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Samenvatting

Dit hoofdstuk biedt een beknopte Nederlandse samenvatting van dit academisch
proefschrift met als titel “Het bouwen van een betrouwbaar besturingssysteem:
Foutbestendigheid in MINIX 3”. Hoofdstuk[7 bevat een uitgebreidere Engelse samen-
vatting en gaat dieper in op de onderzoeksbijdragen.

Een van de grootste problemen met computers is dat ze niet voldoen aan de
verwachtingen van gebruikers ten aanzien van betrouwbaarheid, beschikbaarheid,
veiligheid, etc. Een onderzoek onder Windows-gebruikers liet bijvoorbeeld zien dat
77% van de klanten 1 tot 5 fatale fouten per maand ondervindt en de overige 23%
van de klanten maandelijks zelfs meer dan 5 fatale fouten ervaart. De oorzaak van
deze problemen ligt in het besturingssysteem (“operating system”) dat een centrale
rol heeft in vrijwel elk computersysteem. De meeste fouten zijn terug te leiden tot
stuurprogramma’s voor randapparatuur (“device drivers”) die relatief foutgevoelig
zijn. Dergelijke stuurprogramma’s zijn nauw geintegreerd in het besturingssysteem,
waardoor fouten zich gemakkelijk kunnen verspreiden en het hele besturingssysteem
kunnen ontregelen. Dit probleem doet zich niet alleen voor bij standaard besturings-
systemen voor de PC, zoals Windows, Linux, FreeBSD en MacOS. Besturings-
systemen voor mobiele apparatuur (bijvoorbeeld telefoons, PDAs, fotocamera’s,
etc.) en ingebedde computers (bijvoorbeeld in auto’s, pinautomaten, medische appa-
ratuur, etc.) zijn veelal gebaseerd op een vergelijkbaar ontwerp waardoor ze soort-
gelijke problemen kennen.

Onbetrouwbare besturingssystemen veroorzaken niet alleen persoonlijke frus-
traties, maar hebben ook grote maatschappelijke consequenties zoals economische
schade en veiligheidsrisico’s. Dit onderzoek heeft zich daarom tot doel gesteld
om een uitermate betrouwbaar besturingssysteem te bouwen dat fouten in stuurpro-
gramma’s kan weerstaan en herstellen. Deze doelstellingen zijn gerealiseerd door
het besturingssysteem foutbestendig (“fault tolerant™) te maken zodat het normaal
kan blijven functioneren ondanks het optreden van veel voorkomende problemen.
Hierbij hebben we voortgebouwd op recente technologische vooruitgang en inge-
speeld op de veranderende eisen en wensen van gebruikers. Aan de ene kant biedt
moderne computer hardware betere ondersteuning voor het afschermen van fout-
gevoelige stuurprogramma’s. Aan de andere kant is de rekenkracht van computers
zodanig toegenomen dat technieken die voorheen te kostbaar waren nu praktisch
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toepasbaar zijn. Daarnaast is de snelheid van desktop PCs tegenwoordig ruim vol-
doende en leggen steeds meer gebruikers de nadruk op betrouwbaarheid.

In dit onderzoek promoten we het gebruik van een modulair besturingssysteem
(“multiserver operating system”) dat compatibiliteit met UNIX waarborgt, maar stu-
urprogramma’s en systeemtoepassingen net als gewone gebruikerstoepassingen in
een onathankelijk proces uitvoert. Dit model combineert hardware-bescherming
met software-technieken om stuurprogramma’s te isoleren, zodat getriggerde fouten
minder schade kunnen aanrichten. In ons ontwerp hebben we twee strategieén
toegepast om de foutbestendigheid verder te verhogen: (1) fout isolatie (“fault iso-
lation”) om de tijd tussen fatale fouten te vergroten (“mean time to failure”) en (2)
foutherstellend vermogen (“failure resilience”) om de benodigde tijd voor het re-
pareren van fouten te verkleinen (“mean time to recover”). Beide aspecten zijn
in gelijke mate van belang voor het verhogen van de beschikbaarheid van het be-
sturingssysteem. Naast de hogere foutbestendigheid bieden modulaire besturings-
systemen ook vele andere voordelen: een korte ontwikkelingscyclus, een vertrouwd
programmeermodel en eenvoudig systeembeheer.

Om onze ideeén te kunnen testen, hebben we van het open-source besturings-
systeem MINIX 3 gebruikt. MINIX 3 voert stuurprogramma’s, systeemtoepassingen
en gebruikerstoepassingen uit in onafhankelijke processen. Slechts een klein deel
van het besturingssysteem, bestaande uit zo’n 7500 regels programmacode, draait
met alle rechten van de computer en controleert de rest van het systeem. Commu-
nicatie tussen de verschillende onderdelen van het besturingssysteem is alleen mo-
gelijk door berichten van proces naar proces te kopiéren. Wanneer een gebruikers-
toepassing bijvoorbeeld een bestand van de harde schijf wil lezen, moet deze een
bericht sturen naar de systeemtoepassing voor het bestandssysteem, dat vervolgens
een bericht stuurt naar het stuurprogramma voor de harde schijf. Eén van de uit-
breidingen op MINIX 3 is een systeemtoepassing die alle stuurprogramma’s beheert
(“driver manager”). Deze component maakt het mogelijk om systeemtoepassingen
en stuurprogramma’s te starten en te stoppen zonder de computer opnieuw te hoeven
starten. Het zorgt er tevens voor dat de stuurprogramma’s strikt van elkaar en van de
rest van het besturingssysteem worden afgeschermd en het kan veel voorkomende
fouten in stuurprogramma’s detecteren en automatisch herstellen.

Hoewel veel van de gebruikte ideeén en technieken op zich niet nieuw zijn, was
hun gecombineerde potentieel om de betrouwbaarheid van besturingssystemen te
verbeteren nog niet voldoende onderzocht en overtuigend aangetoond. Door dit te
doen met behulp van MINIX 3 levert dit proefschrift de volgende wetenschappelijke
en praktische bijdragen:

» Het laat zien hoe de betrouwbaarheid van besturingssystemen kan worden ver-
beterd met behoud van het vertrouwde UNIX-programmeermodel. In tegen-
stelling tot aanverwant onderzoek, is alleen het binnenwerk van het bestu-
ringssysteem vernieuwd. Hierdoor kan compatibiliteit met bestaande software
worden behouden en is praktische toepassing stapgewijs mogelijk.
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e Het classificeert de geprivilegieerde verrichtingen van stuurprogramma’s die
ten grondslag liggen aan het verspreiden van fouten en bespreekt voor elke
klasse een reeks fout-isolatie technieken om de schade die fouten kunnen
veroorzaken te beperken. Dit resultaat is van belang voor elke poging om
stuurprogramma’s af te zonderen ongeacht het besturingssysteem.

» Het introduceert een ontwerp dat het besturingssysteem in staat stelt om een
breed scala aan fouten in belangrijke componenten automatisch te detecteren
en te repareren zonder gebruikerstoepassingen te onderbreken en zonder tussenkomst
van de gebruiker. Veel van deze ideeén zijn van toepassing in een bredere con-
text dan besturingssystemen alleen.

» Het evalueert de effectiviteit van het gepresenteerde ontwerp door middel van
uitgebreide tests met door software nagebootste fouten. In tegenstelling tot
eerdere projecten, zijn letterlijk miljoenen fouten nagebootst, waardoor ook
veel sporadisch voorkomende fouten opgespoord konden worden en verbe-
terde betrouwbaarheid met een hoge mate van zekerheid is aangetoond.

» Het beschrijft hoe recente hardware virtualisatie technieken gebruikt kunnen
worden om beperkingen van bestaande fout-isolatie technieken te overwin-
nen. Tegelijkertijd bespreekt het enkele resterende tekortkomingen in huidige
PC-hardware waardoor zelfs volledig afgezonderde stuurprogramma’s het be-
sturingssysteem nog steeds kunnen laten vastlopen.

* Tot slot heeft dit onderzoek niet alleen geleid tot een ontwerp, maar is dit on-
twerp ook geimplementeerd, met als resultaat het besturingssysteem MINIX 3
dat publiek beschikbaar is via de officiéle website http://www.minix3.org/. Dit
foutbestendige besturingssysteem maakt duidelijk dat de voorgestelde aanpak
praktisch toepasbaar is.

Samenvattend kunnen we concluderen dat met dit onderzoek naar het bouwen van
een foutbestendig besturingssysteem, dat bestand is tegen de gevaren van de fout-
gevoelige stuurprogramma’s, een stap is gezet in de richting van meer betrouwbare
besturingssystemen.



http://www.minix3.org/




Chapter 1

General Introduction

In spite of modern society’s increasingly widespread dependence on computers, one
of the biggest problems with using computers is that they do not meet user expec-
tations regarding reliability, availability, safety, security, maintainability, etc. While
these properties are, in fact, different concepts, from the users’ point of view the
are closely related and together delineate a system’s dependability [AviZienis et al.,
]. The users’ mental model of how an electronic device should work is based
on their experience with TV sets and video recorders: you buy it, plug it in, and
it works perfectly for the next 10 years. No crashes, no monthly software updates,
no unneeded reboots and downtime, no newspaper stories about the most recent in
an endless string of viruses, and so on. To make computers more like TV sets, the
goal of our research is to build a dependable computing platform, starting with the
operating system (OS) that is at the heart of it.

Our research focuses on the dependability needs of ordinary PCs (including
desktops, notebooks, and server machines), moderately well-equipped mobile de-
vices (such as cell phones, PDAs, and photo cameras), and embedded systems (as
found in cars, ATMs, medical appliances, etc.). Dependability problems with com-
modity PC operating systems (OSes), including Windows, Linux, FreeBSD, and
MacOS, pose a real threat, and hanging or crashing systems are commonplace.
For example, Windows’ infamous blue screens are a well-known problem [Boutin,
2004]. However, the same problems are showing up on mobile devices and embed-
ded systems now that they become more powerful and start to run full-fledged OSes,
such as Windows Mobile, Embedded Linux, Symbian, and Palm OS. The design of
these systems is not fundamentally different from PC OSes, which means that the
dependability threats and challenges for mobile devices and embedded systems are
similar to those encountered for ordinary PCs.

Our aim is to improve OS dependability by starting from scratch with a new,
lightweight design, without giving up the UNIX [Ritchie and Thompson, 1974] look
and feel and without sacrificing backward compatibility with existing applications.
We realize that software is not always perfect and can contain bugs, but want faults

=
.
)
2
o
©
{=
©)




2 CHAPTER 1. GENERAL INTRODUCTION

and failures to be masked from the end user, so that the system can continue running
all the time. In particular, we address the problem of buggy device drivers, which run
closely integrated with the core OS and responsible for the majority of all crashes.
We are willing to make trade-offs that help to protect the system at the expense of a
small amount of performance. Our design metric was always: how does this module,
algorithm, data structure, property, or feature affect the system’s dependability?

This thesis describes how we have realized this goal and built a dependable OS,
MINIX 3, which is freely available along with all the source code. The remainder
of this chapter is organized as follows. To begin with, Sec.[1.1]further motivates the
need for improved OS dependability. Next, Sec.[1.2/describes the threats posed by
device drivers and Sec.[1.3]investigates the principles underlying OS crashes. Then,
Sec.[1.4 introduces our solution to the problem and Sec.[1.5]briefly previews related
work. Finally, Sec. defines the exact research focus and Sec. lays out the
organization of the rest of this thesis.

1.1 The Need for Dependability

Perhaps the need for dependability is best illustrated by looking at the potentially far-
reaching consequences of software failures. For example, between 1985 and 1987,
a type of bug known as a race condition led to six accidents with the Therac-25
radiation-therapy machine involving a radiation overdose that caused serious injury
and three fatalities ﬂLeveson and Turner, 1993]. In 1991, arithmetic errors in the
Patriot missile-defense system used during the Gulf War prevented intercepting an
Iraqi Scud missile killing 28 American soldiers and injuring around 100 other peo-
ple , ]. In 1996, an integer overflow caused the Ariane-5 satellite
to be destroyed shortly after launch by its automated self-destruct system resulting
in loss of reputation and damages of at least US$ 370 million [Dowson, W]. In
2003, an infinite loop prevented alarms from showing on FirstEnergy’s control sys-
tem and seriously hampered the ability to respond to a widespread power outage
affecting over 50 million people in the U.S. and Canada IPoulseB, 2004]. These
events as well as many others [e.g. Garfinkel, %], illustrate the general need for
dependable computing platforms.

Narrowing our focus, OS dependability is of particular importance because of
the fundamental role the OS plays in almost any computer system. The OS is the
lowest level of system software, commonly referred to as the kernel, that interfaces
between the computer hardware and applications run by the end user. In our view,
the OS has three key responsibilities:

* The OS mediates access to the central processing unit (CPU), memory, and
peripheral devices, so that applications can interoperate with the computer.

e It acts as a kind of virtual machine by offering a convenient application pro-
gramming interface (API) at a level higher than the raw hardware.
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Figure 1.1: The fundamental role of the OS in a computer system: the OS is the lowest level of
system software that controls the hardware, manages resources, and interfaces with applications.

* Finally, the OS controls and manages the system’s software and hardware re-
sources in order to prevent conflicts and enforce security policies.

We do not consider the system utilities and application programs shipped with the
OS to be part of the OS. This design is illustrated in Fig. Because of this im-
portant role of the OS at the heart of the system any problem with the OS will have
immediate repercussions on the dependability of the system as a whole.

Despite its important role, OS dependability is still lacking. Studies seem to
indicate that most unplanned downtime can be attributed to faulty system software
rather than hardware failures [Gray, [1990; Lee and Iyer, 1993; Thakur et al., 1995}
Xu et al.,[1999], and within this class OS failures deserve special attention because
of their severity. A January-2003 survey among home and small business users
showed that all participants experienced Windows crashes or serious bugs; 77% of
the customers experienced 1-5 crashes per month, whereas 23% of the customers
experienced more than 5 monthly crashes [Orgovan and Dykstra, 2004]. Although
application crashes are more common, OS crashes have a broader scope and more
severe consequences [Ganapathi and Patterson, 2005]. In contrast to crashed appli-
cations that can be restarted immediately, an OS crash takes down all running appli-
cations, closes all network sessions, destroys all unsaved user data, and requires a
full, time-consuming reboot of the machine.

Rebooting after an OS crash is not only frustrating, but also a real problem to
end users. First, computer crashes are unacceptable for ordinary users who may not
be willing or used to deal with failures. Anecdotal evidence is provided by support
calls from friends or family who have some computer problem to be fixed. Next,
OS crashes are a serious issue for data centers and server farms where monthly OS
reboots translate to many daily failures due to the large number of machines run-
ning. Even if individual OSes have 99.9% uptime, achieving an overall service level
of ‘three nines’ or 99.9% availability is a big challenge. Hence, data centers usually
employ additional measures, such as replication and preventive reboots, to guarantee
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4 CHAPTER 1. GENERAL INTRODUCTION

availability. Finally, there is a host of safety-critical systems that are simply too im-
portant to fail. Safety-critical systems are found in, for example, aerospace, aviation,
automotive, military, medical, telecommunications, banking, and public-service ap-
plications. Therefore, OS dependability is crucial.

1.2 The Problem with Device Drivers

In order to improve OS dependability we have primarily focused on OS extensions.
In a typical design, the core OS implements common functionality, such as process
scheduling and programming the memory management unit (MMU), and provides a
set of kernel interfaces for enhancing or extending this functionality. OS extensions
use these hooks to integrate seamlessly with the core OS and extend its functionality
with a specific service, such as a device driver, virus scanner, or protocol stack. In
this way, the OS can support different configurations without having to include all
possible anticipated functionality at the time of shipping; new extensions can be
installed after the OS has been deployed.

We are particularly interested in low-level device drivers that control the com-
puter’s peripheral devices, such as printers, video adapters, audio cards, network
cards, storage devices, etc. Drivers separate concerns by providing an abstraction
layer between the device hardware and the OS modules that use it. For example,
a network server defines a generic, high-level network protocol and uses a network
driver to do the low-level input/output (I/O) from and to a specific network card.
Likewise, a file server implements a file-system format and relies on a disk driver to
read or write the actual data from or to the controller of the disk drive. In this way,
the core OS can remain hardware-independent and call upon its drivers to perform
the complex, hardware-dependent device interaction.

Drivers are important not only qualitatively, but also quantitatively, and can com-
prise up to two-thirds of the OS code base [Chou et al., 2001]. This is not surprising
since the number of different hardware devices in 2004 is quoted at 800,000 with
1500 new devices per day [Murph ,M]. Even though many devices have the
same chipset and some drivers can control multiple devices, literally tens of thou-
sands of drivers exists. In the same year, Windows reportedly had 31,000 unique
drivers and up to 88 drivers were being added every day. A more recent report men-
tions an average of 25 new and 100 revised drivers per day ﬂGlerum etal., 2009‘].
While not all these drivers are present in any system, each individual driver runs
closely integrated with the core OS and can potentially crash the entire system.

It is now beyond a doubt that OS extensions and drivers in particular are re-
sponsible for the majority of OS crashes. To start with, analysis of failure reports
for the Tandem NonStop-UX OS showed that device drivers contribute the great-
est number of faults [Thakur et al., M]. A static compiler analysis of Linux also
found that driver code is most buggy, both in terms of absolute bug counts and in
terms of error rate. Drivers had most bugs for all error classes distinguished and ac-
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counted for 70%—90% of the bugs in most classes. The error rate corrected for code
size in drivers also is 3—7 times higher than for the rest of the kernel ,
W]. Finally, studies of Windows’ automatically generated crash dumps again pin-
point drivers as a major problem. For example, crash analysis shows that 70% of all
OS crashes is caused by third-party code, whereas 15% is unknown because of se-
vere memory corruption [Orgovan and Dykstra, ‘2004]. Another independent study
showed that 65% of all OS crashes are due to device drivers ﬂGanapathi etal., 200&].

Looking at the driver development cycle we believe that driver quality is not
likely to improve on a large scale any time soon. Although we did not investigate in
detail why drivers are so error-prone, several plausible explanations exist:

e First, driver writing is relatively difficult because drivers are complex state
machines that must handle application-level requests, low-level device inter-
action, and system events such as switching to a lower power state.

 Second, drivers are often written by third parties, such as the device manufac-
turer or a volunteer from the open-source community, who may be ignorant of
system rules and accidentally violate interface preconditions.

e Third, OS and hardware documentation is frequently lacking, incomprehen-
sible, or even incorrect, causing programmers to (reverse) engineer the driver
until it works—without correctness guarantees [Ryzhyk et al., ‘2009a].

* Fourth, driver writers sometimes incorrectly assume the hardware to work cor-
rectly, as evidenced by, for example, infinite polling or lack of input validation,
which may hang or crash the OS [Kadav et al., 2009].

* Fifth, relating to the previous points, driver writers often are new to the task
and lack experience. By a huge margin, the average third-party driver writer
is writing his first (and only) device driver [Hunt, pers. comm., 2010].

e Finally, in contrast to the core OS that typically remains stable and is more
heavily tested, drivers come and go with new hardware and may have more
poorly tested code paths due to rare system configurations ﬂMerlo et al. ZOOQJ].

5

In addition, we believe that fixing buggy drivers is infeasible because of the
overwhelmingly large number of extensions and continuously changing configura-
tions. Although Microsoft’s error reporting revealed that a small number of organi-
zations are responsible for 75% of all driver crashes, a heavy tail indicates it is ex-
tremely hard to eliminate the remaining 25% of the crashes [Ganapathi et al., ‘200&].
Moreover, the number of problems that can be resolved using automatic checkers
fluctuates because software and hardware configurations are continuously chang-
ing Murf)hi, ]. This leads to a highly complex, dynamic configuration space
that is extremely hard, if not impossible, to check for correctness. Finally, even if
bugs can be fixed, bug fixes not infrequently introduce new problems.
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6 CHAPTER 1. GENERAL INTRODUCTION

1.3 Why do Systems Crash?

Having established device drivers as a main dependability threat, we now study the
more fundamental principles that lead to OS crashes. Although OS crashes can be
caused by bugs in hardware, firmware, and software ﬂGlerum et al.,‘2009], this thesis
primarily focuses on the latter because software bugs are more prevalent and can be
addressed by the OS itself. Buggy driver software is unavoidable due to an excess
of complex system code and hardware with bizarre programming interfaces. The
reason underlying OS crashes, however, are a series of design flaws that allow the
bugs to spread and cause damage. Below, we investigate these issues in turn.

