging from days to a few hours.

With more frequent software updates, the standard halt-update-restart cycle is
irremediably coming to an impasse with our growing reliance on nonstop software
operations. To reduce downtime, system administrators often rely on “rolling up-
grades” [90], which typically update one node at a time in heavily replicated soft-
ware systems. While in widespread use, rolling upgrades have a number of important
shortcomings: (i) they require redundant hardware, which may not be available in
particular environments (e.g., small businesses); (ii) they cannot normally preserve
program state across versions, limiting their applicability to stateless systems or sys-
tems that can tolerate state loss; (iii) in heavily replicated software systems, they
lead to significant update latency and high exposure to “mixed-version races” [92]
that can cause insidious update failures. A real-world example of the latter has been
reported as “one of the biggest computer errors in banking history”, with a single-
line software update mistakenly deducting about $15 million from over 100,000
customers’ accounts [128].

Live update—the ability to update software on the fly while it is running with no
service interruption—is a promising solution to the update-without-downtime prob-
lem which does not suffer from the limitations of rolling upgrades. A key challenge
with this approach is to build trustworthy update systems which come as close to
the usability and reliability of regular updates as possible. A significant gap is un-
likely to encourage adoption, given that experience shows that administrators are
often reluctant to install even regular software updates [245].

Surprisingly, there has been limited focus on automating and validating gene-
ric live updates in the literature. For instance, traditional live update tools for C
programs seek to automate only basic type transformations [214; 213], while more
recent solutions [132] make little effort to spare the programmer from complex tasks
like pointer transfer (§6.5). Existing live update validation tools [133; 136; 134],
in turn, are only suitable for offline testing, add no fault-tolerant capabilities to the
update process, require manual effort, and are inherently update timing-centric. The
typical strategy is to verify that a given test suite completes correctly—according to
some manually selected [133; 136] or provided [134] specification—regardless of
the particular time when the update is applied. This testing method stems from the
extensive focus on live update timing in the literature [135].

Much less effort has been dedicated to automating and validating state transfer
(ST), that is, initializing the state of a new version from the old one (§6.2). This is

6.1. INTRODUCTION 113

C
ha

pt
er

6

somewhat surprising, given that ST has been repeatedly recognized as a challeng-
ing and error-prone task by many researchers [42; 68; 69; 193] and still represents
a major obstacle to the widespread adoption of live update systems. This is also
confirmed by the commercial success of Ksplice [36]—already deployed on over
100,000 production servers [18]—explicitly tailored to small security patches that
hardly require any state changes at all (§6.2).

In this paper, we present time-traveling state transfer (TTST), a new live update
technique to automate and validate generic live updates. Unlike prior live update
testing tools, our validation strategy is automated (manual effort is never strictly
required), fault-tolerant (detects and immediately recovers from any faults in our
fault model with no service disruption), state-centric (validates the ST code and the
full integrity of the final state), and blackbox (ignores ST internals and seamlessly
integrates with existing live update tools). Further, unlike prior solutions, our fault-
tolerant strategy can be used for online live update validation in the field, which is
crucial to automatically recover from unforeseen update failures often originating
from differences between the testing and the deployment environment [79]. Unlike
commercial tools like Ksplice [36], our techniques can also handle complex updates,
where the new version has significantly different code and data than the old one.

To address these challenges, our live update techniques use two key ideas. First,
we confine different program versions into distinct processes and perform process-
level live update [112]. This strategy simplifies state management and allows for
automated state reasoning and validation. Note that this is in stark contrast with
traditional in-place live update strategies proposed in the literature [214; 69; 32;
43; 194; 68; 36; 213], which “glue” changes directly into the running version, thus
mixing code and data from different versions in memory. This mixed execution en-
vironment complicates debugging and testing, other than introducing address space
fragmentation (and thus run-time performance overhead) over time [112].

Second, we allow two process-level ST runs using the time-traveling idea. With
time travel, we refer to the ability to navigate backward and forward across program
state versions using ST. In particular, we first allow a forward ST run to initialize
the state of the new version from the old one. This is already sufficient to implement
live update. Next, we allow a second backward run which implements the reverse
state transformation from the new version back to a copy of the old version. This is
done to validate—and safely rollback when necessary—the ST process, in particular
to detect specific classes of programming errors (i.e., memory errors) which would
otherwise leave the new version in a corrupted state. To this end, we compare the
program state of the original version against the final state produced by our overall
transformation. Since the latter is semantics-preserving by construction, we expect
differences in the two states only in presence of memory errors in the ST code.

Our contribution is threefold. First, we analyze the state transfer problem (§6.2)
and introduce time-traveling state transfer (§6.3, §6.4), an automated and fault-
tolerant live update technique suitable for online (or offline) validation. Our TTST
strategy can be easily integrated into existing live update tools described in the liter-

114 CHAPTER 6. TIME-TRAVELING STATE TRANSFER

--- a/ drivers /md/dm - crypt .c
+++ b/ drivers /md/dm - crypt .c
@@ -690,6 +690,8 @@ bad3:

bad2:
crypto_free_tfm (tfm);

bad1:
+ /* Must zero key material before freeing */
+ memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));

kfree (cc);
return -EINVAL ;

}
@@ -706,6 +708,9 @@ static void crypt_dtr(...)

cc -> iv_gen_ops ->dtr(cc);
crypto_free_tfm (cc ->tfm);
dm_put_device (ti , cc ->dev);

+
+ /* Must zero key material before freeing */
+ memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));

kfree (cc);
}

Listing 6.1: A patch to fix an information disclosure vulnerability (CVE-2006-0095) in Linux.

ature, allowing system administrators to seamlessly transition to our techniques with
no extra effort. We present a TTST implementation for user-space C programs, but
the principles outlined here are also applicable to operating systems, with the pro-
cess abstraction implemented using lightweight protection domains [271], software-
isolated processes [152], or hardware-isolated processes and microkernels [153;
140]. Second, we complement our technique with a TTST-enabled state transfer
framework (§6.5), explicitly designed to allow arbitrary state transformations and
high validation surface with minimal programming effort. Third, we have imple-
mented and evaluated the resulting solution (§6.6), conducting fault injection exper-
iments to assess the fault tolerance of TTST.

6.2 The State Transfer Problem

The state transfer problem, rigorously defined by Gupta for the first time [125], finds
two main formulations in the literature. The traditional formulation refers to the live
initialization of the data structures of the new version from those of the old version,
potentially operating structural or semantic data transformations on the fly [42]. An-
other formulation also considers the execution state, with the additional concern
of remapping the call stack and the instruction pointer [124; 193]. We here adopt
the former definition and decouple state transfer (ST) from control-flow transfer
(CFT), solely concerned with the execution state and subordinate to the particular
update mechanisms adopted by the live update tool considered—examples docu-
mented in the literature include manual control migration [124; 132], adaptive func-
tion cloning [194], and stack reconstruction [193].

We illustrate the state transfer problem with two update examples. Listing 6.1
presents a real-world security patch which fixes an information disclosure vulner-

6.2. THE STATE TRANSFER PROBLEM 115

C
ha

pt
er

6

--- a/ example .c
+++ b/ example .c
@@ -1,13 +1,12 @@
struct s {

int count ;
- char str[3];
- short id;
+ int id;
+ char str[2];

union u u;
- void *ptr;

int addr;
- short *inner_ptr;
+ int *inner_ptr;

} var;

void example_init (char *str) {
- snprintf(var.str, 3, "%s", str);
+ snprintf(var.str, 2, "%s", str);

}

Listing 6.2: A sample patch introducing code and data changes that require state transfer.

ability (detailed in CVE-2006-0095 [5]) in the md (Multiple Device) driver of the
Linux kernel. We sampled this patch from the dataset [9] originally used to evaluate
Ksplice [36]. Similar to many other common security fixes, the patch considered in-
troduces simple code changes that have no direct impact on the program state. The
only tangible effect is the secure deallocation [71] of sensitive information on cryp-
tographic keys. As a result, no state transformations are required at live update time.
For this reason, Ksplice [36]—and other similar in-place live update tools—can de-
ploy this update online with no state transfer necessary, allowing the new version
to reuse the existing program state as is. Redirecting function invocations to the
updated functions and resuming execution is sufficient to deploy the live update.

Listing 6.2 presents a sample patch providing a reduced test case for common
code and data changes found in real-world updates. The patch introduces a number
of type changes affecting a global struct variable (i.e., var)—with fields changed,
removed, and reordered—and the necessary code changes to initialize the new data
structure. Since the update significantly changes the in-memory representation of
the global variable var, state transfer—using either automatically generated map-
ping functions or programmer-provided code—is necessary to transform the exist-
ing program state into a state compatible with the new version at live update time.
Failure to do so would leave the new version in an invalid state after resuming ex-
ecution. In §6.5, we show how our state transfer strategy can effectively automate
this particular update, while traditional live update tools would largely delegate this
major effort to the programmer.

State transfer has already been recognized as a hard problem in the literature.
Qualitatively, many researchers have described it as “tedious implementation of the
transfer code” [42], “tedious engineering efforts” [68], “tedious work” [69]. Oth-
ers have discussed speculative [54; 44; 106; 105] and practical [215] ST scenarios

116 CHAPTER 6. TIME-TRAVELING STATE TRANSFER

#Upd LU LOC ST LOC Norm ST IF

Ginseng 30 140 336 8.0x
STUMP 13 186 173 7.1x
Kitsune 40 523 554 2.6x

Table 6.1: ST impact (normalized after 100 updates) for prior user-level solutions for C programs.

which are particularly challenging (or unsolvable) even with programmer interven-
tion. Quantitatively, a number of user-level live update tools for C programs (Gin-
seng [214], STUMP [213], and Kitsune [132]) have evaluated the ST manual effort
in terms of lines of code (LOC). Table 6.1 presents a comparative analysis, with
the number of updates analyzed, initial source changes to implement their live up-
date mechanisms (LU LOC), and extra LOC to apply all the updates considered (ST
LOC). In the last column, we report a normalized ST impact factor (Norm ST IF),
measured as the expected ST LOC necessary after 100 updates normalized against
the initial LU LOC.

As the table shows, the measured impacts are comparable (the lower impact in
Kitsune stems from the greater initial annotation effort required by program-level
updates) and demonstrate that ST increasingly (and heavily) dominates the manual
effort in long-term deployment. Worse yet, any LOC-based metric underestimates
the real ST effort, ignoring the atypical and error-prone programming model with
nonstandard entry points, unconventional data access, and reduced testability and
debuggability. Our investigation motivates our focus on automating and validating
the state transfer process.

6.3 System Overview

We have designed our TTST live update technique with portability, extensibility,
and interoperability in mind. This vision is reflected in our modular architecture,
which enforces a strict separation of concerns and can support several possible live
update tools and state transfer implementations. To use TTST, users need to stati-
cally instrument the target program in preparation for state transfer. In our current
prototype, this is accomplished by a link-time transformation pass implemented us-
ing the LLVM compiler framework [179], which guarantees pain-free integration
with existing GNU build systems using standard configure flags. We envision de-
velopers of the original program (i.e., users of our TTST technique) to gradually
integrate support for our instrumentation into their development model, thus releas-
ing live update-enabled software versions that can be easily managed by system
administrators using simple tools. For this purpose, our TTST prototype includes
ttst-ctl, a simple command-line tool that interacts with the running program and

6.3. SYSTEM OVERVIEW 117

C
ha

pt
er

6

Reversed Version

TTST Control LibTTST Control Lib

ST Framework Lib

Instrumented Program

Live Update Lib

Future Version

TTST Control LibTTST Control Lib

ST Framework Lib

Instrumented Program

Live Update Lib
Past Version

TTST Control LibTTST Control Lib

ST Framework Lib

Instrumented Program

Live Update Lib

ST

CFT

5

ST

CFTSTART

TIME-TRAVELING

STATE TRANSFER COMPLETED

FORWARD

TRANSFER

1

2 5

4
3

6
7

9

8

STATE DIFF

10

BACKWARD

TRANSFER

BACK TO THE FUTURE

Figure 6.1: Time-traveling state transfer overview. The arrows indicate the order of operations.

allows administrators to deploy live updates using our TTST technique with mini-
mal effort. This can be simply done by using the following command-line syntax:

ttst-ctl `pidof program` ./new.bin

Runtime update functionalities, in turn, are implemented by three distinct li-
braries, transparently linked with the target program as part of our instrumentation
process. The live update library implements the update mechanisms specific to the
particular live update tool considered. In detail, the library is responsible to provide
the necessary update timing mechanisms [133] (e.g., start the live update when the
program is quiescent [133] and all the external events are blocked) and CFT im-
plementation. The ST framework library, in turn, implements the logic needed to
automate state transfer and accommodate user-provided ST code. The TTST control
library, finally, implements the resulting time-traveling state transfer process, with
all the necessary mechanisms to coordinate the different process versions involved.

Our TTST technique operates across three process instances. The first is the
original instance running the old software version (past version, from now on). This
instance initiates, controls, and monitors the live update process, in particular run-
ning the only trusted library code in our architecture with respect to our fault model
(§6.4). The second is a newly created instance running the new software version (fu-
ture version, from now on). This instance is instructed to reinitialize its state from
the past version. The third process instance is a clone of the past version created at
live update time (reversed version, from now on). This instance is instructed to reini-
tialize its state from the future version. Figure 6.1 depicts the resulting architecture
and live update process.

As shown in the figure, the update process is started by the live update library in
the past version. This happens when the library detects that an update is available
and all the necessary update timing restrictions (e.g., quiescence [133]) are met. The

118 CHAPTER 6. TIME-TRAVELING STATE TRANSFER

start event is delivered to the past version’s TTST control library, which sets out to
initiate the time-traveling state transfer transaction. First, the library locates the new
program version on the file system and creates the process instances for the future
and reversed versions. Next, control is given to the future version’s TTST control
library, requesting to complete a forward state transfer run from the past version. In
response, the library instructs the live update and ST framework libraries to perform
ST and CFT, respectively. At the end of the process, control is given to the re-
versed version, where the TTST control library repeats the same steps to complete
a backward state transfer run from the future version. Finally, the library notifies
back the past version, where the TTST control library is waiting for TTST events.
In response, the library performs state differencing between the past and reversed
version to validate the TTST transaction and detect state corruption errors violating
the semantics-preserving nature of the transformation. In our fault model, the past
version is always immutable and adopted as a oracle when comparing the states. If
the state is successfully validated (i.e., the past and reversed versions are identical),
control moves back to the future version to resume execution. The other processes
are automatically cleaned up.

When state corruption or run-time errors (e.g., crashes) are detected during the
TTST transaction, the update is immediately aborted with the past version cleaning
up the other instances and immediately resuming execution. The immutability of
the past version’s state allows the execution to resume exactly in the same state as
it was right before the live update process started. This property ensures instant
and transparent recovery in case of arbitrary TTST errors. Our recovery strategy
enables fast and automated offline validation and, more importantly, a fault-tolerant
live update process that can immediately and automatically rollback failed update
attempts with no consequences for the running program.

6.4 Time-traveling State Transfer

The goal of TTST is to support a truly fault-tolerant live update process, which
can automatically detect and recover from as many programming errors as possi-
ble, seamlessly support several live update tools and state transfer implementations,
and rely on a minimal amount of trusted code at update time. To address these chal-
lenges, our TTST technique follows a number of key principles: a well-defined fault
model, a large state validation surface, a blackbox validation strategy, and a generic
state transfer interface.

6.4.1 Fault model

TTST assumes a general fault model with the ability to detect and recover from
arbitrary run-time errors and memory errors introducing state corruption. In partic-
ular, run-time errors in the future and reversed versions are automatically detected

6.4. TIME-TRAVELING STATE TRANSFER 119

C
ha

pt
er

6

by the TTST control library in the past version. The process abstraction allows the
library to intercept abnormal termination errors in the other instances (e.g., crashes,
panics) using simple tracing. Synchronization errors and infinite loops that prevent
the TTST transaction from making progress, in turn, are detected with a config-
urable update timeout (5s by default). Memory errors, finally, are detected by state
differencing at the end of the TTST process.

Our focus on memory errors is motivated by three key observations. First, these
represent an important class of nonsemantic state transfer errors, the only errors we
can hope to detect in a fully automated fashion. Gupta’s formal framework has al-
ready dismissed the possibility to automatically detect semantic state transfer errors
in the general case [125]. Unlike memory errors, semantic errors are consistently
introduced across forward and backward state transfer runs and thus cannot auto-
matically be detected by our technique. As an example, consider an update that
operates a simple semantic change: renumbering all the global error codes to use
different value ranges. If the user does not explicitly provide additional ST code to
perform the conversion, the default ST strategy will preserve the same (wrong) error
codes across the future and the reversed version, with state differencing unable to
detect any errors in the process.

Second, memory errors can lead to insidious latent bugs [100]—which can cause
silent data corruption and manifest themselves potentially much later—or even in-
troduce security vulnerabilities. These errors are particularly hard to detect and can
easily escape the specification-based validation strategies adopted by all the existing
live update testing tools [136; 133; 134].

Third, memory errors are painfully common in pathologically type-unsafe con-
texts like state transfer, where the program state is treated as an opaque object which
must be potentially reconstructed from the ground up, all relying on the sole knowl-
edge available to the particular state transfer implementation adopted.

Finally, note that, while other semantic ST errors cannot be detected in the gen-
eral case, this does not preclude individual ST implementations from using addi-
tional knowledge to automatically detect some classes of errors in this category. For
example, our state transfer framework can detect all the semantic errors that violate
automatically derived program state invariants [109] (§6.5).

6.4.2 State validation surface

TTST seeks to validate the largest possible portion of the state, including state ob-
jects (e.g., global variables) that may only be accessed much later after the live up-
date. To meet this goal, our state differencing strategy requires valid forward and
backward transfer functions for each state object to validate. Clearly, the existence
and the properties of such functions for every particular state object are subject to
the nature of the update. For example, an update dropping a global variable in the
new version has no defined backward transfer function for that variable. In other
cases, forward and backward transfer functions exist but cannot be automatically

120 CHAPTER 6. TIME-TRAVELING STATE TRANSFER

State Diff Fwd ST Bwd ST Detected

Unchanged 3 STF STF Auto
Structural chg 3 STF STF Auto
Semantic chg 3 User User 1 Auto 1

Dropped 3 - - Auto
Added 7 Auto/User - STF

1Optional

Table 6.2: State validation and error detection surface.

generated. Consider the error code renumbering update exemplified earlier. Both
the forward and backward transfer functions for all the global variables affected
would have to be manually provided by the user. Since we wish to support fully au-
tomated validation by default (mandating extra manual effort is likely to discourage
adoption), we allow TTST to gracefully reduce the state validation surface when
backward transfer functions are missing—without hampering the effectiveness of
our strategy on other fully transferable state objects. Enforcing this behavior in our
design is straightforward: the reversed version is originally cloned from the past
version and all the state objects that do not take part in the backward state transfer
run will trivially match their original counterparts in the state differencing process
(unless state corruption occurs).

Table 6.2 analyzes TTST’s state validation and error detection surface for the
possible state changes introduced by a given update. The first column refers to
the nature of the transformation of a particular state object. The second column
refers to the ability to validate the state object using state differencing. The third
and fourth column characterize the implementation of the resulting forward and
backward transfer functions. Finally, the fifth column analyzes the effectiveness
in detecting state corruption. For unchanged state objects, state differencing can
automatically detect state corruption and transfer functions are automatically pro-
vided by the state transfer framework (STF). Note that unchanged state objects do
not necessarily have the same representation in the different versions. The mem-
ory layout of an updated version does not generally reflect the memory layout of
the old version and the presence of pointers can introduce representation differences
for some unchanged state objects between the past and future version. State objects
with structural changes exhibit similar behavior, with a fully automated transfer and
validation strategy. With structural changes, we refer to state changes that affect
only the type representation and can be entirely arbitrated from the STF with no
user intervention (§6.5). This is in contrast with semantic changes, which require
user-provided transfer code and can only be partially automated by the STF (§6.5).
Semantic state changes highlight the tradeoff between state validation coverage and
the manual effort required by the user. In a traditional live update scenario, the user
would normally only provide a forward transfer function. This behavior is seam-
lessly supported by TTST, but the transferred state object will not be considered

6.4. TIME-TRAVELING STATE TRANSFER 121

C
ha

pt
er

6

1: function STATE_DIFF(pid1, pid2)
2: a← addr_start
3: while a < shadow_start do
4: m1← IS_MAPPED_WRITABLE(a, pid1)
5: m2← IS_MAPPED_WRITABLE(a, pid2)
6: if m1 or m2 then
7: if m1 , m2 then
8: return true
9: if MEMPAGECMP(a, pid1, pid2) , 0 then

10: return true
11: a← a+ page_size
12: return false

Figure 6.2: State differencing pseudocode.

for validation. If the user provides code for the reverse transformation, however,
the transfer can be normally validated with no restriction. In addition, the backward
transfer function provided can be used to perform a cold rollback from the future
version to the past version (i.e., live updating the new version into the old version at
a later time, for example when the administrator experiences an unacceptable per-
formance slowdown in the updated version). Dropped state objects, in turn, do not
require any explicit transfer functions and are automatically validated by state dif-
ferencing as discussed earlier. State objects that are added in the update (e.g., a new
global variable), finally, cannot be automatically validated by state differencing and
their validation and transfer is delegated to the STF (§6.5) or to the user.

6.4.3 Blackbox validation

TTST follows a blackbox validation model, which completely ignores ST internals.
This is important for two reasons. First, this provides the ability to support many pos-
sible updates and ST implementations. This also allows one to evaluate and compare
different STFs. Second, this is crucial to decouple the validation logic from the ST
implementation, minimizing the amount of trusted code required by our strategy. In
particular, our design goals dictate the minimization of the reliable computing base
(RCB), defined as the core software components that are necessary to ensure correct
implementation behavior [95]. Our fault model requires four primary components in
the RCB: the update timing mechanisms, the TTST arbitration logic, the run-time
error detection mechanisms, and the state differencing logic. All the other software
components which run in the future and reversed versions (e.g., ST code and CFT
code) are fully untrusted thanks to our design.

The implementation of the update timing mechanisms is entirely delegated to the
live update library and its size subject to the particular live update tool considered.
We trust that every reasonable update timing implementation will have a small RCB
impact. For the other TTST components, we seek to reduce the code size (and com-

122 CHAPTER 6. TIME-TRAVELING STATE TRANSFER

plexity) to the minimum. Luckily, our TTST arbitration logic and run-time error
detection mechanisms (described earlier) are straightforward and only marginally
contribute to the RCB. In addition, TTST’s semantics-preserving ST transaction
and structural equivalence between the final (reversed) state and the original (past)
state ensure that the memory images of the two versions are always identical in error-
free ST runs. This drastically simplifies our state differencing strategy, which can be
implemented using trivial word-by-word memory comparison, with no other knowl-
edge on the ST code and marginal RCB impact. Our comparison strategy examines
all the writable regions of the address space excluding only private shadow stack-
/heap regions (mapped at the end of the address space) in use by the TTST control
library. Figure 6.2 shows the pseudocode for this simple strategy.

6.4.4 State transfer interface

TTST’s state transfer interface seeks to minimize the requirements and the effort to
implement the STF. In terms of requirements, TTST demands only a layout-aware
and user-aware STF semantic. By layout-aware, we refer to the ability of the STF
to preserve the original state layout when requested (i.e., in the reversed version), as
well as to automatically identify the state changes described in Table 6.2. By user-
aware, we refer to the ability to allow the user to selectively specify new forward and
backward transfer functions and candidate state objects for validation. To reduce the
effort, TTST offers a convenient STF programming model, with an error handling-
friendly environment—our fault-tolerant design encourages undiscriminated use of
assertions—and a generic interprocess communication (IPC) interface. In particular,
TTST implements an IPC control interface to coordinate the TTST transaction and
an IPC data interface to grant read-only access to the state of a given process version
to the others. These interfaces are currently implemented by UNIX domain sockets
and POSIX shared memory (respectively), but other IPC mechanisms can be easily
supported. The current implementation combines fast data transfer with a secure de-
sign that prevents impersonation attacks (access is granted only to the predetermined
process instances).

6.5 State Transfer Framework

Our state transfer framework seeks to automate all the possible ST steps, leaving
only the undecidable cases (e.g., semantic state changes) to the user. The implemen-
tation described here optimizes and extends our prior work [104; 108; 112; 109] to
the TTST model. We propose a STF design that resembles a moving, mutating, and
interprocess garbage collection model. By moving, we refer to the ability to relocate
(and possibly reallocate) static and dynamic state objects in the next version. This
is to allow arbitrary changes in the memory layout between versions. By mutating,
we refer to the ability to perform on-the-fly type transformations when transferring

6.5. STATE TRANSFER FRAMEWORK 123

C
ha

pt
er

6

every given state object from the previous to the next version. Interprocess, finally,
refers to our process-level ST strategy. Our goals raise 3 major challenges for a
low-level language like C. First, our moving requirement requires precise object
and pointer analysis at runtime. Second, on-the-fly type transformations require the
ability to dynamically identify, inspect, and match generic data types. Finally, our
interprocess strategy requires a mechanism to identify and map state objects across
process versions.

6.5.1 Overview

To meet our goals, our STF uses a combination of static and dynamic ST instrumen-
tation. Our static instrumentation, implemented by a LLVM link-time pass [179],
transforms each program version to generate metadata information that surgically
describes the entirety of the program state. In particular, static metadata, which
provides relocation and type information for all the static state objects (e.g., global
variables, strings, functions with address taken), is embedded directly into the final
binary. Dynamic metadata, which provides the same information for all the dynamic
state objects (e.g., heap-allocated objects), is, in turn, dynamically generated/de-
stroyed at runtime by our allocation/deallocation site instrumentation—we currently
support malloc/mmap-like allocators automatically and standard region-based al-
locators [46] using user-annotated allocator functions. Further, our pass can dynam-
ically generate/destroy local variable metadata for a predetermined number of func-
tions (e.g., main), as dictated by the particular update model considered. Finally, to
automatically identify and map objects across process versions, our instrumentation
relies on version-agnostic state IDs derived from unambiguous naming and contex-
tual information. In detail, every static object is assigned a static ID derived by its
source name (e.g., function name) and scope (e.g., static variable module). Every
dynamic object, in turn, is assigned a static ID derived by allocation site information
(e.g., caller function name and target pointer name) and an incremental dynamic ID
to unambiguously identify allocations at runtime.

Our ID-based naming scheme fulfills TTST’s layout-awareness goal: static IDs
are used to identify state changes and to automatically reallocate dynamic objects
in the future version; dynamic IDs are used to map dynamic objects in the future
version with their existing counterparts in the reversed version. The mapping policy
to use is specified as part of generic ST policies, also implementing other TTST-
aware extensions: (i) randomization (enabled in the future version): perform fine-
grained address space randomization [108] for all the static/dynamically reallocated
objects, used to amplify the difference introduced by memory errors in the overall
TTST transaction; (ii) validation (enabled in the reversed version): zero out the
local copy of all the mapped state objects scheduled for automated transfer to detect
missing write errors at validation time.

Our dynamic instrumentation, included in a preloaded shared library (ST frame-
work library), complements the static pass to address the necessary run-time tasks:

124 CHAPTER 6. TIME-TRAVELING STATE TRANSFER

Next Version

Shared Libraries

ST Framework Lib

Metadata
Data

Instrumented Code

Previous Version

Shared Libraries
Data

ST Framework Lib

Metadata

Instrumented Code

R
un

 ti
m

e

Li
nk

 ti
m

e

Instrumented Program

Instrumented Code
ST Framework Lib

Data
Metadata

Instrumented Code

Original Program

Data
Code

Static Instrumentation

Metadata Transfer

INIT
DONE

Shared Lib DataTransfer

Data Transfer

INIT
1

2

5

3

4

Figure 6.3: State transfer framework overview.

type and pointer analysis, metadata management for shared libraries, error detection.
In addition, the ST framework library implements all the steps of the ST process, as
depicted in Figure 6.3. The process begins with an initialization request from the
TTST control library, which specifies the ST policies and provides access to the
TTST’s IPC interface. The next metadata transfer step transfers all the metadata
from the previous version to a cache in the next version (local address space). At the
end, the local state objects (and their metadata) are mapped into the external objects
described by the metadata cache and scheduled for transfer according to their state
IDs and the given ST policies. The next two data transfer steps complete the ST
process, transferring all the data to reinitialize shared library and program state to
the next version. State objects scheduled for transfer are processed one at a time,
using metadata information to locate the objects and their internal representations in
the two process versions and apply pointer and type transformations on the fly. The
last step performs cleanup tasks and returns control to the caller.

6.5.2 State transfer strategy

Our STF follows a well-defined automated ST strategy for all the mapped state ob-
jects scheduled for transfer, exemplified in Figure 6.4. As shown in the figure—
which reprises the update example given earlier (§6.2)—our type analysis automat-
ically and recursively matches individual type elements between object versions by
name and representation, identifying added/dropped/changed/identical elements on
the fly. This strategy automates ST for common structural changes, including: prim-
itive type changes, array expansion/truncation, and addition/deletion/reordering of
struct members. Our pointer analysis, in turn, implements a generic pointer trans-
fer strategy, automatically identifying (base and interior) pointer targets in the pre-
vious version and reinitializing the pointer values correctly in the next version, in
spite of type and memory layout changes. To perform efficient pointer lookups, our
analysis organizes all the state objects with address taken in a splay tree, an idea pre-

6.5. STATE TRANSFER FRAMEWORK 125

C
ha

pt
er

6

struct s,{,//old
memcpy

ptrcpy

int,count;

char,str[3];

short id;

PXFER(int),addr;

void,*ptr;

union IXFER(u),u;

short,*inner_ptr;

ptrcpy

castcpy

memcpy

0

7

4a\04

0

0x...7f

{12,32}

mvar.id

},var;

int,count;

int id;,

char,str[2];

int new_element;

PXFER(int),addr;

union IXFER(u),u;

int,*inner_ptr;

*

struct s,{,//new

},var;

0

4aa\04

7

0x...4f

0x...3f

{12,32}

mvar.id

x

Figure 6.4: Automated state transfer example for the data structure presented in Listing 6.2.

viously explored by bounds checkers [251; 87; 29]. We also support all the special
pointer idioms allowed by C (e.g., guard pointers) automatically, with the exception
of cases of “pointer ambiguity" [104].

To deal with ambiguous pointer scenarios (e.g., unions with inner pointers and
pointers stored as integers) as well as more complex state changes (e.g., semantic
changes), our STF supports user extensions in the form of preprocessor annotations
and callbacks. Figure 6.4 shows an example of two ST annotations: IXFER (force
memory copying with no pointer transfer) and PXFER (force pointer transfer instead
of memory copying). Callbacks, in turn, are evaluated whenever the STF maps or
traverses a given object or type element, allowing the user to override the default
mapping behavior (e.g., for renamed variables) or express sophisticated state trans-
formations at the object or element level. Callbacks can be also used to: (i) override
the default validation policies, (ii) initialize new state objects; (iii) instruct the STF
to checksum new state objects after initialization to detect memory errors at the end
of the ST process.

6.5.3 Shared libraries

Uninstrumented shared libraries (SLs) pose a major challenge to our pointer trans-
fer strategy. In particular, failure to reinitialize SL-related pointers correctly in the
future version would introduce errors after live update. To address this challenge,
our STF distinguishes 3 scenarios: (i) program/SL pointers into static SL state; (ii)
program/SL pointers into dynamic SL state; (iii) SL pointers into static or dynamic
program state. To deal with the first scenario, our STF instructs the dynamic linker
to remap all the SLs in the future version at the same addresses as in the past version,
allowing SL data transfer (pointer transfer in particular) to be implemented via sim-
ple memory copying. SL relocation is currently accomplished by prelinking the SLs
on demand when starting the future version, a strategy similar to “retouching” for
mobile applications [57]. To address the second scenario, our dynamic instrumen-
tation intercepts all the memory management calls performed by SLs and generates

126 CHAPTER 6. TIME-TRAVELING STATE TRANSFER

dedicated metadata to reallocate the resulting objects at the same address in the fu-
ture version. This is done by restoring the original heap layout (and content) as part
of the SL data transfer phase. To perform heap randomization and type transforma-
tions correctly for all the program allocations in the future version, in turn, we allow
the STF to deallocate (and reallocate later) all the non-SL heap allocations right af-
ter SL data transfer. To deal with the last scenario, we need to accurately identify
all the SL pointers into the program state and update their values correctly to re-
flect the memory layout of the future version. Luckily, these cases are rare and we
can envision library developers exporting a public API that clearly marks long-lived
pointers into the program state once our live update technique is deployed. A similar
API is desirable to mark all the process-specific state (e.g., libc’s cached pids) that
should be restored after ST—note that shareable resources like file descriptors are,
in contrast, automatically transferred by the fork/exec paradigm. To automate the
identification of these cases in our current prototype, we used conservative pointer
analysis techniques [55; 56] under stress testing to locate long-lived SL pointers into
the program state and state differencing at fork points to locate process-specific
state objects.

6.5.4 Error detection

To detect certain classes of semantic errors that escape TTST’s detection strat-
egy, our STF enforces program state invariants [109] derived from all the meta-
data available at runtime. Unlike existing likely invariant-based error detection tech-
niques [97; 127; 88; 22; 233], our invariants are conservatively computed from static
analysis and allow for no false positives. The majority of our invariants are enforced
by our dynamic pointer analysis to detect semantic errors during pointer transfer.
For example, our STF reports invariant violation (and aborts ST by default) when-
ever a pointer target no longer exists or has its address taken (according to our static
analysis) in the new version. Another example is a transferred pointer that points to
an illegal target type according to our static pointer cast analysis.

6.6 Evaluation

We have implemented TTST on Linux (x86), with support for generic user-space
C programs using the ELF binary format. All the platform-specific components,
however, are well isolated in the TTST control library and easily portable to other
operating systems, architectures, and binary formats other than ELF. We have inte-
grated address space randomization techniques developed in prior work [108] into
our ST instrumentation and configured them to randomize the location of all the
static and dynamically reallocated objects in the future version. To evaluate TTST,
we have also developed a live update library mimicking the behavior of state-of-the-
art live update tools [132], which required implementing preannotated per-thread

6.6. EVALUATION 127

C
ha

pt
er

6

update points to control update timing, manual control migration to perform CFT,
and a UNIX domain sockets-based interface to receive live update commands from
our ttst-ctl tool.

We evaluated the resulting solution on a workstation running Linux v3.5.0 (x86),
with a 4-core 3.0Ghz AMD Phenom II X4 B95 processor and 8GB of RAM. For our
evaluation, we first selected Apache httpd (v.2.2.23) and nginx (v0.8.54), the two
most popular open-source web servers. For comparison purposes, we also consid-
ered vsftpd (v1.1.0) and the OpenSSH daemon (v3.5p1), a popular open-source ftp
and ssh server, respectively. The former [214; 69; 215; 193; 131; 132; 136] and the
latter [214; 69; 136] are by far the most used server programs (and versions) in prior
work in the field. We annotated all the programs considered to match the imple-
mented live update library as described in prior work [132; 136]. For Apache httpd
and nginx, we redirected all the calls to custom allocation routines to the standard
allocator interface (i.e., malloc/free calls), given that our current instrumenta-
tion does not yet support custom allocation schemes based on nested regions [46]
(Apache httpd) and slab-like allocations [58] (nginx). To evaluate our programs, we
performed tests using the Apache benchmark (AB) [1] (Apache httpd and nginx),
dkftpbench [6] (vsftpd), and the provided regression test suite (OpenSSH). We con-
figured our programs and benchmarks using the default settings. We repeated all our
experiments 21 times and reported the median—with negligible standard deviation
measured across multiple test runs.

Our evaluation answers five key questions: (i) Performance: Does TTST yield
low run-time overhead and reasonable update times? (ii) Memory usage: How much
memory do our instrumentation techniques use? (iii) RCB size: How much code is
(and is not) in the RCB? (iv) Fault tolerance: Can TTST withstand arbitrary failures
in our fault model? (v) Engineering effort: How much effort does TTST require?

6.6.1 Performance

To evaluate the overhead imposed by our update mechanisms, we first ran our bench-
marks to compare our base programs with their instrumented and annotated versions.
Our experiments showed no appreciable performance degradation. This is expected,
since update points only require checking a flag at the top of long-running loops
and metadata is efficiently managed by our ST instrumentation. In detail, our static
metadata—used only at update time—is confined in a separate ELF section so as
not to disrupt locality. Dynamic metadata management, in turn, relies on in-band
descriptors to minimize the overhead on allocator operations. To evaluate the latter,
we instrumented all the C programs in the SPEC CPU2006 benchmark suite. The re-
sults evidenced a 4% average run-time overhead across all the benchmarks. We also
measured the cost of our instrumentation on 10,000 malloc/free and mmap/munmap
repeated glibc allocator operations—which provide worst-case results, given that
common allocation patterns generally yield poorer locality. Experiments with mul-
tiple allocation sizes (0-16MB) reported a maximum overhead of 41% for malloc,

128 CHAPTER 6. TIME-TRAVELING STATE TRANSFER

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100

U
pd

at
e

tim
e

(m
s)

Type transformation coverage (%)

Apache httpd (TTST)
nginx (TTST)

vsftpd (TTST)
OpenSSH (TTST)

Figure 6.5: Update time vs. type transformation coverage.

9% for free, 77% for mmap, and 42% for munmap. While these microbenchmark re-
sults are useful to evaluate the impact of our instrumentation on allocator operations,
we expect any overhead to be hardly visible in real-world server programs, which
already strive to avoid expensive allocations on the critical path [46].

When compared to prior user-level solutions, our performance overhead is much
lower than more intrusive instrumentation strategies—with worst-case macrobench-
mark overhead of 6% [214], 6.71%[213], and 96.4% [193]—and generally higher
than simple binary rewriting strategies [32; 69]—with worst-case function invoca-
tion overhead estimated around 8% [194]. Unlike prior solutions, however, our over-
head is strictly isolated in allocator operations and never increases with the number
of live updates deployed over time. Recent program-level solutions that use minimal
instrumentation [132]—no allocator instrumentation, in particular—in turn, report
even lower overheads than ours, but at the daunting cost of annotating all the point-
ers into heap objects.

We also analyzed the impact of process-level TTST on the update time—the time
from the moment the update is signaled to the moment the future version resumes
execution. Figure 6.5 depicts the update time—when updating the master process
of each program—as a function of the number of type transformations operated by
our ST framework. For this experiment, we implemented a source-to-source trans-
formation able to automatically change 0-1,327 type definitions (adding/reordering
struct fields and expanding arrays/primitive types) for Apache httpd, 0-818 type
definitions for nginx, 0-142 type definitions for vsftpd, and 0-455 type definitions for
OpenSSH between versions. This forced our ST framework to operate an average of
1,143,981, 111,707, 1,372, and 206,259 type transformations (respectively) at 100%
coverage. As the figure shows, the number of type transformations has a steady but
low impact on the update time, confirming that the latter is heavily dominated by
memory copying and pointer analysis—albeit optimized with splay trees. The data

6.6. EVALUATION 129

C
ha

pt
er

6

Type httpd nginx vsftpd OpenSSH

Static 2.187 2.358 3.352 2.480
Run-time 3.100 3.786 4.362 2.662
Forward ST 3.134 5.563 6.196 4.126
TTST 3.167 7.340 8.031 5.590

Table 6.3: Memory usage (measured statically or at runtime) normalized against the baseline.

points at 100% coverage, however, are a useful indication of the upper bound for
the update time, resulting in 1263 ms, 180 ms, 112 ms, and 465 ms (respectively)
with our TTST update strategy. Apache httpd reported the longest update times in
all the configurations, given the greater amount of state transferred at update time.
Further, TTST update times are, on average, 1.76x higher than regular ST updates
(not shown in figure for clarity), acknowledging the impact of backward ST and state
differencing on the update time. While our update times are generally higher than
prior solutions, the impact is bearable for most programs and the benefit is stateful
fault-tolerant version updates.

6.6.2 Memory usage

Our state transfer instrumentation leads to larger binary sizes and run-time memory
footprints. This stems from our metadata generation strategy and the libraries re-
quired to support live update. Table 6.3 evaluates the impact on our test programs.
The static memory overhead (235.2% worst-case overhead for vsftpd) measures the
impact of our ST instrumentation on the binary size. The run-time overhead (336.2%
worst-case overhead for vsftpd), in turn, measures the impact of instrumentation
and support libraries on the virtual memory size observed at runtime, right after
server initialization. These measurements have been obtained starting from a base-
line virtual memory size of 234 MB for Apache httpd and less than 6 MB for all
the other programs. The third and the fourth rows, finally, show the maximum vir-
tual memory overhead we observed at live update time for both regular (forward
ST only) and TTST updates, also accounting for all the transient process instances
created (703.1% worst-case overhead for vsftpd and TTST updates). While clearly
program-dependent and generally higher than prior live update solutions, our mea-
sured memory overheads are modest and, we believe, realistic for most systems, also
given the increasingly low cost of RAM in these days.

6.6.3 RCB size

Our TTST update technique is carefully designed to minimize the RCB size. Ta-
ble 6.4 lists the LOC required to implement every component in our design and the

130 CHAPTER 6. TIME-TRAVELING STATE TRANSFER

Component RCB Other

ST instrumentation 1, 119 8, 211
Live update library 235 147
TTST control library 412 2, 797
ST framework 0 13, 311
ttst-ctl tool 0 381

Total 1, 766 24, 847

Table 6.4: Contribution to the RCB size (LOC) for every component in our architecture.

contributions to the RCB. Our ST instrumentation requires 1,119 RCB LOC to per-
form dynamic metadata management at runtime. Our live update library requires 235
RCB LOC to implement the update timing mechanisms and interactions with client
tools. Our TTST control library requires 412 RCB LOC to arbitrate the TTST pro-
cess, implement run-time error detection, and perform state differencing—all from
the past version. Our ST framework and ttst-ctl tool, in contrast, make no con-
tribution to the RCB. Overall, our design is effective in producing a small RCB, with
only 1,766 LOC compared to the other 26,613 non-RCB LOC. Encouragingly, our
RCB is even substantially smaller than that of other systems that have already been
shown to be amenable to formal verification [168]. This is in stark contrast with all
the prior solutions, which make no effort to remove any code from the RCB.

6.6.4 Fault tolerance

We evaluated the fault tolerance of TTST using software-implemented fault injec-
tion (SWIFI) experiments. To this end, we implemented another LLVM pass which
injects specific classes of software faults into predetermined program code regions.
Our pass accepts a list of target program functions/modules, the fault types to in-
ject, and a fault probability φ—which specifies how many fault locations should
be randomly selected for injection out of all the possible candidates found in the
code. We configured our pass to randomly inject faults in the ST code, selecting
φ = 1%—although we observed similar results for other φ values—and fault types
that matched common programming errors in our fault model. In detail, similar to
prior SWIFI strategies that evaluated the effectiveness of fault-tolerance mechanisms
against state corruption [218], we considered generic branch errors (branch/loop
condition flip or stuck-at errors) as well as common memory errors, such as unini-
tialized reads (emulated by missing initializers), pointer corruption (emulated by
corrupting pointers with random or off-by-1 values), buffer overflows (emulated by
extending the size passed to data copy functions, e.g., memcpy, by 1-100%), and
memory leakage (emulated by missing deallocation calls). We repeated our exper-
iments 500 times for each of the 5 fault types considered, with each run starting a
live update between randomized program versions and reporting the outcome of our

6.6. EVALUATION 131

C
ha

pt
er

6

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Branch Uninit. Pointer Overflow Leakage

Fa
ul

t I
nj

ec
tio

n
R

es
ul

ts
 (%

) Successful Update
Timeout

Abnormal Termination
State Differences

Figure 6.6: TTST behavior in our automated fault injection experiments for varying fault types.

TTST strategy. We report results only for vsftpd—although we observed similar re-
sults for the other programs—which allowed us to collect the highest number of fault
injection samples per time unit and thus obtain the most statistically sound results.

Figure 6.6 presents our results breaking down the data by fault type and distri-
bution of the observed outcomes—that is, update succeeded or automatically rolled
back after timeout, abnormal termination (e.g., crash), or past-reversed state differ-
ences detected. As expected, the distribution varies across the different fault types
considered. For instance, branch and initialization errors produced the highest num-
ber of updates aborted after a timeout (14.6% and 9.2%), given the higher probability
of infinite loops. The first three classes of errors considered, in turn, resulted in a
high number of crashes (51.1%, on average), mostly due to invalid pointer derefer-
ences and invariants violations detected by our ST framework. In many cases, how-
ever, the state corruption introduced did not prevent the ST process from running to
completion, but was nonetheless detected by our state differencing technique. We
were particularly impressed by the effectiveness of our validation strategy in a num-
ber of scenarios. For instance, state differencing was able to automatically recover
from as many as 471 otherwise-unrecoverable buffer overflow errors. Similar is the
case of memory leakages—actually activated in 22.2% of the runs—with any extra
memory region mapped by our metadata cache and never deallocated immediately
detected at state diffing time. We also verified that the future (or past) version re-
sumed execution correctly after every successful (or aborted) update attempt. When
sampling the 533 successful cases, we noted the introduction of irrelevant faults
(e.g., missing initializer for an unused variable) or no faults actually activated at
runtime. Overall, our TTST technique was remarkably effective in detecting and
recovering from a significant number of observed failures (1,967 overall), with no
consequences for the running program. This is in stark contrast with all the prior
solutions, which make no effort in this regard.

132 CHAPTER 6. TIME-TRAVELING STATE TRANSFER

U
pdates

C
hanges

E
ngineering

effort

#
L

O
C

Fun
Var

Ty
ST

A
nn

L
O

C
Fw

d
ST

L
O

C
B

w
d

ST
L

O
C

A
pache

httpd
5

10,844
829

28
48

79
302

151
nginx

25
9,681

711
51

54
24

335
0

vsftpd
5

5,830
305

121
35

0
21

21
O

penSSH
5

14,370
894

84
33

0
135

127

Total
40

40,725
2,739

284
170

103
793

299

Table
6.5:

E
ngineering

effortforallthe
updates

analyzed
in

ourevaluation.

6.6. EVALUATION 133

C
ha

pt
er

6

6.6.5 Engineering effort

To evaluate the engineering effort required to deploy TTST, we analyzed a number
of official incremental releases following our original program versions and pre-
pared the resulting patches for live update. We considered 5 updates for Apache
httpd (v2.2.23-v2.3.8), vsftpd (v1.1.0-v2.0.2), and OpenSSH (v3.5-v3.8), and 25
updates for nginx (v0.8.54-v1.0.15), given that nginx’s tight release cycle generally
produces patches that are much smaller than those of the other programs considered.
Table 6.5 presents our findings. The first two grouped columns provide an overview
of our analysis, with the number of updates considered for each program and the
number of lines of code (LOC) added, deleted, or modified in total by the updates.
As shown in the table, we manually processed more than 40,000 LOC across the
40 updates considered. The second group shows the number of functions, variables,
and types changed (i.e., added, deleted, or modified) by the updates, with a total of
2,739, 284, and 170 changes (respectively). The third group, finally, shows the engi-
neering effort (LOC) required to prepare our test programs and our patches for live
update. The first column shows the one-time annotation effort required to integrate
our test programs with our ST framework. Apache httpd and nginx required 79 and
2 LOC to annotate 12 and 2 unions with inner pointers, respectively. In addition,
nginx required 22 LOC to annotate a number of global pointers using special data
encoding—storing metadata information in the 2 least significant bits. The latter is
necessary to ensure precise pointer analysis at ST time. The second and the third
column, in turn, show the number of lines of state transfer code we had to manually
write to complete forward ST and backward ST (respectively) across all the updates
considered. Such ST extensions were necessary to implement complex state changes
that could not be automatically handled by our ST framework.

A total of 793 forward ST LOC were strictly necessary to prepare our patches
for live update. An extra 299 LOC, in turn, were required to implement backward
ST. While optional, the latter is important to guarantee full validation surface for
our TTST technique. The much lower LOC required for backward ST (37.7%) is
easily explained by the additive nature of typical state changes, which frequently
entail only adding new data structures (or fields) and thus rarely require extra LOC
in our backward ST transformation. The case of nginx is particularly emblematic. Its
disciplined update strategy, which limits the number of nonadditive state changes to
the minimum, translated to no manual ST LOC required to implement backward ST.
We believe this is particularly encouraging and can motivate developers to deploy
our TTST techniques with full validation surface in practice.

134 CHAPTER 6. TIME-TRAVELING STATE TRANSFER

6.7 Related Work

6.7.1 Live update systems

We focus on local live update solutions for generic and widely deployed C programs,
referring the reader to [26; 279; 173; 90; 25] for distributed live update systems. LU-
COS [68], DynaMOS [194], and Ksplice [36] have applied live updates to the Linux
kernel, loading new code and data directly into the running version. Code changes
are handled using binary rewriting (i.e., trampolines). Data changes are handled
using shadow [194; 36] or parallel [68] data structures. OPUS [32], POLUS [69],
Ginseng [214], STUMP [213], and Upstare [193] are similar live update solutions for
user-space C programs. Code changes are handled using binary rewriting [32; 69],
compiler-based instrumentation [214; 213], or stack reconstruction [193]. Data
changes are handled using parallel data structures [69], type wrapping [214; 213],
or object replacement [193]. Most solutions delegate ST entirely to the program-
mer [68; 194; 36; 32; 69], others generate only basic type transformers [214; 213;
193]. Unlike TTST, none of these solutions attempt to fully automate ST—pointer
transfer, in particular—and state validation. Further, their in-place update model
hampers isolation and recovery from ST errors, while also introducing address space
fragmentation over time. To address these issues, alternative update models have
been proposed. Prior work on process-level live updates [124; 131], however, dele-
gates the ST burden entirely to the programmer. In another direction, Kitsune [132]
encapsulates every program in a hot swappable shared library. Their state transfer
framework, however, does not attempt to automate pointer transfer without user ef-
fort and no support is given to validate the state or perform safe rollback in case of
ST errors. Finally, our prior work [108; 112] demonstrated the benefits of process-
level live updates in component-based OS architectures, with support to recover from
run-time ST errors but no ability to detect a corrupted state in the updated version.

6.7.2 Live update safety

Prior work on live update safety is mainly concerned with safe update timing mech-
anisms, neglecting important system properties like fault tolerance and RCB min-
imization. Some solutions rely on quiescence [32; 42; 43; 36] (i.e., no updates
to active code), others enforce representation consistency [214; 213; 267] (i.e., no
updated code accessing old data). Other researchers have proposed using transac-
tions in local [215] or distributed [173; 279] contexts to enforce stronger timing
constraints. Recent work [135], in contrast, suggests that many researchers may
have been overly concerned with update timing and that a few predetermined up-
date points [214; 213; 132; 131; 108; 112] are typically sufficient to determine safe
and timely update states. Unlike TTST, none of the existing solutions have ex-
plicitly addressed ST-specific update safety properties. Static analysis proposed in
OPUS [32]—to detect unsafe data updates—and Ginseng [214]—to detect unsafe

6.8. CONCLUSION 135

C
ha

pt
er

6

pointers into updated objects—is somewhat related, but it is only useful to disallow
particular classes of (unsupported) live updates.

6.7.3 Update testing

Prior work on live update testing [133; 136; 134] is mainly concerned with validat-
ing the correctness of an update in all the possible update timings. Correct execution
is established from manually written specifications [134] or manually selected pro-
gram output [133; 136]. Unlike TTST, these techniques require nontrivial manual
effort, are only suitable for offline testing, and fail to validate the entirety of the
program state. In detail, their state validation surface is subject to the coverage of
the test programs or specifications used. Their testing strategy, however, is useful to
compare different update timing mechanisms, as also demonstrated in [136]. Other
related work includes online patch validation, which seeks to efficiently compare
the behavior of two (original and patched) versions at runtime. This is accomplished
by running two separate versions in parallel [62; 199; 148] or a single hybrid ver-
sion using a split-and-merge strategy [277]. These efforts are complementary to
our work, given that their goal is to test for errors in the patch itself rather than
validating the state transfer code required to prepare the patch for live update. Com-
plementary to our work are also efforts on upgrade testing in large-scale installa-
tions, which aim at creating sandboxed deployment-like environments for testing
purposes [298] or efficiently testing upgrades in diverse environments using staged
deployment [79]. Finally, fault injection has been previously used in the context
of update testing [209; 224; 90], but only to emulate upgrade-time operator errors.
Our evaluation, in contrast, presents the first fault injection campaign that emulates
realistic programming errors in the ST code.