1.3.1 Software Complexity

Large software systems seem to be buggy by nature. Studies for many programming
languages reveal a similar pattern, leading to the conclusion that any well-written
code can be expected to have a fault density of at least 0.5—-6 faults per 1000 lines of
executable code (LoC) [Hatton, 1997]. For example, the 86,000-LoC IBM DOS/VS
OS displayed 6 faults/KLoC during testing , @]. Next, a 90,000-LoC
satellite planning system contained 6—16 faults/KLoC throughout the software life
cycle ﬂBasili and Perriconel, 1984]. Furthermore, a 500,000-LoC AT&T inventory
tracking system had 2—75 faults/KLoC ﬂOstrand and Weyukeﬁ, 2002]. In line with
these estimates, the multimillion-line FreeBSD OS was found to have 1.89 ‘post-
feature test’ faults/KLoC [Dinh-Trong and Bieman, M], even though this project
has strict testing rules and anyone is able to inspect the source code. The ‘post-
feature test’ fault density includes all faults found in completed features during the
system test stage ﬂMockus et al., 2002]. However, we believe that this fault density
may even be an underestimate because only bugs that were ultimately found and filed
as a bug report were counted. For example, static analysis of 126 well-tested and
widely used Windows drivers revealed significant numbers of latent bugs [Ball et al.,
M]. A more recent study took 6 popular Windows drivers and found 14 new bugs
with relatively little effort [Kuznetsov et al., 2010].

There are various reasons for all these bugs. Module size and complexity seem
to be poor predictors for the number of faults, but new code was generally found to
contain more bugs. Attempts to relate fault density to module size and complexity
have found different results and thus are inconclusive: studies found a negative cor-
relation iBasili and Perricone, 1984; Ostrand and We ukeﬂ, 2002], a U-shaped cor-
relation IHatton.m], a positive correlation [Chou et al.,], or no correlation at
all ﬂFenton and Ohlsson, 2000]. However, code maturity seems to be a viable metric
to predict faults. In Linux, 40%—60% of the bugs were introduced in the previous
year [Chou et al.,’m]. In the AT&T inventory tracking system, new files more fre-
quently contained faults and had higher fault densities [Ostrand and Wevuker.‘ZOOZJ].
Interestingly, however, the overall fault density stabilized after many releases and did
not go asymptotically to zero ﬁOstrand et al. 2005‘].

]
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In addition to bugs in new drivers, maintainability of existing code is complicated
by software aging due to maintenance and redesign [Gray and Siewiorek ‘1991]. In
particular, changes in OS interfaces may trigger changes in dependent drivers. Such
changes are known as collateral evolution and can account for up to 35% of the num-
ber of lines modified from one OS version to the next. Many collateral evolutions
are quite pervasive, with one change in a library function affecting around 1000 sites
in Linux 2.6 [Padioleau et al.,’2—(X)%]. We expect this situation to deteriorate because
dependencies between the core OS and extensions seem to increase with each re-
lease [Schach et al., ‘2002]. Therefore, even if a driver appears to be bug-free in one
version, changes to the rest of the OS may silently break it in the next release be-
cause of regression faults, that is, faults present in the new version of the system that
were not present prior to modification.

In order to assess what these findings mean for an actual OS, we analyzed the
Linux 2.6 kernel during a 5-year period since its initial release. Fig. [1.2] shows
the code evolution with 6-month deltas for 11 versions ranging from Linux 2.6.0
to 2.6.27.11. The figure is indicative for the evolution of Linux’ enormously com-
plex code base, which poses a serious threat to its dependability. The /drivers sub-
system is by far the largest subsystem and more than doubled in a period of just
5 years, comprising 51.9% of the kernel or 2.7 MLoC. The entire kernel now sur-
passes 5.3 MLoC. Linux’ creator, Linus Torvalds, also acknowledges this fact and
recently called the kernel ‘bloated and huge’ Modin&, M]. Using a conservative
estimate of 1.89 faults/KLoC found for FreeBSD [Dinh-Trong and Biema ,\mﬁ,
this means that the 5.3-MLoC Linux kernel may contain over 10,000 bugs, some of
which may eventually be triggered and crash the OS. While we acknowledge that
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Figure 1.2: Growth of the Linux 2.6 kernel and its major subsystems in lines of executable code
(excluding comments and white space) for a 5-year period with 6-month deltas.
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8 CHAPTER 1. GENERAL INTRODUCTION

only a subset of the code is active on any given system, test coverage for new or
infrequently used drivers may be poor and deteriorate over time.

The obvious conclusion of these studies is: more code means more bugs means
more dependability problems. As software develops, each new release tends to ac-
quire more features and is often less dependable than its predecessor. There seems
to be no end to the increasing size and complexity of software, leading to a perpet-
ual software crisis , ]. Moreover, with multimillion-line systems, no
person will ever read the complete source code and fully understand it. Of course,
different people will understand different parts, but because components interact in
complex ways, with nobody understanding the whole system, it is unlikely that all
the bugs will ever be found. On top of this, bug triage is sometimes postponed for
months or even delayed indefinitely [Guo and Engleﬂ, \M] and administrators are
generally slow to apply bug fixes [Rescorla, 2003]. Therefore, this thesis aims to
improve dependability by anticipating buggy code.

1.3.2 Design Flaws

While it may not be possible to prevent bugs, we strongly believe it is the respon-
sibility of the OS to tolerate them to a certain extent. In our view, a bug local to a
device driver or other OS extension should never be able to bring down the OS as
a whole. In the worst case, such an event may lead to a local failure and gracefully
degrade the OS by shutting down only the malfunctioning module. If a bug in, say,
an audio driver is triggered, it is bad enough if the audio card stops working, but
a full OS crash is completely unacceptable. Unfortunately, current OSes do not do
very well according to our metric.

The fact that current OSes are susceptible to bugs can be traced back to two fun-
damental design flaws. The main problem is lack of isolation between the OS mod-
ules due to the use of a monolithic design. Virtually all OSes, including Windows,
Linux, and FreeBSD, consist of many modules linked together to form a single bi-
nary program known as the kernel. Even though there is a clear logical structure with
a basic executive layer (the core OS) and extensions that provide added functional-
ity, all the code runs in a single protection domain. Since kernel code is allowed
to execute privileged CPU instructions, drivers can accidentally change the memory
maps, issue I/O calls for random devices, or halt the CPU. In addition, all the code
runs in a single address space, meaning that an invalid pointer or buffer overflow in
any module can easily trash critical data structures in another module and spread the
damage. This design is illustrated in Fig.[1.3.

A related problem is violating a design principle known as the principle of least
authority (POLA) ﬂSaltzer and Schroeder, 1975‘] by granting excessive privileges to
untrusted (driver) code. Most sophisticated users normally would never knowingly
allow a third party to insert unknown, foreign code into the heart of their OS, yet
when they buy a new peripheral device and install the driver, this is precisely what
they are doing. In addition, many drivers come preinstalled with the OS distribu-
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Figure 1.3: A monolithic design runs the entire OS in the kernel without protection barriers between
the OS modules. A single driver fault can potentially crash the entire OS.

tion, which results in an unwarranted feeling of trust. However, because drivers are
executed in the kernel they can circumvent all security policies and the slightest mal-
functioning can take down the OS. Effectively, drivers are granted full control over
the machine—even though this is not required for drivers to do their job.

The reason for running the entire OS in the kernel with no protection between
the modules seems to be historically motivated. Early OSes were relatively small
and simple and, therefore, still manageable by a few experts. More importantly,
computers were far less powerful and imposed severe constraints upon the OS with
respect to resource usage. Linking all the modules together did not waste memory
and resulted in the best performance. The use of a monolithic design thus seemed
logical at that time. Today, however, the landscape has completely changed: current
OSes tend to be much larger and far more complex and (desktop) computing power
is no longer a scarce resource. These software and hardware advances mean that the
design choices of the past may no longer be appropriate.

1.4 Improving OS Dependability

Because we do not believe that bug-free code is likely to appear soon, we have de-
signed our OS in such a way that certain major faults can be tolerated. The idea
underlying our approach is to exploit modularity, as is commonly done in other en-
gineering disciplines. For example, the hull of a modern ship is compartmentalized
such that, if one compartment springs a leak, only that compartment is flooded, but
not the entire hull, and the ship can seek a safe harbor. Likewise, computer hard-
ware is componentized such that, if the DVD-RW drive breaks down, writing DVDs
is temporarily not possible, but the computer works fine otherwise, and the broken
unit may be replaced with a new one. This kind of modularity is key to dependability
and forms the basis underlying our dependable OS design.
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1.4.1 A Modular OS Design

For decades, the proven technique for handling untrusted code, such as application
programs, has been to run it as an independent process with a private memory ad-
dress space and in an unprivileged CPU mode. Such an unprivileged process is
known as a user process. Hardware protection provided by the CPU and MMU are
used to set up a protection domain in which the process can run safely, isolated from
the kernel and other user processes. If a user process attempts to execute a priv-
ileged instruction or dereference a pointer outside of its address space, a CPU or
MMU hardware exception is raised and control is transferred back to the OS via a
trap. The user process may be suspended or aborted, but, more importantly, the rest
of the system is unaffected and can continue to operate normally.

We took this idea to the extreme with a modular design that fully compartmen-
talizes the OS, just like is done for application programs. Moving the entire OS into
a single user process [Hartig et al.,[1997] makes rebooting the operating system after
a crash faster, but does not address the degree of driver isolation. What is required
instead is a multiserver design that splits the OS functionality into multiple inde-
pendent user-level processes, and very tightly controlling what each process can do.
Only the most basic functionality that cannot be realized at the user level, such as
programming the CPU and MMU hardware, is allowed to remain in the kernel. Be-
cause the kernel is reduced to the absolute minimum it is now called a microkernel.
While servers and drivers require more privileges than applications, each is run as an
ordinary process with the same hardware-enforced protection model. The structure
of a microkernel-based multiserver design is illustrated in Fig.[1.4.

We are not arguing that moving most of the OS to user level reduces the total
number of bugs present. However, we are arguing that, by converting a kernel-level
bug into a user-level bug, the effects when a bug is triggered will be less devastat-
ing. Monolithic designs are like ships before compartmentalization was invented:
every leak can sink the ship. In contrast, multiserver designs are like modern ships
with isolated compartments that can survive local problems. If a bug is triggered,
the problem is isolated in the driver and can no longer bring down the entire OS.
In addition, the multiserver design changes the manifestation of certain bugs. For
example, a classification of driver failures on Windows XP shows that the use of
user-level drivers would structurally eliminate the top five contenders, responsible
for 1690 (67%) of the 2528 OS crashes analyzed ﬂGanapathi et al., 2006‘]. The fol-
lowing driver failures from this analysis illustrate this point:

e Just under a quarter of these failures (383) are caused by driver traps or excep-
tions that cannot be handled by the kernel. A trap is usually caused by a CPU
hardware exception such as division by zero, arithmetic overflow, or invalid
memory access. When a trap occurs the CPU stops execution of the current
process, looks up the corresponding trap handler, and switches context to the
kernel in order to handle the exception. However, upon a trap caused by a
kernel-level driver it may be impossible to switch to another kernel context,
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Figure 1.4: A multiserver design runs each server and driver as an independent, hardware-
protected user process. This design prevents propagation of faults between the OS modules.

and the OS crashes. In contrast, traps or exceptions caused by a user-level
driver can be dealt with using the OS’ normal exception handling mechanisms
that already are in place for application programs.

* About a fifth of these failures (327) are caused by infinite loops in drivers, that
is, pieces of code that lack a functional exit and repeat indefinitely. A driver
may wind up in an infinite loop, for example, if it repeatedly retries a failed
operation or busy waits for the hardware to become ready, without checking
against a maximum number of retry attempts or scheduling a time-out alarm,
respectively. Because a kernel-level driver runs with full privileges, such a
bug may consume all CPU resources and hang the entire system. In contrast,
a user-level driver runs under the control of the OS scheduler, just like normal
application programs do, and can only waste the CPU resources assigned to it.
The rest of the OS still gets a chance to run, and corrective measures such as
lowering the driver’s priority can be taken.

There are two potential downsides to the use of a multiserver OS design. First,
because device drivers often depend on the core OS and need to perform sensitive
operations, it is not possible to maintain full backward compatibility and directly run
a kernel driver as a user process. Instead, minor modifications to the driver code are
generally required in order to mediate the use of privileged functionality ﬂHerdeH,
2005]. Nevertheless, we believe that the level of compatibility provided by multi-
server systems is high enough to be of practical use. For example, it is generally
possible to port existing drivers from other OSes. Second, because user-level drivers
need to call other parts of the OS to perform operations they could formerly do
themselves, a small performance overhead due to context switching and data copy-
ing is expected. In practice, this overhead is limited to 0%—25%, depending on the
system’s workload, and should not pose a problem for most use cases.
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1.4.2 Fault-tolerance Strategies

The fine-grained process-based encapsulation provided by a multiserver design al-
lowed us to explore the idea of fault tolerance, that is, the ability to continue to op-
erate normally in the presence of faults and failures [Nelson, 1990]. If a driver fault
affects the rest of the OS at all, the quality of service may be gracefully degraded
proportional to the problem’s severity, but the fault may never lead to a system-wide
failure. Our design applies two fault-tolerance strategies, namely, fault isolation and
failure resilience. Our fault-isolation mechanisms prevent local driver faults from
damaging the rest of the system. This cannot prevent a faulty driver from failing,
however. Therefore, our failure-resilience mechanisms attempt to recover from a
broad range of driver failures. We further introduce these notions below:

e Fault isolation means that the damage caused by a bug cannot propagate and
spread beyond the protection domain of the component in which the bug is
contained. By splitting the OS into small, independent components we can
establish protection barriers across which faults cannot propagate, resulting in
a more robust system. Bugs in user-level drivers have much less opportunity
to trash kernel data structures and cannot touch hardware devices they have
no business touching. While a kernel crash is always fatal, a crash of a user
process rarely is. Although drivers need more privileges than ordinary applica-
tions, we have attempted to minimize the risks by restricting driver privileges
according to the principle of least authority

* Failure resilience literally refers to the ability to recover quickly from a failure
condition. Once driver faults are properly isolated from the core OS, on-the-
fly recovery of certain driver failures may be possible. By giving a special
component known as the driver manager the power to monitor and control all
drivers at run time, we can detect and repair a wide range of failures, including
unresponsive, misbehaving, and crashing drivers. When a failure is detected,
the driver manager looks up the associated policy, and can automatically re-
place the malfunctioning component with a fresh copy. In some cases, full
recovery is possible, transparent to applications and without user intervention.

These fault-tolerance strategies map onto two important dependability metrics.
First, mean time to failure (MTTF) characterizes a system’s uptime, that is, the time
until a failure occurs. Second, mean time to recover (MTTR) characterizes the time
needed to recover from a failure, that is, the time needed for defect detection and
repair. Together, these metrics define a system’s availability (A):

 MTTF
~ MTTF + MTTR

A

with an availability of A = 1 (i.,e. MTTF >> MTTR) corresponding to the ideal
of zero downtime. This formula shows that availability can be increased either by
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maximizing MTTF or by minimizing MTTR. Our fault tolerance techniques work
from both sides. Fault isolation increases MTTF by making the system as a whole
more robust against failures. However, since bugs are a fact of life, infinite uptime
may not be realistic. Therefore, failure resilience reduces MTTR by restarting failed
drivers on the fly rather than requiring a full reboot. Although we do not attempt
to quantify exactly MTTF and MTTR, the point we want to make is that reducing
MTTR may be as effective as increasing MTTF ﬂGray and Siewiore]d, 1991‘].

1.4.3 Other Benefits of Modularity

In addition to dealing with buggy drivers, the use of modularity helps improving de-
pendability in a broader context. While there are some restrictions, we believe that a
modular OS environment supports both programmers and administrators throughout
the development cycle and may lead to higher productivity, improved code quality,
and better manageability. We discuss some of these benefits below.

Short Development Cycle The huge difference between monolithic and multi-
server OSes immediately becomes clear when looking at the development cycle of
OS components. System programming on a monolithic OS generally involves edit-
ing, compiling, rebuilding the kernel, and rebooting to test the new component. A
subsequent crash requires another reboot, and tedious, low-level debugging usually
follows. In contrast, the development cycle on a multiserver OS is much shorter.
Typically, the steps are limited to editing, compiling, testing, and debugging—just
like is done for application programs. Because OS development at the user level is
easier, the programmer can get the job done faster.

Normal Programming Model Since drivers are ordinary user processes, the normal
programming model applies. Drivers can use system libraries and, in some cases,
even make ordinary system calls, just like applications. This strongly contrasts to the
rigid programming environment of monolithic kernels. For example, in Windows,
kernel-level code running at high a priority level must be careful not to access page-
able memory, because page faults may not be handled. Likewise, the normal way
to acquire kernel locks may not be used in the lowest-level driver code, such as in-
terrupt handlers. All these kernel-level constraints make it easy for programmers to
make mistakes. In essence, working at the user level makes programming easier and
leads to simpler code and, therefore, reduces the chance of bugs.

Easy Debugging Debugging a device driver in a monolithic kernel is a real chal-
lenge. Often the system just halts and the programmer does not have a clue what
went wrong. Using an emulator usually is of no use because typically the device
being driven is new and not supported by the emulator. On Windows platforms
debugging a kernel-level driver is normally done using two machines: one for the
driver and a remote machine running the debugger. In contrast, if a driver runs as
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a user process, a crash leaves behind a core dump that can be subjected to post-
mortem analysis using all the normal debugging tools. Furthermore, as soon as the
programmer has inspected the core dump and system logs and has updated the code,
it is possible to test the new driver without a full reboot.

Good Accountability When a user-level driver crashes, it is completely obvious
which one it is, because the driver manager can tell which process exited. This
makes it much easier than in monolithic kernels to pin down whose fault a crash
was, and possibly who is legally liable for the damage done. Holding hardware
manufacturers and software vendors liable for their errors, in the same way as the
producers of tires, medicines, and other products are held accountable, may be an
incentive to improve software quality. Although some software providers are willing
to remedy problems brought to their attention, the number of vendors participating
in error reporting programs is still very small ﬂGlerum etal., 2009]. With drivers
running at the user level it will become easier to set up error reporting infrastructure,
which may help to get software providers in the loop.

Simple Maintenance Our modular design makes system administration and main-
tenance easier. Since OS modules are just processes, it is relatively easy to add or
remove servers and drivers. It becomes easier to configure the OS by mixing and
matching modules. Furthermore, if a module needs to be patched, this can usually
be done in a process known as a dynamic update, that is, component replacement or
patching without loss of service or a time-consuming reboot ﬂBaumann et al., 2()07‘].
This is important since reboots due to maintenance cause a large fraction (24%) of
system downtime [Xu et al., @]. In contrast to monolithic kernels, module sub-
stitution is relatively easy in modular systems and often can be done on the fly.

1.5 Preview of Related Work

Recently, several other projects have also acknowledged the problem of buggy de-
vice drivers and attempted to make them more manageable and prevent them from
crashing the entire OS. In our discussion, we are primarily interested in how different
run-time systems deal with untrusted code and what trade-offs they pose. Although
we also cover some ways to improve driver quality, prevention of bugs is an orthog-
onal problem and outside the scope of this work. For the purpose of this thesis, we
have classified the related work into four categories:

¢ In-kernel sandboxing.
e Virtualization techniques.
e Formal methods.

¢ User-level frameworks.
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The work described here classifies as a user-level framework. Interestingly, many of
the ideas used in each of these classes have been around for decades, but have been
revisited recently in order to improve OS dependability.

Without going into all the details or concrete systems, which we will do in
Chap.[6] we briefly preview each approach below and contrast them to our approach.
First, in-kernel sandboxing tries to isolate drivers inside the kernel by providing a
restricted execution environment for the untrusted code. This is called a sandbox.
One approach is to wrap each driver in a layer of software that controls the driver’s
interaction with the kernel. One particular benefit of this approach is that it allows to
retrofit dependability into commodity OSes. In addition, interposition allows catch-
ing a wide variety of fault types, since the wrapper code can be aware of driver
protocols. However, in-kernel drivers can sometimes still execute dangerous CPU
instructions and additional protection mechanisms are required for untrusted execu-
tion. Although drivers often do not have to be modified, new support infrastructure
is typically needed in the kernel. This adds additional complexity to the kernel and
introduces new maintenance problems.

Second, virtualization techniques present a virtual, hardware-protected execu-
tion environment that exports only a subset of the computer’s resources to the client.
Privileged operations are intercepted and vetted before execution. Virtualization is
generally used to run multiple OSes in isolation, for example, Windows next to
Linux, FreeBSD, or MacOS, but cannot prevent drivers running inside the OS from
crashing their execution environment. Although the crashed OS can be restarted
without affecting other virtual machines, all running applications and unsaved user
data are still lost. Isolation can be achieved by running untrusted drivers in separate
virtual machines, but this requires the OS hosting the driver as well as the virtual
execution environment to be modified in order to let driver communication go in and
out. Such modifications break the original intent of virtualization and require protec-
tion measures similar to those found in user-level frameworks in order to guarantee
proper isolation. Furthermore, resource management may not scale if each and every
OS extension needs to be isolated separately.

Third, formal methods exploit advances in safe languages and verification tech-
niques in order to evaluate novel OS designs. Current OSes are commonly written
in low-level languages like C or C++, which use error-prone memory pointers all the
time. In contrast, safe, high-level languages structurally eliminate many problems,
because the compiler refuses to generate ‘dangerous’ code and the run-time system
automates memory management. In addition, it becomes possible to perform static
analysis on driver code and verify that system invariants are not violated. Driver
synthesis also seems attractive, but writing a formal specification of the device in-
terface requires substantial manual effort. A downside of these approaches is that
it completely overhauls the traditional, well-known development cycle and often is
incompatible with existing code. Furthermore, formal verification of the entire OS is
infeasible, and hardware support is still required to isolate untrusted code and protect
against memory corruption by incorrectly programmed devices.
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Fourth, user-level frameworks run drivers as user processes protected by the CPU
and MMU hardware. Running the entire OS in a single process is of little help be-
cause drivers still run closely integrated with the core OS. Instead, each individual
driver must be encapsulated in an independent process. This model is a simple,
well-understood and proven technique for handling untrusted code. Although driver
modifications are generally required, the changes tend to be limited to the code that
uses privileged functionality. This basic idea has been around for a few decades,
but was never fully explored because it incurs a small performance overhead. Al-
though modular designs have been tested before, many projects focused on perfor-
mance [e.g. ‘Liedtke,‘1993; Hirtig et al..‘1997‘] and security [e.g. ,
m] rather than dependability. Not until recently were user-level drivers introduced
in commodity OSes, but a fully compartmentalized OS is still a rarity.

From the user’s point of view, a multiserver OS is in the middle of the spectrum
ranging from legacy to novel isolation techniques. For example, in-kernel sand-
boxing works with commodity OSes and existing drivers, but introduces additional
complexity into the kernel to work around rather than fix a flawed design. Virtu-
alization provides only a partial solution to the problem and cannot elegantly deal
with individual driver failures. Formal methods potentially can provide a very high
degree of isolation, but often throw away all legacy by starting from scratch with a
design that is not backward compatible. In contrast, user-level frameworks balance
these factors by redesigning the OS internals in order to provide hard safety guaran-
tees, while keeping the UNIX look and feel for both developers and end users, and
maintaining compatibility with existing applications.

An important benefit of our modular design is that it can be combined with
other isolation techniques in order to achieve the best of all worlds. For example,
language-based protection can be exploited on a small scale, because drivers run-
ning as ordinary user processes can be implemented in a programming language of
choice. Likewise, sandboxing techniques such as wrapping and interposition may
also be applied to monitor the working of selected drivers more closely. Because our
design runs all OS services as independent user processes, the protection model can
be tightened incrementally, starting with the most critical components.

1.6 Focus of this Thesis

Having introduced the general problem area as well as our high-level solution to OS
dependability, the time has come to define the exact focus and highlight the main
contribution of this thesis. We first position the research by explicitly stating what
we did and did not do.

 The focus of this thesis is dependability rather than security [AviZienis et al.,
2004]. Dependability refers to a system’s reliability, availability, safety, in-
tegrity, and maintainability, whereas security deals with availability, integrity,
and confidentiality. Nevertheless, problems in each of these domains often
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have the same root cause: bugs in the software. For example, a buffer over-
run in a driver error can cause an OS crash, but it can also allow a cleverly
written virus or worm to take over the computer ﬂLemoi 2005; ’—uJ, 2()06‘].
Bugs that can be exploited are known as vulnerabilities and have a density
several orders of magnitude lower than ordinary bugs ﬂOzment and Schechteﬂ,
]. Our design is intended to curtail the consequences of bugs that may
accidentally cause service failures under normal usage, but does not aim to
protect against vulnerabilities that can be actively exploited by a malicious
party to infiltrate or damage a computer system. Nevertheless, since confine-
ment of bugs may prevent them from becoming a vulnerability, our efforts to
improve dependability may also help to improve security ﬂK—aré, M]. Even
if a driver is compromised, the OS restrictions ensure that the attacker gains
no more privileges than the driver already had.
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Another aspect that we do not address is performance. While we are the first
to admit that some of the techniques presented in this thesis incur a small
performance overhead, performance is an issue orthogonal to dependability.
Measurements on a prototype implementation seem to indicate a performance
overhead of up to 25%, but we never designed the OS for high performance,
and the performance can no doubt be improved through careful analysis and
removal of bottlenecks. In fact, several independent studies have already ad-
dressed the issue of performance in modular OS designs ﬂLiedtkeJ, 1993,11995
Hirtig et al., [1997; |Gefflaut et al., 2000; Haeberlen et al., 2000; Leslie et al.
2005a] and have shown that the overhead can be limited to 5%—10%. Fur-
thermore, we build on the premise that computing power is no longer a scarce
resource, which is generally true on desktop PCs nowadays. Hardware per-
formance has increased to the point where software techniques that previously
were infeasible or too costly have become practical. Moreover, the proposed
modular design can potentially exploit the increasing levels of parallelism on
multicore CPUs Larus,%]. Finally, the performance-versus-dependability
trade-off has changed. We believe that most end users are more than willing
to sacrifice some performance for improved dependability.

i}

i ]

Now that we have clearly positioned our work, we provide a preliminary view on
the main contribution of this thesis. In particular, this work improves OS dependabil-
ity by tolerating faults and failures caused by buggy device drivers. While many of
the techniques used, such as user-level drivers, fault isolation, and failure resilience,
are not completely new, to the best of our knowledge we are the first to put all the
pieces together to build a flexible, fully modular UNIX clone that is specifically
designed to be dependable, with only a limited performance penalty. At the same
time we have kept an eye on the system’s usability. For instance, the fault-tolerance
mechanisms are fully transparent to end users and the programming interface is easy
to use for system programmers. In order to realize this goal we had to face numerous
challenges, which are the subject of the rest of this thesis.
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1.7 Outline of this Thesis

The rest of this thesis is organized as follows. Chap. [2|starts out by giving an in-
troduction to the MINIX 3 OS. We present the high-level architecture of our fault-
tolerant design and discuss the important role of the driver manager herein. We also
make explicit the assumptions underlying our design and point out the limitations of
fault isolation and failure resilience.

Chap.[3]investigates the privileged operations that low-level device drivers need
to perform and that, unless properly restricted, are root causes of fault propagation.
We show how MINIX 3 systematically restricts drivers according to the principle of
least authority in order to limit the damage that can result from bugs. In particular,
we present fault-isolation techniques for each of the privileged driver operations. We
also illustrate our ideas with a case study.

Chap. 4 explains how MINIX 3 can detect defects and repair them on-the-fly. We
introduce the working of our defect-detection mechanism, the policy-driven recov-
ery procedure, and post-restart reintegration of the components. Next, we discuss
the concrete steps taken to recover from driver failures in the network stack, storage
stack, and character-device stack and describe the consequences for the rest of the
system. We also present two case studies.

Chap. [5]evaluates our design along three different axes. First and foremost, we
present the results of extensive software-implemented fault-injection (SWIFI) exper-
iments that demonstrate the effectiveness of our design. Second, we discuss perfor-
mance measurements to assess the costs of our fault-tolerance mechanisms. Third,
we briefly describe a source-code analysis of MINIX 3.

Chap.[6 puts this work in context by comparing it to related efforts to improve OS
dependability and highlighting the different trade-offs posed. We survey a range of
concrete systems and present case studies for each of the approaches that we distin-
guished, including in-kernel sandboxing, virtualization techniques, formal methods,
and user-level frameworks.

Finally, Chap.[7 summarizes the main results of this thesis and points out the
most important lessons that we learned. We conclude by stating the main contri-
butions of this thesis, discussing the applicability of our findings, and suggesting
possible directions for future work.



Chapter 2

Architectural Overview

This chapter provides a high-level overview of our fault-tolerant OS architecture.
We briefly introduce the platform that we used for our research, MINIX 3, and de-
scribe the design changes that we made in order make drivers more manageable.
In addition, we summarize the most important fault-isolation and failure-resilience
mechanisms. We also discuss the rationale behind our design.

The remainder of this chapter is organized as follows. To start with, Sec. 2.1
provides the necessary background about the MINIX OS on which this research is
based. Sec.[2.2/presents the new infrastructure for managing drivers. Next, Sec.[2.3
describes how driver faults can be isolated from the core OS and Sec.[2.4 explains
how certain failures can be detected and repaired. Finally, Sec.[2.5 describes the
fault and failure model assumed in our research.

2.1 The MINIX Operating System

This section introduces the MINIX OS, which we took as a starting point for our
research. All ideas described in this thesis have been prototyped in MINIX and even-
tually should become part of the mainstream OS. Some symbols were renamed in
this thesis for the purpose of readability, however. Below, we briefly discuss the
history of MINIX and give a high-level overview of its architecture.

2.1.1 Historical Perspective

The MINIX OS has a long and rich history; some episodes of which are worth men-
tioning. When the UNIX OS was developed by AT&T Bell Laboratories in the
1960s and released in the mid-1970s ﬂRitChie and Thompson, 1974‘], universities
worldwide soon adopted UNIX to teach OS classes. Many courses were based on a
commentary on Version 6 UNIX , @]. However, when AT&T realized the
commercial value of UNIX in the late 1970s, the company changed the Version 7
UNIX license agreement to prohibit classroom use of source code. The lack of a
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Figure 2.1: Multiserver design of the MINIX 3 OS. Each application, server, and driver runs as an
independent user process. Interprocess communication (IPC) is based on message passing.

small and simple OS suitable for teaching initiated the development of a new UNIX
clone, MINIX, which was released in 1987 ﬂTanenbaum, 1987]. MINIX was func-
tionally compatible with UNIX, but had a more modular structure and implemented
parts of the OS functionality outside the kernel. In particular, the process manager
and file server were run as independent user processes, but all drivers remained in
the kernel. With a companion book and all the sources available for classroom use
MINIX soon became, and still is, widely used for teaching.

Although the MINIX source code was available, modification and redistribution
were restricted, thereby creating a niche for the Linux OS in 1991 , ;
‘Torvalds and Diamond, 2001]. In strong contrast to the design of MINIX, however,
the Linux kernel reverted to a monolithic structure, which sparked a famous debate
on the Usenet newsgroup comp.os.minix in 1992 [DiBona and Ockman, M, Ap-
pendix A]. Linux did not change the design and still has a monolithic kernel, and
has grown enormously ever since, as evidenced by Fig.[1.2 in Sec. MINIX,
in contrast, stayed small and simple. The most notable releases include MINIX 1.5,
which was ported to several architectures, and MINIX 2, which added POSIX com-
pliance [Institute of Electrical and Electronics Engineers, \M], but the overall de-
sign stayed mostly the same.

The research reported in this thesis builds on MINIX 3, which was released when
all drivers were removed from the kernel and transformed into independent user pro-
cesses in 2005 , @]. MINIX 3 is the first fully modular version of MINIX
that runs each server and driver in a separate process, as sketched in Fig.[2.1. The
system is still used for teaching ﬂTanenbaum and Woodhul]J, 2006], but also provides
new research opportunities. In this thesis, we have taken the process-based encapsu-
lation as a starting point for improving the system’s fault tolerance. As discussed in
Sec.[1.4.2, we focus on fault isolation and failure resilience in particular.
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2.1.2 Multiserver OS Structure

Before we continue we define some more formal terminology. Like virtually any
modern OS, MINIX 3 runs in the 32-bit protected mode of the x86 (IA-32) archi-
tecture so that it can use hardware protection features, such as virtual memory and
protection rings. The memory space and privileged CPU mode associated with the
kernel are called kernel space and kernel mode (ring 0), respectively. Likewise, the
memory space and unprivileged CPU mode associated with user processes are called
user space and user mode (ring 3), respectively. A modular user-level OS design is
commonly referred to as a multiserver OS, whereas the kernel-level part is known
as the microkernel. A pure microkernel design is minimalist and strictly separates
policies and mechanism: the kernel implements only the most basic mechanisms
that need kernel-level privileges, whereas all policies are provided by the user-level
servers and drivers [Liedtke, 1995]. The MINIX 3 OS fits this definition.

We now briefly introduce the structure of MINIX 3. Although all processes are
treated equally, a logical layering can be distinguished, as shown in Fig. 2.1] At
the lowest level, a small microkernel of about 7500 lines of executable code (LoC)
performs privileged operations. The kernel intercepts hardware interrupts, catches
exceptions in user processes, handles communication between processes, and pro-
grams the CPU and MMU in order to run processes. It also contains two tasks that
are compiled into kernel space, but otherwise scheduled as normal processes. First,
the clock driver handles clock interrupts, keeps track of system time, performs pro-
cess scheduling, and manages timers and alarms. While some of these basic func-
tions could be implemented at the user level, it would be very inefficient to do so.
However, higher-level clock functionality such as real-time scheduling is realized at
the user level ﬂMancina et al., 2009]. Second, the system task offers a small set of
kernel calls to support authorized user-level servers and drivers in doing their job. In
principle, it provides only privileged functionality that cannot be realized at the user
level. Sec. 3.2ldiscusses these operations in more detail.

]

The next level up contains the drivers. There is one device driver (sometimes
referred to as a function driver) for each major device, including drivers for storage,
network, printer, video, audio, and so on. In addition, the driver layer contains
protocol drivers for file systems and network protocols, such as the file server and
network server. Each driver is a user process protected by the CPU and MMU the
same way ordinary user processes are protected. They are special only in the sense
that they are allowed to make a small number of kernel calls to perform privileged
operations. Typical examples include setting up interrupt handlers, reading from or
writing to I/O devices, and copying memory between address spaces. This design
introduces a small kernel-call overhead, but also brings more fine-grained control
because the kernel mediates all accesses. A bitmap in the kernel’s process table
controls which calls each driver (and server) can make. Also, the kernel maintains
data structures that define which I/O devices a driver may use and copying is allowed
only with explicit permission from all parties involved.
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On top of the driver layer is the server layer. The process manager and virtual
file system implement the POSIX API and provide process and memory management
and virtual-file-system services, respectively. User processes make POSIX system
calls by sending a message to one of these servers, which then carries out the call. If
the call cannot be handled by the server, it may delegate part of the work to a lower
layer. New in MINIX 3 and an important contribution of this thesis is the driver
manager, which manages all the other servers and drivers. The driver manager can
start new drivers and restart failing or failed ones on-the-fly. The data store provides
naming services and can be used to backup and restore state. Several other servers
also exists, for example, the information server, which provides debug dumps of
system data structures.

Finally, located above the server layer are ordinary, unprivileged application pro-
grams, such as text editors, media players, and web browsers. When the system
comes up, init is the first application process to run and forks off getry processes,
which execute the shell on a successful login. The shell allows other applications
to be started, for example, the service utility that allows the administrator to request
services from the driver manager. The only difference between this and other UNIX
systems is that the library procedures for making system calls work by sending mes-
sages to the server layer. While message passing is used under the hood, the system
libraries offer the normal POSIX API to the programmer.

2.1.3 Interprocess Communication

Since MINIX 3 runs all servers and drivers as independent processes, they can no
longer directly access each other’s functions or data structures. Instead, processes
must make a remote procedure call (RPC) when they want to cooperate. In particu-
lar, the kernel provides interprocess communication (IPC) services based on message
passing. If two processes need to communicate, the sender constructs a message in
its address space and requests an IPC call to send it to the other party. The stub
code linked with the application puts the IPC parameters on the stack or in CPU
registers and executes a trap instruction, causing a software interrupt that puts the
kernel’s IPC subsystem in control. The kernel then checks the IPC parameters and
executes the corresponding IPC handler. Messages are never buffered in the kernel,
but always directly copied or mapped from sender to receiver, speeding up IPC and
eliminating the possibility of running out of buffers.

Several different IPC interaction modes can be distinguished. First, synchronous
IPC is a two-way interaction where the initiating process is blocked by the kernel un-
til the other party becomes ready. When both parties are ready, the message is copied
or mapped from the sender to the receiver and both parties may resume execution.
The term IPC roundtrip is used if the sender synchronously awaits the reply after
sending a request. Second, asynchronous IPC means that the caller can continue
immediately without being blocked by the kernel. The IPC subsystem takes care of
buffering the message and delivers it at the first opportunity on behalf of the caller.
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Primitive Semantics Storage Mode Blocking
SEND Block until message is sent Caller Synchronous Blocking
RECEIVE Block until message arrives - Synchronous Blocking
SENDREC Send request and await reply Caller Synchronous Blocking
NBSEND Send iff peer is receiving Caller Synchronous Nonblocking
ASEND Buffered delivery by kernel Caller Asynchronous Nonblocking
NOTIFY Event signaling mechanism Kernel Asynchronous Nonblocking

Figure 2.2: The synchronous, asynchronous, and nonblocking IPC primitives implemented by the
kernel's IPC subsystem. All nonblocking calls were added to MINIX 3.

Both synchronous and asynchronous IPC may be combined with a time-out to abort
the IPC call if it did not succeed within the specified interval. However, since finding
sensible time-out values is nontrivial, zero or infinite time-outs are commonly used.
The former is referred to as nonblocking IPC: delivery is tried once and the status is
immediately returned. The latter is referred to as blocking IPC and corresponds to a
normal synchronous IPC interaction.

The IPC primitives and message format used by the MINIX 3 IPC subsystem
are shown in Figs. and (2.3, respectively. The most basic primitives are the syn-
chronous, blocking calls SEND and RECEIVE. Arguments to these calls are the IPC
endpoint of the destination or source process and a pointer to a message buffer. No
buffering is required because the caller is blocked until the message has been copied
from the sender to the receiver. The SENDREC primitive combines these primitives
in a single call, doing a synchronous SEND following by an implicit RECEIVE. This
not only saves one (costly) kernel trap, but also has different semantics: it prevents a
race condition if the recipient sends the reply using nonblocking IPC. The remaining
IPC primitives are nonblocking and are new in MINIX 3. NBSEND is a nonblocking
variant of the synchronous SEND primitive that returns an error if the other party is
not ready at the time of the call. ASEND supports asynchronous IPC with buffering
of messages local to the caller. Arguments are a pointer to and size of a table with
message buffers to be sent. Each slot in the table contains all the information needed
to deliver the message: delivery flags, the IPC destination, the actual message, and a
status word. The caller is not blocked, but immediately returns, and the kernel scans
the table with messages to be sent, promising to deliver the messages as soon as pos-
sible. Finally, the asynchronous NOTIFY primitive supports servers and drivers in

Header Fixed—-length payload

|
1| Source Type : Message parameters
|

Figure 2.3: Format of fixed-length IPC messages in MINIX 3: the message header describes the
sender and message type and is followed by a payload that depends on the type.
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signaling events. The call is nonblocking and if the notification cannot be delivered
directly, the kernel marks it pending in a statically allocated bitmap in the destina-
tion’s process structure. Pending notifications of the same type are merged and will
be delivered only once.

For reasons of simplicity, MINIX 3 uses only small, fixed-length messages. A
MINIX 3 message is a structure with a message header containing the message
source and type, followed by a union of different payload formats containing the
message arguments. This structure is shown in Fig. The message size depends
on the CPU architecture and is determined at compile time as the largest of all types
in the union. The message type and payload can be freely set by the sender, but
the kernel reliably patches the sender’s IPC endpoint into the message’s source field
upon delivery. In this way, the receiver can always find out who called.