6.8 Conclusion

While long recognized as a hard problem, state transfer has received limited atten-
tion in the live update literature. Most efforts focus on automating and validating
update timing, rather than simplifying and shielding the state transfer process from
programming errors. We believe this is a key factor that has discouraged the system
administration community from adopting live update tools, which are often deemed
impractical and untrustworthy.

This paper presented time-traveling state transfer, the first fault-tolerant live up-
date technique which allows generic live update tools for C programs to automate
and validate the state transfer process. Our technique combines the conventional for-
ward state transfer transformation with a backward (and logically redundant) trans-
formation, resulting in a semantics-preserving manipulation of the original program
state. Observed deviations in the reversed state are used to automatically identify
state corruption caused by common classes of programming errors (i.e., memory

136 CHAPTER 6. TIME-TRAVELING STATE TRANSFER

errors) in the state transfer (library or user) code. Our process-level update strat-
egy, in turn, guarantees detection of other run-time errors (e.g., crashes), simplifies
state management, and prevents state transfer errors to propagate back to the origi-
nal version. The latter property allows our framework to safely recover from errors
and automatically resume execution in the original version. Further, our modular
and blackbox validation design yields a minimal-RCB live update system, offering
a high fault-tolerance surface in both online and offline validation runs. Finally,
we complemented our techniques with a generic state transfer framework, which
automates state transformations with minimal programming effort and can detect
additional semantic errors using statically computed invariants. We see our work as
the first important step toward truly practical and trustworthy live update tools for
system administrators.

6.9 Acknowledgments

We would like to thank our shepherd, Mike Ciavarella, and the anonymous reviewers
for their comments. This work has been supported by European Research Council
under grant ERC Advanced Grant 227874.

C
ha

pt
er

7

7
Mutable Checkpoint-Restart: Automating Live Update

for Generic Long-running C Programs

Abstract

The pressing demand to deploy software updates without stopping running programs
has fostered much research on live update systems in the past decades. Prior solu-
tions, however, either make strong assumptions on the nature of the update or re-
quire extensive and error-prone manual effort, factors which ultimately discourage
widespread adoption of live update techniques.

This paper presents Mutable Checkpoint-Restart (MCR), a new live update tech-
nique for generic (multiprocess and multithreaded) long-running C programs. Un-
like prior solutions, our techniques can support arbitrary software updates and au-
tomate most of the common live update operations. The key idea is to checkpoint
the running version and allow the new version to restart as similarly to a fresh (and
independent) program initialization as possible, relying on existing code paths to
automatically restore the old application threads and reinitialize a relevant portion
of the program state. To transfer the remaining data structures, we rely on a combi-
nation of precise and conservative garbage collection to automatically trace all the
program pointers and apply data transformations on the fly. Experimental results
confirm that our techniques can effectively automate problems previously deemed
difficult at the cost of modest performance and memory overhead. Our results also
confirm that many programs are more “live update-friendly” than others and cases
that are inherently hard to automate can be easily solved if live update becomes a
driving factor in future software design.

137

138 CHAPTER 7. MUTABLE CHECKPOINT-RESTART

7.1 Introduction

The fast-paced evolution of modern software is on a collision course with the press-
ing demand for highly available systems that guarantee nonstop operation. Live
update—also known as dynamic software updating [214]—has increasingly gained
momentum as a solution to the update-without-downtime problem, i.e., deploying
software updates without stopping running programs. Compared to the most com-
mon alternative—rolling upgrades [90]—live update systems require no redundant
hardware or software and can automatically preserve program state across versions.
Ksplice [36] is perhaps the best known live update success story. According to its
website, Ksplice has already been used to deploy more than 2 million live updates
on over 100,000 productions systems at more than 700 companies.

Despite decades of research in the area—with the first paper on the subject dat-
ing back to 1976 [99]—existing live update systems still have important limitations.
In-place live update solutions [214; 213; 32; 69; 36] can transparently replace in-
dividual functions in a running program, but are inherently limited in the types of
updates they can support without significant manual effort. Ksplice, for instance,
is explicitly tailored to small security patches [9]. Prior whole-program live update
solutions [132; 112], in turn, can efficiently support several classes of updates, but
require a nontrivial annotation effort which increases the maintenance burden and
ultimately discourages adoption of live update techniques.

This paper presents Mutable Checkpoint-Restart (MCR), a new live update tech-
nique for arbitrary long-running C programs. Drawing inspiration from traditional
checkpoint-restart, MCR checkpoints (i.e., freezes) the running version, allows the
new version to restart in a controlled way, and remaps the old execution state into the
new one. This approach builds on kernel support for emerging userspace checkpoint-
restart techniques [3], allowing arbitrary software updates without altering the orig-
inal structure of the program or its process model. Unlike traditional checkpoint-
restart techniques [129; 4; 35; 12; 3], however, mutability induced by version up-
dates requires remapping program checkpoints after restart, a notoriously hard prob-
lem [125] which MCR seeks to automate in the common cases.

To address this challenge, MCR relies on three novel techniques. Profile-guided
quiescence detection allows all the application threads to safely block in a quies-
cent configuration [135] with no code annotations required. Ours is the first auto-
mated quiescence detection protocol for generic programs which is at the same time
deadlock-free and provides fast convergence. State-driven mutable record-replay al-
lows the new version to reinitialize in a controlled way and remap the checkpointed
configuration after the update. Ours is the first control migration [132] strategy that
relies on existing code paths to automatically reconstruct the process/thread hierar-
chy in the new version with minimal user intervention. Mutable garbage collection-
style tracing allows the new version to remap the checkpointed program state even
with partial information on global pointers and data structures. Ours is the first state
transfer [124] strategy that can automatically handle update-induced state transfor-

7.2. BACKGROUND AND RELATED WORK 139

C
ha

pt
er

7

mations with no user-maintained annotations. In addition, MCR explicitly tracks all
the “read-only” data structures that never change after initialization time, allowing
control migration to automatically reinitialize a relevant portion of the updated pro-
gram state and state transfer to process (and transform) a minimal amount of data.
The latter results in shorter update times and lower manual effort for updates that
induce complex state transformations.

We have implemented an MCR prototype for long-running Linux C programs.
Our evaluation on popular server programs shows that our techniques yield: (i) low
engineering effort (334 LOC to prepare our programs for MCR), (ii) realistic update
times (< 1 s); (iii) low performance overhead in the default configuration (0-5%).

7.2 Background and Related Work

In the following, we focus on local live update solutions for operating systems and
long-running C programs, referring the reader to [26; 279; 173; 90] for live update
for distributed systems.

7.2.1 Quiescence detection

MCR relies on quiescence [135] as a way to restrict the number of valid thread con-
figurations at checkpointing time. Some approaches [193] relax this constraint, but
then automatically remapping all the possible checkpointed thread configurations or
simply allowing mixed-version execution [194; 69; 68] becomes quickly intractable
without extensive user intervention. Quiescence detection algorithms proposed in
prior work operate at the level of individual functions [103; 124; 32; 36] or generic
events [214; 42; 43; 213; 264; 112]. The former approach is known for its weak con-
sistency guarantees [112; 136] and typically relies on passive stack inspection [103;
124; 32; 36] that cannot guarantee convergence in bounded time [194; 193]. The
latter approach relies on either update-friendly system design [43; 264; 112]—rarely
an option for existing C programs—or explicit per-thread update points [214; 193;
213; 132]—typically annotated at the top of long-running loops. Two update point-
based quiescence detection strategies are dominant: free riding [213; 193]—allow
threads to run until they all happen to reach a valid update point at the same time–
and barrier synchronization [132]—block each thread at the next valid update point.
The first strategy cannot guarantee convergence in bounded time. To mitigate this
problem, prior solutions suggest expanding the number of update points using static
analysis [213] or per-function update points [193]. Both solutions can introduce sub-
stantial overhead yet they still fail to guarantee convergence. The second strategy,
on the other hand, offers better convergence guarantees but is inevitably deadlock
prone [213]. In addition, all the prior update point-based strategies require interrupt-
ing blocking calls, which would otherwise delay quiescence indefinitely. To address
this problem, prior solutions suggest a combination of annotations and either sig-
nals [132] or file descriptor injection [193]. The former strategy is more general, but

140 CHAPTER 7. MUTABLE CHECKPOINT-RESTART

inherently race-prone and potentially disruptive for the program. Our profile-guided
quiescence detection protocol, in contrast, requires no code annotations and is de-
signed to provide efficient, race-free, and deadlock-free quiescence in bounded time.

7.2.2 Control migration

MCR relies on control migration [132] as a way to remap the checkpointed thread
configuration after restart. Prior in-place live update models [32; 43; 69; 68; 194; 36;
214; 213] provide no support for control migration, implicitly forbidding particular
types of updates. Ksplice [36], for example, cannot easily support a simple update to
a global flag that changes the conditions under which kernel threads enter a particular
fast path. Failure to remap the latter may, for instance, introduce silent data corrup-
tion or synchronization issues—such as deadlocks. Prior whole-program live update
models, in turn, implement control migration using system design [112; 264], stack
reconstruction [193], or manual annotations [132]. The first option is overly restric-
tive for many C programs. The second option exposes the user to the heroic effort of
remapping all the possible thread call stacks across versions. The last option, finally,
reduces the effort by encouraging existing code path reuse, but still delegates control
migration completely to the user. Our state-driven mutable record-replay strategy, in
contrast, automatically reuses existing code paths and frees the user from the burden
of manually remapping the checkpointed thread configuration in the new version.

7.2.3 State transfer

MCR relies on state transfer [124] as a way to remap the checkpointed program state
and apply the necessary data structure transformations after restart. Prior in-place
live update models either delegate state transfer entirely to the user [32; 43; 69; 68;
194; 36] or provide simple type transformers with no support for pointer transfor-
mations [214; 213]. Such restrictions are inherent to the in-place live update model,
which advocates “patching” the existing program state to directly adapt it to the new
version. Prior whole-program live update models, in turn, either delegate state map-
ping functions to the user [193; 264] or attempt to automatically reconstruct the state
in the new version using precise pointer traversal [132; 112]. The latter strategy,
however, requires a nontrivial annotation effort to unambiguously identify all the
global program pointers correctly. Our mutable GC-style tracing strategy, in con-
trast, does not require state annotations and can gracefully handle uninstrumented
shared libraries and custom memory allocation schemes.

7.3 Overview

Figure 7.1 illustrates the typical MCR workflow. In a preliminary step, users allow
our quiescence profiler to run the program, identify all its quiescent points, and gen-
erate profile data required by our quiescence detection protocol. This is a relatively

7.3. OVERVIEW 141

C
ha

pt
er

7

prog-v2

libmcr.so

prog-v1

libmcr.so

mcr-ctl

UPDATE

Quiescence
Profiler

prog-v1.c

Profile
Data

ld.gold

mcr.llvm

libmcr.a

Build time Run time (v1) Run time (v2)

CHECKPOINT RESTART

REMAP

Figure 7.1: MCR overview.

infrequent operation which should only be repeated when the quiescent behavior of
the program changes—we envision programmers simply integrating quiescence pro-
filing as part of their standard regression test suite. Building the program requires
specifying standard compiler flags which instruct the GNU gold linker (ld.gold) to
link the original code against our static library (libmcr.a) and use an LLVM-based
link-time plugin [179] (mcr.llvm) for static instrumentation purposes. The latter in-
struments the quiescent points identified in the profile data and prepares the program
for our mutable GC-style tracing strategy. Running the program requires preloading
our dynamic instrumentation shared library (libmcr.so), which complements static
instrumentation with information available only at runtime (i.e., shared libraries) and
implements our mutable checkpoint-restart techniques. When an update is available,
the user can signal the running version using a simple command-line tool (mcr-ctl).
In response to the event, our shared library checkpoints the running program and
allows the new version to restart from the old checkpoint. This is done by (i) run-
ning the quiescence detection protocol on the running version to obtain a consistent
checkpoint; (ii) starting the new version with all the information required to per-
form state-driven mutable record-replay and allowing the program to reinitialize;
(iii) quiescing the new version to synchronize at the end of initialization; (iv) remap
the necessary data structures from the old version to the new version using mutable
GC-style tracing; (v) resume execution. Failure to complete the restart phase due to
unexpected run-time errors simply causes the old version to resume execution from
the last checkpoint, so no harm is done. Note that this is in stark contrast to prior so-
lutions for generic userspace C programs [214; 213; 32; 69; 132; 193], which cannot
match MCR’s strong atomicity and isolation guarantees.

142 CHAPTER 7. MUTABLE CHECKPOINT-RESTART

7.4 Profile-guided Quiescence Detection

Our profile-guided quiescence detection strategy stems from two simple observa-
tions. First, the problem of transparently synchronizing multiple threads in bounded
time and in a deadlock-free fashion is undecidable—that is, easily reducible to the
halting problem—absent extra information on thread behavior. Second, every long-
running program has a number of natural execution-stalling points [170]—that are
obvious choices to identify a globally quiescent configuration. The key idea is to
profile the program at runtime and automatically identify quiescent points from all
the stalling points observed. We note a number of interesting stalling-point proper-
ties in server programs. First, they always originate from long-lived blocking calls
(e.g., accept) with well-known semantics. This allows us to gather extra informa-
tion on a stalling thread and carefully control its behavior. Second, stalling points are
often found at the top of long-running loops, which prior work has already largely
recognized as ideal update points [214; 213; 132]. Third, even when stalling points
are deeper in the call stack, fine-grained control over them is clearly crucial to reach
quiescence, a common problem in prior work [132; 193].

7.4.1 Quiescent points

To detect stalling points and the corresponding long-lived loops, our profiler relies
on standard profiling techniques. Detecting long-lived loops is important to identify
all the long-lived stack variables that might carry state information which needs to
be remapped in the new version after restart. Our profiling strategy leverages static
instrumentation to intercept all the function calls, library calls, and loop entries/ex-
its at runtime. Dynamic instrumentation tracks all the processes and threads in the
program and identify all the classes of threads with the same stalling behavior. To
detect all the stalling points correctly, we rely on a test workload able to drive the
program into all the potential stalling states (e.g., open idle connections, large file
transfer, etc.). In our experience, this workload is typically domain-specific—can be
reused across several applications of the same class—and often trivial to extrapolate
from existing regression test suites. Even for very complex programs that may ex-
hibit several possible stalling states, we expect this approach to be more intuitive,
less error-prone, and more maintainable than manually annotated update points used
in prior work [214; 213; 132].

Per-thread stalling points are detected using statistical profiling of library calls.
Intuitively, a stalling point is simply identified by the long-lived blocking call where
a given thread spends most of its time during the test workload. Loop profiling
is used to detect every thread’s deepest long-lived loop that never terminates dur-
ing the test workload. At the end of the test run, our profiler produces not only
instrumentation-ready profile data, but also a human-readable report with all the
short-lived and long-lived classes of threads identified, their deepest long-lived loops,
and their stalling points. Each stalling point is automatically classified as persistent

7.4. PROFILE-GUIDED QUIESCENCE DETECTION 143

C
ha

pt
er

7

or volatile—that is,whether it is already visible or not right after initialization—and
as external or internal—that is, whether the corresponding blocking call is listening
for external events (e.g., select) or not (e.g., pthread_cond_wait). In addition, a
policy decides how each stalling point participates in our quiescence detection pro-
tocol. Three options are possible: (i) quiescent point—marks a valid quiescent state
for a given thread to actively participate in our protocol; (ii) blocking point—allows
execution to stall indiscriminately before reaching the next quiescent point; (iii) can-
cellation point—allows returning an error (e.g., EINTR) to the program at quiescence
detection time. The default policy is to promote all the persistent stalling points to
quiescent points and all the volatile ones to blocking points. The rationale is to allow
all the checkpointed thread configurations that can be remapped in a fully automated
way using state-driven mutable record-replay after restart.

7.4.2 Instrumentation

Our static instrumentation relies on profile data to transform all the stalling points
identified in the dynamic call graph of the program. In particular, each call site is
changed to invoke a wrapper function in our static library in a way that it allows
what we refer to as unblockification. Unblockification exposes the same library call
semantics to the program, but guarantees that every long-lived call never truly blocks
execution for an extended period of time, while periodically calling our own hook
at quiescence detection time. Prior work used a similar wrapping strategy [193],
but only as an alternative to signals to unblock I/O calls on demand. Our goal, in
contrast, is to ensure that all the blocking calls are short-lived and fully controllable
at quiescence detection time.

Our unblockification design fulfills three key goals: (i) efficiency; (ii) low CPU
utilization; (iii) low quiescence detection latency. To implement our strategy effi-
ciently, we rely on standard timeout-based versions of library calls (e.g., sem_timed-
wait) and simply loop through repeated call invocations until control must be given
back to the program. When a timeout-based version of the call is not available, we
resort to the nonblocking version of the call (e.g., nonblocking accept) followed
by a generic timeout-based call listening for the relevant events (e.g., select). The
latter strategy guarantees a minimal number of mode switches are typically incurred
when the program is under heavy load and thus on a performance-sensitive path. Our
other goals highlight the evident tradeoff between unblockification latency and CPU
utilization. In other words, short timeouts translate to very fast loop iterations and
frequent invocations of our hooks, but also to high CPU utilization. To address this
problem, our implementation dynamically adjusts the unblockification latency, using
low values that guarantee fast convergence at quiescence detection time—currently
1 ms—and higher, more conservative values—currently 100 ms, which resulted in
no visible CPU utilization increase in our test programs—otherwise.

We note that unblockification is a semantics-preserving transformation of the
original program which ensures three important properties. First, it guarantees that

144 CHAPTER 7. MUTABLE CHECKPOINT-RESTART

stalling point execution always revolves around short-lived loops with bounded it-
eration latency even when a thread is blocked indefinitely. Second, it provides a
straightforward way to enforce our stalling point policies (e.g., allow blocking be-
havior in case of blocking points or call our hooks at the top of each short-lived loop
iteration in case of quiescent points). Third, it can unambiguously identify internal
or external events received by long-lived blocking calls and pass this knowledge to
our hooks at quiescence detection time. These properties all serve as a basis for our
quiescence detection protocol.

7.4.3 Quiescence detection

Our quiescence detection protocol is based on two key observations. First, long-
running programs are naturally structured to allow threads waiting for external events
(e.g., a new service request or a timeout) to block indefinitely. Second, in the face
of no external events, well-formed programs must normally reach a global quies-
cent state—all the threads stalling at quiescent points—in bounded time. Building
on these observations, our protocol enforces simple barrier synchronization for all
the threads blocked on external events—that is, initiator threads—and waits for all
the threads processing internal events—that is, internal threads—to complete before
detecting quiescence. When quiescence is detected, no new event can be initiated
and all the threads can be safely blocked at their quiescent points. The next question
is how long to wait for internal events to complete without blocking threads in a
deadlock-prone fashion.

The naive solution is to scan the call stack of all the processes and threads to
verify they have all reached their quiescent points. This strategy, however, is not
race-free in absence of a consistent view of all the running threads. Worse, even a
globally consistent snapshot of all the call stacks is not sufficient in the presence of
asynchronous thread interactions. Suppose a thread A signals a thread B blocked on
a condition variable and then reaches its next quiescent point. BeforeB gets a chance
to unblock and process the event, a global call stack snapshot might mistakenly
conclude that both threads are idle at their quiescent points and detect quiescence.

This race, known as the “launch-in-transit hazard” [83], is a recurring problem in
the Distributed Termination Detection (DTD) literature [204; 83; 162]. All the DTD
solutions to this problem rely on explicit event tracking [204], a costly solution in a
local context partially explored in prior work [193]. Fortunately, unlike in DTD, we
found that avoiding event tracking is possible, given that local events propagate in
bounded time.

The key idea is to wait for all the threads to reach a quiescent point with no event
received since the last quiescent point. This strategy effectively reduces our original
global quiescence detection problem to a local quiescence detection problem—that
is, quiescing short-lived loop iterations. To address the latter, we rely on RCU [200],
a scalable, low-latency, and deadlock-free local quiescence detection scheme. RCU-
like solutions to the problem of global quiescence detection were attempted be-

7.4. PROFILE-GUIDED QUIESCENCE DETECTION 145

C
ha

pt
er

7

1: procedure COORDINATOR
2: Q← 1
3: repeat
4: A← 0
5: SYNCHRONIZE_RCU()
6: SYNCHRONIZE_RCU()
7: until A , 0
8: Q← 2
9: SYNCHRONIZE_RCU()

10: SYNCHRONIZE_RCU()

1: procedure QUIESCENTPOINT
2: if Q > 0 then
3: if Active then
4: A← 1
5: if Initiator or Q == 2 then
6: RCU_THREAD_OFFLINE()
7: THREAD_BLOCK()
8: RCU_THREAD_ONLINE()
9: THREAD_UNBLOCKED()

10: RCU_QUIESCENT_STATE()

Figure 7.2: Pseudocode of our quiescence detection protocol.

fore [42; 43], but in much less ambitious architectures that simply disallowed long-
lived threads. Our implementation is based on liburcu QSBR [86], the fastest
known userspace implementation for local quiescence detection with nearly zero
overhead. The implementation provides a synchronize_rcu primitive, which al-
lows a controller thread to wait for one quiescent period—that is, for all the threads
to reach a quiescent state at least once from the beginning of the period [86].

Our RCU-based instrumentation ensures threads atomically enter a nonquiescent
state at creation time (i.e., pthread_create blocks waiting for the new thread to
complete RCU registration), atomically traverse a quiescent state at each quiescent
point right before reaching the designated blocking call, and enter an extended qui-
escent state [86] at destroy time or when our quiescence detection protocol dictates
them. This strategy allows our protocol to transparently deal with an arbitrary num-
ber of short-lived and long-lived threads. Figure 7.2 illustrates the simplified steps
of our protocol.

The coordinator publishes a quiescence detection protocol event (Q = 1) and
sets a global active counter to 0. Next, it waits for a first quiescent period to ensure
the protocol is visible to all the initiator and internal threads and a second period
to give any thread a chance to report an active state—whether the last blocking (or
thread creation) call received an event. The entire sequence is repeated until quies-
cence is detected, that is, no thread was found active in the last quiescent period. In
the second phase, the coordinator publishes a barrier event (Q = 2) and waits for
2 more periods to ensure all the threads are safely blocked at their quiescent points.
Our quiescent point instrumentation, in turn, implements the thread-side protocol
logic. When the protocol is in progress (Q > 0), our hook reports an active state
to the coordinator and blocks the current thread if it is an initiator thread or a bar-
rier event is in progress. Lines 6–7 allow the current thread to enter an extended
quiescent state and block on a condition variable. Lines 8–9, in contrast, allow the
current thread to leave an extended quiescent state and synchronize before resuming
execution—in case the coordinator decides to abort the protocol, e.g., after a pre-
determined timeout. Note the rcu_quiescent_state call at the bottom, the only
step executed also during regular execution, to mark all the quiescent state transitions
correctly. Figure 7.3 shows a sample run of the first phase of our protocol (Q = 1),
with two threads reacting to the published protocol event after 2 grace periods.

146 CHAPTER 7. MUTABLE CHECKPOINT-RESTART

Quiescent period

Publish

Time

Coordinator

Initiator 1

Internal 1

Internal 2

Initiator 2

Quiescent period

B Q B Q

Receive Report

B Q

B Q B Q

Enters an extended

quiescient state

M.send()

Reports an

active state

B Q B M.received() Q

Figure 7.3: A sample run of our quiescence detection protocol.

Our protocol provides race-free and deadlock-free quiescence detection in only
2q + 2 quiescent periods (with q = 1 if the program is already quiescent and oth-
erwise bounded by the length of the maximum internal event chain). Our strategy
leverages two well-known RCU uses: publish-subscribe and “waiting for things to
finish" [201]. A current limitation of liburcu is its inability to support multiprocess
synchronize_rcu semantics. To address this issue, MCR uses a process-shared
active counter and requests a controller thread in each process to complete the first
phase of the protocol. In this phase, newly created processes simply cause the proto-
col to restart. When all the per-process threads complete, MCR transitions to the sec-
ond phase of the protocol and waits for all the controller threads to report quiescence.

7.5 State-driven Mutable Record-replay

Our control migration strategy faces the major challenge of seamlessly remapping
the thread configuration checkpointed at quiescence time in the new version. Further,
our design goals dictate support for generic multiprocess/multithreaded programs
and version updates that may introduce changes in the thread behavior. To address
this challenge, the key observation is that programs tend to naturally reconstruct their
process/thread hierarchy at initialization time. Following this intuition, the idea is
to allow the new version to reinitialize in a controlled way and exploit existing code
paths to remap a quiescent thread configuration correctly.

7.5. STATE-DRIVEN MUTABLE RECORD-REPLAY 147

C
ha

pt
er

7

7.5.1 Control migration

Our control migration strategy raises two main challenges: (i) how to synchronize
the initialization process and avoid exposing the new version to external events
which would violate our atomicity and reversibility guarantees; (ii) how to control
the initialization process to prevent the new version from destroying state inher-
ited from the checkpoint. MCR addresses the first challenge by allowing a con-
troller thread to reinitiate the quiescence detection protocol before starting initializa-
tion. This forces all the long-lived threads to safely block at their quiescent points
without receiving new external events. To address the second challenge, MCR re-
lies on record-replay of initialization-time operations. This is marginally intrusive
compared to full-execution record-replay used in prior work for state reconstruc-
tion [271; 272; 241] or multiversion execution [148]. Further, unlike traditional
record-replay [266; 31; 232; 122; 268; 177], MCR does not attempt to determinis-
tically replay execution, a strategy which would otherwise forbid any initialization-
time changes. The goal is to replay the minimum number of operations to allow
the new version to preserve the checkpointed state, while executing live the rest of
the—arbitrarily different—initialization code.

We term this strategy state-driven mutable record-replay, drawing inspiration
from recent mutable record-replay strategies [280; 174] with two key differences.
First, our strategy is state-driven, in that we only replay operations associated to
immutable state objects inherited from the checkpoint (e.g., file descriptors). This
eliminates the need for in-kernel replay to support transitions to live execution. Our
record-replay implementation—part of our preloaded library—is simply based on li-
brary call interception at initialization time. Second, we allow nondeterministic mul-
tithreaded execution not to restrict behavioral changes across versions and enforce
partial ordering of related operations similar to [280] only when strictly necessary—
currently only for file descriptor operations used for synchronization purposes.

7.5.2 Mapping operations

Our record-replay strategy opts for a conservative mapping and conflict resolution
strategy. For instance, if the new version is changed to omit a previously recorded
operation (i.e., library call) to replay, we immediately flag a conflict. This strategy
aims to unambiguously reinitialize the state while detecting complex changes that
inevitably require user intervention—since the replay surface is small, we expect
unnecessary conflicts to be minimal. This is in contrast to prior techniques that rely
on best-fit strategies to map record-replay operations and resolve conflicts [280].

To enforce a conservative mapping strategy in presence of reordering of op-
erations due to nondeterminism or arbitrary version changes, MCR relies on call
stack IDs. The latter are based on version-agnostic hashes obtained from the call
stack of a thread performing an operation considered for replay. Call stack IDs
can conservatively discriminate individual thread operations and are more robust to

148 CHAPTER 7. MUTABLE CHECKPOINT-RESTART

addition/deletion/reordering of library calls—and changes to their arguments—than
mapping schemes based on global or partial orderings of operations. The tradeoff
is that unnecessary conflicts may arise in case of initialization function refactoring
(e.g., renaming). In our experience, these cases are relatively rare. In addition,
best-fit matching strategies may quickly suggest to the user how to resolve the con-
flict. To detect and tolerate benign changes to library call arguments across versions,
MCR follows pointer arguments similar to [280], but relies, when possible, on track-
ing information provided by our mutable GC-style tracing instrumentation to better
recognize equivalent call arguments.

7.5.3 Immutable state objects

Our state-driven mutable record-replay strategy currently records all the initialization-
time operations and replays only those operating on immutable state objects when
reinitializing the new version. Immutable state objects are objects inherited from
the checkpoint that carry state information which must be conservatively preserved
after restart. In other words, these are the only objects allowed to violate the mu-
table MCR semantics. MCR currently supports three main classes of immutable
objects (but others are possible): (i) file descriptors inherited from the checkpoint—
immutable since they carry associated in-kernel state; (ii) immutable memory ob-
ject addresses identified by mutable GC-style tracing—immutable due to partial
knowledge on global pointers; (iii) process/thread IDs—immutable since they carry
process-specific state that may be stored in memory.

Mapping and preserving immutable objects inherited from the checkpointed ver-
sion at replay time is challenging in a multiprocess context. The problem is exacer-
bated by the need to avoid unnecessary—and potentially expensive—object tracking
during normal execution. Consider the naive solution for file descriptors—but sim-
ilar considerations apply to other immutable objects as well—which would allow
every process in the new version to simply inherit all the file descriptors from its
old checkpointed counterpart at process creation time. There are two main problems
with this approach which we found to be unacceptably common causes of unneces-
sary conflicts or ambiguity. First, the multiprocess nature of the initialization process
may result in a checkpointed file descriptor ID clashing with a file descriptor ID al-
ready inherited from the parent process at initialization time. Second, file descriptors
IDs may be reused during or after initialization, which means MCR can no longer
unambiguously determine whether a checkpointed file descriptor ID matches an ID
logged in the record phase when enforcing our state-driven replay strategy.

MCR addresses these challenges by enforcing two key principles: global inheri-
tance and global separability. Global inheritance allows the first process in the new
version to inherit all the immutable objects from the checkpointed process hierarchy
before starting the initialization process. The idea is to preallocate all the necessary
immutable objects to avoid identifier clashing and propagate all the objects down
the new process hierarchy for replay purposes. All the immutable objects that do

7.5. STATE-DRIVEN MUTABLE RECORD-REPLAY 149

C
ha

pt
er

7

not participate in replay operations in a given process are simply cleaned up at the
end of the initialization. Global separability, in turn, allows all the immutable ob-
jects created at initialization time to have globally unique identifiers, preventing the
ambiguity introduced by reuse. Note that this is not necessary for immutable objects
created after initialization, which are not target of replay operations and can simply
be inherited from the checkpoint.

MCR enforces these properties in different ways for different classes of im-
mutable objects. Immutable static memory objects (e.g., global variables)—pre-
inherited using a linker script—naturally guarantee global inheritance and separabil-
ity by design. Immutable dynamic memory objects (e.g., heap objects) are inherited
using global reallocation—as detailed later. Separability is enforced by deferring
global deallocations at the end of initialization and explicitly flagging initialization-
time allocations in allocator metadata maintained by our mutable GC-style tracing
strategy. Immutable file descriptors are inherited using UNIX domain sockets. Sep-
arability is enforced by intercepting initialization-time file descriptor (fd) creation
events to (i) allocate new fd IDs in a reserved range at the end of the fd space and
(ii) structurally prevent initialization-time reuse. Immutable process and thread IDs
are handled similarly to file descriptors, except they cannot be simply inherited from
the checkpoint. To enforce global inheritance, MCR intercepts initialization-time
process and thread creation events and relies on Linux namespaces [51] to force the
kernel to assign a specific ID. This strategy follows the same approach adopted by
emerging userspace checkpoint-restart techniques for Linux programs [3].

Another key challenge is how to implement global reallocation of immutable
dynamic memory objects, which need to preserve their memory address after restart.
MCR addresses this challenge using different strategies, coalescing overlapping mem-
ory objects into superobjects at reallocation time—deallocated later when no longer
in use. Shared libraries are copied and prelinked—using the prelink tool [158]—in
a separate directory before restart. We instruct the dynamic linker to use our copies,
allowing the libraries to be remapped at the same virtual address in spite of address
space layout randomization (ASLR). This also allows MCR to reallocate all the dy-
namically loaded libraries correctly using dlopen. Memory mapped objects are
remapped at the same address using standard library interfaces (e.g., MAP_FIXED).
To provide the strongest isolation guarantees, we also envision memory mappings
shared with the checkpoint to be “shadowed” during initialization and remapped
correctly at the end, a strategy that our current prototype does not yet fully support.

Global reallocation of heap objects poses the greatest challenge, given that stan-
dard allocators provide no support for this purpose. MCR addresses this problem by
leveraging the intuition that common allocator implementations behave similarly to a
buffer allocator for an ordered sequence of allocations in a fresh heap state. MCR im-
plements this strategy for ptmalloc [114]—the standard glibc allocator—using a
single malloc arena, but we believe a relatively allocator-independent implementa-
tion is possible assuming predictable allocation behavior and malloc header size—
currently inferred by gaps between dummy allocations at startup. We also envi-

150 CHAPTER 7. MUTABLE CHECKPOINT-RESTART

sion this abstraction to become part of standard allocators once MCR is deployed—
similar to ptmalloc’s existing get_state and set_state primitives for “local
reallocation” used in traditional checkpoint-restart on a per-process basis.

7.6 Mutable GC-style Tracing

Our state transfer strategy faces the major challenge of remapping all the state ob-
jects (i.e., data structures) from the checkpointed state in presence of even com-
plex state transformations. Further, our goals dictate eliminating the need for an-
notations in all the common real-world C programs. To address this challenge, we
make three key observations. First, annotations in prior program-level state transfer
work [112; 132] were necessary to compensate for C’s lack of rigorous type seman-
tics, which prevents accurate type and pointer identification. Not surprisingly, prior
work has demonstrated that annotationless program-level state transfer is possible
for managed languages like Java [269]. Second, similar problems are already well-
understood in the garbage collection (GC) literature [138; 39; 243]. In particular,
the problem of remapping the program state in face of full-coverage state transfor-
mations faces the very same challenges of a precise and moving tracing garbage
collector for C [243]. By “precise”, we refer to the ability to accurately identify
object types, necessary to apply on-the-fly type transformations. By “moving”, we
refer to the ability to relocate objects, necessary to support arbitrary state changes
in the new version—introduced by state transformations, compiler optimizations, or
ASLR. Prior work [243] identified many real-world scenarios in which annotations
are necessary in this context, such as: explicit or implicit unions, nonstandard allo-
cation schemes, uninstrumented libraries, pointers as integers. Third, conservative
garbage collectors are well-known solutions to all these problems in the GC litera-
ture [55; 56], in that they do not require any explicit type information at the cost,
however, of being unable to relocate objects.

7.6.1 Mapping program state

Our observations hint at the key idea behind mutable GC-style tracing: trace all the
state objects to remap using a precise GC-style strategy when possible, resort to a
conservative GC-style strategy in face of incomplete or ambiguous type information.
To implement this strategy, MCR gracefully relaxes the original full-coverage state
transformation requirement, marking the necessary static/dynamic memory objects
as immutable—they cannot be relocated after restart—and forbidding updates to cer-
tain objects when ambiguous type information is found. This strategy allows the user
to tradeoff the annotation effort against the number of data structure changes that
can be seamlessly remapped by MCR. When unsupported state change are detected,
MCR raises a conflict that must be manually resolved by the user. We envision users
deploying an annotationless version of MCR at first, and then incrementally add an-
notations only on the data structures that change more often if their experience with

7.6. MUTABLE GC-STYLE TRACING 151

C
ha

pt
er

7

0x9da74b8

0x9da6100

...

0x806a038

0x806a02c 0x9da68e8 0x9da74b8-1

10

0x806a038

0x9da68e8 -2 0x000000 0x000000

5

0x0000000x000000

[char x4] char a[8] [char x4]

[int] [int] [int]

{bt_t*} {bt_t*} {int}

{bt_t*} {bt_t*} {int} bt_t bt

...
...

10

0x9f19830

0x9da6100 20

...

0x806a038

0x804a044 0x9da68e8 0x9da74b8-1

0x806a038

0x9e1a400 5

-2

[char x4] char a[8] [char x4]

[int] [int] [int]

...
...

0

0

0
{bt_t*} {bt_t*} {int} bt_t bt {T}

20

{bt_t*} {bt_t*} {int}

0x9da6104 0x9da6104

{T} {bt_t*} {int} {bt_t*}

0x0000000x000000

0x0000000x000000

30

{bt_t*} {int} {T} {bt_t*}

30

Run time (v1) Run time (v2)

Figure 7.4: State mapping using mutable GC-style tracing.

the system generates an undesirable number of conflicts. Even with a fully anno-
tated state, our conservative strategy can help the user identify missing annotations
or other problematic cases.

Further, to minimize the number of conflicts, MCR considers only the memory
objects modified after initialization for state transfer. This strategy drastically re-
duces the transfer surface and delegates reinitialization of “read-only” objects (i.e.,
only modified at initialization time) to our control migration strategy, which can ex-
ploit existing code paths to operate even complex program state transformations in
a fully automated way. To identify all the objects modified after initialization, MCR
runs our quiescence detection protocol at startup to globally detect the end of the
initialization process and initializes a dirty page tracking mechanism to detect future
memory writes on a per-process basis. This strategy is currently based on soft-dirty
bits tracking, a lightweight userspace feature available in recent Linux kernel re-
leases and already adopted by emerging userspace checkpoint-restart techniques to
track dirty memory pages for incremental checkpointing [3].

Our mutable GC-style tracing strategy is exemplified in Figure 7.4. MCR relies
on the accurate type information available to precisely reconstruct the binary tree
bt in the checkpoint and remap all the nodes and pointers with their new types (T)
correctly after restart. The array a, in turn, is conservatively scanned for pointers,
which are found to point into a heap-allocated array and a itself. As a result, both
arrays are marked as immutable and remapped at the same locations after restart.

152 CHAPTER 7. MUTABLE CHECKPOINT-RESTART

7.6.2 Precise GC-style tracing

There are two main strategies for implementing precise GC-style tracing: (i) traver-
sal functions generated by the compiler [138; 39; 132] or (ii) data type tags [112]—
hybrid approaches are also possible [243]. The former is generally more space- and
time-efficient, but the latter can better deal with polymorphic behavior and provide
more flexible type management. MCR implements the latter strategy to simplify type
management and seamlessly switch from precise to conservative tracing as needed.

Similar to prior precise strategies based on data type tags [112; 243], we rely on
static instrumentation to store tracking and type information for all the relevant static
objects (i.e., static/global variables, constants, functions, etc.) and change all the al-
locator invocations to call ad-hoc wrapper functions that maintain data type tags
in in-band metadata. Static analysis determines the allocated type on a per-callsite
basis, similar to [243]. We also borrowed the tracking technique for generic stack
variables, maintaining a stack-allocated linked list of overlay metadata nodes [243].
While inspired by prior approaches, our instrumentation has a number of unique
properties. First, ambiguous cases like unions require no explicit annotations [112]
or tagging [243], given that our tracing strategy can be made conservative when
needed. Similarly, we do not require full allocator instrumentation for complex
custom allocation schemes. Our precise analysis can currently only support stan-
dard allocator abstractions (i.e., malloc) or—if annotations are provided—simple
region-based allocation schemes [46]. For more complex allocator abstractions, our
static type analysis resorts to fully conservative behavior. Finally, stack variable
tracking—expensive at full-execution coverage [243]—is limited to all the functions
that profiling found active on the long-lived call stack of some quiescent thread.

This precise tracing strategy is implemented in our preloaded library. It oper-
ates in each new quiescent process after restart, parallelizing the state transfer op-
erations in a multiprocess context. Each process requests a central coordinator to
connect to its checkpointed counterpart (if any) identified by the same call stack ID.
Once a pipe is established with the checkpointed process, MCR creates a fast read-
only shared memory channel to transfer over all the tracking and type information
from the old version. Starting from root data and stack objects, MCR traces pointer
chains to reconstruct the entire checkpointed state and remap each object found in
the traversal to the new version—while reallocating objects and applying type trans-
formations as needed, similar to [132; 112]. We also allow user-specified traversal
callbacks to handle complex state transformations, similar to [112]. Unlike prior
approaches, however, the MCR model dictates a more comprehensive cross-version
object matching strategy (i.e., variable x in the checkpoint should be remapped to
variable x in the new version). We use symbol names to match static objects and al-
location site information to match dynamic objects that need to be reallocated in the
new version. Dynamic objects already reallocated at initialization time, in contrast,
are matched by their call stack ID. Individual threads, finally, are matched based on
their long-lived loops and their stack variables remapped using symbol names.

7.6. MUTABLE GC-STYLE TRACING 153

C
ha

pt
er

7

7.6.3 Conservative GC-style tracing

Our conservative GC-style strategy operates obliviously to its precise counterpart.
The idea is to first perform a conservative analysis to identify hidden pointers (i.e.,
pointers not explicitly exposed by the type information available) and derive a num-
ber of remapping invariants that allow precise GC-style tracing to implement state
transfer without worrying about hidden pointers and type ambiguity. Our conserva-
tive strategy generates two possible remapping invariants for every object in the old
version: immutability—the object cannot be relocated after restart—and nonupdata-
bility—the object cannot be type-transformed by our precise tracing strategy after
restart (a conflict is generated in case of type changes detected).

To identify such invariants, MCR operates similarly to a conservative garbage
collector [55; 56], scanning opaque (i.e., type-ambiguous) memory areas looking
for likely pointers—that is, aligned memory words that point to a valid live ob-
ject in memory. Objects pointed by likely pointers are marked as immutable and
nonupdatable—we could restrict the latter to only interior pointers, but we have
not implemented this option yet. Objects that contain likely pointers are marked as
nonupdatable—we could restrict the latter to only certain type changes, but we have
not implemented this option yet. Note that, unlike prior approaches, our strategy is
only partly conservative: MCR traverses the state using our precise GC-style strat-
egy by default and switches to conservative mode only when it encounters opaque
memory areas. Further, when possible, our pointer analysis uses the type informa-
tion associated to the pointed object to reject illegal (i.e., unaligned) likely pointers.

Run-time policies decide when a traversed memory area must be treated as
opaque. Our default is to do so for unions, pointer-sized integers, char arrays, and
uninstrumented allocator operations, but different program-driven policies are possi-
ble. Currently, MCR does not conservatively analyze nor transfer shared library state
by default, since we have observed that most real-world programs already reinitialize
shared libraries and their state correctly at initialization time. Nonetheless, the user
can instruct MCR to transfer–and conservatively analyze—the static/dynamic state
of particular uninstrumented shared libraries in an opaque way, when needed. This
is empowered by dynamic instrumentation included in our preloaded library, which
implements tracking for shared libraries and their dynamically allocated objects.

Our conservative tracing strategy raises two main issues: accuracy—how con-
servative is the analysis in determining updatability coverage—and timing—when
to perform the analysis. In our experience, the former is rarely a issue in real-world
programs. Prior work has reported that even fully conservative GC rarely suffers
from type-accuracy problems on 64-bit architectures—although more issues have
been reported on 32-bit architectures [144]. Other studies confirm that type accuracy
is marginal compared to liveness accuracy [145]. In our context, liveness accuracy
problems are only to be expected for uninstrumented allocator abstractions that ag-
gressively use free lists—or other forms of reuse. Nevertheless, these cases can be
easily identified and compensated by annotations/instrumentation, if necessary. As

154 CHAPTER 7. MUTABLE CHECKPOINT-RESTART

for the latter, our analysis should be normally performed after checkpointing the old
version. This strategy, however, would block the running version for the time to re-
link the program and prelink the shared libraries to remap nonrelocatable immutable
objects (e.g., global variables). Fortunately, we have observed very stable immutable
behavior for such objects. As a result, our current strategy is to simply run the anal-
ysis and the relinking operations offline. If a mismatch is found after quiescence—
although we have never encountered this scenario in practice—we could expand the
set of immutable objects, resume execution, allow relinking operations in the back-
ground, and repeat the entire procedure until convergence is detected.

7.7 Violating Assumptions

We report on the key issues that might allow programs found “in the wild” to vio-
late MCR’s annotationless semantics—excluding annotations required by complex
semantic updates. The intention is not only to foster future research in the field, but
also allow programmers to design more “live update-friendly” (and better) software.
Profile-guided quiescence might require extra manual effort in the following cases:
(i) missing stalling points in profile data (i.e., not covered by the test workload)—
weakens convergence guarantees; (ii) misclassified stalling points in profile data
(e.g., an external library call used to synchronize internal events)—weakens conver-
gence or deadlock guarantees; (iii) overly conservative stalling point policies (i.e.,
promoting a semi-persistent stalling point to a blocking point)—weakens conver-
gence guarantees. The latter is the only case we found to be relatively common in
practice. In the worst case, this requires extra control migration operations not au-
tomatically performed by MCR. A possible solution is to extend our record-replay
strategy to code paths leading to volatile quiescent points, but this may also intro-
duce nontrivial run-time overhead. While annotations are possible, we believe these
cases are better dealt with at design time. Purely event-driven servers (e.g., nginx)
are an example, with only persistent quiescent points allowed during execution.

Further, state-driven mutable record-replay might require extra manual effort in
the following cases: (i) unsupported immutable objects (e.g., process-specific IDs
with no namespace support, such as System V shared memory IDs, stored into a
global variable); (ii) nondeterministic process model behavior (e.g.„ a server dynam-
ically adjusting worker processes depending on the load); (iii) nonreplayed opera-
tions actively trying to violate MCR semantics (e.g., a server aborting initialization
when detecting another running instance). We believe these cases to be relatively
common, the last two in particular—Apache httpd being an example. While the last
case is trivial to address at design time, the others require better run-time support
and more sophisticated process mapping strategies.

Finally, mutable GC-style tracing shares a number problematic cases that require
extra manual effort with prior GC strategies for C [243]. Examples include storing
a pointer on persistent storage or relying on specialized encoding to store pointer

7.8. EVALUATION 155

C
ha

pt
er

7

values in memory. In the MCR model, these cases are best described as examples of
immutable objects not supported by our run-time system. While seemingly uncom-
mon and easy to tackle at design time, we found 1 real-world program (i.e., nginx)
using pointer encoding in our evaluation.

7.8 Evaluation

We have implemented MCR on Linux (x86), with support for generic userspace
C programs. Static instrumentation—implemented in C++ using the LLVM v3.3
API [179]—accounts for 728 LOC (quiescence profiler) and 8064 LOC 1 (other
MCR components). MCR instrumentation relies on a static library, implemented in
C in 4,531 LOC. Dynamic instrumentation—implemented in C in a preloaded shared
library—accounts for 3,476 (quiescence profiler) and 21,133 LOC (other MCR com-
ponents). The mcr-ctl tool, which allows users to signal live updates to the MCR
backend using UNIX domain sockets, is implemented in C in 493 LOC.

We evaluated MCR on a workstation running Linux v3.5 (x86) and equipped
with a 4-core 3.0 Ghz AMD Phenom II X4 B95 processor and 8 GB of RAM.
For our evaluation, we considered the two most popular open-source web servers—
Apache httpd (v.2.2.23) and nginx (v0.8.54)—and, for comparison purposes, a popu-
lar FTP server—vsftpd (v1.1.0)—and a popular SSH server—the OpenSSH daemon
(v3.5p1). The former [214; 69; 193; 132; 136] and the latter [214; 69; 136] are by far
the most used programs (and versions) in prior work. We configured our programs
(and benchmarks) with their default settings and instructed Apache httpd to use the
worker module with 2 servers and 50 worker threads without dynamically adjust-
ing its process model. We benchmarked our programs using the Apache benchmark
(AB) [1] (web servers), the pyftpdlib benchmark [13] (vsftpd), and the built-in test
suite (OpenSSH). We repeated all our experiments 11 times and report the median.

Our evaluation answers 4 key questions: (i) Engineering effort: How much effort
does MCR require? (ii) Performance: Does MCR yield low overhead? (iii) Update
time: Does MCR yield reasonable update time? (iv) Memory usage: How much
memory does MCR use?

7.8.1 Engineering effort

To evaluate the engineering effort required to deploy our techniques, we first pre-
pared our test programs for MCR and profiled their quiescent points. To put to-
gether an appropriate execution-stalling workload for our quiescence profiler, we
used three simple test scripts. The first script—used for the web servers—opens a
number of long-lived HTTP connections and issues one HTTP request for a very
large file in parallel. The second and third scripts—used for OpenSSH and vs-
ftpd, respectively—open a number of long-lived SSH (or FTP) connections—in

1Source lines of code reported by David Wheeler’s SLOCCount.

156 CHAPTER 7. MUTABLE CHECKPOINT-RESTART

authentication/post-authentication state–and, for vsftpd, issue one FTP request for
a very large file in parallel. Note that our workload is not meant to be necessarily
general—Apache httpd, for instance, supports plugins that can potentially create an
arbitrary number of new volatile stalling points—but rather to cover all the common
stalling points stressed by the execution of our benchmarks. Next, we considered
a number of incremental releases following our original program versions, and pre-
pared them for MCR. In particular, we selected 5 updates for Apache httpd (v2.2.23-
v2.3.8), vsftpd (v1.1.0-v2.0.2), and OpenSSH (v3.5-v3.8), and 25 updates for nginx
(v0.8.54-v1.0.15)—nginx’s tight release cycle generally produces smaller patches
than those of all the other programs considered. Table 7.1 presents our findings.

The first six grouped columns summarize the data generated by our quiescence
profiler. The first two columns detail the number of short-lived and long-lived thread
classes identified during the test workload. The short-lived thread classes detected
derive from deamonification (all the programs except vsftpd), initialization tasks
(Apache httpd), or exec()ing other helper programs (OpenSSH daemon). The long-
lived thread classes detected, in turn, originated a total of 18 stalling points, 15 of
which are external (Ext). OpenSSH and vsftpd’s simple process model resulted in no
internal stalling point (Int) and only 1 persistent stalling point (Per) associated to the
master process. Finally, all the server programs reported volatile stalling points (Vol)
with the exception of nginx, given its rigorous event-driven programming model.
The profile data reported was used as is for our quiescence instrumentation without
any extra annotations.

The second two grouped columns provide an overview of the updates considered
for each program and the number of LOC changed by them. As shown in the table,
we manually processed 40,725 LOC across the 40 updates considered. The third
group shows the number of functions, variables, and types changed (i.e., added,
deleted, or modified) by the updates, with a total of 2,739, 284, and 170 changes
(respectively). The fourth group, finally, shows the engineering effort (LOC) in
terms of annotations required to prepare our programs for MCR and the extra state
transfer code required by our updates.

As shown in the table, the annotation effort required by MCR is low. When
supporting only persistent quiescent points—corresponding to stable thread configu-
rations automatically reconstructed by state-driven mutable record-replay—Apache
httpd required only 8 LOC to prevent the server from aborting prematurely after
actively detecting its own running instance and 10 LOC to ensure deterministic cus-
tom allocation behavior. Both changes were necessary to allow our control migration
strategy to complete correctly. Further, nginx required 22 LOC to annotate a num-
ber of global pointers using special data encoding—storing metadata in the 2 least
significant bits. The latter is necessary for our mutable GC-style tracing strategy
to interpret pointer values correctly. Extending state-driven mutable record-replay
to all the other nonpersistent quiescent points profiled with no application redesign,
on the other hand, required an extra 82 LOC for vsftpd, 49 LOC for OpenSSH,
and 163 LOC for Apache httpd. In addition, we had to manually write 793 LOC

7.8. EVALUATION 157

C
ha

pt
er

7

Q
ui

es
ce

nc
e

pr
ofi

lin
g

U
pd

at
es

C
ha

ng
es

E
ng

in
ee

ri
ng

ef
fo

rt

SL
L

L
E

xt
In

t
Pe

r
Vo

l
N

um
L

O
C

Fu
n

Va
r

Ty
pe

A
nn

L
O

C
ST

L
O

C

A
pa

ch
e

ht
tp

d
2

8
6

2
5

3
5

10
,8

44
82

9
28

48
18

1
30

2
ng

in
x

1
2

1
1

2
0

25
9,

68
1

71
1

51
54

22
33

5
vs

ft
pd

0
5

5
0

1
4

5
5,

83
0

30
5

12
1

35
82

21
O

pe
nS

SH
3

3
3

0
1

2
5

14
,3

70
89

4
84

33
49

13
5

Ta
bl

e
7.