2.2 Driver Management

Since all servers and drivers are normal user processes, they can be controlled and
managed like ordinary applications. Although device drivers were initially part of
the MINIX 3 boot image, we added support for starting and stopping drivers on the
fly. In particular, the driver manager is used to coordinate this procedure; it manages
all servers and drivers in the system. The system administrator can request services
from the driver manager, such as starting a new driver, using the service utility. For
example, the most basic command to start a new driver is:

$ service up <driver binary> —dev <device node>

Likewise, restarting or stopping a driver can be done with the commands service
refresh and service down, respectively. There is also support to update a driver with
a new version while it is still running. This procedure is called a dynamic update
and can be requested via the command service update.

In addition to the —dev parameter shown above, the service utility supports sev-
eral more advanced parameters to configure the system. For example, the parameters
for starting a new driver with service up are listed in Fig.[2.4. The first few param-
eters control the dynamics of starting a new server or driver. Briefly, —args allows
passing an argument vector to the component to be started, just like passing com-
mand line parameters to an application. The —dev parameter is used for drivers only
and causes the VES server to be informed about the associated device node. With
—label a custom name can be specified. Because each process has a unique, kernel-
generated IPC endpoint, system processes cannot easily find each other. Therefore,
we introduced stable identifiers consisting of a human-readable name plus an op-
tional number that are published in the data store.

The other parameters can be used to set a custom policy for the system’s fault-
tolerance mechanisms. To start with, drivers are associated with an isolation policy
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Parameter Default Explanation

—args <argument string> No arguments Arguments passed upon executing the driver
—dev <device node> No device Device node to be associated with the driver
—isolation <file name> drivers.conf Configuration file with isolation policy

—label <identifier> Binary name Stable name published in the data store
—mirror <boolean> False True if binary should be mirrored in memory
—period <time in seconds> 5 seconds Period between driver heartbeat requests
—recovery <file name> Direct restart Shell script governing the recovery procedure

Figure 2.4: Parameters supported by the service up call to configure a newly started component.

that controls which privileged operations they may perform. By default driver privi-
leges are listed in /etc/drivers.conf, but a different configuration file can be specified
using —isolation. An example of a concrete isolation policy is described in Sec.
In order to check liveness of all drivers, the driver manager can periodically re-
quest a heartbeat message. The —period parameter allows fine-tuning the frequency
of checking. The driver manager can automatically restart failed components, but if
more flexibility is needed, a shell script with a more advanced recovery policy can be
specified with —recovery. Finally, the —mirror flag tells the driver manager whether
it should make an in-memory copy of the driver binary. This feature is used, for
example, for recovering failed disk drivers. How these fault-tolerance mechanisms
work is the subject of this thesis.

The procedure to start a driver is a strictly defined sequence of events, as illus-
trated in Fig. The steps are as follows: (1) the administrator decides on a driver
policy and calls the service utility, which performs some sanity checks and (2) for-
wards the request to the driver manager. The driver manager verifies that the caller is

 Driver
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Figure 2.5: The administrator uses the service utility to request drivers and set isolation and
recovery policies. The driver manager starts the driver and publishes its details in the data store.
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authorized and stores the policy. Then the driver is started by the driver manager: (3)
it creates a new process for the driver and looks up the IPC endpoint that uniquely
identifies the process, (4) it informs other parts of the system about the new pro-
cess and the privileges granted by the isolation policy, and (5) it executes the driver
binary once the process has been properly isolated. Finally, (6) the details of the
newly started driver are published in the data store and (7) dependent components
are notified about the new system configuration.

The data store makes it possible to configure the system dynamically without
hardcoding all dependencies. In its essence, the data store is a database server that
allows system components to store and retrieve integer values, character strings,
or even entire memory regions by name. System processes can store data either
privately or publicly. A special feature of the data store is that it provides publish-
subscribe semantics for any data that is stored publicly. This feature helps to reduce
dependencies by decoupling producers and consumers. Components can subscribe
to selected events by specifying the identifiers or regular expressions they are inter-
ested in. Whenever a piece of data is published or updated the data store automati-
cally broadcasts notifications to all subscribed components.

These properties make the data store very suitable as a name server. Upon load-
ing a new server or driver, the driver manager publishes the stable name and IPC
endpoint in the data store, so that all dependent components are automatically noti-
fied. As an example, the network server is subscribed to the key ‘eth.*” in order to
receive updates about the system’s network drivers. Therefore, the network server is
immediately alerted whenever a network driver is started or restarted, and can start
initialization or recovery, respectively.

2.3 Isolating Faulty Drivers

We now present an overview of the MINIX 3 isolation architecture. We use the term
isolation architecture to indicate that the trusted parts of the system enforce certain
restrictions upon the untrusted parts. In particular, as discussed in Sec.[1.4.2, we re-
quire drivers to be constrained according to the principle of least authority (POLA).
While we primarily focus on the OS software, it is important to realize that some of
our protection techniques also rely on hardware support. Altogether this is defined as
the trusted computing base (TCB): “the totality of protection mechanisms within a
computer system—including hardware, firmware, and software—the combination of
which is responsible for enforcing a security policy [Department of Defense ‘1985].”
Below, we first introduce our isolation architecture and then briefly discuss how this
interacts with the hardware.

2.3.1 Isolation Architecture

The MINIX 3 isolation architecture is realized by combining several building blocks.
In particular, drivers are isolated in three different ways:
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» System-wide structural constraints.
e Static per-driver isolation policies.
* Dynamic access-control mechanisms.

As a baseline, each driver is run as an independent user process. This takes away
all privileges and renders each driver harmless. However, because this protection is
too coarse-grained, we have also provided static mechanisms to grant fine-grained
access to resources needed by the driver. In addition, we have developed dynamic
mechanisms that support safe run-time data exchange.

System-wide Structural Constraints

The use of a microkernel-based multiserver design that compartmentalizes the OS
brings several dependability benefits. To begin with, minimizing the kernel reduces
its complexity, makes it more manageable, and lowers the number of bugs it is likely
to contain. At about 7500 LoC the kernel is sufficiently small that a single person
can understand all of it, greatly enhancing the chance that in the course of time all the
bugs can be found. The small size of the kernel may even make it practical to verify
the code either manually or using formal verification @, 2009]. This provides a
solid foundation to build an OS upon.

Next, the fact that each application, server, and driver is encapsulated in a sepa-
rate user-mode process with a private address space is crucial to isolate faults. First,
because drivers no longer run with kernel-mode CPU privileges, they cannot di-
rectly execute potentially dangerous instructions and cannot circumvent the restric-
tion mechanisms implemented by the rest of the OS. Second, because the MMU
hardware enforces strict, process-based, address-space separation, many problems
relating to memory corruption are structurally prevented. OSes are usually written
in C and C++, which tend to suffer from bad pointer errors. If an offending pro-
cess causes a CPU or MMU exception, it will be killed by the process manager and
given a core dump for future debugging, just like any other user process. Third, nor-
mal UNIX protection mechanisms also apply. For example, all drivers run with an
unprivileged user ID in order to restrict POSIX system calls.

At the user level, the OS processes are restricted in what they can do. In order
to support the servers and drivers in doing their job, the kernel exports a number
of kernel calls that allow performing privileged operations in a controlled manner,
as described below. In addition, servers and drivers can request services from each
other. For example, device drivers no longer have privileges to perform I/O directly,
but must request the kernel to do the work on their behalf. Likewise, memory alloca-
tion is done by sending a request to the process manager. While these mechanisms
still allow drivers to use privileged functionality, the use of no-privilege defaults
makes access control more manageable. Effectively, the system provides multiple
levels of defense with increasingly finer granularity.
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Static Per-driver Isolation Policies

Since each server and driver is likely to have different requirements, we associated
each with an isolation policy. Different per-driver policies that grant fine-grained
access to the exact resources needed can be defined by the administrator. For ex-
ample, access to I/O resources is assigned when drivers are started. In this way, if,
say, the printer driver tries to write to the disk controller’s I/O ports, the kernel will
deny the access. Fig.[2.6 lists various other resources, such as IPC and kernel calls,
that can be restricted in MINIX 3. Isolation policies are stored in simple text-based
configuration files, such as /etc/drivers.conf. Each driver has a separate entry in the
configuration file, listing the exact resources granted. Sec|3.4 gives a case study of a
network driver and provides an example configuration file in Fig.[3.7!

Although this research does not pertain to specific policies—it focuses on en-
forcement mechanisms instead—an interesting question is who is responsible for
policy definition. Precautions are needed to prevent driver writers from circumvent-
ing the system’s protection mechanisms by demanding broader access than required.
In our current implementation, the system administrator is responsible for policy def-
inition or inspection. We feel that the MINIX 3 policies are sufficiently simple to do
so, but the system can be augmented with other approaches, if need be. Possible
extensions include having a trusted third-party vet and sign policies or automating
policy generation based on source-code annotations.

Policy enforcement is done by the both the driver manager and the trusted servers
and drivers in the OS. As mentioned in Sec.[2.2, loading a driver and installing its
isolation policy is done in three steps. First, the driver manager forks a new process
for the driver and looks up the child’s unique, kernel-generated IPC endpoint. The
endpoint is used as a handle to identify the new process. Second, the driver manager
informs the kernel and selected servers and drivers about the isolation policy so that
it can be enforced at run time. This is done by passing the IPC endpoint and the
resources granted to the components listed in Fig. 2.6] Finally, with the isolation
policy in place, the child process is made runnable and can safely execute the driver

Resource key Policy enforcement Explanation

ipc calls IPC subsystem Restrict IPC primitives that may be used

ipc targets IPC subsystem Restrict IPC destinations that may be called
ipc kernel Kernel task Restrict access to individual kernel calls

driver Driver manager Control if driver can manage other drivers

isa io Kernel task Mediate legacy ISA device input and output
isa irq Kernel task Mediate legacy ISA device interrupt-line control
isa mem Kernel task Map legacy ISA device memory into a driver
pci device PCl-bus driver Restrict access to a single PCl device

pci class PCl-bus driver Restrict access to a class of PCl devices

Figure 2.6: Resources that can be configured via per-driver isolation policies in MINIX 3. By default
all access is denied. Fine-grained access can be granted by adding resources to a driver’s policy.
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binary. When the driver attempts to make a privileged call, the callee looks up the
policy installed by the driver manager and verifies that the caller is authorized before
servicing the request.

Dynamic Access-control Mechanisms

Finally, we have added two dynamic access-control mechanisms that support drivers
in exchanging data. Strict, process-based, address-space separation provided by the
MMU hardware is too restrictive, since applications, servers, drivers, and hardware
devices often need to access parts of each other’s memory. For example, the applica-
tion that wants to store a file on the hard disk must exchange data with the file server,
which buffers disk blocks in its cache, and the disk driver, which is responsible for
the actual I/O. However, because memory allocation typically involves dynamically
allocated memory ranges, these kinds of interactions cannot be handled by structural
constraints and isolation policies. Instead, we developed two run-time mechanisms
that allow for safe, fine-grained memory access.

First, in order to support safe interprocess memory access, we have developed a
new delegatable memory grant mechanism that enables byte-granular memory shar-
ing without compromising the address-space separation offered by the MMU. A
process that wants to grant selective access to its memory needs to create a capabil-
ity listing the grantee’s IPC endpoint, the precise memory area, and access rights.
The grant is stored in a table known to the kernel and can be made available to an-
other process by sending the grant’s index into the table. The grantee then can copy
to or from the granter using a kernel call that takes the address of a local buffer and
the memory grant. The kernel looks up the memory grant in the grant table in or-
der to verify that access is permitted and makes the actual copy with perfect safety.
Zero-copy protocols are also supported through grant-based memory mappings.

Second, we rely on hardware support to protect against peripheral devices that
use direct memory access (DMA). DMA is a powerful I/O construct that allows de-
vices to operate directly on main memory, bypassing the protection offered by CPU
and MMU hardware. DMA can be controlled, however, using an I/O memory man-
agement unit (IOMMU) that keeps tables with memory ranges accessible from the
device layer. The IOMMU works similar to the traditional MMU, with the distinc-
tion that the MMU provides memory protection for CPU-visible addresses, whereas
the IOMMU provides memory protection for device-visible addresses. If a driver
wants to use DMA, it must request the trusted IOMMU driver to set up the access
rights before initiating the DMA transfer. The IOMMU driver validates the request
and, if access is allowed, sets up the IOMMU tables for the driver’s device. Only
access into the driver’s own address space is allowed. Nevertheless, it is still pos-
sible to perform DMA directly to or from the address space of the end consumer
by setting up a safe, grant-based memory mapping. This design protects both the
OS and user applications against memory corruption. The next section gives further
background on the IOMMU’s working.
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2.3.2 Hardware Considerations

In our research, we explore the limits on software isolation rather than proposing
hardware changes. Unfortunately, older PC hardware has various shortcomings that
make it virtually impossible to build a system where drivers run in full isolation.
However, now that modern hardware with support for isolating drivers is increas-
ingly common—although sometimes not yet perfect—we believe that the time has
come to revisit design choices made in the past.

Support for Isolation

As a first example, older PCs have no means to protect against memory corruption
due to unauthorized DMA operations. As mentioned above, our solution is to rely on
IOMMU support ﬂIntel Corp., 2008;|Advanced Micro Devices, Inc. 2009‘]. In par-
ticular, we have implemented support for AMD’s Device Exclusion Vector (DEV).
The IOMMU logically sits between the device bus and main memory, as shown in
Fig.[2.7, and works mostly the same as a normal MMU. The IOMMU intercepts
all memory access attempts from devices, looks up the I/O page table associated
with the device, determines whether the access is permitted, and translates the /O
address requested to the physical memory address to be accessed. The IOMMU pro-
tects main memory against untrusted devices, just like the MMU protects memory
against untrusted programs. However, in contrast to normal MMUs, which raise an
MMU exception upon an unauthorized access attempt, current-generation [IOMMUS s
do not provide a direct indication to the I/O device if a translation fails. Instead, re-
jected DMA writes are simply not executed, whereas rejected DMA reads typically
cause the IOMMU to set all bits in the response to 1. Exceptions can be detected
though by reading out the IOMMU’s status register. Alternatively, the IOMMU can
be configured to write the error to an in-memory event log and signal an interrupt in
order to put the OS in control.

Another example relates to the working of the peripheral bus that connects pe-
ripheral devices to the CPU. In particular, we identified a problem relating to in-
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Figure 2.7: The MMU hardware provides memory protection for CPU-visible addresses, whereas
the IOMMU hardware provides memory protection for device-visible addresses.
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terrupt handling on the Peripheral Component Interconnect (PCI) bus that is in
widespread use. Interrupts support drivers in handling I/O efficiently: instead of
repeatedly polling the device, the driver can wait for a hardware interrupt request
(IRQ) signaling that the device needs service. Because the number of IRQ lines
on the interrupt controller is limited, devices sometimes have to share a single IRQ
line, which may cause driver interdependencies. The PCI standard mandates level-
triggered IRQ lines, which means that an interrupt is signaled by asserting the IRQ
line to its active level, and holding it at that level until serviced. Therefore, a driver
that fails to acknowledge an IRQ on a shared IRQ line effectively blocks the IRQ
line for other drivers, since the level-triggered nature makes it impossible to detect
status changes in other devices. The IRQ line is freed only if the driver takes away
the reason for interrupting, which requires device-specific interrupt handling at the
driver level and cannot be solved in a generic way by the OS. The newer PCI Express
(PCI-E) standard that replaces PCI provides a structural solution based on message-
signaled interrupts (MSI). A device that needs service writes a message into a special
memory area and the chipset inspects the message to trigger the corresponding CPU
interrupt. MSI alleviate the problem of shared interrupt lines because the interrupt
consists of a short message rather than a continuous condition: a single driver failure
can no longer block interrupts from devices that share the IRQ line. Still, sharing
is unwanted because an IRQ from a single device triggers the interrupt service rou-
tines of all drivers associated with the IRQ line. Therefore, we avoided the problem
altogether by using a dedicated IRQ line for each device.

Performance Perspective

In addition to improved hardware dependability, computing performance per unit
cost has increased to the point where software techniques that previously were in-
feasible or too costly have become practical. For example, with modular designs the
costs of context switching when control is transferred from one system process to
another is one of the main performance bottlenecks. While the relative costs can still
be significant, the absolute costs of context switching has gone down steadily with
improved CPU speeds. For example, the costs of an IPC roundtrip between two
processes, that is, two IPC messages, was reduced from 800 ps for Amoeba run-
ning on a 16-MHz Motorola 68020 processor [Renesse et al., 1988] to only 10 us
for L3 running on a 50-MHz Intel 486-DX processor ﬂLiedtke, 1993‘]. Our own
measurements showed that the costs of an IPC roundtrip for MINIX 3 running on
a 2.2-GHz AMD Athlon 64 3200+ processor is 1 ps. A program executing 10,000
system calls/sec thus wastes only 1% of the CPU on context switching. With work-
loads ranging from 290 kernel-driver interactions/sec for low-bandwidth disk I/O u
to 45,000 packet transmissions/sec for high-bandwidth gigabit Ethernet [Swift et al.,
], a small overhead is still expected for certain applications. Nevertheless, these
data points show that the increase in computing performance has dramatically re-
duced the user-perceived overhead of modular designs.
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These results should be attributed to performance improvements made possible
by Moore’s law, which postulates that CPU transistor counts double about every
two years Moor&, m]. Although MINIX 3 has the lowest absolute IPC roundtrip
overhead, when taking processor speeds into account, the relative performance of
MINIX 3 is the worst of the three examples we studied above. A rough estimate
shows that the MINIX 3 IPC implementation might be 10—~100 times slower than the
L4 TPC implementation. However, MINIX 3 has never been optimized for perfor-
mance, and the performance can no doubt be improved through careful analysis and
removal of bottlenecks [e.g. Liedtke, @]. Instead, we have built on the premise
that computing power is no longer a scarce resource, which is generally true on desk-
tops nowadays, and tried to address the issue of untrusted drivers that pose a threat
to OS dependability.

2.4 Recovering Failed Drivers

Building on the isolation architecture introduced above, we have attempted to re-
cover failed drivers transparently to applications and without user intervention. In
many other areas, both in hardware and software, such failure-resilient designs are
common. For example, RAIDs are disk arrays that continue functioning even in the
face of drive failures. The TCP protocol provides reliable data transport, even in
the face of lost, misordered, or garbled packets. DNS can transparently deal with
crashed root servers. Finally, init automatically respawns crashed daemons in the
application layer of some UNIX variants. In all these cases, the underlying failure
is masked, allowing the system to continue as though no errors had occurred. In this
thesis, we have extended this idea to the OS.

2.4.1 Defect Detection and Repair

While a human user detects a driver crash when the system freezes, the OS needs
different techniques. Therefore, the driver manager monitors all drivers at run time
and takes corrective measures if a problem is detected. In many cases, failures can
be handled internal to the OS with no application-visible retries, weird signals, re-
connection requests, chance of data loss, performance hiccups, and so on.

Run-time Defect Detection

The driver manager uses three orthogonal defect detection techniques. First, the
driver manager can detect component crashes because it is the parent process of all
drivers and servers. If a server or driver crashes or otherwise exits, it becomes a
zombie process until the driver manager collects it, the same way all UNIX systems
allow parent processes to collect child processes that have exited. Second, the driver
manager can periodically check the status of selected drivers. Currently, this is done
using heartbeat messages that can be configured on a per-driver basis via the service
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utility. If no reply is received within the time-out interval, further action is taken.
More advanced techniques would be a straightforward extension. Third, the driver
manager can be explicitly instructed to replace a malfunctioning component with a
new one. Explicit updates are done if the administrator requests a dynamic update
or if a trusted OS component files a complaint about a subordinate process.

Policy-driven Recovery

The basic idea underlying our design is that restarting a failed component may take
away the root cause of the failure and thereby solve the problem ﬂGraﬂ, 1986; Chod,
‘1997‘]. As discussed in Sec. this hypothesis indeed holds for a range of transient
physical faults, interactions faults, and elusive development faults that remain after
testing. The high-level recovery procedure is illustrated in Fig.2.8: (1) an appli-
cation requests the virtual file system (VES) to perform an I/O operation, (2) VES
forwards the request to the corresponding driver, and (3) the driver starts process-
ing the request, but crashes before it can send the reply. Since the driver manager
monitors all drivers, it detects the failure and initiates the recovery procedure: (4)
the driver manager replaces the failed driver with a new copy and (5) informs VFS
about the new configuration. Then, VFS scans its tables and notices the pending 1/0
operation: (6) the request is resubmitted to the restarted driver and, finally, (7) the
I/0 operation can be successfully completed. While all this is happening, the system
continues to run normally and no processes need to be terminated.