1:
O

ve
rv

ie
w

of
al

lt
he

pr
og

ra
m

s
an

d
up

da
te

s
us

ed
in

ou
re

va
lu

at
io

n.

Pr
ec

is
e

po
in

te
rs

L
ik

el
y

po
in

te
rs

To
ta

l
St

at
ic

D
yn

am
ic

L
ib

To
ta

l
St

at
ic

D
yn

am
ic

L
ib

Pt
r

Sr
c

Ta
rg

Sr
c

Ta
rg

Ta
rg

Pt
r

Sr
c

Ta
rg

Sr
c

Ta
rg

Ta
rg

A
pa

ch
e

ht
tp

d
2,

37
3

2,
27

2
2,

15
1

10
1

21
9

3
16

,2
52

18
5

2,
05

0
16

,0
67

14
,2

01
1

ng
in

x
1,

24
2

1,
22

6
1,

21
4

16
26

2
4,

04
9

51
29

3
3,

99
8

3,
75

5
1

ng
in

x r
eg

2,
04

9
1,

22
6

1,
45

5
82

3
59

2
2

3,
52

2
51

14
9

3,
47

1
3,

37
2

1
vs

ft
pd

14
9

14
8

13
1

1
4

14
6

6
0

0
6

0
O

pe
nS

SH
23

7
22

6
21

1
11

19
7

56
5

16
51

32
8

Ta
bl

e
7.

2:
M

ut
ab

le
G

C
-s

ty
le

tra
ci

ng
st

at
is

tic
s

ag
gr

eg
at

ed
af

te
rt

he
ex

ec
ut

io
n

of
ou

rb
en

ch
m

ar
ks

.

158 CHAPTER 7. MUTABLE CHECKPOINT-RESTART

to allow state transfer to complete correctly across all the updates considered. The
extra code was necessary to implement complex state changes that could not be au-
tomatically remapped by MCR. Moreover, two of our test programs rely on custom
allocation schemes. nginx uses slabs [58] and regions [46]. Apache httpd uses nested
regions [46]. Extending allocator instrumentation to custom allocation schemes in-
creases updatability, but also introduces extra complexity and overhead. To analyze
the tradeoff, we allowed MCR to instrument only nginx’s region allocator—slabs
and nested regions are not yet supported by our instrumentation—and instructed our
tracing strategy to produce quiescent-time statistics—for both precisely and conser-
vatively identified pointers—after the execution of our benchmarks (Table 7.2).

In the two cases, the table reports the total number of pointers detected (Ptr),
per-region source pointers (Src), and per-region pointed target objects (Targ). Ob-
jects are classified into Static (e.g., global variables, but also strings, which attracted
the majority of likely pointers into static objects), Dynamic (e.g., heap objects), Lib
(i.e., static/dynamic shared library objects). We draw three main conclusions from
our analysis. First, there are many (23,885) legitimate cases of likely pointers—
we sampled a number of cases to check for accuracy—which cannot be ignored at
state transfer time. Prior whole-program strategies would delegate this heroic ef-
fort entirely to the user. Second, we note a number of program pointers into shared
library state (28+11). This confirms the importance of marking shared library ob-
jects as immutable if library state transfer is desired. Finally, our results confirm
the impact of allocator instrumentation. Apache httpd’s uninstrumented allocations
produce the highest number of likely pointers (16,067), with nginx following with
3,998. Our (partial) allocator instrumentation on nginx (nginxreg) can mitigate, but
not eliminate this problem (3,471 likely pointers). Further, even in the case of a fully
instrumented allocator (vsftpd and OpenSSH), we still note a number of likely point-
ers originating from legitimate type-unsafe idioms (6 and 56, respectively), which
suggests annotations in prior solutions can hardly be eliminated even in the opti-
mistic cases. Overall, we regard MCR as a major step forward over prior solu-
tions [193; 213; 132]: (i) much less annotation effort is required to deploy MCR and
support updates; (ii) much less inspection effort is required to identify issues with
pointers, allocators, and shared libraries.

7.8.2 Performance

To evaluate the run-time overhead imposed by MCR, we measured the time to com-
plete the execution of our benchmarks compared to the baseline. We configured
the Apache benchmark to issue 100,000 requests and retrieve a 1 KB HTML file.
We configured the pyftpdlib benchmark to allow 100 users each retrieve a 1 MB
file. In all the experiments, we observed marginal CPU utilization increase (i.e.,
< 3%). Run-time overhead results, in turn, are shown in Table 7.3. We comment
on results for uninstrumented region allocators first. As expected, unblockification
alone (Unblock) introduces marginal run-time overhead (2.4% in the worst case for

7.8. EVALUATION 159

C
ha

pt
er

7

Unblock +SInstr +DInstr +QDet

Apache httpd 0.977 1.040 1.043 1.047
nginx 1.000 1.000 1.000 1.000
nginxreg 1.000 1.175 1.192 1.186
vsftpd 1.024 1.027 1.028 1.028
OpenSSH 0.999 0.999 1.001 1.001

Table 7.3: Benchmark run time normalized against the baseline.

vsftpd). The reported speedups are well within the noise caused by memory lay-
out changes [207]. When combined with our static instrumentation (+SInstr), the
run-time overhead is somewhat more visible (4% worst-case overhead for Apache
httpd). The latter originates from our allocator instrumentation, which maintains
in-band metadata for mutable GC-style tracing. The overhead is fairly stable when
adding our dynamic instrumentation (+DInstr)—which also tracks all the alloca-
tions from shared libraries, other than maintaining process hierarchy metadata. Fi-
nally, our quiescence detection instrumentation (+QDet)—which essentially only
introduces extra RCU calls to mark per-thread quiescent states—introduces, as ex-
pected, marginal overhead. This translates to the final 4.7% worst-case overhead
(Apache httpd) for the entire solution.

To further investigate the overhead on allocator operations, we instrumented all
the SPEC CPU2006 benchmarks with our static and dynamic allocator instrumen-
tation. We reported a 5% worst-case overhead across all the benchmarks, with the
exception of perlbench (36%), a memory-intensive benchmark which essentially
provides a microbenchmark for our instrumentation. Our results confirm the perfor-
mance impact of allocator instrumentation. This is also evidenced by the cost of our
region instrumentation on nginx, which incurs 19.2% worst-case overhead (nginxreg
in Table 7.3). While our implementation may be poorly optimized for nginx’s allo-
cation behavior, this extra cost does evidence the tradeoff between the precision of
our GC-style tracing strategy and run-time performance, which MCR users should
take into account when deploying our solution.

Our results demonstrate that MCR overhead is generally lower [194] or compa-
rable [214; 213; 132] to prior solutions. The extra costs (unblockification and al-
locator instrumentation) provide much better quiescence guarantees and drastically
simplify state transfer. For example, the tag-free heap traversal strategy proposed
in [132] would eliminate the overhead on allocator operations, but at the cost of no
support for interior or void* pointers without pervasive user annotations.

160 CHAPTER 7. MUTABLE CHECKPOINT-RESTART

 0

 100

 200

 300

 400

 500

 10 20 30 40 50 60 70 80 90 100

Q
ui

es
ce

nc
e

tim
e

(m
s)

Number of worker threads

 Apache benchmark
 Idle

Figure 7.5: Quiescence time vs. number of worker threads.

7.8.3 Update time

To evaluate the update time—the time the program is unavailable during the update—
we analyzed its three main components in detail: (i) quiescence time; (ii) control
migration time; (iii) state transfer time. To evaluate quiescence time, we allowed our
quiescence detection protocol to complete during the execution of our benchmarks
or during idle time. We found that programs with only external quiescent points—
vsftpd and OpenSSH—or rarely activated internal points—nginx, whose master pro-
cess is only activated for crash recovery purposes—always converge in comparable
time in a workload-independent way (around 125 ms, with the first 100 ms directly
attributable to our default unblockification latency), given that our protocol is essen-
tially reduced to barrier synchronization. Apache httpd is more interesting, with sev-
eral live internal points interacting across its worker threads. Figure 7.5 depicts the
time Apache httpd requires to quiesce for an increasing number of worker threads,
resulting in a maximum quiescent time of 184 ms with 25 threads (default value)
and 427 ms with 100 threads (Apache httpd’s recommended maximum value). The
figure confirms our protocol scales well with the number of threads and converges
quickly even under heavy load once external events are blocked. Both properties
stem from our RCU-based design.

To evaluate control migration time, we measured the time to complete state-
driven mutable record-replay across versions. We found that both the record and
replay phase complete in comparable time (less than 50 ms), with modest overhead
(1-45%) compared to the original initialization time across all our test programs
and configurations. Finally, to evaluate state transfer time, we allowed a number of
users to connect to our test programs after completing the execution of our bench-
marks and measured the time to remap the state across versions using mutable GC-
style tracing. Figure 7.6 depicts the resulting time as a function of the number of
open connections at live update time. The results were obtained across semantically

7.8. EVALUATION 161

C
ha

pt
er

7

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

S
ta

te
 tr

an
sf

er
 ti

m
e

(m
s)

Number of open connections

 Apache httpd
 nginx

 vsftpd
 OpenSSH

Figure 7.6: State transfer time vs. number of connections.

equivalent program versions—with a different memory layout due to ASLR—but
we noted comparable results across different versions, acknowledging the relatively
low impact of type transformations on state transfer time, as also observed in prior
work [110]. The impact of an increasing number of open connections is more no-
ticeable, due to a generally larger heap state and more processes to transfer for pro-
grams handling each connection in a separate process—i.e., vsftpd and OpenSSH.
Compared to recent program-level solutions [132]—which only evaluated the impact
of a single connection on the update time—however, Figure 7.6 shows that MCR
scales fairly well with the number of open connections, with an average state trans-
fer time increase of 371 ms at 100 connections, compared to a baseline of between
28-187 ms with no open connections. This behavior stems from our parallel state
transfer strategy—which operates concurrent state transformations across the pro-
cess hierarchy—and our dirty object tracking strategy—which drastically reduces
the amount of state to transfer. Table 7.4 evaluates the impact of the latter, reporting
the total number of memory objects as well as the fraction of dirty objects actually
considered for state transfer after the execution of our benchmarks. As shown in the
table, our dirty object tracking strategy is very effective in reducing the number of
objects to transfer, with only 2.5%-29.7% of the objects considered in the idle con-
figuration. The effectiveness of our strategy is marginally affected when increasing
the number of connections, with 13.9%-32.3% of the objects considered for state
transfer when 100 users are connected to our server programs.

Overall, while generally higher than prior in-place solutions [214; 213]—but
comparable and more scalable than prior program-level solutions [193; 132]—we
believe our update times to be sustainable for most programs. The benefit is full-
coverage multiprocess state transfer able to automatically handle C’s ambiguous
type semantics.

162 CHAPTER 7. MUTABLE CHECKPOINT-RESTART

Idle 100 connections

Objects Dirty Objects Dirty

Apache httpd 31494 0.025 36182 0.151
nginx 5357 0.076 5757 0.139
vsftpd 787 0.297 89487 0.323
OpenSSH 2525 0.025 269225 0.198

Table 7.4: Dirty memory objects after the execution of our benchmarks.

Static Run-time Update-time

Apache httpd 2.187 2.100 7.685
nginx 2.358 4.111 4.656
nginxreg 2.358 4.330 4.829
vsftpd 3.352 5.836 14.170
OpenSSH 2.480 3.047 11.814

Table 7.5: Memory usage normalized against the baseline.

7.8.4 Memory usage

MCR instrumentation leads to larger memory footprints. This stems from mutable
GC-style tracing metadata, process hierarchy metadata, the log used for state-driven
mutable record-replay, and the libraries required to support all our techniques.

Table 7.5 evaluates the MCR impact on our test programs. The static mem-
ory overhead (235.2% worst-case overhead for vsftpd) measures the impact of our
static instrumentation on the original binary size. The run-time overhead (483.6%
worst-case overhead for vsftpd), in turn, measures the impact of our instrumenta-
tion (and support libraries) on the resident set size (RSS) observed at runtime, after
initialization—we found the overhead to be lower or comparable during the execu-
tion of our benchmarks. The update-time overhead, finally, shows the maximum
RSS overhead we observed at update time, accounting for an extra running instance
of the program and auxiliary data structures allocated for mutable GC-style tracing
(1317.0% worst-case overhead for vsftpd).

As expected, MCR requires more memory than prior in-place solutions, while
being, at the same time, comparable to other whole-program solutions that rely on
data type tags [112]. A tag-free tracing implementation such as the one proposed
in [132] would help reduce the overhead in this case as well, but also impose all the
important limitations already discussed earlier. MCR favors annotationless seman-
tics over memory usage, given the increasingly low cost of RAM in these days.

7.9. CONCLUSION 163

C
ha

pt
er

7

7.9 Conclusion

This paper presented Mutable Checkpoint-Restart (MCR), a new live update tech-
nique for generic long-running C programs. MCR’s design goals dictate support
for arbitrary software updates and minimal annotation effort for real-world multi-
process and multithreaded programs. To achieve these ambitious goals, the MCR
model carefully decomposes the live update problem into three well-defined tasks:
(i) checkpoint the running version; (ii) remap the process/thread hierarchy after
restart; (iii) remap program state after restart. For each of these tasks, MCR in-
troduces novel techniques to drastically reduce the number of annotations and pro-
vide effective solutions to previously deemed difficult problems. Profile-guided qui-
escence detection relies on long-lived blocking call profiling to identify quiescent
points in the program and implement the first race-free and deadlock-free generic
quiescence detection protocol with convergence guarantees. State-driven mutable
record-replay builds on well-established record-replay techniques to reuse existing
code paths and implement the first automated control migration strategy that recon-
structs the process/thread hierarchy with minimal user intervention. Mutable GC-
style tracing combines well-established precise and conservative garbage collection
techniques to implement the first automated state transfer strategy that can safely
reconstruct and transform the necessary program state after restart even with partial
annotation/instrumentation coverage. Our experience with programs found “in the
wild” shows that our techniques are practical, efficient, and significantly raise the bar
in terms of deployability, reliability, and maintenance effort over the prior solutions.

7.10 Acknowledgments

This work has been supported by European Research Council under grant ERC Ad-
vanced Grant 227874.

C
ha

pt
er

8

8
Conclusion

Despite nearly 40 years of research in the area, with Robert Fabry authoring the first
paper on the subject in 1976 [99], existing live update solutions still suffer from im-
portant dependability and usability limitations that hinder their widespread adoption.
Fabry describes two fundamental subproblems in the design of live update systems.
The first subproblem is concerned with the mechanisms to implement live update,
that is, in Fabry’s own words: “the mechanics of constructing a system in such a
way that the programs and the data structures which they manage can be changed
without stopping the system.” The second subproblem, in turn, is concerned with
live update safety, that is, in Fabry’s own words: “how one convinces oneself that
a change will operate correctly if it is installed.” This dissertation makes important
contributions for both subproblems, investigating general techniques for truly safe
and automatic live update both at the OS and application level. In the following, we
summarize the key results of this dissertation.

1. Process-level updates. We presented process-level updates, a new live update
technique which confines different program versions in distinct processes and au-
tomatically performs state transfer and control migration between them. Process-
level updates provide three major improvements over prior techniques. First,
they allow version updates to be installed in the most natural way with no need
for complex—and potentially unsafe—patch analysis and preparation tools. Sec-
ond, they preserve the original internal representation of the program, without in-
hibiting compiler optimizations or introducing address space fragmentation over
time. Finally, they allow updates between program versions with arbitrarily dif-
ferent code and data layout, posing no restrictions on the nature of the updates
supported. We presented process-level update implementations at the OS level
(in PROTEOS) and at the application level (on Linux), demonstrating their per-
formance and updatability benefits.

165

166 CHAPTER 8. CONCLUSION

2. Automated state transfer. We presented a new state transfer framework, comple-
menting our process-level update implementation with a generic mechanism to
remap the program state between versions. Ours is the first state transfer frame-
work that supports updates between arbitrarily different program versions, oper-
ating type and pointer transformations on the fly with little user intervention. The
framework fully automates state transfer for many common structural changes
and supports a convenient programming model for more complex user exten-
sions. Unlike prior solutions, our framework can automatically support all the
standard programming idioms allowed by C, including interior pointers, void*
pointers, and custom memory allocation schemes. In addition, our mutable GC-
style tracing strategy can automatically transfer “hidden pointers” with no extra
annotations required. We integrated the proposed framework in our process-level
update implementation, evaluating the update time and the engineering effort re-
quired to deploy our techniques.

3. Automated control migration. We presented state-driven mutable record-replay,
a new technique to automatically perform control migration between program
versions. Our technique provides two key improvements over prior solutions.
First, it drastically reduces the engineering effort, reusing existing initialization-
time code paths and only resorting to manual annotations for nonpersistent quies-
cent points. Second, it provides support for generic multiprocess multithreaded
programs, automatically reconstructing the process/thread hierarchy while tol-
erating changes in the thread behavior. We implemented state-driven mutable
record-replay support for generic C programs on Linux, demonstrating its effec-
tiveness on real-world server applications. In PROTEOS, in contrast, we relied
on a well-defined event-driven model to automatically migrate control between
program versions, confirming that conscious system design can significantly sim-
plify the live update problem.

4. Fault-tolerant live update. We presented three new techniques which substan-
tially improve the fault tolerance guarantees of prior live update solutions. Hot
rollback relies on our process-level abstraction to implement fault-tolerant live
update transactions, with the ability to detect run-time errors and safely resume
execution in the original version when needed. Program state invariants rely on
data invariants derived from static analysis to extend our error detection guar-
antees to several classes of logical and memory errors. Time-traveling state
transfer, finally, implements multi-version and semantics-preserving state trans-
fer transactions to detect arbitrary memory errors with a minimal amount of
trusted code. We evaluated our techniques both at the OS and at the applica-
tion level, conducting a number of fault and error injection experiments to assess
their fault-tolerance properties. Chapter 6, in particular, presented the first fault
injection campaign on live update code.

167

C
ha

pt
er

8

5. System support for safe update state detection. We presented two new tech-
niques to detect safe update states. PROTEOS’s event-driven design provides
support for state quiescence, a generic quiescence mechanism that gives users
fine-grained control over update states. In particular, users can specify state fil-
ters to express the conditions under which an update is possible and interface
filters to defer delivery of particular events that may otherwise weaken conver-
gence guarantees. We demonstrated the benefits of our techniques in complex
update scenarios involving a number of interconnected components, where ade-
quate system support is crucial to simplify reasoning on update safety. Profile-
guided quiescence detection, in turn, provides a general quiescence detection
technique suitable for legacy C programs. Unlike prior solutions, our technique
relies on profile-guided program instrumentation to provide strong convergence
guarantees with little annotation effort. We implemented profile-guided quies-
cence detection support for generic C programs on Linux, demonstrating its ef-
fectiveness and scalability properties on real-world server applications.

6. Memory leakage reclaiming. We presented memory leakage reclaiming, a new
self-healing application of live update. Memory leakage reclaiming relies on our
live update techniques to implement a poor man’s garbage collector. The idea is
to periodically allow same-version live updates to automatically reclaim mem-
ory leakage using the heap traversal strategy implemented by our state transfer
framework. Unlike traditional garbage collectors, our implementation relies on
process-level updates to guarantee a fully untrusted design. We implemented our
ideas in PROTEOS and evaluated the resulting accuracy-performance tradeoffs.

7. Live rerandomization. We presented live rerandomization, a new systems secu-
rity application of live update. Live rerandomization combines our live update
techniques with fine-grained address space randomization to implement an on-
line diversification strategy. The idea is to periodically allow live updates be-
tween semantically-equivalent program variants with arbitrarily different mem-
ory layouts. This strategy improves the security of prior address space random-
ization solutions in face of information disclosure vulnerabilities, minimizing
the knowledge acquired by an attacker probing the system. We implemented our
ideas in PROTEOS and evaluated the resulting frequency-performance tradeoffs.

Future Directions

With the live update problem proven to be undecidable in the general case [125],
the techniques presented in this dissertation can be hardly considered conclusive for
the design of truly safe and automatic live update systems. The job will be finished
when the average user has never experienced a “restart” update in his lifetime and
update alerts have passed into history. In the following, we highlight a number of
opportunities for future research directions.

168 CHAPTER 8. CONCLUSION

1. Complex state transformations. Our state transfer framework can automatically
operate common structural state transformations, but requires user intervention to
handle more complex semantic state changes. While fully automating the process
for arbitrarily complex updates is unrealistic, it may be valuable to investigate
techniques to handle nontrivial state changes for many common cases of interest.
A promising direction is to rely on patch analysis strategies to automatically
generate state transformation stubs, for example by drawing inspiration from live
patch testing [277; 199] or impact analysis [223] techniques. Recent work on
generic Java programs has presented encouraging results in this direction [192].

2. Complex control transformations. A limitation of our current state-driven mu-
table record-replay implementation is the inability to support nonpersistent qui-
escent points without user intervention. To overcome this limitation, it may be
valuable to investigate techniques to efficiently automate control migration for
arbitrary quiescent points, for example, by extending our state-driven mutable
record-replay strategy to specific code paths and operations determined via pro-
gram analysis. Other challenges are to automatically (or semiautomatically) sup-
port control migration for programs with a nondeterministic process model and
for software updates that induce changes in the original quiescent behavior of the
program. For the latter, a promising direction is to record program runs leading
to valid quiescent configurations and rely on general-purpose mutable record-
replay techniques [280] to replay the recorded executions and generate all the
relevant thread configuration mappings across versions.

3. Safe quiescence. The quiescence mechanisms presented in this dissertation pro-
vide system support for stable and predictable update states, but cannot alone
identify errors in user-driven policies. For example, if the user specifies incor-
rect state filters or quiescent points, the system may never reach quiescence in
bounded time. To improve the convergence guarantees, it may be valuable to
investigate techniques to validate or reduce user input. For validation purposes, a
promising direction is to rely on live update testing tools [133; 136] to stress and
verify all the legal quiescence configurations encountered at runtime, possibly
leveraging symbolic execution tools [63] to improve the coverage of the analy-
sis. To reduce user input for state quiescence, an option is to suggest likely state
filters to the user, for example, by relying on patch impact analysis tools [223] to
determine systems states that are minimally affected by an update. To reduce user
input for profile-guided quiescence, in turn, an option is to adopt more sophisti-
cate strategies to detect blocking calls listening for internal events, for example,
by relying on system-wide dynamic taint analysis [240; 80; 290; 81; 295] to track
event propagation in a cross-process fashion.

169

C
ha

pt
er

8

4. Automatic allocator instrumentation. Our state transfer framework relies on
accurate allocator instrumentation to implement precise pointer analysis and in-
crease the state transformation coverage, ultimately reducing the effort to support
live update over time. The current implementation provides support for the stan-
dard allocator and for user-annotated region-based allocation functions [46]. To
reduce the engineering effort, it may be valuable to investigate techniques to ef-
ficiently and automatically instrument generic allocator implementations. A first
step is to implement metadata management for currently unsupported custom al-
location schemes—e.g., slabs [58]. A second step is to investigate techniques
to automatically identify custom allocation functions and completely eliminate
the need for user annotations. Prior work on specification inference [175] and
reverse engineering [287] has presented encouraging results in this direction.

5. Advanced error detection. Our state management techniques provide strong
fault-tolerance guarantees at live update time, but cannot alone detect and re-
cover from arbitrary errors outside our fault model. We envision three main di-
rections to improve the error detection and recovery coverage of our techniques.
A first direction is to investigate techniques for tainted state management, impor-
tant for bug fix updates that may be deployed with the old version already in a
tainted state. Promising solutions are self-healing techniques specific to particu-
lar classes of errors—for example, infinite loop escape [169]—or more generic
automated program repair techniques—a subject which has been the focus of
much recent research [159; 282; 255; 235; 180; 188; 220]. A second direction is
to investigate techniques to detect complex semantic errors at live update time,
for example, by relying on more sophisticated static analysis techniques—for
example, range analysis [249]—to improve the accuracy of our program state
invariants. A third direction is to investigate techniques to efficiently detect er-
rors in the update itself, for example by relying on live patch testing [277; 199],
symbolic patch testing [197], or multi-version execution [148].

6. Efficient state transfer. Our process-level state transfer strategy may yield sub-
stantial update times for programs with a very large and continuously modified
state, a scenario in which our dirty state tracking optimization, in particular, may
prove less effective. While not a concern for update safety, a lengthy state transfer
process may appreciably weaken availability or real-time guarantees for particu-
lar systems. We envision three main directions to further reduce the state transfer
time. A first direction is to investigate techniques to automatically identify state
filters that yield a minimal amount of in-flight state to transfer. A second di-
rection is to investigate techniques to speed up our current implementation, for
example, by drawing inspiration from parallel garbage collection techniques [37]
to parallelize our mutable GC-style tracing strategy. A third direction is to inves-
tigate techniques to lazily transform the relevant portions of the state, an idea
explored in prior solutions in an in-place live update context [214].

170 CHAPTER 8. CONCLUSION

7. New applications. To conclude, another future direction is to investigate the ap-
plicability of our live update techniques to other contexts and applications. An
option is to rely on our techniques to implement rebootless update support for
commodity operating systems, for example, by combining our process-level up-
date strategy with shadow kernel techniques described in prior work [84; 264].
Other directions include applications of live update to fast prototyping or run-
time adaptation, for example, to dynamically adapt the behavior of the system
to the monitored workload [265]. Another promising direction is to rely on our
techniques to implement new live workaround systems [285], similar to the appli-
cations proposed in previous chapters to mitigate memory leakage bugs (Chap-
ter 2) and security vulnerabilities (Chapter 3). Prior work has already investi-
gated live workaround techniques for concurrency bugs [285], but, as demon-
strated in this dissertation, the general idea has much broader applicability.

References

[1] Apache benchmark (AB). http://httpd.apache.org/docs/2.0/
programs/ab.html.

[2] ASLR: Leopard versus Vista. http://blog.laconicsecurity.com/
2008/01/aslr-leopard-versus-vista.html.

[3] CRIU. http://criu.org.

[4] Cryopid2. http://sourceforge.net/projects/cryopid2.

[5] Vulnerability summary for CVE-2006-0095. http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2006-0095.

[6] dkftpbench. http://www.kegel.com/dkftpbench.

[7] FUSE: Filesystem in userspace. http://fuse.sourceforge.net.

[8] Green hills integrity. http://www.ghs.com/products/rtos/
integrity.html.

[9] Ksplice performance on security patches. http://www.ksplice.com/cve-
evaluation.

[10] Linux vmsplice vulnerabilities. http://isec.pl/vulnerabilities/
isec-0026-vmsplice_to_kernel.txt.

[11] Microsoft Windows TCP/IP IGMP MLD remote buffer overflow vulnerabil-
ity. http://www.securityfocus.com/bid/27100.

[12] OpenVZ. http://wiki.openvz.org.

[13] pyftpdlib. https://code.google.com/p/pyftpdlib.

171

http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/docs/2.0/programs/ab.html
http://blog.laconicsecurity.com/2008/01/aslr-leopard-versus-vista.html
http://blog.laconicsecurity.com/2008/01/aslr-leopard-versus-vista.html
http://criu.org
http://sourceforge.net/projects/cryopid2
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2006-0095
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2006-0095
http://www.kegel.com/dkftpbench
http://fuse.sourceforge.net
http://www.ghs.com/products/rtos/integrity.html
http://www.ghs.com/products/rtos/integrity.html
http://www.ksplice.com/cve-evaluation
http://www.ksplice.com/cve-evaluation
http://isec.pl/vulnerabilities/isec-0026-vmsplice_to_kernel.txt
http://isec.pl/vulnerabilities/isec-0026-vmsplice_to_kernel.txt
http://www.securityfocus.com/bid/27100
http://wiki.openvz.org
https://code.google.com/p/pyftpdlib

172 CHAPTER 8. CONCLUSION

[14] The story of a simple and dangerous kernel bug. http://butnotyet.
tumblr.com/post/175132533/the-story-of-a-simple-and-
dangerous-kernel-bug.

[15] SysBench. http://sysbench.sourceforge.net.

[16] httperf. http://www.hpl.hp.com/research/linux/httperf.

[17] lighttpd. http://www.lighttpd.net.

[18] Ksplice Uptrack. http://www.ksplice.com.

[19] nginx. http://nginx.org.

[20] OpenBSD’s IPv6 mbufs remote kernel buffer overflow. http://www.
securityfocus.com/archive/1/462728/30/0/threaded.

[21] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow
integrity principles, implementations, and applications. ACM Trans. Inf. and
Syst. Secur., 13(1):1–40, 2009.

[22] Sarita V Adve, Vikram S Adve, and Yuanyuan Zhou. Using likely program
invariants to detect hardware errors. In Proc. of the Int’l Conf. on Dependable
Systems and Networks, pages 70–79, 2008.

[23] Edward E. Aftandilian, Samuel Z. Guyer, Martin Vechev, and Eran Yahav.
Asynchronous assertions. In Proc. of the 26th ACM Conf. on Object-Oriented
Programming, Systems, Languages, and Applications, pages 275–288, 2011.

[24] Sameer Ajmani. A review of software upgrade techniques for distributed
systems.

[25] Sameer Ajmani, Barbara Liskov, and Liuba Shrira. Scheduling and simula-
tion: How to upgrade distributed systems. In Proc. of the Ninth Workshop on
Hot Topics in Operating Systems, volume 9, pages 43–48, 2003.

[26] Sameer Ajmani, Barbara Liskov, Liuba Shrira, and Dave Thomas. Modular
software upgrades for distributed systems. In Proc. of the 20th European
Conf. on Object-Oriented Programming, pages 452–476, 2006.

[27] Periklis Akritidis. Cling: A memory allocator to mitigate dangling pointers.
In Proc. of the 19th USENIX Security Symp., page 12, 2010.

[28] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel
Castro. Preventing memory error exploits with WIT. In Proc. of the IEEE
Symp. on Security and Privacy, pages 263–277, 2008.

[29] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy
bounds checking: An efficient and backwards-compatible defense against
out-of-bounds errors. In Proc. of the 18th USENIX Security Symp., pages
51–66, 2009.

http://butnotyet.tumblr.com/post/175132533/the-story-of-a-simple-and-dangerous-kernel-bug
http://butnotyet.tumblr.com/post/175132533/the-story-of-a-simple-and-dangerous-kernel-bug
http://butnotyet.tumblr.com/post/175132533/the-story-of-a-simple-and-dangerous-kernel-bug
http://sysbench.sourceforge.net
http://www.hpl.hp.com/research/linux/httperf
http://www.lighttpd.net
http://www.ksplice.com
http://nginx.org
http://www.securityfocus.com/archive/1/462728/30/0/threaded
http://www.securityfocus.com/archive/1/462728/30/0/threaded

173

[30] João Paulo A. Almeida, Marten van Sinderen, and Lambert Nieuwenhuis.
Transparent dynamic reconfiguration for CORBA. In Proc. of the Third Int’l
Symp. on Distributed Objects and Applications, pages 197–207, 2001.

[31] Gautam Altekar and Ion Stoica. ODR: Output-deterministic replay for mul-
ticore debugging. In Proc. of the 22nd ACM Symp. on Oper. Systems Prin.,
pages 193–206, 2009.

[32] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew Schultz. OPUS:
Online patches and updates for security. In Proc. of the 14th USENIX Security
Symp., pages 19–19, 2005.

[33] Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha, Jim
Gruen, Nathan Giles, and Rajeev Barua. A compiler-level intermediate rep-
resentation based binary analysis and rewriting system. In Proc. of the Eighth
ACM European Conf. on Computer Systems, pages 295–308, 2013.

[34] Jakob R. Andersen, Lars Bak, Steffen Grarup, Kasper V. Lund, Toke Eskild-
sen, Klaus Marius Hansen, and Mads Torgersen. Design, implementation,
and evaluation of the resilient Smalltalk embedded platform. Comput. Lang.
Syst. Struct., 31(3-4):127–141, 2005.

[35] Jason Ansel, Kapil Arya, and Gene Cooperman. DMTCP: Transparent check-
pointing for cluster computations and the desktop. In Proc. of the Int’l Symp.
on Parallel and Distributed Processing, pages 1–12, 2009.

[36] Jeff Arnold and M. Frans Kaashoek. Ksplice: Automatic rebootless kernel
updates. In Proc. of the Fourth ACM European Conf. on Computer Systems,
pages 187–198, 2009.

[37] Clement R. Attanasio, David F. Bacon, Anthony Cocchi, and Stephen Smith.
A comparative evaluation of parallel garbage collector implementations. In
Proc. of the 14th Int’l Conf. on Languages and Compilers for Parallel Com-
puting, pages 177–192, 2003.

[38] Kumar Avijit, Prateek Gupta, and Deepak Gupta. TIED, LibsafePlus: tools
for runtime buffer overflow protection. In Proc. of the 13th USENIX Security
Symp., page 4, 2004.

[39] J. Baker, A. Cunei, T. Kalibera, F. Pizlo, and J. Vitek. Accurate garbage
collection in uncooperative environments revisited. Concurr. Comput.: Pract.
Exper., 21(12):1572–1606, 2009.

[40] Radu Banabic and George Candea. Fast black-box testing of system recovery
code. In Proc. of the Seventh ACM European Conf. on Computer Systems,
pages 281–294, 2012.

[41] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek. Fault injection

174 CHAPTER 8. CONCLUSION

experiments using FIAT. IEEE Trans. Comput., 39(4):575–582, 1990.

[42] Andrew Baumann, Gernot Heiser, Jonathan Appavoo, Dilma Da Silva, Orran
Krieger, Robert W. Wisniewski, and Jeremy Kerr. Providing dynamic update
in an operating system. In Proc. of the USENIX Annual Tech. Conf., page 32,
2005.

[43] Andrew Baumann, Jonathan Appavoo, Robert W. Wisniewski, Dilma Da
Silva, Orran Krieger, and Gernot Heiser. Reboots are for hardware: Chal-
lenges and solutions to updating an operating system on the fly. In Proc. of
the USENIX Annual Tech. Conf., pages 1–14, 2007.

[44] Rida A. Bazzi, Kristis Makris, Peyman Nayeri, and Jun Shen. Dynamic soft-
ware updates: The state mapping problem. In Proc. of the Second Int’l Work-
shop on Hot Topics in Software Upgrades, page 2, 2009.

[45] Emery D Berger and Benjamin Zorn. DieHard: probabilistic memory safety
for unsafe languages. In Proc. of the 27th ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation, pages 158–168, 2006.

[46] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Reconsid-
ering custom memory allocation. In Proc. of the 17th ACM Conf. on Object-
Oriented Programming, Systems, Languages, and Applications, pages 1–12,
2002.

[47] B. N. Bershad, S. Savage, E. G. Sirer, M. E. Fiuczynski, D. Becker, C. Cham-
bers, and S. Eggers. Extensibility, safety and performance in the SPIN oper-
ating system. In Proc. of the 15th ACM Symp. on Oper. Systems Prin., pages
267–284, 1995.

[48] Sandeep Bhatkar and R. Sekar. Data space randomization. In Proc. of the
Fifth Int’l Conf. on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 1–22, 2008.

[49] Sandeep Bhatkar, Daniel C DuVarney, and R. Sekar. Address obfuscation:
An efficient approach to combat a board range of memory error exploits. In
Proc. of the 12th USENIX Security Symp., page 8, 2003.

[50] Sandeep Bhatkar, R. Sekar, and Daniel C DuVarney. Efficient techniques for
comprehensive protection from memory error exploits. In Proc. of the 14th
USENIX Security Symp., page 17, 2005.

[51] E. W. Biederman. Multiple instances of the global Linux namespaces. In
Proc. of the Linux Symp., 2006.

[52] M. Blair, S. Obenski, and P. Bridickas. Patriot missile defense: Software
problem led to system failure at Dhahran. Technical Report GAO/IMTEC-92-
26, United States-General Accounting Office-Information Management and

175

Technology Division, 1992.

[53] T. Bloom. Dynamic module replacement in a distributed programming sys-
tem. PhD thesis, MIT, 1983.

[54] T. Bloom and M. Day. Reconfiguration and module replacement in Argus:
Theory and practice. Software Eng. J., 8(2):102–108, 1993.

[55] Hans-J. Boehm. Bounding space usage of conservative garbage collectors. In
Proc. of the 29th ACM SIGPLAN-SIGACT Symp. on Principles of Program-
ming Languages, pages 93–100, 2002.

[56] Hans-Juergen Boehm. Space efficient conservative garbage collection. In
Proc. of the ACM SIGPLAN Conf. on Programming Language Design and
Implementation, pages 197–206, 1993.

[57] Hristo Bojinov, Dan Boneh, Rich Cannings, and Iliyan Malchev. Address
space randomization for mobile devices. In Proc. of the Fourth ACM Conf.
on Wireless Network Security, pages 127–138, 2011.

[58] Jeff Bonwick. The slab allocator: An object-caching kernel memory allocator.
In Proc. of the USENIX Summer Tech. Conf., page 6, 1994.

[59] Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira, Chuang-Hue Moh,
and Steven Richman. Lazy modular upgrades in persistent object stores. In
Proc. of the 18th ACM Conf. on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 403–417, 2003.

[60] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating malicious device
drivers in Linux. In Proc. of the USENIX Annual Tech. Conf., page 9, 2010.

[61] C-skills. Linux udev trickery. http://c-skills.blogspot.com/2009/
04/udev-trickery-cve-2009-1185-and-cve.html.

[62] C. Cadar and P. Hosek. Multi-version software updates. In Proc. of the Fourth
Int’l Workshop on Hot Topics in Software Upgrades, pages 36–40, 2012.

[63] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems programs.
In Proc. of the 8th USENIX Symp. on Operating Systems Design and Imple-
mentation, pages 209–224, 2008.

[64] João Carreira, Henrique Madeira, and João Gabriel Silva. Xception: A tech-
nique for the experimental evaluation of dependability in modern computers.
IEEE Trans. Softw. Eng., 24(2):125–136, 1998.

[65] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by enforc-
ing data-flow integrity. In Proc. of the Seventh USENIX Symp. on Operating
Systems Design and Implementation, pages 147–160, 2006.

http://c-skills.blogspot.com/2009/04/udev-trickery-cve-2009-1185-and-cve.html
http://c-skills.blogspot.com/2009/04/udev-trickery-cve-2009-1185-and-cve.html

176 CHAPTER 8. CONCLUSION

[66] Ramesh Chandra, R.M. Lefever, K.R. Joshi, M. Cukier, and W.H. Sanders. A
global-state-triggered fault injector for distributed system evaluation. IEEE
Trans. Parallel Distrib. Syst., 15(7):593–605, 2004.

[67] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M.F. Kaashoek.
Linux kernel vulnerabilities: State-of-the-art defenses and open problems. In
Proc. of the Second Asia-Pacific Workshop on Systems, 2011.

[68] Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang, and Pen-Chung Yew.
Live updating operating systems using virtualization. In Proc. of the Second
Int’l Conf. on Virtual Execution Environments, pages 35–44, 2006.

[69] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew. POLUS:
A POwerful live updating system. In Proc. of the 29th Int’l Conf. on Software
Eng., pages 271–281, 2007.

[70] Tzicker Chiueh and FuHau Hsu. RAD: A compile-time solution to buffer
overflow attacks. In Proc. of the 21st Int’l Conf. on Distr. Computing Systems,
pages 409–417, 2001.

[71] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Shredding your
garbage: Reducing data lifetime through secure deallocation. In Proc. of the
14th USENIX Security Symp., pages 22–22, 2005.

[72] J. Christmansson and R. Chillarege. Generation of an error set that emulates
software faults based on field data. In Proc. of the 26th Int’l Symp. on Fault-
Tolerant Computing, page 304, 1996.

[73] James Clause, Ioannis Doudalis, Alessandro Orso, and Milos Prvulovic. Ef-
fective memory protection using dynamic tainting. In Proc. of the 22nd
IEEE/ACM Int’l Conf. on Automated Software Eng., pages 284–292, 2007.

[74] D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa. Experimental analysis
of binary-level software fault injection in complex software. In Proc. of the
Ninth European Dependable Computing Conf., pages 162–172, 2012.

[75] Marco Cova, Davide Balzarotti, Viktoria Felmetsger, and Giovanni Vigna.
Swaddler: An approach for the anomaly-based detection of state violations
in web applications. In Proc. of the 10th Int’l Conf. on Recent Advances in
Intrusion Detection, pages 63–86, 2007.

[76] C. Cowan, T. Autrey, C. Krasic, C. Pu, and J. Walpole. Fast concurrent dy-
namic linking for an adaptive operating system. In Proc. of the Third Int’l
Conf. on Configurable Distributed Systems, pages 108–115, 1996.

[77] Crispin Cowan, Coltan Pu, Dave Maier, Heather Hintony, Jonathan Walpole,
Peat Bakke, Steve Beattle, Aaron Grier, Perry Wagle, and Qian Zhang. Stack-
Guard: Automatic adaptive detection and prevention of buffer-overflow at-

177

tacks. In Proc. of the Seventh USENIX Security Symp., page 5, 1998.

[78] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu,
Jack Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-variant
systems: A secretless framework for security through diversity. In Proc. of
the 15th USENIX Security Symp., pages 105–120, 2006.

[79] Olivier Crameri, Nikola Knezevic, Dejan Kostic, Ricardo Bianchini, and
Willy Zwaenepoel. Staged deployment in Mirage, an integrated software up-
grade testing and distribution system. In Proc. of the 21st ACM Symp. on
Oper. Systems Prin., pages 221–236, 2007.

[80] Jedidiah R. Crandall and Frederic T. Chong. Minos: Control data attack pre-
vention orthogonal to memory model. In Proc. of the 37th Int’l Symp. on
Microarchitecture, pages 221–232, 2004.

[81] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Real-world buffer
overflow protection for userspace & kernelspace. In Proc. of the 17th USENIX
Security Symp., pages 395–410, 2008.

[82] Francis M David, Ellick M Chan, Jeffrey C Carlyle, and Roy H Campbell.
CuriOS: Improving reliability through operating system structure. In Proc. of
the Eighth USENIX Symp. on Operating Systems Design and Implementation,
pages 59–72, 2008.

[83] Ronald F. DeMara, Yili Tseng, and Abdel Ejnioui. Tiered algorithm for dis-
tributed process quiescence and termination detection. IEEE Trans. Parallel
Distrib. Syst., 18(11):1529–1538, 2007.

[84] Alex Depoutovitch and Michael Stumm. Otherworld: Giving applications a
chance to survive OS kernel crashes. In Proc. of the Fifth ACM European
Conf. on Computer systems, pages 181–194, 2010.

[85] Solar Designer. Getting around non-executable stack (and fix). http://
seclists.org/bugtraq/1997/Aug/63.

[86] Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R. Dage-
nais, and Jonathan Walpole. User-level implementations of read-copy update.
IEEE Trans. Parallel Distrib. Syst., 23(2):375–382, 2012.

[87] Dinakar Dhurjati and Vikram Adve. Backwards-compatible array bounds
checking for C with very low overhead. In Proc. of the 28th Int’l Conf. on
Software Eng., pages 162–171, 2006.

[88] Martin Dimitrov and Huiyang Zhou. Unified architectural support for soft-
error protection or software bug detection. In Proc. of the 16th Int’l Conf. on
Parallel Architecture and Compilation Techniques, pages 73–82, 2007.

[89] Dominic Duggan. Type-based hot swapping of running modules. In Proc.

http://seclists.org/bugtraq/1997/Aug/63
http://seclists.org/bugtraq/1997/Aug/63

178 CHAPTER 8. CONCLUSION

of the Sixth ACM SIGPLAN Int’l Conf. on Functional programming, pages
62–73, 2001.

[90] Tudor Dumitras and Priya Narasimhan. Why do upgrades fail and what can
we do about it?: Toward dependable, online upgrades in enterprise system. In
Proc. of the 10th Int’l Conf. on Middleware, pages 1–20, 2009.

[91] Tudor Dumitras, Jiaqi Tan, Zhengheng Gho, and Priya Narasimhan. No
more HotDependencies: Toward dependency-agnostic online upgrades in dis-
tributed systems. In Proc. of the Third Workshop on Hot Topics in System
Dependability, page 14, 2007.

[92] Tudor Dumitras, Priya Narasimhan, and Eli Tilevich. To upgrade or not to
upgrade: Impact of online upgrades across multiple administrative domains.
In Proc. of the ACM Conf. on Object-Oriented Programming, Systems, Lan-
guages, and Appilcations, pages 865–876, 2010.

[93] Joao A. Duraes and Henrique S. Madeira. Emulation of software faults: A
field data study and a practical approach. IEEE Trans. Softw. Eng., 32(11):
849–867, 2006.

[94] Tyler Durden. Bypassing PaX ASLR protection. Phrack Magazine, 9(59),
2002.

[95] Björn Döbel, Hermann Härtig, and Michael Engel. Operating system support
for redundant multithreading. In Proc. of the 10th Int’l Conf. on Embedded
software, pages 83–92, 2012.

[96] Jake Edge. Linux ASLR vulnerabilities. http://lwn.net/Articles/
330866/.

[97] Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. Dy-
namically discovering likely program invariants to support program evolution.
In Proc. of the 21st Int’l Conf. on Software Eng., pages 213–224, 1999.

[98] Stefan Esser. Exploiting the iOS kernel. In Black Hat USA, 2011.

[99] R. S. Fabry. How to design a system in which modules can be changed on
the fly. In Proc. of the Second Int’l Conf. on Software Eng., pages 470–476,
1976.

[100] Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues. Finding complex concur-
rency bugs in large multi-threaded applications. In Proc. of the Sixth ACM
European Conf. on Computer Systems, pages 215–228, 2011.

[101] S. Forrest, A. Somayaji, and D. Ackley. Building diverse computer systems.
In Proc. of the Sixth Workshop on Hot Topics in Operating Systems, page 67,
1997.

[102] Armando Fox. When does fast recovery trump high reliability? In Proc. of

http://lwn.net/Articles/330866/
http://lwn.net/Articles/330866/

179

the Second Workshop on Evaluating and Architecting System Dependability,
2002.

[103] Ophir Frieder and Mark E. Segal. On dynamically updating a computer pro-
gram: From concept to prototype. J. Syst. Softw., 14(2):111–128, 1991.

[104] C. Giuffrida and A.S. Tanenbaum. Safe and automated state transfer for se-
cure and reliable live update. In Proc. of the Fourth Int’l Workshop on Hot
Topics in Software Upgrades, pages 16–20, 2012.

[105] Cristiano Giuffrida and Andrew S. Tanenbaum. Cooperative update: A new
model for dependable live update. In Proc. of the Second Int’l Workshop on
Hot Topics in Software Upgrades, pages 1–6, 2009.

[106] Cristiano Giuffrida and Andrew S. Tanenbaum. A taxonomy of live updates.
In Proc. of the 16th ASCI Conf., 2010.

[107] Cristiano Giuffrida, Lorenzo Cavallaro, and Andrew S Tanenbaum. We
crashed, now what? In Proc. of the Sixth Workshop on Hot Topics in Sys-
tem Dependability, pages 1–8, 2010.

[108] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Enhanced
operating system security through efficient and fine-grained address space
randomization. In Proc. of the 21st USENIX Security Symp., page 40, 2012.

[109] Cristiano Giuffrida, Lorenzo Cavallaro, and Andrew S. Tanenbaum. Practical
automated vulnerability monitoring using program state invariants. In Proc.
of the Int’l Conf. on Dependable Systems and Networks, pages 1–12, 2013.

[110] Cristiano Giuffrida, Calin Iorgulescu, Anton Kuijsten, and Andrew S. Tanen-
baum. Back to the future: Fault-tolerant live update with time-traveling state
transfer. In Proc. of the 27th USENIX Systems Administration Conf., 2013.

[111] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. EDFI: A
dependable fault injection tool for dependability benchmarking experiments.
In Proc. of the Pacific Rim Int’l Symp. on Dependable Computing, 2013.

[112] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Safe and
automatic live update for operating systems. In Proc. of the 18th Int’l Conf. on
Architectural Support for Programming Languages and Operating Systems,
pages 279–292, 2013.

[113] Cristiano Giuffrida, Calin Iorgulescu, and Andrew S. Tanenbaum. Mutable
checkpoint-restart: Automating live update for generic server programs. In
Proc. of the ACM/IFIP/USENIX Middleware Conference, 2014.

[114] Wolfram Gloger. ptmalloc. http://www.malloc.de/en.

[115] Brent Goodfellow. Patch tuesday. http://www.thetechgap.com/2005/
01/strongpatch_tue.html.

http://www.malloc.de/en
http://www.thetechgap.com/2005/01/strongpatch_tue.html
http://www.thetechgap.com/2005/01/strongpatch_tue.html

180 CHAPTER 8. CONCLUSION

[116] Michael Grace, Zhi Wang, Deepa Srinivasan, Jinku Li, Xuxian Jiang, Zhenkai
Liang, and Siarhei Liakh. Transparent protection of commodity OS kernels
using hardware virtualization. In Proc. of the Sixth Conf. on Security and
Privacy in Communication Networks, pages 162–180, 2010.

[117] Jim Gray and Daniel P Siewiorek. High-availability computer systems. IEEE
Computer, 24:39–48, 1991.

[118] Penny Grubb and Armstrong A. Takang. Software maintenance: Concepts
and practice. World Scientific, 2nd edition, 2003.

[119] Weining Gu, Z. Kalbarczyk, Ravishankar, K. Iyer, and Zhenyu Yang. Char-
acterization of Linux kernel behavior under errors. In Proc. of the Int’l Conf.
on Dependable Systems and Networks, pages 459–468, 2003.

[120] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M. Heller-
stein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Koushik Sen,
and Dhruba Borthakur. FATE and DESTINI: A framework for cloud recovery
testing. In Proc. of the Eighth USENIX Conf. on Networked Systems Design
and Implementation, pages 18–18, 2011.

[121] P. J. Guo and D. Engler. Linux kernel developer responses to static analysis
bug reports. In Proc. of the USENIX Annual Tech. Conf., pages 285–292,
2009.

[122] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming Wu,
M. Frans Kaashoek, and Zheng Zhang. R2: An application-level kernel for
record and replay. In Proc. of the Eighth USENIX Symp. on Operating Sys-
tems Design and Implementation, pages 193–208, 2008.

[123] Deepak Gupta. On-line software version change. PhD thesis, Indian Institute
of Technology Kanpur, 1994.

[124] Deepak Gupta and Pankaj Jalote. On-line software version change using state
transfer between processes. Softw. Pract. and Exper., 23(9):949–964, 1993.

[125] Deepak Gupta, Pankaj Jalote, and Gautam Barua. A formal framework for
on-line software version change. IEEE Trans. Softw. Eng., 22(2):120–131,
1996.

[126] Jungwoo Ha, Matthew Arnold, Stephen M. Blackburn, and Kathryn S.
McKinley. A concurrent dynamic analysis framework for multicore hard-
ware. In Proc. of the 24th ACM Conf. on Object-Oriented Programming,
Systems, Languages, and Appilcations, pages 155–174, 2009.

[127] Sudheendra Hangal and Monica S Lam. Tracking down software bugs using
automatic anomaly detection. In Proc. of the 24th Int’l Conf. on Software
Eng., pages 291–301, 2002.

181

[128] Saul Hansell. Glitch makes teller machines take twice what they give. The
New York Times, 1994.

[129] Paul H. Hargrove and Jason C. Duell. Berkeley lab checkpoint/restart (BLCR)
for Linux clusters. J. Physics: Conference Series, 46(1):494, 2006.

[130] Daniel Hartmeier. Design and performance of the OpenBSD stateful packet
filter (pf). In Proc. of the USENIX Annual Tech. Conf., pages 171–180, 2002.