If a problem is detected, the driver manager fetches the recovery policy of the
failed component from its tables in order to determine what to do. By default failed
components are replaced with a fresh copy, but if special recovery steps are needed

y Application
doing 1/0
Signal Request
®) update (1) device I/O
T) Driver -~ ~4 VFS
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o] \
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> ) driver \\/
New Failgd Driver
[ driver ] [ driv&} ) crash!
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Figure 2.8: Basic idea underlying our failure-resilient OS. If the driver manager detects a driver
failure, it looks up the driver’'s recovery policy, and may restart the driver and notify dependent
components so that the system can continue to operate normally.
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or wanted, the administrator can provide a shell script that governs the recovery pro-
cedure. The recovery script can be specified via the service utility upon loading the
driver. The script may, for example, record the event in a log file, move the core
dump of the dead process to a special directory for subsequent debugging, send an
email to a remote system administrator, or even notify the driver’s manufacturer.
This design brings full flexibility and helps to automate system administration. Con-
crete examples of recovery scripts are given in Secs.[4.2/and[4.5.

2.4.2 Assumptions and Limitations

One of the main challenges with restarting failed components is that it is sometimes
impossible to recover internal state lost during a failure. Examples of internal state
include device configuration parameters, information about pending I/O requests,
and data buffers. Fortunately, state management turns out to be a minor problem
for many drivers. In our experience with the MINIX 3 RAM-disk, floppy-disk, and
hard-disk drivers as well as a range of network-device drivers, drivers contained no
or very limited internal state, and recovery of state was straightforward. Therefore,
the assumption underlying our failure-resilience mechanisms is that drivers that are
stateless or contain only limited state that is updated infrequently.

Nevertheless, our design also provides limited support for recovering stateful
servers and drivers. In principle, lost state can be retrieved from the data store,
which allows drivers to store privately data that should persist between crashes. For
example, an audio driver could store the sound card’s mixer settings in the data
store and the RAM-disk driver could store the base address and size of the RAM
disk’s memory. However, the data store cannot ensure data integrity and cannot
tell which part an outstanding operation has already completed and which part has
not. In order to do so, operations that update internal state may have to implement
some form of checksumming and should be remodelled as transactions that are either
committed or aborted as one logical unit. We did not investigate this option though,
because relatively heavy driver modifications may be required in order to achieve
optimal results. Sec. [4.2.3 provides more information on MINIX 3’s support for
state management as well as its current shortcomings.

In addition, there are certain inherent limitations that prevent recovery transpar-
ent to applications and end users for certain classes of I/0O. The two requirements
for effective recovery are: (1) the I/O stack must guarantee data integrity and (2)
I/0 operations must be idempotent. The former means that data corruption can be
detected. The latter means that I/O operations can be reissued safely with the same
final outcome. For example, transparent recovery is possible for network drivers,
because the TCP protocol can detect garbled and lost packets and safely retransmit
the corrupted data. In contrast, partial recovery is supported for character-device
drivers, because the I/O is not idempotent and an I/O stream interruption is likely to
cause data loss. For example, with streaming audio and video applications the user
may experience hiccups when a driver fails and needs to be recovered.
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2.5 Fault and Failure Model

Although we aim to improve OS dependability by tolerating faults and failures in
device drivers, we are obviously aware that we cannot cure all bugs. Therefore,
this section zooms in on the exact fault and failure types our system is designed for.
We first want to clarify the causal relationship between faults and failures using the
fault — error — failure model: a fault that is triggered during execution may lead
to an erroneous system state that appears as failure if it propagates to the module’s
interface. For example, a memory defect is a fault that leads to an error if program
data is corrupted due to bit flips. This may go undetected until the erroneous data is
used and triggers an exception that causes a component failure.

Our system is primarily designed to deal with device-driver failures caused by
soft intermittent faults ﬂAViiienis et al., 2004]. Such faults were found to be a com-
mon crash cause and represent a main source of downtime ﬂGraﬂ, 1986;/Chou, 1997‘].
Intermittent faults include, for instance, transient physical faults, interaction faults,
and elusive development faults or residual faults that remain after testing because
their activation conditions depend on complex combinations of internal state, ex-
ternal requests, and run-time environment. For example, drivers may crash as a
response to application-level requests, device interactions such as I/O and interrupt
handling, or kernel events such as switching to a lower power state or swapping
out memory pages. Bugs in this category are sometimes referred to as Heisenbugs
(named after the Heisenberg uncertainty principle), since they disappear or manifest
differently when an attempt is made to study them.

The Heisenbug hypothesis may be exploited to improve software fault tolerance,
since retrying a failed operation may take away the root cause of the failure and
thereby solve the problem ﬂGTay‘, ’1—9%]. As an example, consider resource leaks,
which represent 25.7% of all defects found in a study of over 250 open-source
projects with a combined code base exceeding 55 MLoC [Coverity, Inc., ‘2008‘]. A
resource leak, such as not releasing memory buffers or file handles no longer needed,
may trigger an unexpected failure, but tends to go away after a restart. Other exam-
ples of intermittent problems include:

e CPU and MMU exceptions triggered by unexpected user or device input.

* Failed attempts to exploit a vulnerability, such as a buffer overflow attack.

» Race conditions due to unexpected software or hardware timing issues.

e Infinite loops caused by unresponsive hardware or an internal inconsistency.
* Aging bugs, such as resource leaks, that cause a driver to fail over time.

e Memory bit flips that disrupt the execution path and trigger an exception.

» Temporary device failures that require hardware reinitialization.

While hard to track down, these bugs illustrate that many problems can be cured
by replacing a failing or failed component with a fresh instance, even if the exact
underlying causes are unknown. However, this strategy requires that failures are
fail-stop, that is, failures must be detected before they can propagate and corrupt the
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rest of the OS ﬂSchlichtin};y and Schneider, ‘1983]. Hence, drivers must be properly
isolated to confine the problem in the first place.

Previous projects have also attempted to improve OS dependability by retrying
failed operations in a slightly different execution environment. For example, a case
study on the Tandem NonStop system showed that 131 out of 132 bugs were inter-
mittent and could be solved by reissuing the failed operation [@,]. Likewise,
a study of the IBM MVS/XA OS showed that up to 64% of the errors in critical jobs
could be remedied through a retry ﬂMourad and Andrews, 1987‘]. Next, the Tandem
GUARDIAN system obtained a level of 75% software fault tolerance by performing
backup execution in a different process [Lee and Iyer, ‘1995‘]. Furthermore, Linux
shadow drivers were able to recover automatically 65% of 390 driver failures in-
duced by fault-injection experiments ﬂSWift et al., ZOOd]. Finally, automatic restarts
in the Choices OS kernel resulted in recovery 78% of the time ﬂDaVid and CameellJ,
]. The working of our design in MINIX 3 is based on the same ideas: malfunc-
tioning drivers are replaced with a fresh copy and failed operations are retried in the
new execution environment.

In order to give a balanced viewpoint, we also list a number of known limita-
tions. First, our design cannot cure hard permanent faults, such as algorithmic and
deterministic failures that repeat after a component restart. Bugs in this category are
sometimes referred to as Bohrbugs (named after the Bohr atom model), since they
manifest consistently under the same conditions. However, recurring problems can
be tracked down more easily, and once the bug has been found, MINIX 3 supports
a dynamic update with a new or patched version of the component. Next, we can-
not deal with Byzantine failures, including random or malicious behavior where a
driver perfectly adheres to the specified system behavior but fails to do its job. Such
bugs are virtually impossible to catch in any system. Furthermore, we cannot deal
with timing failures, for instance, if a deadline of a real-time schedule is not met,
although the use of heartbeat messages helps to detect unresponsive components.
Finally, our system cannot recover from permanent physical failures, for example,
if the hardware is broken or cannot be reinitialized by a restarted driver. It may be
possible, however, to perform a hardware test and switch to a redundant hardware
interface, if available Bartletﬂ, m]. We did not investigate this option, though.

In the remainder of this thesis, we focus on confinement and recovery of in-
termittent faults and failures, which, as argued above, represent an important area
where our design helps to improve OS dependability.




Chapter 3

Fault Isolation

Perhaps someday software will be bugfree, but for the moment all software contains
bugs and we had better learn to deal with them. In most OSes, faults and failures
can disrupt normal operation. For example, commodity OSes such as Windows,
FreeBSD and Linux use a monolithic design where a single driver fault can easily
propagate and potentially lead to a system-wide failure, requiring a reboot of the
machine. We believe that this brittleness is unacceptable to end users and businesses
alike, and have investigated techniques to improve OS robustness.

The remainder of this chapter is organized as follows. Sec. 3.1 discusses gen-
eral isolation principles and classifies privileged driver operations that, unless prop-
erly restricted, are root causes of fault propagation. Next, Sec. introduces the
MINIX 3 user-level driver framework and Sec. 3.3]details the techniques used to en-
force least authority. Finally, Sec.[3.4lillustrates driver isolation with a case study of
the MINIX 3 networking stack.

3.1 lIsolation Principles

Below, we introduce the design principle underlying our design and show how it can
be applied to drivers. We present a classification of operations that are root causes
of fault propagation as well as a set of general rules for isolating drivers.

3.1.1 The Principle of Least Authority

While there is a broad consensus among researchers that drivers need to be isolated,
the central issue to be addressed always is “Who can do what and how can this
be done safely?” Whether the isolation of untrusted drivers is based on in-kernel
sandboxing, virtualization techniques, formal methods, or user-level frameworks,
the same question arises in each approach.

We strongly believe that least authority or least privilege should be the guiding
principle in any dependable design. In short, this design principle states that each
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component should be able to access only those resources needed for its legitimate
purpose. A more complete definition reads: “Every program and every user of the
system should operate using the least set of privileges necessary to complete the job.
Primarily, this principle limits the damage that can result from an accident or error. It
also reduces the number of potential interactions among privileged programs to the
minimum for correct operation, so that unintentional, unwanted, or improper uses of
privilege are less likely to occur ﬂSaltzer and Schroeder, 1975].” This chapter studies
how this idea can be applied to drivers in the OS.

3.1.2 Classification of Privileged Operations

This section classifies the privileged operations needed by OS extensions and drivers
in particular. We identified four orthogonal classes that map onto the core compo-
nents of any computer systems: CPU, memory, peripheral devices, and system soft-
ware. Fig.[3.1 summarizes the privileged operations. Drivers are special in that they
perform device I/O, but the other classes equally apply to other kinds of OS exten-
sions. We briefly introduce each class and the threats posed by it below. In Sec.|3.3,
we will discuss how our model deals with each one.

Class I: CPU Usage A process that runs in kernel mode has access to the full set
of privileged CPU instructions that can be used to bypass higher-level protection
mechanisms. A kernel-mode driver can, for example, reset the page tables, perform
I/O, disable interrupts, or halt the processor. These functions are vital to the correct
operation of the OS and cannot be exposed to untrusted code without putting the
system at risk. Nevertheless, because of the low-level nature of device drivers, they
must be able to perform certain privileged operations that are not normally available
to user-level application processes.

Class Privileged operation Explanation

CPU usage CPU instructions Use of kernel-mode CPU instructions
CPU time Scheduling and CPU time consumption

Memory access Memory references Access to process address space
Copying and sharing Data exchange between processes
Direct memory access DMA operation from driver’s device

Device I/O Device access Access to peripheral devices
Interrupt handling Access to the device’s IRQ line

IPC IPC primitives Safety of low-level IPC subsystem
Process interaction Asymmetric trust relationships
System services Requesting privileged services

Figure 3.1: Classification of privileged driver operations. The classes map onto the core compo-
nents of computer systems: CPU, memory, peripheral devices, and system software.
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A related problem is using excessive CPU time or CPU hogging, which may lead
to performance problems or even bring down the system. For example, consider a
device driver that winds up in an infinite loop and keeps executing the same code
over and over again. Since low-level driver code, such as the device-specific interrupt
handler, often does not run under the control of the process scheduler, it may hang
the system if it does not run to completion. An analysis of Windows XP crashes
found that the error condition THREAD_STUCK_IN_DEVICE_DRIVER ranked as the
second most-frequent (13%) crash cause ﬂGanapathi et al., 200&]. Another study of
Linux drivers found 860 cases of infinite device polling that may cause the OS to
hang due to misplaced trust in the hardware ﬂKadav et al., 2009].

Class II: Memory Access Since drivers often need to exchange data with system
servers and application programs, a particularly important threat is memory cor-
ruption due to unauthorized memory access. For example, drivers typically per-
form device input and output and need to copy data to and from buffers in differ-
ent address spaces. A pointer provided by the caller cannot be used directly by
the driver and the device, but needs to be translated to a physical address before
it can be used. A recent study found that 9 out of 11 pointer bugs were in device
drivers ﬂ]ohnson and Wagneﬁ, ‘2004]. Translation errors or copying more data than
the buffer can hold may cause memory corruption. Indeed, a study of field fail-
ures in OSes has shown that memory corruption is one of the most important crash
causes [Sullivan and Chillarege, M]. In 15% of the Windows crashes, the mem-
ory corruption is so severe that crash dump analysis cannot pinpoint the bug(s) or
even the driver responsible for the crash ﬂOrgovan and Dykstra, 2004l].

Direct memory access (DMA) is a special case of device I/O that must be re-
stricted to prevent corruption of arbitrary memory. A device that supports DMA
can directly transfer data to an arbitrary location in physical memory without in-
tervention of the CPU and MMU, bypassing both software and hardware memory
protection mechanisms. Legacy ISA devices typically rely on the on-board DMA
controller, whereas PCI devices may have built-in DMA capabilities. The term bus-
mastering DMA is used if a device can take control of the bus and initiate the DMA
transfer itself. The kernel is not in control during the DMA transfer and cannot verify
whether the operation requested can be executed safely. In addition, the I/O address
used by the device is not checked by the MMU hardware, as shown in Fig. 2.7,
Therefore, a buggy or malicious driver whose device is capable of DMA can poten-
tially overwrite any part of physical memory by using an incorrect I/O address.

Class lll: Device I/0 It is important to restrict access to I/O ports and registers and
device memory in order to prevent unauthorized access. For example, the network
driver should be able to touch only the network interface card, and may not access,
say, the PCI bus or disk controller. However, with kernel-level drivers, nothing
prevents a driver from interfering with other peripheral devices. If multiple drivers
simultaneously operate on the same device, resource conflicts are likely and may
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result in data corruption or even cause the system to stop functioning. Unfortunately,
programming device hardware is error-prone due to its low-level interactions and
lack of documentation ﬂRyzhyk et al.,2009a].

Furthermore, interrupt handling poses several problems because interrupts are
inherently asynchronous and have to be handled at the lowest level for performance
reasons. When the device needs service, it raises an interrupt request (IRQ) to put the
kernel in control. The kernel, in turn, will look up the associated driver to perform
the device-specific interrupt handling. Interrupt handlers often run at a high priority
level and have to meet special (OS-specific) constraints, which makes interrupt han-
dling error-prone. For example, the error condition IRQL_NOT_LESS_OR_EQUAL
was found to be responsible for more (26%) Windows XP crashes than any other
single error ﬂGanapathi et al. 2006‘].

]

Class IV: IPC  Finally, interprocess communication (IPC) poses various threats re-
lating to the system software. Although IPC is often associated with multiserver
designs, IPC is also important for other approaches, since a means of communica-
tion between extensions and the core OS is always required. To illustrate the im-
portance of IPC, measurements on MacOS X and OpenDarwin, which use the Mach
IPC mechanism, reported 102,885 and 29,895 messages from system boot until the
shell is available, respectively Woné, ]. We conducted the same measurement
on MINIX 3 and obtained a similar number of 61,331 messages that were exchanged
between 33 independent components: 3 kernel tasks, 5 system servers, 15 potentially
unreliable drivers, init, and 9 daemons.

Because the IPC subsystem is so heavily used by the rest of the OS, it must
be designed for maximum robustness. With untrusted system code making many
thousands of IPC calls per second, erroneous invocations or call parameters, such
as invalid IPC endpoints or bad message buffers, cannot be prevented. Furthermore,
because both trusted and untrusted parts of the system rely on IPC, unauthorized
access attempts may occur. For example, untrusted drivers should not be allowed to
use kernel calls for process management. Finally, the use of global resources might
lead to resource exhaustion when one or several clients collectively perform too
many IPC requests. If message buffers are dynamically allocated, the IPC subsystem
may run out of memory and no longer be able to serve new calls.

Even if the IPC subsystem itself works reliably, unexpected interactions between
senders and receivers can potentially disrupt the system. For example, consider a
buggy driver that corrupts the message contents, sends the reply to the wrong party,
causes a deadlock due to a cyclic dependency, or simply does not respond to a re-
quest. In particular, asymmetric trust relationships between senders and receivers
introduce several problems when synchronous IPC is used. For example, an un-
trusted client may block a server if it does not receive the server’s reply Shapir&,
]. We identified two further problems, shown in Fig.[3.2, where a driver acting
as an untrusted server can block its client(s): the caller is blocked if the driver does
not receive or reply to an incoming IPC call.
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Buggy
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1 recv send 11

Normal
server

Buggy
server

(@ (b) () (d)

e IPC performed —> Message delivery A/' Thread alive
o |PC not performed - - IPC pending ----  Thread blocked

Figure 3.2: Asymmetric trust and vulnerabilities in synchronous IPC: (a) normal client-server
roundtrip, (b) untrusted client blocks server, and (c) and (d) untrusted server blocks client.

A related power built on top of the IPC infrastructure, which routes requests
through the system, is requesting privileged operations. If a driver is not allowed
to perform a given operation directly, it should also be prevented from requesting
another (privileged) process to do the work on its behalf. For example, isolating a
driver in a private address space is not worth much if it can still ask the kernel to
access arbitrary memory and the kernel blindly complies. Likewise, even though
user-level drivers may not directly perform I/O, the driver’s restrictions may be by-
passed if the kernel exports a call to perform I/O on behalf of the driver.

3.1.3 General Rules for Isolation

We now briefly discuss in what sense these potentially dangerous privileged opera-
tions should be curtailed, rather than (just) how we have done it. As discussed above,
the guiding principle is always to enforce strictly least authority upon untrusted code.
This principle leads to the following general rules for isolation:

(I) Drivers may not have access to the full CPU. In particular, access to privileged
CPU instructions must be denied or mediated by the kernel to prevent bypass-
ing other protection mechanisms. Furthermore, drivers may not directly use
CPU time, but must run under the scheduler’s control.

(II) Drivers may not access main memory unless needed by the driver to do its
job. Besides access to the memory associated with the driver process, there
must be a mechanism to exchange data safely with the components it needs
to interact with. DMA from the device level must be permitted only to the
driver’s own memory or a memory region granted to the driver.
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(IIT) Drivers may not access I/O resources except those belonging to the device con-
trolled by the driver. Any other I/O, including generic ones such as querying
the PCI bus to look up a device’s I/O resources or programming the IOMMU
to allow DMA access, must be mediated by trusted drivers.

(IV) Drivers may not directly perform IPC to access arbitrary services. Instead,
both the IPC subsystem and service provider must provide mechanisms to
restrict communication and grant selective access to privileged services that
are performed on behalf of the driver.

In sum, these rules enforce no-privilege defaults: every driver operation is denied
unless authorization explicitly granted.

Any system that wants to isolate faults in device drivers should implement the
above set of rules. In the following sections, we describe how we have implemented
these rules in MINIX 3.

3.2 User-level Driver Framework

Because the kernel runs with all the privileges of the machine, we started out by
removing all the drivers from the kernel and transforming them into independent
user-level processes [Herder, m]. We believe that UNIX processes are attrac-
tive, since they are lightweight, well-understood, and have proven to be an effective
model for encapsulating untrusted code. With the exception of the clock task, which
is very simple and remains in the kernel to facilitate process scheduling, all drivers
have been removed from the kernel. This section briefly discusses how we moved
drivers out of the kernel.

3.2.1 Moving Drivers to User Level

In order to transform kernel-level drivers into user-level drivers we analyzed their
dependencies on the core OS and each other. The analysis showed that dependen-
cies occur because of various reasons, including device I/O and interrupt handling,
copying data from and to the rest of the OS, access to kernel information, debug
dumps, and assertions and panics. Interestingly, some dependencies were caused by
bad design, for example, when variables that were really local were declared global.
Fortunately, these dependencies were easily resolved.