[131] C. M Hayden, E. K Smith, M. Hicks, and J. S Foster. State transfer for clear
and efficient runtime updates. In Proc. of the Third Int’l Workshop on Hot
Topics in Software Upgrades, pages 179–184, 2011.

[132] C. M Hayden, E. K Smith, M. Denchev, M. Hicks, and J. S Foster. Kitsune:
Efficient, general-purpose dynamic software updating for C. In Proc. of the
ACM Conf. on Object-Oriented Programming, Systems, Languages, and Ap-
pilcations, 2012.

[133] Christopher M. Hayden, Eric A. Hardisty, Michael Hicks, and Jeffrey S. Fos-
ter. Efficient systematic testing for dynamically updatable software. In Proc.
of the Second Int’l Workshop on Hot Topics in Software Upgrades, pages 1–5,
2009.

[134] Christopher M. Hayden, Stephen Magill, Michael Hicks, Nate Foster, and Jef-
frey S. Foster. Specifying and verifying the correctness of dynamic software
updates. In Proc. of the Fourth Int’l Conf. on Verified Software: Theories,
Tools, Experiments, pages 278–293, 2012.

[135] C.M. Hayden, K. Saur, M. Hicks, and J.S. Foster. A study of dynamic soft-
ware update quiescence for multithreaded programs. In Proc. of the Fourth
Int’l Workshop on Hot Topics in Software Upgrades, pages 6–10, 2012.

[136] C.M. Hayden, E.K. Smith, E.A. Hardisty, M. Hicks, and J.S. Foster. Evalu-
ating dynamic software update safety using systematic testing. IEEE Trans.
Softw. Eng., 38(6):1340–1354, 2012.

[137] Guojin He and Antonia Zhai. Efficient dynamic program monitoring on multi-
core systems. J. Syst. Architecture, 57:121–133, 2011.

[138] Fergus Henderson. Accurate garbage collection in an uncooperative envi-
ronment. In Proc. of the Third Int’l Symp. on Memory management, pages
150–156, 2002.

[139] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack
algorithm. In Proc. of the 16th Symp. on Parallelism in Algorithms and Ar-
chitectures, pages 206–215, 2004.

[140] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S.
Tanenbaum. Reorganizing UNIX for reliability. In Proc. of the 11th Asia-

182 CHAPTER 8. CONCLUSION

Pacific Conf. on Advances in Computer Systems Architecture, pages 81–94,
2006.

[141] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S.
Tanenbaum. Failure resilience for device drivers. In Proc. of the Int’l Conf.
on Dependable Systems and Networks, pages 41–50, 2007.

[142] M. Hicks. Dynamic software updating. PhD thesis, Univ. of Pennsylvania,
2001.

[143] Dan Hildebrand. An architectural overview of QNX. In Proc. of the Workshop
on Micro-kernels and Other Kernel Architectures, pages 113–126, 1992.

[144] Martin Hirzel and Amer Diwan. On the type accuracy of garbage collec-
tion. In Proc. of the Second Int’l Symp. on Memory Management, pages 1–11,
2000.

[145] Martin Hirzel, Amer Diwan, and Johannes Henkel. On the usefulness of type
and liveness accuracy for garbage collection and leak detection. ACM Trans.
Program. Lang. Syst., 24(6):593–624, 2002.

[146] Jason D Hiser, Clark L Coleman, Michele Co, and Jack W Davidson. MEDS:
The memory error detection system. In Proc. of the First Int’l Symp. on En-
gineering Secure Software and Systems, pages 164–179, 2009.

[147] Gísli Hjálmtýsson and Robert Gray. Dynamic C++ classes: A lightweight
mechanism to update code in a running program. In Proc. of the USENIX
Annual Tech. Conf., page 6, 1998.

[148] Petr Hosek and Cristian Cadar. Safe software updates via multi-version ex-
ecution. In Proc. of the 35th Int’l Conf. on Software Eng., pages 612–621,
2013.

[149] Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson, David
Evans, John C. Knight, Anh Nguyen-Tuong, and Jonathan Rowanhill. Secure
and practical defense against code-injection attacks using software dynamic
translation. In Proc. of the Second Int’l Conf. on Virtual Execution Environ-
ments, pages 2–12, 2006.

[150] J.J. Hudak, B.-H. Suh, D.P. Siewiorek, and Z. Segall. Evaluation and compar-
ison of fault-tolerant software techniques. IEEE Trans. Rel., 42(2):190–204,
1993.

[151] Ralf Hund, Thorsten Holz, and Felix C. Freiling. Return-oriented rootkits:
Bypassing kernel code integrity protection mechanisms. In Proc. of the 18th
USENIX Security Symp., pages 383–398, 2009.

[152] Galen C. Hunt and James R. Larus. Singularity: Rethinking the software
stack. SIGOPS Oper. Syst. Rev., 41(2):37–49, 2007.

183

[153] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Jean Wolter, and Sebas-
tian Schönberg. The performance of microkernel-based systems. In Proc. of
the 16th ACM Symp. on Oper. Systems Prin., pages 66–77, 1997.

[154] IBM Security X-Force. Mid-Year trend and risk report. http://www-935.
ibm.com/services/us/iss/xforce/trendreports.

[155] M. Hiller J. Christmansson and M. Rimén. An experimental comparison of
fault and error injection. In Proc. of the Ninth Int’l Symp. on Software Relia-
bility Eng., page 369, 1998.

[156] Kelly Jackson Higgins. The SCADA patch problem. http:
//www.darkreading.com/vulnerability/the-scada-patch-
problem/240146355.

[157] Karl Janmar. FreeBSD 802.11 remote integer overflow. In Black Hat Europe,
2007.

[158] Jakub Jelinek. Prelink. http://people.redhat.com/jakub/prelink.
pdf.

[159] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu. Auto-
mated concurrency-bug fixing. In Proc. of the 10th USENIX Symp. on Oper-
ating Systems Design and Implementation, pages 221–236, 2012.

[160] A Johansson, Neeraj Suri, and Brendan Murphy. On the selection of error
model(s) for OS robustness evaluation. In Proc. of the Int’l Conf. on Depend-
able Systems and Networks, pages 502–511, 2007.

[161] Andréas Johansson, Neeraj Suri, and Brendan Murphy. On the impact of
injection triggers for OS robustness evaluation. In Proc. of the 18th Int’l
Symp. on Software Reliability Eng., pages 127–126, 2007.

[162] Paul Johnson and Neeraj Mittal. A distributed termination detection algorithm
for dynamic asynchronous systems. In Proc. of the 29th Int’l Conf. on Distr.
Computing Systems, pages 343–351, 2009.

[163] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen. PREFAIL: A pro-
grammable tool for multiple-failure injection. In Proc. of the ACM Conf. on
Object-Oriented Programming, Systems, Languages, and Applications, vol-
ume 46, pages 171–188, 2011.

[164] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. FERRARI:
A flexible software-based fault and error injection system. IEEE Trans. Com-
put., 44(2):248–260, 1995.

[165] Wei-Lun Kao and R.K. Iyer. DEFINE: A distributed fault injection and moni-
toring environment. In Proc. of the IEEE Workshop on Fault-Tolerant Parallel
and Distributed Systems, pages 252–259, 1994.

http://www-935.ibm.com/services/us/iss/xforce/trendreports
http://www-935.ibm.com/services/us/iss/xforce/trendreports
http://www.darkreading.com/vulnerability/the-scada-patch-problem/240146355
http://www.darkreading.com/vulnerability/the-scada-patch-problem/240146355
http://www.darkreading.com/vulnerability/the-scada-patch-problem/240146355
http://people.redhat.com/jakub/prelink.pdf
http://people.redhat.com/jakub/prelink.pdf

184 CHAPTER 8. CONCLUSION

[166] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering
code-injection attacks with instruction-set randomization. In Proc. of the 10th
ACM Conf. on Computer and Commun. Security, pages 272–280, 2003.

[167] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning.
Address space layout permutation (ASLP): Towards Fine-Grained random-
ization of commodity software. In Proc. of the 22nd Annual Computer Secu-
rity Appl. Conf., pages 339–348, 2006.

[168] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4:
Formal verification of an OS kernel. In Proc. of the 22nd ACM Symp. on Oper.
Systems Prin., pages 207–220, 2009.

[169] Michael Kling, Sasa Misailovic, Michael Carbin, and Martin Rinard. Bolt:
On-demand infinite loop escape in unmodified binaries. In Proc. of the ACM
Conf. on Object-Oriented Programming, Systems, Languages, and Appilca-
tions, pages 431–450, 2012.

[170] Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel. The power of pro-
crastination: Detection and mitigation of execution-stalling malicious code.
In Proc. of the 18th ACM Conf. on Computer and Commun. Security, pages
285–296, 2011.

[171] P. Koopman. What’s wrong with fault injection as a benchmarking tool? In
Proc. of the Workshop on Dependability Benchmarking, page 31, 2002.

[172] Philip Koopman, John Sung, Christopher Dingman, Daniel Siewiorek, and
Ted Marz. Comparing operating systems using robustness benchmarks. In
Proc. of the 16th Int’l Symp. on Reliable Distributed Systems, page 72, 1997.

[173] Jeff Kramer and Jeff Magee. The evolving philosophers problem: Dynamic
change management. IEEE Trans. Softw. Eng., 16(11):1293–1306, 1990.

[174] Ilia Kravets and Dan Tsafrir. Feasibility of mutable replay for automated
regression testing of security updates. In Proc. of the Workshop on Runtime
Environments, Systems, Layering and Virtualized Environments, 2012.

[175] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson Engler.
From uncertainty to belief: Inferring the specification within. In Proc. of the
7th Symp. on Operating Systems Design and Implementation, pages 161–176,
2006.

[176] A. Kumar, A. Sutton, and B. Stroustrup. Rejuvenating C++ programs through
demacrofication. In Proc. of the 28th IEEE Int’l Conf. on Software Mainte-
nance, 2012.

185

[177] Oren Laadan, Nicolas Viennot, and Jason Nieh. Transparent, lightweight ap-
plication execution replay on commodity multiprocessor operating systems.
In Proc. of the Int’l Conf. on Measurement and Modeling of Computer Sys-
tems, pages 155–166, 2010.

[178] Open Kernel Labs. OKL4 community site. http://wiki.ok-labs.com/.

[179] Chris Lattner and Vikram Adve. LLVM: A compilation framework for life-
long program analysis & transformation. In Proc. of the Int’l Symp. on Code
Generation and Optimization, page 75, 2004.

[180] C. Le Goues, ThanhVu Nguyen, S. Forrest, and W. Weimer. GenProg: A
generic method for automatic software repair. IEEE Trans. Softw. Eng., 38
(1):54–72, 2012.

[181] Insup Lee. Dymos: A dynamic modification system. PhD thesis, Univ. of
Wisconsin-Madison, 1983.

[182] Andrew Lenharth, Vikram S. Adve, and Samuel T. King. Recovery domains:
An organizing principle for recoverable operating systems. In Proc. of the
14th Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems, pages 49–60, 2009.

[183] Jinku Li, Zhi Wang, T. Bletsch, D. Srinivasan, M. Grace, and Xuxian Jiang.
Comprehensive and efficient protection of kernel control data. IEEE Trans.
Inf. Forensics and Security, 6(4):1404–1417, 2011.

[184] Siarhei Liakh, Michael Grace, and Xuxian Jiang. Analyzing and improving
Linux kernel memory protection: A model checking approach. In Proc. of the
26th Annual Computer Security Appl. Conf., pages 271–280, 2010.

[185] J. Liedtke. On micro-kernel construction. In Proc. of the 15th ACM Symp. on
Oper. Systems Prin., pages 237–250, 1995.

[186] Jochen Liedtke. Improving IPC by kernel design. In Proc. of the 14th ACM
Symp. on Oper. Systems Prin., pages 175–188, 1993.

[187] Zhiqiang Lin, Ryan D. Riley, and Dongyan Xu. Polymorphing software by
randomizing data structure layout. In Proc. of the Sixth Int’l Conf. on De-
tection of Intrusions and Malware, and Vulnerability Assessment, pages 107–
126, 2009.

[188] Francesco Logozzo and Thomas Ball. Modular and verified automatic pro-
gram repair. In Proc. of the ACM Conf. on Object-Oriented Programming,
Systems, Languages, and Appilcations, pages 133–146, 2012.

[189] David E. Lowell, Yasushi Saito, and Eileen J. Samberg. Devirtualizable vir-
tual machines enabling general, single-node, online maintenance. In Proc.
of the 11th Int’l Conf. on Architectural Support for Programming Languages

http://wiki.ok-labs.com/

186 CHAPTER 8. CONCLUSION

and Operating Systems, pages 211–223, 2004.

[190] Neil MacDonald. Devops needs to become devopssec. http:
//blogs.gartner.com/neil_macdonald/2012/01/17/devops-
needs-to-become-devopssec.

[191] Henrique Madeira, Diamantino Costa, and Marco Vieira. On the emulation
of software faults by software fault injection. In Proc. of the Int’l Conf. on
Dependable Systems and Networks, pages 417–426, 2000.

[192] Stephen Magill, Michael Hicks, Suriya Subramanian, and Kathryn S. McKin-
ley. Automating object transformations for dynamic software updating. In
Proc. of the 27th ACM Conf. on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 265–280, 2012.

[193] K. Makris and R. Bazzi. Immediate multi-threaded dynamic software updates
using stack reconstruction. In Proc. of the USENIX Annual Tech. Conf., pages
397–410, 2009.

[194] Kristis Makris and Kyung Dong Ryu. Dynamic and adaptive updates of non-
quiescent subsystems in commodity operating system kernels. In Proc. of the
Second ACM European Conf. on Computer Systems, pages 327–340, 2007.

[195] Abid M. Malik, Jim McInnes, and Peter van Beek. Optimal basic block in-
struction scheduling for Multiple-Issue processors using constraint program-
ming. In Proc. of the 18th Int’l Conf. on Tools with Artificial Intelligence,
pages 279–287, 2006.

[196] Paul D. Marinescu, Radu Banabic, and George Candea. An extensible tech-
nique for high-precision testing of recovery code. In Proc. of the USENIX
Annual Tech. Conf., pages 23–23, 2010.

[197] Paul Dan Marinescu and Cristian Cadar. KATCH: High-coverage testing of
software patches. In Proc. of the 9th Joint Meeting of the European Software
Eng. Conf. and the ACM SIGSOFT Symp. on the Foundations of Software
Eng., pages 235–245, 2013.

[198] P.D. Marinescu and G. Candea. LFI: A practical and general library-level fault
injector. In Proc. of the Int’l Conf. on Dependable Systems and Networks,
pages 379–388, 2009.

[199] Matthew Maurer and David Brumley. TACHYON: Tandem execution for effi-
cient live patch testing. In Proc. of the 21st USENIX Security Symp., page 43,
2012.

[200] Paul E. McKenney and John D. Slingwine. Read-copy update: Using execu-
tion history to solve concurrency problems. In Proc. of the 10th Int’l Conf. on
Parallel and Distributed Computing and Systems, pages 509–518, 1998.

http://blogs.gartner.com/neil_macdonald/2012/01/17/devops-needs-to-become-devopssec
http://blogs.gartner.com/neil_macdonald/2012/01/17/devops-needs-to-become-devopssec
http://blogs.gartner.com/neil_macdonald/2012/01/17/devops-needs-to-become-devopssec

187

[201] Paul E. McKenney and Jonathan Walpole. What is RCU, fundamentally?
http://lwn.net/Articles/262464.

[202] Microsoft. Windows User-Mode driver framework. http://msdn.
microsoft.com/en-us/windows/hardware/gg463294.

[203] R. G Minnich. A dynamic kernel modifier for Linux. In Proc. of the LACSI
Symposium, 2002.

[204] Neeraj Mittal, S. Venkatesan, and Sathya Peri. A family of optimal termina-
tion detection algorithms. Distributed Computing, 20(2):141–162, 2007.

[205] R. Moraes, R. Barbosa, J. Duraes, N. Mendes, E. Martins, and H. Madeira.
Injection of faults at component interfaces and inside the component code:
Are they equivalent? In Proc. of the Sixth European Dependable Computing
Conf., pages 53–64, 2006.

[206] D. Mutz, W. Robertson, G. Vigna, and R. Kemmerer. Exploiting execution
context for the detection of anomalous system calls. In Proc. of the 10th Int’l
Conf. on Recent Advances in Intrusion Detection, pages 1–20, 2007.

[207] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney.
Producing wrong data without doing anything obviously wrong! In Proc.
of the 14th Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems, pages 265–276, 2009.

[208] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to
predict component failures. In Proc. of the 28th Int’l Conf. on Software Eng.,
pages 452–461, 2006.

[209] Kiran Nagaraja, Fábio Oliveira, Ricardo Bianchini, Richard P. Martin, and
Thu D. Nguyen. Understanding and dealing with operator mistakes in internet
services. In Proc. of the Sixth USENIX Symp. on Operating Systems Design
and Implementation, pages 5–5, 2004.

[210] R. Natella, D. Cotroneo, J. Duraes, and H. Madeira. Representativeness anal-
ysis of injected software faults in complex software. In Proc. of the Int’l Conf.
on Dependable Systems and Networks, pages 437–446, 2010.

[211] R. Natella, D. Cotroneo, J. Duraes, and H. Madeira. On fault representative-
ness of software fault injection. IEEE Trans. Softw. Eng., PP(99):1, 2012.

[212] I. Neamtiu and T. Dumitras. Cloud software upgrades: Challenges and op-
portunities. In Proc. of the Int’l Workshop on the Maintenance and Evolution
of Service-Oriented and Cloud-Based Systems, pages 1–10, 2011.

[213] Iulian Neamtiu and Michael Hicks. Safe and timely updates to multi-threaded
programs. In Proc. of the ACM SIGPLAN Conf. on Programming Language
Design and Implementation, pages 13–24, 2009.

http://lwn.net/Articles/262464
http://msdn.microsoft.com/en-us/windows/hardware/gg463294
http://msdn.microsoft.com/en-us/windows/hardware/gg463294

188 CHAPTER 8. CONCLUSION

[214] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Practical
dynamic software updating for C. In Proc. of the ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pages 72–83, 2006.

[215] Iulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis.
Contextual effects for version-consistent dynamic software updating and safe
concurrent programming. In Proc. of the ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation, pages 37–49, 2008.

[216] Nergal. The advanced return-into-lib(c) exploits. Phrack Magazine, 4(58),
2001.

[217] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas
Zeller. Predicting vulnerable software components. In Proc. of the 14th ACM
Conf. on Computer and Commun. Security, pages 529–540, 2007.

[218] Wee Teck Ng and Peter M. Chen. The systematic improvement of fault toler-
ance in the Rio file cache. In Proc. of the 29th Int’ll Symp. on Fault-Tolerant
Computing, page 76, 1999.

[219] Wee Teck Ng and Peter M. Chen. The design and verification of the Rio file
cache. IEEE Trans. Comput., 50(4):322–337, 2001.

[220] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish
Chandra. SemFix: Program repair via semantic analysis. In Proc. of the Int’l
Conf. on Software Eng., pages 772–781, 2013.

[221] NIST. National vulnerability database. http://nvd.nist.gov.

[222] Gene Novark and Emery D Berger. DieHarder: Securing the heap. In Proc.
of the 17th ACM Conf. on Computer and Commun. Security, pages 573–584,
2010.

[223] Jon Oberheide, Evan Cooke, and Farnam Jahanian. If it ain’t broke, don’t fix
it: Challenges and new directions for inferring the impact of software patches.
In Proc. of the 12th Workshop on Hot Topics in Operating Systems, page 17,
2009.

[224] Fábio Oliveira, Kiran Nagaraja, Rekha Bachwani, Ricardo Bianchini,
Richard P. Martin, and Thu D. Nguyen. Understanding and validating
database system administration. In Proc. of the USENIX Annual Tech. Conf.,
pages 213–228, 2006.

[225] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin
Kirda. G-Free: Defeating return-oriented programming through gadget-less
binaries. In Proc. of the 26th Annual Computer Security Appl. Conf., pages
49–58, 2010.

[226] Tim O’Reilly. What is Web 2.0. http://oreilly.com/pub/a/web2/

http://nvd.nist.gov
http://oreilly.com/pub/a/web2/archive/what-is-web-20.html
http://oreilly.com/pub/a/web2/archive/what-is-web-20.html

189

archive/what-is-web-20.html.

[227] Thomas J. Ostrand and Elaine J. Weyuker. The distribution of faults in a large
industrial software system. ACM SIGSOFT Softw. Eng. Notes, 27(4):55–64,
2002.

[228] Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Where the bugs
are. In Proc. of the Int’l Symp. on Software Testing and Analysis, pages 86–96,
2004.

[229] Yoann Padioleau, Julia L. Lawall, and Gilles Muller. Understanding collateral
evolution in Linux device drivers. In Proc. of the First ACM European Conf.
on Computer Systems, pages 59–71, 2006.

[230] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. Doc-
umenting and automating collateral evolutions in Linux device drivers. In
Proc. of the Third ACM European Conf. on Computer Systems, pages 247–
260, 2008.

[231] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall,
and Gilles Muller. Faults in Linux: Ten years later. In Proc. of the 16th Int’l
Conf. on Architectural Support for Programming Languages and Operating
Systems, pages 305–318, 2011.

[232] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik,
Kyu H. Lee, and Shan Lu. PRES: Probabilistic replay with execution sketch-
ing on multiprocessors. In Proc. of the 22nd ACM Symp. on Oper. Systems
Prin., pages 177–192, 2009.

[233] Karthik Pattabiraman, Giacinto Paolo Saggese, Daniel Chen, Zbigniew T.
Kalbarczyk, and Ravishankar K. Iyer. Automated derivation of application-
specific error detectors using dynamic analysis. IEEE Trans. Dep. Secure
Comput., 8(5):640–655, 2011.

[234] David A Patterson. A simple way to estimate the cost of downtime. In Proc.
of the 16th USENIX Systems Administration Conf., pages 185–188, 2002.

[235] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios
Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst,
and Martin Rinard. Automatically patching errors in deployed software. In
Proc. of the 22nd ACM Symp. on Oper. Systems Prin., pages 87–102, 2009.

[236] E. Perla and M. Oldani. A guide to kernel exploitation: Attacking the core.
Syngress Publishing, 2010.

[237] Nick L. Petroni,Jr. and Michael Hicks. Automated detection of persistent
kernel control-flow attacks. In Proc. of the 14th ACM Conf. on Computer and

http://oreilly.com/pub/a/web2/archive/what-is-web-20.html
http://oreilly.com/pub/a/web2/archive/what-is-web-20.html

190 CHAPTER 8. CONCLUSION

Commun. Security, pages 103–115, 2007.

[238] Georgios Portokalidis and Angelos D Keromytis. Fast and practical
instruction-set randomization for commodity systems. In Proc. of the 26th
Annual Computer Security Appl. Conf., pages 41–48, 2010.

[239] Georgios Portokalidis and Angelos D. Keromytis. REASSURE: A self-
contained mechanism for healing software using rescue points. In Proc. of the
Sixth Int’l Conf. on Advances in Information and Computer Security, pages
16–32, 2011.

[240] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos: An emulator
for fingerprinting zero-day attacks for advertised honeypots with automatic
signature generation. In Proc. of the First ACM European Conf. on Computer
Systems, pages 15–27, 2006.

[241] Shaya Potter and Jason Nieh. Reducing downtime due to system maintenance
and upgrades. In Proc. of the 19th USENIX Systems Administration Conf.,
pages 6–6, 2005.

[242] K. Poulsen. Software bug contributed to blackout. Security Focus, 2004.

[243] Jon Rafkind, Adam Wick, John Regehr, and Matthew Flatt. Precise garbage
collection for C. In Proc. of the Eighth Int’l Symp. on Memory management,
pages 39–48, 2009.

[244] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin Zorn. NOZZLE:
A defense against heap-spraying code injection attacks. In Proc. of the 18th
USENIX Security Symp., pages 169–186, 2009.

[245] Eric Rescorla. Security holes... who cares? In Proc. of the 12th USENIX
Security Symp., pages 6–6, 2003.

[246] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-transparent prevention of
kernel rootkits with VMM-based memory shadowing. In Proc. of the 11th
Int’l Conf. on Recent Advances in Intrusion Detection, pages 1–20, 2008.

[247] W. Robertson, G. Vigna, C. Kruegel, and R. Kemmerer. Using generaliza-
tion and characterization techniques in the anomaly-based detection of web
attacks. In Proc. of the 13th Network and Distributed System Security Symp.,
2006.

[248] William Robertson, Christopher Kruegel, Darren Mutz, and Fredrik Valeur.
Run-time detection of heap-based overflows. In Proc. of the 17th USENIX
Systems Admin. Conf., pages 51–60, 2003.

[249] R.E. Rodrigues, V.H. Sperle Campos, and F. Magno Quintao Pereira. A fast
and low-overhead technique to secure programs against integer overflows. In
Proc. of the Int’l Symp. on Code Generation and Optimization, pages 1–11,

191

2013.

[250] Giampaolo Fresi Roglia, Lorenzo Martignoni, Roberto Paleari, and Danilo
Bruschi. Surgically returning to randomized lib(c). In Proc. of the 2009
Annual Computer Security Appl. Conf., pages 60–69, 2009.

[251] Olatunji Rowase and Monica S. Lam. A practical dynamic buffer overflow
detector. In Proc. of the 11th Network and Distributed System Security Symp.,
pages 159–169, 2004.

[252] Olatunji Ruwase, Phillip B Gibbons, Todd C Mowry, Vijaya Ramachandran,
Shimin Chen, Michael Kozuch, and Michael Ryan. Parallelizing dynamic
information flow tracking. In Proc. of the 20th Symp. on Parallelism in Algo-
rithms and Architectures, pages 35–45, 2008.

[253] Babak Salamat, Andreas Gal, Todd Jackson, Karthikeyan Manivannan, Gre-
gor Wagner, and Michael Franz. Multi-variant program execution: Using
multi-core systems to defuse buffer-overflow vulnerabilities. In Proc. of the
2008 Int’l Conf. on Complex, Intelligent and Software Intensive Systems,
pages 843–848, 2008.