We were able to group the interdependencies into five categories based on who
depends on whom or what. For each category, a different approach in removing the
dependencies was needed:

(A) Driver-kernel Dependencies Many drivers touch kernel symbols (both func-
tions and variables), for example, to copy data to and from user processes. The
solution is to add new kernel calls to support the user-level drivers.
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(B) Driver-driver Dependencies Sometimes one driver needs support from another.
For example, the console driver may be needed to output diagnostics. Like above,
new message types have been defined to request services from each other.

(C) Kernel-driver Dependencies The kernel can depend on a driver symbol, for
example, to call a driver’s watchdog function when a timer expires. Kernel events
are now communicated to the user level using nonblocking notification messages.

(D) Interrupt-handling Dependencies Some interrupt handlers directly touch data
structures of in-kernel device drivers. The solution is to mask the interrupt at the
kernel level and notify to the corresponding user-level driver to perform the device-
specific interrupt handling.

(E) Device-1/O Dependencies All drivers interact with the I/O hardware, which
they cannot always do directly in a safe way at the user level. Therefore, several new
kernel calls relating to I/O have been provided.

3.2.2 Supporting User-level Drivers

Since user-level drivers cannot perform privileged operations directly, the core OS
provides support functionality to perform I/O, memory copying, and the like. This
functionality is implemented by the kernel as well as various user-level servers and
drivers that are part of the trusted computing base (TCB), such as the process man-
ager, IOMMU driver, and PCI-bus driver. If a user-level driver needs to perform a
privileged operation, it can no longer directly execute the operation by itself. Instead,
the driver needs to request a more privileged, trusted party to perform the operation
on its behalf. Because the driver manager informs the system about the permissible
operations upon starting each driver, the TCB can control access to privileged re-
sources: requests are carefully vetted against the policy installed, and executed only
if the driver is permitted to make the call.

The kernel exports a range of kernel calls for privileged operations that may only
be performed by the kernel. Fig.[3.3 summarizes the most important kernel calls
added to support user-level drivers. All calls are handled by the kernel’s system
task, which is programmed as a main loop that repeatedly receives an IPC message,
looks up the kernel call’s request type, verifies that the caller is authorized, calls the
associated handler function, and returns the result. For example, a driver can read
from its device by sending to the kernel a message of type VDEVIO, including the
I/0 port(s) to be read as part of the message payload. The kernel will receive the
message, verify that the driver is authorized to make the calls and that the I/O ports
belong to the driver’s device, perform the device I/O on behalf of the driver, and
return the value(s) read in the reply message. Sec.[3.3/provides more details about
the most important kernel calls and the way in which authorization works.
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Kernel call Purpose

SYS_VDEVIO Read or write a given I/O port or vector of I/O ports (programmed 1/O)
SYS_MEMMAP Map device memory into caller’s address space (memory-mapped I/O)
SYS_MAPDMA Ensure DMA buffer is contiguous and pinned (direct memory access)
SYS_IRQCTL Set or reset a hardware interrupt policy for a given interrupt line
SYS_SETALARM Schedule a watchdog timer that causes a notification message
SYS_SETGRANT Inform the kernel about the location and size of the memory grant table
SYS_SAFECOPY Copy a capability-protected memory region between address spaces
SYS_SAFEMAP Map a capability-protected memory region into caller’s address space
SYS_GETINFO Retrieve a copy of a kernel data structure or other system information
SYS_SYSCTL Forward diagnostic output to the primary console and system log
SYS_PRIVCTL Report a driver’'s permissible operations (used by the driver manager)

Figure 3.3: Overview of new kernel calls for device drivers. These kernel calls allow unprivileged
drivers to request privileged operations that can only be done by the kernel.

In addition to kernel-level support, drivers are supported by a number of user-
level servers and drivers. Besides general OS support from the POSIX servers, the
IOMMU driver and PCI-bus driver are of particular importance for restricting un-
trusted drivers. The IOMMU driver and PCI-bus driver are similar to other drivers
in the system, but their respective isolation policies allow them to access special
hardware. Therefore, these drivers are considered part of the TCB. Privileged opera-
tions can be requested by sending a request message, just as is done for kernel calls.
The IOMMU driver mediates access to the IOMMU hardware: it allows a driver
to set up a memory map for use with DMA. Likewise, the PCI-bus driver mediates
access to the PCI bus: it allows a driver to query the configuration space of its asso-
ciated PCI device in order to look up the PCI device’s I/O resources. The protection
mechanisms used to ensure that untrusted drivers cannot request broader access than
required are further detailed below.

3.3 Isolation Techniques

We now describe in detail how MINIX 3 isolates drivers. In short, each driver is run
in an unprivileged UNIX process, but based on the driver’s needs, we can selectively
grant fine-grained access to each privileged resource. Our discussion follows the
classification of privileged operations given in Sec.[3.1.2; the isolation techniques
for each class are described in a separate subsection.

3.3.1 Restricting CPU Usage

CPU usage is restricted by the structural constraints imposed by a multiserver design.
All drivers (except the clock task) have been removed from the kernel and are now
run as independent user-level processes that are scheduled sequentially. This reduces
both access to privileged instructions as well as CPU time.
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Privileged Instructions

Although the x86 (IA-32) architecture begins executing in real mode when it is pow-
ered on, MINIX 3 switches to protected mode early during boot time so that it can
use hardware protection features, such as virtual memory and protection rings. The
kernel’s bootstrap code then sets up a restricted execution environment for the OS.
Only a few tasks that are part of the microkernel of about 7500 lines of code (LoC)
are run with kernel-mode (ring 0) CPU privileges. All drivers are run in an ordinary
UNIX process with user-mode (ring 3) CPU privileges, just like normal application
programs. This prevents drivers from executing privileged CPU instructions such as
changing memory maps, performing I/O, or halting the CPU.

Attempts by unprivileged code to access privileged instructions are denied or
mediated by the kernel. If a user-mode process attempts to execute directly a priv-
ileged CPU instruction, the CPU raises an exception and puts the kernel in control.
The kernel then checks which process caused the exception and sends it a POSIX
signal, which forces a process exit if no signal handler has been installed. As dis-
cussed in Sec.[3.2.2, a small set of kernel calls is exported so that drivers can request
privileged services in a controlled manner. The kernel checks whether the driver is
authorized and performs the privileged operations on behalf of the driver.

CPU Time

With drivers running as UNIX processes, normal process scheduling techniques can
be used to prevent CPU hogging. In particular, we have used a multilevel-feedback-
queue (MLFQ) scheduler. Processes with the same priority reside in the same queue
and are scheduled round-robin. When a process is scheduled, its quantum is de-
creased every clock tick until it reaches zero and the scheduler gets to run again.
Starvation of low-priority processes is prevented by degrading a process’ priority
after it consumes a full quantum. This prevents drivers that wind up in an infinite
loop from hogging the CPU. Moreover, since CPU-bound processes are penalized
more often, interactive applications generally have good response times. Period-
ically, all priorities not at their initial value are increased so that processes with
changing scheduling characteristics are not penalized unnecessarily.

There is an additional protection mechanism to deal with drivers that are ‘stuck,’
for example, due to an infinite loop. As discussed in Sec.[2.2, the driver manager
can be configured to check periodically the driver’s state. If the driver does not
respond to a heartbeat request, the driver manager can replace it with a fresh copy or
take another action depending on the driver’s recovery script. This defect-detection
technique is discussed in more detail in Sec.[4.1]

3.3.2 Restricting Memory Access

Memory access is restricted using a combination of software and hardware protec-
tion. Each process has a private address space that is protected by the MMU and
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IOMMU hardware. In order to support data exchange between processes, either
through copying or mapping, we have provided a scheme for safe run-time memory
granting enforced by the kernel.

Memory References

We rely on MMU-hardware protection to enforce strict address-space separation.
Each driver has a private, virtual address space depending on the driver’s compile-
time and run-time requirements. The address space contains the driver’s program
text, global and static data, heap, and execution stack. Upon starting a process the
boundaries are determined by the process manager, which requests the kernel to pro-
gram the MMU accordingly. The MMU translates CPU-visible addresses to physical
addresses using the MMU tables programmed by the kernel. Page faults within the
allowed ranges, for instance due to an unallocated stack page, are caught by the ker-
nel and serviced transparently to the process. However, an unauthorized memory
reference outside of the driver’s address space results in an MMU exception that
causes the driver to be killed.

Drivers that want to exchange data with other system processes could potentially
use page sharing as provided by, for example, System V IPC and POSIX Shared
Memory, but these models do not provide the flexibility and fine-grained protec-
tion needed to isolate low-level drivers. We identified several shortcomings. First,
protection is based on group ID and user ID instead of individual drivers. Second,
page sharing uses coarse-grained pages while byte-granular protection is needed for
small data structures. Third, delegation of access rights is not supported. Fourth,
access rights are not automatically invalidated if a process sharing memory crashes.
Therefore, we developed the fine-grained authorization mechanism discussed next.

Copying and Sharing

We allow safe data exchange by means of fine-grained, delegatable memory grants.
A memory grant can be seen as a capability that can be transferred to another party
in order to grant fine-grained access. In contrast, an access control list (ACL) does
generally not support delegation and is more coarse-grained. Each grant defines a
memory region with byte granularity and gives a specific other process permission
to read and/or write the specified data. A process that wants to grant another process
access to its address space must create a grant table to store the memory grants. On
first use, the kernel must be informed about the location and size of the grant table
using the SETGRANT kernel call. Memory grants can be made available to another
process by sending the grant’s index into the table, known as the grant ID. The grant
then is uniquely identified by the grantor’s IPC endpoint and grant ID, and can be
passed in a kernel call to perform privileged memory operations.

The structure of a memory grant is shown in Fig.[3.4] The grant’s flags indicate
whether the grant is in use, the grant’s type, and the kind of access allowed. A direct
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Direct memory grant

Flags Grantee | Base | Memory
V[T D X|R W] identifier | address | size

Indirect memory grant

Flags Grantee | Former | Former | Base | Memory
vIMDX] 1 [R]w] identifier | grantor | grant ID | offset size

MG_WRITE Grantee may write
MG_READ Grantee may read

—— MG_INDIRECT Grant from grant
—— MG_DIRECT Grant from process
MG_MAPPED Grant memory mapped
MG VALID Grant slot in use

Figure 3.4: Structure of direct and indirect memory grants. Overview of memory grant flags.

grant (MG_DIRECT) means that a process A grants another process B limited access
to a memory region in its own address space. The memory region is specified by a
base address and size. The receiver of a direct grant, say, B, can refine and transfer
its access rights to a third process C by means of an indirect grant (MG_INDIRECT).
The memory region covered by an indirect grant is relative to the previous grant, and
is specified by an offset and size. However, the target memory area is always in the
address space of the process at the root of the grant chain. Finally, the R/W flags
define the access type that is granted: read, write, or both.

Delegation of memory grants is supported via indirect grants and results in a hi-
erarchical structure as shown in Fig.[3.5. This structure resembles recursive address
spaces [Liedtke, @], but memory grants are different in their purpose, granular-
ity, and usage—since grants protect data structures rather than build process address
spaces. In the figure, the grantor creates a direct grant with read-write access to a
512-byte memory region starting at virtual address 0x400 and extending up to but
not including address 0x600. The grant is stored in the grantor’s grant table and has
grant ID 2. The memory grant then is passed to the grantee by sending the grantor’s
IPC endpoint and grant ID using the system’s normal IPC mechanisms. The figure
also shows how the grantee creates two indirect grants. For example, the indirect
grant with grant ID 4 allows read-only access to 256 bytes starting at an offset of
64 bytes relative to the original grant. Note that the target memory for an indirect
grant always belongs to the root grantor process. The indirect grant contains the
previous grantor’s IPC endpoint, so that it is possible to follow to chain to the root
and determine the precise access rights. In this case, the indirect grant gives access
to the memory range starting at virtual address 0x440 and ending at 0x540.

When a process wants to access a memory area it has been granted, it needs
to call the kernel, which verifies the grant’s validity and performs the operation re-
quested. The SAFECOPY kernel call is provided to copy between a driver’s local
address space and a memory area granted by another process. Upon receiving the
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Figure 3.5: Hierarchical structure of memory grants. A direct grant gives access to part of the
grantor's memory. An indirect grant gives access to a subpart of the root grantor's memory.

request message, the kernel extracts the IPC endpoint and grant ID, looks up the cor-
responding memory grant, and verifies that the caller is indeed listed as the grantee.
Indirect grants are processed using a recursive lookup of the original, direct grant.
The overhead of these steps is small, since the kernel can directly access all physical
memory and read from the grant tables; no context switching is needed to follow
the chain. The copy request is checked against the minimal access rights found in
the path to the direct grant. Finally, if access is granted, the kernel calculates the
physical source and destination addresses and copies the requested amount of data.
This design allows granting a specific driver access to a precisely defined memory
region with perfect safety.

Grants can also be used to set up memory mappings. The SAFEMAP kernel
call allows a process to map the memory indicated by a memory grant into its own
address space. In order to prevent unintended memory disclosure, only grants that
are page-aligned and span entire pages can be memory mapped. The granularity of
the protection thus depends on the hardware. The kernel also verifies that the grant’s
access modifiers match the page protection requested. If the request is allowed, the
kernel forwards the request to the virtual memory (VM) subsystem, which sets up
the mapping and updates its administration for future clean-up. Finally, the kernel
sets the memory grant flag MG_MAPPED in the memory grant(s) used in order to
indicate that additional work is needed during grant revocation.

The memory grant model supports immediate revocation of all access rights at
the grantor’s discretion. If the grant is not used in a memory mapping, revocation
is simply done by unsetting the flag MG_VALID in the memory grant. If the grant
is mapped, an additional kernel call, SAFEREVOKE, is needed in order to undo the
memory mapping: the pages involved need to be marked ‘copy-on-write’ by the
VM subsystem. The details of checking the MG_MAPPED flag and making the ker-
nel call are conveniently hidden in a system library. Implicit revocation due to an
exiting grantor process is automatically detected by the clean-up routines in the VM
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subsystem. In all cases, revocation is permanent and cannot be circumvented by
other processes, since the kernel always validates all grants in the chain leading to
the root grantor before executing new grant operations.

Direct Memory Access

DMA from I/O devices can be restricted in various ways. One way to prevent invalid
DMA is to restrict a driver’s I/O capabilities to deny access to the device’s DMA
controller and have a trusted DMA driver mediate all access attempts. Although this
would be a one-time effort for ISA devices that use the motherboard’s central DMA
controller, the approach is impractical for bus-mastering PCI devices that come with
their own DMA controller: each PCI device needs to be checked for DMA capabili-
ties and a specialized helper driver must be written for each different DMA engine.
Therefore, we rely on modern hardware where the peripheral bus is equipped with
an IOMMU that controls all DMA attempts. As discussed in Sec.[2.3.2, the IOMMU
intercepts DMA operations from peripheral devices and validates the memory access
using the information stored in the IOMMU tables. In particular, we implemented
support for AMD’s Device Exclusion Vector (DEV).

Access to the IOMMU is mediated by a trusted IOMMU driver, consisting of
under 500 LoC in the case of AMD’s DEV. A driver that wants to use DMA first
needs to allocate a range of contiguous physical memory using the MAPDMA kernel
call. Then it requests the IOMMU driver to program the IOMMU. The protection
enforced is based on a very simple rule: only DMA into the driver’s own virtual
address space is allowed. Before setting up the IOMMU tables the IOMMU driver
verifies this requirement through the MEMMAP kernel call, which also returns the
physical address. It also verifies that the page protection matches the DMA opera-
tion requested and that all memory pages involved are pinned. Because each DMA
protection domain is associated with a specific hardware device rather than a soft-
ware driver, the IOMMU driver must verify that the driver has permission to access
the device, which is identified by the combination of peripheral bus, device num-
ber, and device function. This check can be done by sending a request to the driver
manager or PCI-bus driver. Finally, the IOMMU driver programs the IOMMU in
order to allow access. Where possible the driver uses the same DMA buffer during
its lifetime in order to increase performance ﬂWillmann et al., 2008].

Because the actual DMA operation is done asynchronously (at the device’s dis-
cretion), revocation of access rights due to unexpected process exits must be handled
with care: if the physical memory associated with a driver that used DMA would
be reallocated, a DMA operation done after the driver exit could cause unexpected
memory corruption. Therefore, the IOMMU driver reports to the process manager
all memory ranges programmed into the IOMMU. If a driver involved in DMA ex-
its, the process manager sends an exit notification to the IOMMU driver in order to
clean up. Only once the memory of the exiting process is removed from the [OMMU
tables, can it be safely returned to the free list.
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3.3.3 Restricting Device I/0

Device access and interrupt handling is restricted using per-driver isolation policies.
As discussed in Sec. 2.2, policies are stored in simple text files defined by the ad-
ministrator. Upon loading a driver the driver manager informs the kernel and trusted
OS servers, so that the restrictions can be enforced at run time.

Device Access

The driver manager uses isolation policies in order to ensure that each driver can
only access its own device. Upon loading a new driver the driver manager first
compares the isolation policy against the policies of running drivers. If the new
driver’s device is already in use, the launch process is aborted. The policies are
suitable for both statically and dynamically configured I/O devices on the ISA bus
and PCI bus, respectively. For ISA devices, the keys isa io and isa irq statically
configure the device’s I/O resources by explicitly listing the I/O ports and IRQ lines
in the policy, respectively. ISA plug-and-play (PnP) devices are not supported by
MINIX 3. For PCI devices, the keys pci device and pci class grant access to one
specific PCI device or a class of PCI devices, respectively. The driver manager
reports the device or device class to the trusted PCI-bus driver, which dynamically
determines the permissible I/O resources by querying the PCI device’s configuration
space initialized by the computer’s basic input/output system (BIOS). In both cases,
the kernel is informed about the I/O resources using the PRIVCTL kernel call and
stores the privileges in the process table before the driver gets to run.

When a driver requests 1/O, the kernel always verifies that the operation is per-
mitted by checking the request against the I/O resources reported through PRIVCTL.
For devices with memory-mapped I/O, the driver can request to map device-specific
memory persistently into its address space using the MEMMAP kernel call. For de-
vices with programmed I/O, fine-grained access control for device ports and registers
is implemented in the VDEVIO kernel call. If the call is permitted, the kernel per-
forms the actual I/O instruction(s) and returns the result(s) in the reply message.
While this introduces some kernel-call overhead, the I/O permission bitmap on x86
(IA-32) architectures was not considered a viable alternative, because the 8-KB per-
driver bitmaps would impose a higher demand on kernel memory and make context
switching more expensive. In addition, I/O permission bitmaps do not exist on other
architectures, which would complicate porting.

Interrupt Handling

When a device needs service, it asserts its interrupt line in order to raise an interrupt
request (IRQ) and put the kernel in control. Although the lowest-level interrupt
handling must be done by the kernel, all device-specific processing is done local to
each user-level driver. The kernel implements support for the Intel-8259-compatible
programmable interrupt controller (PIC). A generic kernel-level interrupt handler
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catches all IRQs (except clock IRQs) and forwards them to the associated user-level
driver using a nonblocking notification message. The code to do so consists of only
a few lines and is the same for all drivers. In contrast, the device-specific interrupt-
handling code in the driver is generally much more complex. In this way, bugs
triggered during interrupt handling are isolated in the user-level driver process.

A user-space driver can register for interrupt notifications for a specific IRQ line
through the IRQCTL kernel call. Before setting up the association, however, the
kernel checks the driver’s policy installed by the driver manager or PCI-bus driver.
If an interrupt occurs, the generic kernel-level handler disables interrupts, masks
the IRQ line that interrupted, asynchronously notifies the registered driver(s), and,
finally, reenables the interrupt controller. This process takes about a microsecond
and the complexity of reentrant interrupts is avoided. Interrupt notifications use the
IPC notification mechanism, which allows the handler to set a bit in the driver’s
‘pending events’ bitmap and then continue without blocking. When the driver is
ready to receive the interrupt, the kernel turns it into a normal IPC message of type
HWINT. Once the device-specific processing is done, the driver(s) can acknowledge
the interrupt using IRQCTL in order to unmask the IRQ line.

3.3.4 Restricting IPC

IPC is restricted through careful design of the IPC subsystem as well as per-driver
isolation policies. The IPC subsystem provides a set of reliable communication
primitives, introduced in Sec. [2.1.3, as well as mechanisms to restrict their use. In
addition, trusted system servers use well-defined IPC protocols to safeguard com-
munication with untrusted drivers.

Low-level Primitives

Dependability of the IPC subsystem is realized because the kernel fully controls
what happens during an IPC call. The following IPC properties can be safely as-
sumed: atomicity of IPC calls, reliable message delivery, and isolation between IPC
calls. First, atomicity is trivially met since the kernel simply does not return control
to the caller until it is done. Second, reliable delivery is achieved because the ker-
nel copies or maps the entire message to the destination process. Message integrity
is automatically preserved. Resource exhaustion is structurally prevented since the
IPC subsystem uses only statically allocated resources and message buffers local
to the caller. Third, isolation is guaranteed because multiple IPC calls are handled
independently and snooping on other processes’ IPC traffic is not possible. These
well-defined semantics allow servers and drivers to set up reliable communication
channels and do their work without external interference.

The IPC subsystem also provides mechanisms to control the use of IPC and force
IPC patterns onto untrusted processes. First, we restrict the set of IPC primitives
(SEND, ASEND, etc.) available to each process. Second, we restrict which services a
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process can send to using send masks. In principle, send masks can be used to restrict
the possible destinations for each individual IPC primitive, but policy definition in
the face of multiple, per-primitive IPC send masks proved impractical. Therefore,
send masks restrict the allowed IPC destinations regardless of the primitive that is
used. Furthermore, send masks are defined as a symmetric relation: if A is allowed
to send a request to B, B’s send mask is automatically updated such that B is allowed
to send the response to A. Receiving is not protected, since it is meaningful only if
an authorized process sends a message.

A final protection mechanism is the use of unique IPC endpoints. In order to
disambiguate between processes that may (over time) occupy the same slot in the
kernel’s process table, IPC endpoints contain a 16-bit generation number that is in-
cremented every time a process reuses a process table slot. Slot allocation is done
round robin in order to maximize the time before endpoint reuse. This design en-
sures that IPC directed to an exited process cannot end up at a process that reuses
a slot. (Note that we solely focus on buggy drivers and do not protect against mali-
cious drivers attempting to overtake an IPC endpoint using a brute-force attack that
quickly cycles through the generation number space.) Moreover, in the event that a
system server exits, the data store’s publish-subscribe mechanism immediately noti-
fies all dependent processes about the invalidated endpoint.

Interaction Patterns

By default, drivers are not allowed to use IPC, but selective access can be granted on
a per-driver basis using isolation policies. The keys ipc calls and ipc targets determine
the permissible IPC primitives and IPC destinations, respectively. Upon loading a
driver the driver manager informs the kernel about the IPC privileges granted using
PRIVCTL, just as is done for I/O resources. The kernel stores the driver’s IPC priv-
ileges in the process table and the IPC subsystem enforces them at run time using
simple bitmap operations. In this way, driver communication can be restricted to
only those system processes drivers need to talk to.

Protection against caller blockage due to deadlocks and asymmetric trust rela-
tionships can be implemented in various ways, each of which comes with a certain
complexity. First, time-outs help to detect failing IPC calls, but are hard to get
correct for programmers—arbitrary or overly conservative time-out values are not
uncommon—and may lead to periods of blockage. Second, multithreading allows
spawning a separate thread for handling untrusted IPC interactions, but requires a
more complex thread-aware IPC subsystem. Third, asynchronous and nonblocking
IPC prevents blocking on untrusted IPC targets, but comes with a state-machine-
driven programming model. The last option seemed most suitable in the context
of MINIX 3, for two reasons. First, it required relatively little programming effort
because it affected only two trusted system servers: the virtual file system (VFS)
and the network server (INET). Second, a state-machine-based approach also facil-
itates recovery after a driver crash, because pending requests can be replayed from
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Figure 3.6: IPC patterns to deal with asymmetric trust. Trusted processes use asynchronous or
nonblocking IPC (dashed lines) for sending to untrusted processes, which use synchronous IPC
(solid lines) to prevent race conditions that may cause messages to be dropped.

the work queue. Therefore, the IPC subsystem provides both synchronous, asyn-
chronous, and nonblocking IPC primitives.

In MINIX 3, asynchronous and nonblocking IPC is used only at a few well-
defined decoupling points where (trusted) system servers have to communicate with
(untrusted) device drivers. The IPC patterns that we use in these cases are summa-
rized in Fig.[3.6. First, in order to deal with untrusted clients (also see Fig.[3.2(b)),
trusted servers use the nonblocking NBSEND to send driver replies. Second, in or-
der to deal with drivers acting as an untrusted server (also see Fig.3.2(c,d)), trusted
clients use the asynchronous ASEND to send driver requests and do not block waiting
for the reply. These two simple rules ensure that the core system servers can never
be blocked by a driver that does not do the corresponding RECEIVE. The design
consequently forces drivers to use synchronous IPC in order to prevent race condi-
tions that may cause messages to be dropped. In particular, requests sent using an
asynchronous ASEND must be matched by a synchronous SEND, because the driver
cannot know if the caller is ready to receive the reply. In a similar vein, drivers must
use a synchronous SENDREC to request kernel services, because the kernel runs at
a higher priority and simply drops the reply if the driver is not ready to receive it.
While this design isolates trusted processes from faults in untrusted drivers, addi-
tional mechanisms, such as the driver heartbeat requests described in Chap. [4] are
still required in order to detect failures and ensure progress.

System Services

Because the kernel is concerned with only passing messages from one process to
another and does not inspect the message contents, restrictions on the exact request
types allowed must be enforced by the IPC targets themselves. This problem is most
critical at the system task in the kernel, which provides a plethora of sensitive oper-
ations, such as creating processes, setting up memory maps, and configuring driver
privileges. Therefore, the key ipc kernel in the per-driver isolation policies is used
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to restrict access to individual kernel calls. In line with least authority, each driver
is granted access to only those services needed to do its job, such as safe memory
operations and device I/0. Again, the driver manager fetches the calls granted upon
loading a driver and reports them to the kernel using PRIVCTL. The kernel task in-
spects the table with authorized calls each time a driver requests service. It should
be noted that multiple levels of defense are used for certain kernel calls. Even if a
driver is authorized to use, say, SAFECOPY or VDEVIO, the protection mechanisms
described in Secs.[3.3.2]and 3.3.3 are enforced. For example, memory copies re-
quire a valid memory grant and device I/O is allowed only for the driver’s device,
respectively. This ensures the correct granularity of isolation.

Finally, the use of services from the user-level OS servers is restricted using or-
dinary POSIX mechanisms. Incoming calls are vetted based on the caller’s user ID
and the request parameters. For example, administrator-level requests to the driver
manager are denied because all drivers run with an unprivileged user ID. Further-
more, since the OS servers perform sanity checks on all input, requests may also be
rejected due to invalid or unexpected parameters. This is similar to the sanity checks
done for ordinary POSIX system calls from the application layer.

3.4 Case Study: Living in Isolation

As a case study, we now discuss the working of an isolated Realtek RTL8139 net-
work driver. The driver’s life cycle starts when the administrator requests the driver
to be loaded using the isolation policy shown in Fig.[3.7] The driver is granted ac-
cess to a single PCI device, defined by the combination of the vendor ID (10ec)
and the device ID (8139). The policy enables IPC to the kernel, process manager,
data store, driver manager, PCI-bus driver, IOMMU driver, and network server, re-
spectively. The kernel calls granted allow the driver to perform device I/O, manage
interrupt lines, request DMA services, make safe memory copies, output diagnostics,
set timers, and retrieve system information, respectively.

1 driver rtI8139 # ISOLATION POLICY

j { pci device 10ec/8139

: ipc targets ’KERNEL PM DS RS PCI IOMMU INET

: ipc kernel i/DEVIO IRQCTL MAPDMA SETGRANT SAFECOPY
8

SYSCTL TIMES SETALARM GETINFO
9 ;

0 b

Figure 3.7: Per-driver policy definition is done using simple text files. This is the complete isolation
policy for the RTL8139 driver as found in /etc/drivers.conf.
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Figure 3.8: Interactions between an isolated network-device driver and the rest of the OS. Access
to privileged resources is mediated by the PCl-bus driver, IOMMU driver, and the kernel.

After verifying that the caller is authorized to start new drivers, the driver man-
ager stores the policy and creates a new process. The new process is uniquely iden-
tified by its IPC endpoint. The driver manager queries the data store for the IPC
endpoints of the allowed IPC targets and maps the allowed kernel calls onto their
call numbers in order to create the actual permission bitmaps. Then it informs the
kernel about the IPC targets and kernel calls allowed using the PRIVCTL call. The
PCI device ID is sent to the PCI-bus driver, which retrieves the I/O resources belong-
ing to the RTL8139 device from the device’s PCI configuration space and, in turn,
informs the kernel. Finally, only after the execution environment has been properly
isolated, the driver manager executes the driver binary.

The working of the RTL8139 driver in its isolated execution environment is
sketched in Fig.[3.8. When the driver gets to run it first executes its initialization
routines. In step (1), the RTL8139 driver contacts the PCI-bus driver to retrieve the
/O resources associated with the RTL8139 PCI device. Since the RTL8139 device
uses bus-mastering DMA, (2) the driver allocates a local buffer for use with DMA
and requests the IOMMU driver to program the IOMMU accordingly. This allows
the device to perform DMA into only the driver’s address space and protects the
system against arbitrary memory corruption by invalid DMA requests. Finally, (3)
the RTL8139 driver registers for interrupt notifications using the IRQCTL kernel call.
Only IRQ lines reported by the PCI-bus driver are made accessible though.

During normal operation, the driver executes a main loop that repeatedly re-
ceives a message and processes it. Requests from the network server, INET, contain
a memory grant that allows the driver to access only the message buffers and nothing
else. We now consider a request to read from the network. In step (4), the RTL8139
driver programs the network card using the VDEVIO kernel call. The completion
interrupt of the DMA transfer is caught by the kernel’s generic handler and (5) for-
warded to the RTL8139 driver where the device-specific interrupt handling is done.
The interrupt is handled at the user level and acknowledged using the IRQCTL kernel
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call. In step (6), the driver makes a SAFECOPY kernel call to transfer the data read
to INET. Although we did not implement this, a zero-copy protocol can be realized
for performance-critical applications by mapping the memory granted by INET into
the driver’s address space using the SAFEMAP kernel call. Writing garbage into
INET’s buffers results in messages with an invalid checksum, which will simply be
discarded. In order to prevent race conditions when both INET and the driver try
to access the packet data, INET revokes the memory access rights once the driver
signals that a packet has arrived. In this way, the driver can safely perform its task
without being able to disrupt any other services.

If the driver process crashes or otherwise exits unexpectedly, all the privileges
that were granted to the driver are revoked by the OS. The process manager will
be the first to notice the driver exit, and notifies all processes involved in the exit
procedure, such as the kernel’s system task and IOMMU driver. The driver’s CPU
and memory privileges are automatically revoked because the driver process is no
longer scheduled by the kernel. Likewise, the driver’s I/O and IPC privileges that
were stored at the kernel are reset when the driver’s process-table entry is cleaned
up. Memory grants that INET or other processes created for the driver are no longer
usable because the grants contain the driver’s unique IPC endpoint, which is inval-
idated by the kernel. Memory grants created by the driver itself are automatically
cleaned up when the driver’s address space is recollected by the OS. Before this can
be done, however, the IOMMU driver resets the DMA protection domain that was
set up for the driver’s device.

Finally, when all privileges have been revoked, the driver manager is notified
that one of its children has exited, so that it can perform its local clean-up. The
driver manager first updates its local administration and—depending on the policy
provided by the administrator—then may attempt to recover the failed driver. Such
driver recovery is the subject of the next chapter.



Chapter 4

Failure Resilience

With driver faults properly isolated, we now focus on another technique that is used
by MINIX 3 to improve dependability. In particular, we do not claim that our drivers
are free of bugs, but we have designed our system such that it can recover from driver
failures. After loading a driver, it is constantly guarded in order to ensure continuous
operation. If the driver unexpectedly crashes, exits, or misbehaves otherwise, it is
automatically restarted. How the driver manager can detect defects and how the
recovery procedure works is described in detail below.

The remainder of this chapter is organized as follows. First, Sec./4.1lexplains the
defect detection techniques used by the driver manager. Next, Sec.'4.2/discusses the
role of recovery scripts and shows how components can be restarted. Then, Sec.[4.3
discusses the effectiveness of server and driver recovery. Finally, Secs. and[4.5
present two case studies that further illustrate the working of our design.

4.1 Defect Detection Techniques

While a human user observes driver defects when the system crashes, becomes un-
responsive, or behaves in strange ways, the OS needs other ways to detect failures.
Therefore, the driver manager monitors the system at run time to find defects. Note
that the driver manager can only observe component failures, that is, deviations from
the specified service, such as a driver crash or failure to respond to a request. We do
not attempt to detect erroneous system states or the exact underlying faults that led
to the failure. However, as discussed in Sec.[2.5, this is not a problem in practice
since many problems are intermittent and tend to go away after restarting a failing
or failed component.

The defect detection techniques used by the driver manager are based on unex-
pected process exits, explicit update requests, and periodic monitoring of extensions.
A classification of the various conditions that can cause the recovery procedure to
be initiated is given in Fig.[4.1 and discussed below.
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Technique Defect trigger In use Example scenario

Process exit CPU or MMU exception Yes Driver dereferences invalid pointer
Killed by signal Yes User kills driver that misbehaves
Internal panic Yes Driver detects internal inconsistency

Periodic check Request heartbeat Yes Driver winds up in infinite loop
Correctness proof No See examples in Sec.|4.1.2

Explicit request Dynamic update Yes User starts new or patched driver
Component complaint Yes Server detects protocol violation

Figure 4.1: Classification of defect detection techniques and their implementation status in MINIX 3.

4.1.1 Unexpected Process Exits

The most important technique that initiates the recovery procedure is immediate
detection of unexpected process exits. As explained in Sec.[2.2, the driver manager
starts new drivers by forking a process, setting the child process’ privileges, and
executing the driver binary. This means that the driver manager is the parent of
all system processes, and according to the POSIX specification, it will immediately
receive a SIGCHLD signal if a driver crashes, panics or exits for another reason.
The crashed process becomes a zombie process until the driver manager collects the
pieces using a wait call, which returns the exit status of the exitee and allows the
driver manager to figure out what happened.

This mechanism ensures, for example, that a driver killed by the process manager
because it dereferenced a bad pointer and caused an MMU exception is replaced
instantaneously. Likewise, CPU exceptions such as a division by zero may also cause
the driver to be signaled. Since all drivers run as ordinary user processes, they also
can be killed by user signals. This allows the administrator to restart malfunctioning
components, although the preferred method is sending an update request to the driver
manager. Finally, if a system process detects an internal inconsistency, it can simply
log the error and exit in order to be automatically replaced with a fresh copy. Our
experiments indicate that both exceptions and internal panics are responsible for a
large fraction of all restarts.

4.1.2 Periodic Status Monitoring

Next, the driver manager also proactively checks the system’s state in order to detect
malfunctioning system services. We have implemented periodic heartbeat requests
that require an extension to respond within the next period. Failing to respond N
consecutive times causes recovery to be initiated. Heartbeats do not protect against
malicious code, but help to detect processes that are ‘stuck,” for example, because
they are deadlocked in a blocking IPC call or wound up in an infinite loop. On a
monolithic system this is effectively a denial of service attack, but since all MINIX 3
drivers run as independent processes, the scheduler notices this behavior and grad-
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ually lowers the offending process’ priority, so that other processes can continue
to run normally. Because the MINIX 3 drivers are single-threaded processes with an
event loop, we used a conservative heartbeat period of 1-5 second in order to prevent
false negatives during heavy workloads. Nevertheless, this setup proved effective in
catching unresponsive drivers in our fault-injection experiments.

Although we did not implement it, more elaborate run-time monitoring is also
supported by our design. First, while we currently use fixed heartbeat periods, it may
be possible to maintain a failure history and dynamically adapt the heartbeat period
to the driver’s workload. Furthermore, the driver manager could request some kind
of proof that the driver still functions correctly. For example, the driver manager
could verify that the driver’s code segment is unaltered in order to protect against
driver exploits [Xu et al., @] and bit flips caused by radiation, electromagnetic
interference, or electrical noise |Heiimen, ]. As another example, higher-level
heartbeats could potentially verify end-to-end correctness by performing an I/O re-
quest and comparing the result with the expected response [Hunt, pers. comm.,
2010]. Finally, it may be possible to restart active OS modules periodically in or-
der to rejuvenate the OS and proactively recover aging bugs, such as memory leaks,
before they can cause failures ﬂHuang et al., 1995; Ishikawa et al., 2005].

]

4.1.3 Explicit Update Requests

Finally, another class of defect detection techniques are explicit update requests.
Sometimes faulty behavior can be noticed by the user, for example, if the audio
sounds weird or if the network performs badly. In such a case, the system administra-
tor can explicitly instruct the driver manager to restart a driver. Our design also sup-
ports replacing the binary of the extension with a new one, so that patches for latent
bugs or vulnerabilities can be applied as soon as they are available. In this scenario
we speak of a dynamic update ﬂBaumann et al., 2007]. Since reboots due to main-
tenance are responsible for a large fraction (24%) of system downtime [Xu et al.,
], dynamic updates that allow run-time patching of system components can sig-
nificantly improve system availability.

The driver manager can also be used as an arbiter in case of ‘conflicts,” allow-
ing authorized components to file a complaint about malfunctioning components.
For example, a server could request a driver that sends unexpected request or reply
messages to be restarted. This is useful because the driver manager is not aware of
server-to-driver protocols and cannot inspect messages exchanged. If a complaint is
filed, the driver manager kills the bad component and starts a fresh copy. In order to
prevent abuse, the isolation-policy field driver informs the driver manager whether
a component is allowed to use this functionality and, if so, for which parties. As
described in Sec.[4.4, we have experimented with explicit update requests in the
storage stack. However, most of the MINIX 3 servers simply return a normal POSIX
error code to signal errors. The error is logged, however, so that the administrator
can check the system’s state.

<
N
i)
aQ
©
{=
O




60 CHAPTER 4. FAILURE RESILIENCE

4.2 On-the-fly Repair

If a defect is detected, the driver manager starts its recovery procedure to repair the
system on the fly. The basic idea is to perform a microreboot of the failed compo-
nent ﬂCandea et al., 20()4J]. Below, we first discuss the use of recovery scripts and
then focus on the actual driver restart. While the primary focus is recovering stateless
drivers, we also discuss the MINIX 3 mechanisms for state management.

4.2.1 Recovery Scripts

By default, the driver manager directly restarts malfunctioning components, but if
more flexibility is wanted, the administrator can set up a recovery script that governs
the steps to be taken after a failure. This is done using the service utility parameter
—recovery, which accepts the path to shell script and an argument list that is passed
to the script upon execution. In principle, each server and driver can be configured
with its own recovery script, but scripts can also be written in a generic way and
shared among extensions. In the event of a failure, the driver manager looks up the
associated script and executes it with the following arguments: (1) the component
that failed, (2) the event causing the failure, (3) the current failure count for the failed
component, and (4) the argument list passed by the administrator. Recovery scripts
must be careful not to depend on functionality that is (temporarily) not available, or
request a restart of the failed component before attempting to use it.

Using shell scripts provides great flexibility and power for expressing policies.
Even if a generic recovery script is used, the precise steps taken may differ per
invocation, depending on the information passed by the driver manager. As an ex-
ample, consider the generic recovery script in Fig. 4.2. Line 1 gives the path to
shell executable and lines 2—5 process the driver manager arguments. Then, lines 7—
12 implement a binary exponential backoff strategy in restarting repeatedly failing
components. The actual restart command is done after an increasingly large delay
in order to prevent bogging down the system in the event of repeated failures. The
backoff protocol is not used for dynamic updates that are requested explicitly. Fi-
nally, lines 14-24 send a failure alert to a remote administrator if the parameter —a
and an email address are passed.