[254] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. Orchestra:
Intrusion detection using parallel execution and monitoring of program vari-
ants in user-space. In Proc. of the ACM Fourth European Conf. on Computer
Systems, pages 33–46, 2009.

[255] Eric Schulte, Jonathan DiLorenzo, Westley Weimer, and Stephanie Forrest.
Automated repair of binary and assembly programs for cooperating embed-
ded devices. In Proc. of the 18th Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems, pages 317–328, 2013.

[256] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. Q: Exploit
hardening made easy. In Proc. of the 20th USENIX Security Symp., page 25,
2011.

[257] Mark E. Segal and Ophir Frieder. On-the-fly program modification: Systems
for dynamic updating. IEEE Softw., 10(2):53–65, 1993.

[258] M. Seltzer and C. Small. Self-monitoring and self-adapting operating sys-
tems. In Proc. of the Sixth Workshop on Hot Topics in Operating Systems,
pages 124–129, 1997.

[259] Margo I. Seltzer, Yasuhiro Endo, Christopher Small, and Keith A. Smith.
Dealing with disaster: Surviving misbehaved kernel extensions. In Proc. of
the Second USENIX Symp. on Operating Systems Design and Implementation,
pages 213–227, 1996.

[260] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: A tiny

192 CHAPTER 8. CONCLUSION

hypervisor to provide lifetime kernel code integrity for commodity OSes. In
Proc. of the 21st ACM Symp. on Oper. Systems Prin., pages 335–350, 2007.

[261] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In Proc. of the 14th ACM Conf. on
Computer and Commun. Security, pages 552–561, 2007.

[262] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the effectiveness of address-space random-
ization. In Proc. of the 11th ACM Conf. on Computer and Commun. Security,
pages 298–307, 2004.

[263] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: A fast
capability system. In Proc. of the 17th ACM Symp. on Oper. Systems Prin.,
pages 170–185, 1999.

[264] Maxim Siniavine and Ashvin Goel. Seamless kernel updates. In Proc. of the
Int’l Conf. on Dependable Systems and Networks, 2013.

[265] Craig A. N Soules, Dilma Da Silva, Marc Auslander, Gregory R Ganger, and
Michal Ostrowski. System support for online reconfiguration. In Proc. of the
USENIX Annual Tech. Conf., pages 141–154, 2003.

[266] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews, and
Yuanyuan Zhou. Flashback: A lightweight extension for rollback and deter-
ministic replay for software debugging. In Proc. of the USENIX Annual Tech.
Conf., page 3, 2004.

[267] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian
Neamtiu. Mutatis mutandis: Safe and predictable dynamic software updat-
ing. ACM Trans. Program. Lang. Syst., 29(4), 2007.

[268] Dinesh Subhraveti and Jason Nieh. Record and transplay: Partial checkpoint-
ing for replay debugging across heterogeneous systems. In Proc. of the Int’l
Conf. on Measurement and Modeling of Computer Systems, pages 109–120,
2011.

[269] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic
software updates: A VM-centric approach. In Proc. of the ACM SIGPLAN
Conf. on Programming Language Design and Implementation, pages 1–12,
2009.

[270] M. Sullivan and R. Chillarege. A comparison of software defects in database
management systems and operating systems. In Proc. of the 22nd Int’ll Symp.
on Fault-Tolerant Computing, pages 475–484, 1992.

[271] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the
reliability of commodity operating systems. ACM Trans. Comput. Syst., 23

193

(1):77–110, 2005.

[272] Michael M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and
Henry M. Levy. Recovering device drivers. ACM Trans. Comput. Syst., 24
(4):333–360, 2006.

[273] Ariel Tamches and Barton P. Miller. Fine-grained dynamic instrumentation
of commodity operating system kernels. In Proc. of the Third ACM Symp. on
Oper. Systems Prin., pages 117–130, 1999.

[274] PaX Team. Overall description of the PaX project. http://pax.
grsecurity.net/docs/pax.txt.

[275] Timothy K. Tsai and Ravishankar K. Iyer. Measuring fault tolerance with the
FTAPE fault injection tool. In Proc. of the Eighth Int’l Conf. on Modelling
Techniques and Tools for Computer Performance Evaluation, pages 26–40,
1995.

[276] Timothy K. Tsai, Mei-Chen Hsueh, Hong Zhao, Zbigniew Kalbarczyk, and
Ravishankar K. Iyer. Stress-based and path-based fault injection. IEEE Trans.
Comput., 48(11):1183–1201, 1999.

[277] Joseph Tucek, Weiwei Xiong, and Yuanyuan Zhou. Efficient online validation
with delta execution. In Proc. of the 14th Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems, pages 193–204, 2009.

[278] Steven Van Acker, Nick Nikiforakis, Pieter Philippaerts, Yves Younan, and
Frank Piessens. ValueGuard: Protection of native applications against data-
only buffer overflows. In Proc. of the Sixth Int’l Conf. on Inf. Systems Security,
pages 156–170, 2010.

[279] Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo D’Hondt. Tran-
quility: A low disruptive alternative to quiescence for ensuring safe dynamic
updates. IEEE Trans. Softw. Eng., 33(12):856–868, 2007.

[280] Nicolas Viennot, Siddharth Nair, and Jason Nieh. Transparent mutable re-
play for multicore debugging and patch validation. In Proc. of the 18th Int’l
Conf. on Architectural Support for Programming Languages and Operating
Systems, pages 127–138, 2013.

[281] Zhi Wang, Xuxian Jiang, Weidong Cui, and Peng Ning. Countering kernel
rootkits with lightweight hook protection. In Proc. of the 16th ACM Conf. on
Computer and Commun. Security, pages 545–554, 2009.

[282] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand
Meyer, and Andreas Zeller. Automated fixing of programs with contracts. In
Proc. of the 19th Int’l Symp. on Software Testing and Analysis, pages 61–72,
2010.

http://pax.grsecurity.net/docs/pax.txt
http://pax.grsecurity.net/docs/pax.txt

194 CHAPTER 8. CONCLUSION

[283] Paul R. Wilson. Uniprocessor garbage collection techniques. In Proc. of the
Int’l Workshop on Memory Management, pages 1–42, 1992.

[284] Stefan Winter, Michael Tretter, Benjamin Sattler, and Neeraj Suri. simFI:
From single to simultaneous software fault injections. In Proc. of the Int’l
Conf. on Dependable Systems and Networks, pages 1–12, 2013.

[285] Jingyue Wu, Heming Cui, and Junfeng Yang. Bypassing races in live applica-
tions with execution filters. In Proc. of the Ninth USENIX Symp. on Operating
Systems Design and Implementation, pages 1–13, 2010.

[286] Thomas Würthinger, Christian Wimmer, and Lukas Stadler. Dynamic code
evolution for java. In Proc. of the 8th Int’l Conf. on the Principles and Prac-
tice of Programming in Java, pages 10–19, 2010.

[287] Chen Xi, Asia Slowinska, and Herbert Bos. Who allocated my memory? de-
tecting custom memory allocators in c binaries. In Proc. of the 20th Working
Conf. on Reverse Eng., 2013.

[288] Haizhi Xu and Steve J. Chapin. Improving address space randomization with
a dynamic offset randomization technique. In Proc. of the 2006 ACM Symp.
on Applied Computing, pages 384–391, 2006.

[289] Jun Xu, Z. Kalbarczyk, and R. K Iyer. Transparent runtime randomization
for security. In Proc. of the 22nd Int’l Symp. on Reliable Distributed Systems,
pages 260– 269, 2003.

[290] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
Panorama: Capturing system-wide information flow for malware detection
and analysis. In Proc. of the 14th ACM Conf. on Computer and Commun.
Security, pages 116–127, 2007.

[291] Heng Yin, Pongsin Poosankam, Steve Hanna, and Dawn Song. HookScout:
Proactive binary-centric hook detection. In Proc. of the Seventh Int’l Conf.
on Detection of Intrusions and Malware, and Vulnerability Assessment, pages
1–20, 2010.

[292] Yves Younan, Davide Pozza, Frank Piessens, and Wouter Joosen. Extended
protection against stack smashing attacks without performance loss. In Proc.
of the 22nd Annual Computer Security Appl. Conf., pages 429–438, 2006.

[293] Yves Younan, Pieter Philippaerts, Lorenzo Cavallaro, R. Sekar, Frank
Piessens, and Wouter Joosen. PAriCheck: An efficient pointer arithmetic
checker for C programs. In Proc. of the Fifth ACM Symp. on Inf., Computer
and Commun. Security, pages 145–156, 2010.

[294] Cliff Young, David S. Johnson, Michael D. Smith, and David R. Karger. Near-
optimal intraprocedural branch alignment. In Proc. of the ACM SIGPLAN

195

Conf. on Programming Language Design and Implementation, pages 183–
193, 1997.

[295] Angeliki Zavou, Georgios Portokalidis, and Angelos D. Keromytis. Taint-
exchange: A generic system for cross-process and cross-host taint tracking.
In Proc. of the 6th Int’l Conf. on Advances in Information and Computer
Security, pages 113–128, 2011.

[296] Q. Zeng, D. Wu, and P. Liu. Cruiser: Concurrent heap buffer overflow mon-
itoring using lock-free data structures. In Proc. of the 32nd ACM SIGPLAN
Conf. on Programming Language Design and Implementation, pages 367–
377, 2011.

[297] Kehuan Zhang and XiaoFeng Wang. Peeping tom in the neighborhood:
Keystroke eavesdropping on multi-user systems. In Proc. of the 18th USENIX
Security Symp., pages 17–32, 2009.

[298] Wei Zheng, Ricardo Bianchini, G. John Janakiraman, Jose Renato Santos, and
Yoshio Turner. JustRunIt: Experiment-based management of virtualized data
centers. In Proc. of the USENIX Annual Tech. Conf., page 18, 2009.

[299] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob Ennals,
Matthew Harren, George Necula, and Eric Brewer. SafeDrive: Safe and re-
coverable extensions using language-based techniques. In Proc. of the Sev-
enth USENIX Symp. on Operating Systems Design and Implementation, pages
45–60, 2006.

[300] Pin Zhou, Wei Liu, Long Fei, Shan Lu, Feng Qin, Yuanyuan Zhou, Samuel
Midkiff, and Josep Torrellas. AccMon: Automatically detecting memory-
related bugs via program counter-based invariants. In Proc. of the 37th Int’l
Symp. on Microarchitecture, pages 269–280, 2004.

Summary

Many real-world systems need to run 24/7 for years and never go down. Consider,
for example, industrial control systems and e-banking servers. Unfortunately, soft-
ware updates—a necessary evil to cope with the fast-paced evolution of modern
software—are on a collision course with our growing need for nonstop operation,
with traditional update practices resorting to a full system restart to deploy new ver-
sions or even small security patches. The update-without-downtime problem has re-
cently fostered much research on live update—the ability to update running software
on the fly. Prior live update solutions, however, offer no practical and general way
to update operating systems (OSes) or long-running applications, requiring exten-
sive manual effort for nontrivial updates and offering poor system support to detect
and recover from update-time errors. These factors have significantly lowered the
usability and dependability guarantees of prior techniques compared to those of reg-
ular software updates, ultimately discouraging widespread adoption of live update.

This dissertation introduces new techniques to implement safe and automatic
live update for the entire software stack, with support for several possible classes of
updates—ranging from security patches to complex version updates—and generic
systems software written in C. At the heart of our live update mechanisms lies a novel
process-level update strategy, which starts the new version as a new independent
process and automatically transfers the state of the old process to the new one. When
an update becomes available, our framework allows the new version to start up and
connect to the old version to request all the information from the old execution state
it needs (e.g., data structures, even if they have changed between versions). When all
the necessary data have been transferred over and the old state completely remapped
into the new version, our framework terminates the old version and allows the new
version to atomically resume execution in a way completely transparent to the users.

197

198 SUMMARY

Our automated state transfer strategy is empowered by a new instrumentation
pass in the LLVM compiler framework that maintains metadata about all the pro-
gram data structures in memory. This allows our framework to inspect the state
of two different versions and seamlessly remap data structures between them, even
in face of complex state and memory layout transformations. To ensure a safe up-
date process, our framework can also detect common update-time errors using three
different mechanisms: (i) run-time error detection—detecting crashes and other ab-
normal run-time events using hardware/software exceptions—(ii) invariants-based
detection—detecting state corruption from violations of statically extracted program
state invariants—(iii) time-traveling state transfer-based detection—detecting mem-
ory errors from state differences between distinct process versions known to be
equivalent by construction. When an error is detected during the update process,
our framework automatically rolls back the update, terminating the new version and
allowing the old version to resume execution normally, similar to an aborted atomic
transaction. This process-level update prevents update-time errors in the new version
from propagating back to the old version, allowing for safe error recovery at update
time. This is in stark contrast with prior solutions, which typically patch the running
program in place, so if the update fails, there is no fallback to a working version.

At the OS level, we demonstrate the effectiveness of our techniques in PROTEOS,
a new research OS designed with live update in mind. In PROTEOS, process-level
updates are a first-class abstraction implemented on a multiserver OS architecture
based on MINIX 3. PROTEOS combines our live update techniques with a rigorous
event-driven programming model adopted in the individual OS components, allow-
ing updates to happen only in predictable and controllable system states. At the
application level, we demonstrate the effectiveness of our techniques in Mutable
Checkpoint-Restart (MCR), a new live update framework for generic long-running
C programs. MCR extends our techniques to allow legacy user programs to support
safe and automatic live update with little manual effort.

In conclusion, this dissertation presents evidence that a major paradigm shift is
necessary in the design of live update systems. Unlike existing approaches, our live
update techniques allow OS components and long-running application programs to
be updated without patching running programs in place and potentially endanger-
ing their execution should the update fail for any reason. We demonstrate that this
new paradigm is amenable to effectively automating and safeguarding the live up-
date process, while reducing the implementation burden to the bare minimum. Our
experience with live updating major components of the entire software stack shows
important limitations in prior solutions and confirms our hypothesis that safe and
automatic live update is a realistic option if careful software design and adequate
system support are available. We see our work as the first important step towards
truly practical, general, and trustworthy live update systems for the real world.

Samenvatting

Voor veel in de praktijk gebruikte systemen is het noodzakelijk dat ze jarenlang 24
uur per dag beschikbaar zijn zonder downtime. Voorbeelden hiervan zijn industri-
ële aansturingssystemen en servers voor internetbankieren. Helaas staan software
updates—een noodzakelijk kwaad om om te kunnen gaan met de voortdurende ont-
wikkeling van moderne software—in de weg bij de groeiende noodzaak van non-
stop beschikbaarheid, omdat de traditionele aanpak van updates een volledige her-
start van het systeem vereist om nieuwe versies en zelfs kleine beveiligingsupdates te
installeren. Het probleem van updaten-zonder-downtime heeft recent geleid tot veel
onderzoek naar live update—de mogelijkheid om software bij te werken terwijl deze
beschikbaar blijft. Eerdere live update oplossingen boden echter geen praktische en
algemeen toepasbare manier om besturingssystemen en langdraaiende applicaties
bij te werken, resulterend in aanzienlijke handmatige inspanningen voor niet-triviale
updates en slechte ondersteuning voor het ontdekken en herstellen van fouten tij-
dens de update. Deze factoren verminderen de bruikbaarheid en betrouwbaarheid
van eerdere technieken aanzienlijk ten opzichte van reguliere software updates, met
als eindresultaat het verhinderen van grootschalig gebruik van live update.

Deze dissertatie introduceert nieuwe technieken om veilige en automatische live
update te implementeren voor de gehele software stack, met ondersteuning voor
meerdere klassen van updates—variërend van beveiligingsupdates tot complexe ver-
sie updates—en generieke systeemsoftware geschreven in C. De kern van onze live
update mechanismen is een nieuwe updatestrategie op processniveau, waarbij de
nieuwe versie gestart wordt als een onafhankelijk process en de staat automatisch
wordt overgedragen van het oude process naar het nieuwe. Wanneer een update be-
schikbaar komt laat ons raamwerk de nieuwe versie opstarten en verbinden met de
oude versie om alle informatie die het nodig heeft over de oude execution state op te
vragen (dwz. datastructuren, zelfs als deze tussen versies gewijzigd zijn). Wanneer

199

200 SAMENVATTING

al de benodigde gegevens zijn overgedragen en de staat volledig is omgezet naar de
nieuwe versie sluit ons raamwerk de oude versie af en laat de nieuwe versie atomisch
verder gaan op een wijze die voor de gebruiker volledig transparant is.

Onze automatische state transfer strategie wordt ondersteund door een nieuwe
instrumentatie pass in het LLVM compiler raamwerk dat metadata bijhoudt over alle
datastructuren van het programma in het geheugen. Dit stelt ons raamwerk in staat
om de staat te inspecteren van twee verschillende versies en naadloos de datastruc-
turen tussen de twee om te zetten, zelfs in geval van complexe transformaties van de
staat en de geheugenindeling. Om veilig uitvoeren van de update te garanderen kan
ons raamwerk ook veel voorkomende fouten tijdens updates ontdekken met behulp
van drie verschillende mechanismen: (i) run-time foutdetectie—het ontdekken van
crashes en andere abnormale run-time gebeurtenissen door middel van hardware/-
software exceptions—(ii) detectie gebaseerd op invariants—het ontdekken van een
gecorrumpeerde staat via afwijkingen van statisch bepaalde eigenschappen van de
staat van het programma—(iii) detectie gebaseerd op time-traveling state transfer—
het ontdekken van geheugenfouten uit verschillen tussen de staat van versies van het
process die per constructie equivalent zouden moeten zijn.

Als een fout wordt ontdekt tijdens het bijwerken, maakt ons raamwerk de update
automatisch ongedaan. Hierbij wordt de nieuwe versie afgesloten en de oude versie
normaal voortgezet, vergelijkbaar met een atomische transactie. Deze updatestra-
tegie op process-niveau voorkomt dat fouten in de nieuwe versie ten tijde van de
update zich kunnen verspreiden naar de oude versie, zodat veilig herstel van fouten
tijdens de update mogelijk is. Dit staat in sterk contrast met eerdere oplossingen,
welke het programma bijwerken op de oorspronkelijke plaats, zodat als de update
faalt er geen mogelijkheid is om op de werkende versie terug te vallen.

Op het niveau van het besturingssysteem tonen we de effectiviteit van onze tech-
nieken in PROTEOS, een nieuw onderzoeksbesturingssysteem ontworpen met live
update in het achterhoofd. In PROTEOS zijn updates op het niveau van het process
een eersteklas abstractie, geïmplementeerd op een multiserver besturingssysteemar-
chitectuur gebaseerd op MINIX 3. PROTEOS combineert onze live update technieken
met een grondig gebeurtenis-gedreven programmeermodel gebruikt in de individu-
ele componenten van het besturingssysteem, om mogelijk te maken dat updates al-
leen worden uitgevoerd wanneer het systeem in een voorspelbare en beheersbare
staat is. Op het niveau van de applicatie tonen we de effectiviteit aan met Mu-
table Checkpoint-Restart (MCR), een nieuw live update raamwerk voor generieke
langdraaiende programma’s geschreven in C. MCR breidt onze technieken uit om
legacy-gebruikersprogramma’s in staat te stellen veilige en automatische live update
te ondersteunen met minimaal handmatig werk.

Ter afsluiting presenteert deze dissertatie bewijs dat een grote paradigmaver-
schuiving noodzakelijk is in het ontwerp van live update systemen. In tegenstelling
tot bestaande methodes maken onze live update technieken het mogelijk om com-
ponenten van het besturingssysteem en langdraaiende applicatieprogramma’s bij te
werken zonder dat draaiende programma’s ter plekke aangepast hoeven te worden.

SAMENVATTING 201

Hiermee wordt voorkomen dat ze mogelijk beëindigd moeten worden als het bijwer-
ken om welke reden dan ook zou mislukken. We tomen aan dat deze nieuw aanpak
geschikt is om effectief het live update proces te automatiseren en te beschermen,
terwijl het werk voor implementatie tot een minimum beperkt wordt. Onze ervaring
met het live updaten van belangrijke onderdelen van de gehele software stack toont
belangrijke beperkingen van eerdere oplossingen aan en bevestigt onze hypothese
dat veilige en automatische live updates een realistische optie zijn als zorgvuldig
softwareontwerp en toereikende ondersteuning vanuit het systeem beschikbaar zijn.
We zien ons werk als de eerste belangrijke stap richring een werkelijk praktisch,
algemeen en betrouwbaar live update systeem dat geschikt is voor gebruik in de
buitenwereld.

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Publications
	1 Introduction
	2 Safe and Automatic Live Update for Operating Systems
	2.1 Introduction
	2.1.1 Contribution

	2.2 Background
	2.2.1 Safe Update State
	2.2.2 State Transfer
	2.2.3 Stability of the update process

	2.3 Overview
	2.3.1 Architecture
	2.3.2 Update example
	2.3.3 Limitations

	2.4 Live Update Support
	2.4.1 Programming model
	2.4.2 Virtual IPC endpoints
	2.4.3 State filters
	2.4.4 Interface filters
	2.4.5 Multicomponent updates
	2.4.6 Hot rollback

	2.5 State Management
	2.5.1 State transfer
	2.5.2 Metadata instrumentation
	2.5.3 Pointer transfer
	2.5.4 Transfer strategy
	2.5.5 State checking

	2.6 Evaluation
	2.6.1 Experience
	2.6.2 Performance
	2.6.3 Service disruption
	2.6.4 Memory footprint

	2.7 Related work
	2.8 Conclusion
	2.9 Acknowledgments

	3 Enhanced Operating System Security Through Efficient and Fine-grained Address Space Randomization
	3.1 Introduction
	3.1.1 Contributions

	3.2 Background
	3.2.1 Attacks on code pointers
	3.2.2 Attacks on data pointers
	3.2.3 Attacks on nonpointer data

	3.3 Challenges in OS-level ASR
	3.3.1 WX
	3.3.2 Instrumentation
	3.3.3 Run-time constraints
	3.3.4 Attack model
	3.3.5 Information leakage
	3.3.6 Brute forcing

	3.4 A design for OS-level ASR
	3.5 ASR transformations
	3.5.1 Code randomization
	3.5.2 Static data randomization
	3.5.3 Stack randomization
	3.5.4 Dynamic data randomization
	3.5.5 Kernel modules randomization

	3.6 Live rerandomization
	3.6.1 Metadata transformation
	3.6.2 The rerandomization process
	3.6.3 State migration
	3.6.4 Pointer migration

	3.7 Evaluation
	3.7.1 Performance
	3.7.2 Memory usage
	3.7.3 Effectiveness

	3.8 Related work
	3.8.1 Randomization
	3.8.2 Operating system defenses
	3.8.3 Live rerandomization

	3.9 Conclusion
	3.10 Acknowledgments

	4 Practical Automated Vulnerability Monitoring Using Program State Invariants
	4.1 Introduction
	4.2 Program State Invariants
	4.3 Architecture
	4.3.1 Static Instrumentation
	4.3.2 Indexing pointer casts
	4.3.3 Indexing value sets
	4.3.4 Memory management instrumentation
	4.3.5 Metadata Framework
	4.3.6 Dynamic Instrumentation
	4.3.7 Run-time Analyzer
	4.3.8 State introspection
	4.3.9 Invariants analysis
	4.3.10 Recording
	4.3.11 Reporting
	4.3.12 Feedback generation
	4.3.13 Debugging

	4.4 Memory Errors Detected
	4.4.1 Dangling pointers
	4.4.2 Off-by-one pointers
	4.4.3 Overflows/underflows
	4.4.4 Double and invalid frees
	4.4.5 Uninitialized reads

	4.5 Evaluation
	4.5.1 Performance
	4.5.2 Detection Accuracy
	4.5.3 Effectiveness

	4.6 Limitations
	4.7 Related Work
	4.8 Conclusion
	4.9 Acknowledgments

	5 EDFI: A Dependable Fault Injection Tool for Dependability Benchmarking Experiments
	5.1 Introduction
	5.2 Background
	5.3 System Overview
	5.4 Execution-driven Fault Injection
	5.5 Static Fault Model
	5.6 Dynamic Fault Model
	5.7 Evaluation
	5.7.1 Performance
	5.7.2 Memory usage
	5.7.3 Precision
	5.7.4 Controllability

	5.8 Conclusion
	5.9 Acknowledgments

	6 Back to the Future: Fault-tolerant Live Update with Time-traveling State Transfer
	6.1 Introduction
	6.2 The State Transfer Problem
	6.3 System Overview
	6.4 Time-traveling State Transfer
	6.4.1 Fault model
	6.4.2 State validation surface
	6.4.3 Blackbox validation
	6.4.4 State transfer interface

	6.5 State Transfer Framework
	6.5.1 Overview
	6.5.2 State transfer strategy
	6.5.3 Shared libraries
	6.5.4 Error detection

	6.6 Evaluation
	6.6.1 Performance
	6.6.2 Memory usage
	6.6.3 RCB size
	6.6.4 Fault tolerance
	6.6.5 Engineering effort

	6.7 Related Work
	6.7.1 Live update systems
	6.7.2 Live update safety
	6.7.3 Update testing

	6.8 Conclusion
	6.9 Acknowledgments

	7 Mutable Checkpoint-Restart: Automating Live Update for Generic Long-running C Programs
	7.1 Introduction
	7.2 Background and Related Work
	7.2.1 Quiescence detection
	7.2.2 Control migration
	7.2.3 State transfer

	7.3 Overview
	7.4 Profile-guided Quiescence Detection
	7.4.1 Quiescent points
	7.4.2 Instrumentation
	7.4.3 Quiescence detection

	7.5 State-driven Mutable Record-replay
	7.5.1 Control migration
	7.5.2 Mapping operations
	7.5.3 Immutable state objects

	7.6 Mutable GC-style Tracing
	7.6.1 Mapping program state
	7.6.2 Precise GC-style tracing
	7.6.3 Conservative GC-style tracing

	7.7 Violating Assumptions
	7.8 Evaluation
	7.8.1 Engineering effort
	7.8.2 Performance
	7.8.3 Update time
	7.8.4 Memory usage

	7.9 Conclusion
	7.10 Acknowledgments

	8 Conclusion
	References
	Summary
	Samenvatting