The use of policy-driven recovery provides several benefits. Even though full
recovery is not always possible, recovery scripts can assist the administrator in han-
dling from failures. For example, crashes of the network server, INET, not only
requires restarting INET, but also affect applications that depend on its functionality,
such as the DHCP client and X Window System. A dedicated recovery script that
was specifically designed to recover from such failures is discussed in Sec.4.5. As
another example, if a critical component cannot be recovered or fails too often, the
recovery script may reboot the entire system, which clearly is better than leaving the
system in an unusable state. At the very least, the recovery script can log details
about the failing component and its execution environment.
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1 #/bin/sh # GENERIC RECOVERY SCRIPT
> component=$1 # failed component binary

3 reason=%$2 # failure reason

4 repetition=$3 # current failure count

s shift 3 # get to script parameters

7 # RESTART BINARY EXPONENTIAL BACKOFF
s if [ ! $reason -eq UPDATE |; then

9 sleep $((1 << ($repetition - 1)))

0 fi

11 service refresh $component # request restart

12 status=$? # get restart status

14 # E-MAIL OPTIONAL FAILURE ALERT
15 while getopts a: option; do

16 case $option in # check optional parameters
17 a)

18 cat << END | mail -s "Failure Alert" "SOPTARG"

19 failure details: $component, $reason, $repetition

20 restart status: $status

21 END

2 5

3 esac

24 done

Figure 4.2: Example of a parameterized, generic recovery script. Binary exponential backoff is
used before restarting, except for dynamic updates. If the optional parameter —a is present, a
failure alert is emailed to the given address.

4.2.2 Restarting Failed Components

The actual procedure for restarting a failed driver and reintegrating it into the system
consists of three phases. First, when the recovery script requests the driver manager
to restart the component, its privileges and the privileges of dependent components
need to be (re)set. Second, changes in the OS configuration need to be communi-
cated to dependent components in order to initiate further recovery and mask the
problem to higher levels. Third, the restarted component may need to do local re-
covery. This procedure is illustrated in Fig./4.3]and discussed below.

Restarting Failed Components

The first two steps in Fig.[4.3 correspond to restarting a failed driver. If no recovery
script is used, the driver manager automatically attempts to restart the driver, oth-
erwise it will wait for the recovery script’s signal. In step (1), the driver manager
performs the necessary clean-up, creates a new process, installs its isolation pol-
icy, and executes the binary. Changes in the system configuration are disseminated
through the data store. In step (2), the driver manager publishes the stable name and
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Figure 4.3: Procedure for restarting a failed device driver and reintegrating it into the system. The
sequence of steps taken is shown in (roughly) clockwise order.

IPC endpoint of the restarted component in the data store. In this respect, a restart
is mostly similar to the steps taken when a component is started through the service
utility, as discussed in Sec.[2.2] There are minor differences between starting a new
component and restarting a failed component, however.

The driver manager relies on the fact that our design uses temporally unique
IPC endpoints in order to identify uniquely a component and grant it the privileges
listed in the isolation policy. However, because the IPC endpoint is automatically
reset during a restart, requests by the restarted component will be denied. Therefore,
dependent components need to be informed about the update, so that they can discard
old information and store the component’s new IPC endpoint and privileges. All
these updates have to be completed before the new component gets to run.

Informing Dependent Components

Next, the dependent components are informed and can start their local recovery pro-
cedure. The data store implements a publish-subscribe mechanism, so that sub-
scribed components automatically receive updates about changes in the system con-
figuration. If a driver fails, (3) dependent servers subscribed to the driver’s stable
name are automatically notified and, if need be, (4) can attempt local recovery, such
as retrying failed or pending I/O requests. This design decouples producers and con-
sumers and prevents intricate interaction patterns of components that need to inform
each other when the system configuration changes.

In general, we were able to implement recovery at the server level. Application-
level recovery is needed only for specific failures that cause data loss or destroy too
much internal state. In this case, the normal POSIX error handling mechanisms are
used: the application’s system call is aborted and an error code is returned. For
historical reasons most applications assume that an I/O failure is fatal and give up,
but by changing user-space applications we may improve dependability even further.
Sec. 4.3 illustrates this point with concrete recovery schemes.
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Local Recovery

Finally, the restarted component may need to perform local reinitialization and re-
covery, such as (5) retrieving internal state that it lost when it crashed and (6) reini-
tializing its device. The exact steps taken depend on the component. As discussed
below, stateful services can retrieve lost state from the data store so that they can
properly reinitialize when they are brought up again. Device reinitialization typi-
cally is done using the normal device initialization procedures.

4.2.3 State Management

Although this thesis does not focus on stateful recovery, the data store provides a
number of mechanisms that support components in storing and retrieving internal
state. Below we introduce the working of the data store and highlight several prob-
lems relating to state management.

Working of the Data Store

The data store allows components to backup state and restore it after a restart.
Fig.[4.4 briefly summarizes (part of) the data store APL. First, it is possible to store
primitive data types and arrays thereof, such as integer values (DSF_TYPE_U32) or
character strings (DSF_TYPE_STR), under a component-specified identifier, known
as a handle. This mechanism creates a copy of the data to be stored. Retrieval is done
by presenting the handle to the data store. A special data type exists for naming in-
formation (DSF_TYPE_LABEL), where the handle is a component label and the data

Function Explanation

ds_publish Store a piece of typed data (see types below) under the given handle
ds_retrieve Retrieve a piece of typed data with the given handle or snapshot index
ds_delete Delete a piece of typed data or a snapshot from the data store
ds_snapshot Make a copy of a memory-mapped region and get the snapshot index
ds_subscribe Subscribe to data store entries matching the given regular expression
ds_check Check which data store entry changed and get its type and handle
Flag Explanation

DSF_PRIVATE Flag used to store data privately; used when publishing data
DSF_OVERWRITE Flag used to overwrite the data if an entry with same handle exists
DSF_TYPE_U32 Data type for storing unsigned 32-bit integers (fits in IPC message)
DSF_TYPE_STR Data type for storing strings up to 16 characters (fits in IPC message)
DSF_TYPE_MEM Data type for copying grant-based memory regions using SAFECOPY
DSF_TYPE_MAP Data type for mapping grant-based memory regions using SAFEMAP

DSF_TYPE_LABEL Data type for publishing labels (identifiers) of system components

Figure 4.4: Summary of the data store API for state management as provided by the system
libraries. System-library functions are shown at the top. Flags are shown at the bottom.
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stored gives the corresponding IPC endpoint. Only the driver manager is allowed to
store naming information. These primitive data types fit in an IPC message and do
not require additional copying. Second, it is possible to store entire memory regions
specified by memory grants. As discussed in Sec. 3.3.2, memory grants can be used
for both copying the data or setting up a memory mapping; a flag tells the data store
which mode should be used. With copying (DSF_TYPE_MEM), the data store copies
the data once upon request and allows retrieving the same data later on. With map-
ping (DSF_TYPE_MAP), the data store gets a real-time view of the memory region
to be stored, so that the latest (but possibly corrupted) state can always be recovered.
The data store’s snapshot functionality can be used to checkpoint memory-mapped
regions from time to time.

A flag (DSF_PRIVATE) tells the data store to store the data either publicly or pri-
vately. The data store’s publish-subscribe mechanism allows process to subscribe to
public data, such as naming information. In contrast, private data can be retrieved
only by the component that stored it. This is enforced by authenticating compo-
nents with help of the naming information that is also kept in the data store: when
data is stored, a reference to the stable name is included in the record, so that the
owner can be authenticated through a reverse lookup of the IPC endpoint. This al-
lows servers and drivers to store data privately using simple handles consisting of a
logical name rather than a large cryptographic hash. Another benefit of this design is
that authentication works between restarts. Although the component’s IPC endpoint
changes during the restart, the stable name remains the same and the driver manager
updates the IPC endpoint associated with the component’s stable name as part of the
recovery procedure.

These basic mechanisms enable components to backup privately their state and
retrieve it after a restart. With memory mapping, the data store gets a real-time view
of a memory region in a given process. The data store also can be requested to
make a snapshot of the mapped memory region, such that different versions can be
maintained. In both cases, if the process crashes, the data store still holds a copy
of the data or a reference to the memory region, and allows the restarted process to
recover its state by presenting the handle for it. Data is currently not persisted across
reboots, but the data store could potentially be extended to do so.

Gaps in State Management

Although these basic mechanisms provide an elegant way to store and retrieve in-
ternal state, there are several problems relating to state management that we did not
look into. The most important ones are:

o State integrity.
* Transaction support.

¢ Performance trade-offs.



4.3. EFFECTIVENESS OF RECOVERY 65

To start with, while the data store is able to maintain a process’ internal state, it
cannot prevent a buggy process from corrupting its own state. If a process is allowed
to communicate with the data store, a bug may cause it to store accidentally bogus
information. A potential solution would be to checksum internal state, so that the
restarted process can at least find out about the corruption. Next, it is sometimes
impossible to tell which part of an operation was already completed and which part
was not. This can be addressed by implementing some form of transaction support
and commit only completed transactions to the data store. Finally, there is a trade-
off between performance and dependability, because continuous checksumming and
checkpointing may be prohibitive for state that changes all the time and is on the
performance-critical path. Finding a good balance is a hard problem and may have
to be done on a per-component basis.

There are several other, less fundamental issues that may have to be addressed
as well. First, quota enforcement may be needed in order to prevent one compo-
nent from using all the data store’s memory. Second, more elaborate access-control
mechanisms could support access on a per-process basis rather than storing data ei-
ther public or private. Third, there should be a policy for garbage collecting data that
is no longer needed when a driver exits normally. This kind of functionality should
be provided when the data store is more heavily used.

Because of these issues, the data store is primarily used to support dynamic up-
dates where the component writes its state to the data store and exits in a controlled
way. For example, an audio driver could use the data store to backup control opera-
tions and reinitialize the mixer settings of the sound card after a restart. As another
example, a RAM disk driver can store the base address and size of the RAM disk’s
memory so that it can be restarted on the fly. Upon starting, the drivers can query
the data store for previously stored state to determine which initialization method
should be followed. If the data store does not know about the requested handle,
default initialization is done; if the handle is found, the previous state is restored.
Because we did not use checksumming and transactions, we cannot (currently) give
hard guarantees about state corruption during an unexpected crash. Instead, we as-
sume fail-stop behavior where erroneous state transformations due to a failure do
not occur [Schlichting and Schneider, Mﬁ.

In our prototype, state management turns out to be a minor problem for the
MINIX 3 device drivers, which are mostly stateless. The effectiveness of driver re-
covery is presented in detail in Sec.[4.3.1. Recovery of stateful components, such as
the file server and network server, is partially supported, as discussed in Sec.[4.3.2.

4.3 Effectiveness of Recovery

In this section, we present MINIX 3’s recovery procedure for low-level device drivers
and system servers and discuss its effectiveness. Effectiveness can be measured
along two axes. First, we say that recovery is transparent if it is done without re-
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turning an error to application programs and without user intervention. This requires
recovery to be done within the realms of the OS. Second, we say that recovery is
lossless or full if no user data is lost or corrupted. This requires that we guarantee
‘exactly once’ behavior for the outcome of requests. In many cases, our design en-
ables full transparent recovery. However, even if this goal cannot be achieved, the
system’s failure-resilience mechanisms still help to improve availability by speeding
up recovery, as discussed below.

As an aside, the recovery schemes discussed here pertain not only to failures, but
as discussed in Sec. our design also allows the administrator to update servers
and drivers dynamically—even if I/O is in progress. In this case, the driver manager
first requests the extension to exit cleanly by sending a SIGTERM signal, giving it a
chance to backup its state in the data store. If the extension does not comply within
the time-out interval, it will be killed using a SIGKILL signal. The steps that are taken
after the extension exits are similar to those for a failure. Most other OSes currently
cannot dynamically replace active OS services on the fly as MINIX 3 does.

4.3.1 Recovering Device Drivers

We now focus on low-level device drivers that directly interact with the hardware.
For our purposes we distinguish three device-driver classes, namely, the network-
device, block-device, and character-device drivers. Each device class has different
I/0 properties and, therefore, different driver recovery characteristics. In addition,
as will become clear from Fig.[4.5, the protocols used by the layers above the driver
level also affect the effectiveness of recovery.

The effectiveness of recovery depends on whether I/O requests are idempotent
and the data stream provides data integrity. A request is idempotent if reissuing
it does not affect the final outcome. For example, writing a data block to a given
disk address is idempotent, but replaying an audio frame is not. In addition, a
means to verify data integrity is needed in order to detect data corruption. Typ-
ically this is realized by checksumming the data. Because device drivers are not
concerned with these properties—they simply accept a request and program the
hardware accordingly—the protocols implemented by the higher-level servers and
applications determine the effectiveness of recovery [Saltzer et al.,‘1984].

The different I/O properties for each driver type leads to different recovery paths,
as illustrated in Fig.[4.6] As a general rule, recovery is always attempted at the low-

Device Class 1/0 properties Recovery support
Idempotent Data integrity Transparent Data loss
Network No Protocol-dependent Yes Protocol-dependent
Block Yes FS-dependent Yes FS-dependent
Character No No Optional Likely

Figure 4.5: 1/O properties of different driver stacks and the extent to which recovery is supported.
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Figure 4.6: Components that have to be aware of driver recovery for different kinds of drivers:
(a) network-device driver recovery, (b) block-device driver recovery, and (c) character-device driver
recovery. A gray color indicates that a component or the end user is aware of the recovery.

est possible layer so that the rest of the system does not need to be aware of the
failure. However, an integrated approach whereby drivers, servers, and applications
are involved may be required for optimal results. Ideally, the server level simply
reissues failed driver requests and responds normally to the application level, as if
nothing special happened. Applications may be blocked during the recovery pro-
cedure, but this is not different from a normal POSIX system call that blocks the
application until the call has finished. However, if a driver failure cannot be handled
at the server level, it has to be reported to the application that issued the I/O request.
The application, in turn, may attempt to recover from the I/O failure, but in some
cases application-level recovery is not possible, and the end user has to be notified
of the problem. The precise recovery procedure for each device class is discussed in
more detail in the following subsections.

Recovering Network-device Drivers

If a network-device driver, such as an Ethernet driver, fails full recovery transparent
to the application and end user is supported. We have implemented Ethernet driver
recovery in MINIX 3’s network server, INET. If the application uses a reliable trans-
port protocol, such as TCP, the protocol handles part of the recovery by preventing
data corruption and data loss through checksums, sequence numbering, and retrans-
mission timers. From the network server’s perspective, an unreliable driver is no
different than an unreliable network. Missing or garbled network packets will be de-
tected by the network server (or its peer at the other end of the connection) and can be
retransmitted safely. Although network I/O is not idempotent, the higher-level pro-
tocol ensures that duplicate packets are filtered out automatically. If an unreliable
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transport protocol, such as UDP, is used, loss of data may lead to a degraded quality
of service, but is tolerated by the protocol. However, application-level recovery is
possible, if need be.

The recovery procedure starts when the process manager informs the driver man-
ager about the exit of one of its children, as discussed in Sec. The driver manager
looks up the details about the failed driver in its internal tables and runs the asso-
ciated recovery script to restart it. Because the network server, INET, subscribes to
updates about Ethernet drivers by registering the expression ‘eth.x’, it is automati-
cally notified by the data store if the driver manager publishes the stable name, say,
eth1, and IPC endpoint of the restarted network driver. If INET tries to send data
in the short period between the driver crash and the consequent restart, the request
fails—because the IPC endpoint is invalidated—and is postponed until the driver is
back. Upon notification by the data store, the network server scans its internal tables
to find out if the driver update concerns a new driver or a recovered one. In the latter
case, INET starts its internal recovery procedure, which closely mimics the steps
taken when a driver is first started. The Ethernet driver is reinitialized and pending
1/O operations are resumed. The MINIX 3 Ethernet drivers are stateless and do not
need to retrieve lost state from the data store.

Recovering Block-device Drivers

If a block-device driver, such as the RAM-disk, hard-disk, CD-ROM, or floppy
driver, crashes, full recovery transparent to the application and end user is often pos-
sible. We have implemented block-device driver recovery support in the MINIX 3
file server, MFS. Failed I/O operations can be retried safely after the driver has been
restarted because block I/0 is idempotent. However, since MFS has currently no
means to ensure data integrity, there is no way to detect specific failure conditions in
which the driver inadvertently acknowledges a failed I/O request or silently corrupts
the data. In order to address this situation, we have implemented a filter driver that
transparently operates between the file server and block-device driver and provides
end-to-end integrity in the storage stack. Without the filter driver incidental data loss
can occur; with the filter driver we can provide hard guarantees for both single-driver
and single-disk failures. Sec.[4.4!further details the filter driver.

Because a disk-driver failure makes the file system unavailable, the driver man-
ager directly restarts failed disk drivers from a copy in RAM using a modified exec
call. In order to do so, disk drivers are started with the service utility flag —mirror set
to true, so that the driver manager makes a backup copy of the driver binary in its
memory. This approach ensures that driver failures can be handled without relying
on file-system access or disk access. We did not provide a similar facility for recov-
ery scripts though. If policy-driven recovery is needed, the system can be configured
with a RAM disk to provide trusted storage for crucial data such as the driver bina-
ries, the shell, and recovery scripts. After restarting the driver, the driver manager
publishes the new IPC endpoint in the data store, which causes the file server to be
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notified. If I/O was in progress at the time of the failure, the IPC rendezvous will
be aborted by the kernel, and the file server marks the request as pending. Once the
driver is back, the file server updates its device-to-driver mappings, and reinitializes
the disk driver by reopening minor devices, if need be. Finally, the file server checks
whether there are pending I/O requests, and if so, reissues the failed operations. Like
the other drivers in our system, disk drivers are stateless and do not need to retrieve
lost state from the data store.

Recovering Character-device Drivers

Recovery of character-device drivers is usually not transparent, since character-
device I/O is not idempotent and data may be lost if the I/O stream is interrupted. It
is impossible to determine which part of the data stream was successfully processed
and which data is missing. If an input stream is interrupted due to a driver crash,
input might be lost because it can be read from the controller only once. Likewise,
if an output stream is interrupted, there is no way to tell how much data has already
been written to the controller, and full recovery may not be possible. Recovery
of character-device drivers thus poses an undecidable problem. Therefore, the vir-
tual file system (VFS) generally invalidates all open file descriptors and reports the
failure to the application on the next system call. In some cases, application-level
recovery is possible, and applications can request VFS to reopen the device associ-
ated with the failed driver transparently on their behalf. Nevertheless, the end user
may still notice the failure if the I/O stream interruption causes data to be lost.

For historical reasons, most applications assume that a driver failure is fatal
and immediately give up, but our design supports continuous operation if appli-
cations are made recovery-aware. For this purpose, VFS defines a new error code,
ERESTARTED, for signaling an application that the driver temporarily failed but
has been successfully recovered. The device’s file descriptor is invalidated though.
Applications that understand this error code may reopen the device and retry the
I/O operation. For example, the MINIX 3 line-printer spooler daemon, /pd, works
such that it automatically reissues failed print requests without bothering the user.
While truly transparent recovery is not possible—partial or duplicate printouts may
occur—the user clearly benefits from this approach. Only if the application layer
cannot handle the failure, the user needs to be informed. For example, continuing a
CD or DVD burn process if the SCSI driver fails will corrupt the disk, so the error
must be reported to the user.

In some cases, our design can do even better by handling the character-device
driver recovery internal to VFS, transparent to the application. This is supported by
introducing a new file descriptor flag, O_REOPEN, which can be set upon opening a
device with the POSIX open call. In case of a failure, the flag tells VES to reassociate
transparently open file descriptors with the restarted driver. If I/O was in progress at
the time of the failure, the error status EREOPENED is returned to the application in
order to signal that data may have been lost, but the application can immediately retry
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without the need for reopening the device. If there was no I/O request outstanding,
the recovery is fully transparent to the application. We applied this technique to, for
example, the mplayer media player so that it can continue playing in case of driver
failures at the risk of small hiccups.

4.3.2 Recovering System Servers

Our system can not only cope with driver failures, but also recover from failures in
certain OS servers. Crashes of the core OS servers, such as the process manager,
virtual file system and driver manager, cannot be recovered, since they form an in-
tegral part of our failure-resilient design. However, many other servers that extend
the base system with optional functionality can potentially be recovered if disaster
strikes. The extent to which recovery is supported mainly depends on the amount
of state that is lost during a crash. For stateless servers full recovery is generally
possible by making minor changes to the dependent components—just like we did
for device drivers. However, as described in Sec. [4.2.3, stateful servers are much
harder to recover. We illustrate this point with a case study in Sec.[4.5.

As a simple example of stateless server recovery, consider how having a separate
information server to handle all debug dumps is beneficial to the system’s depend-
ability. The information server is responsible for handling all user interaction and the
formatting of the debug output. When the user presses a function key, the informa-
tion server requests a copy of the associated data structures and displays a formatted
dump on the console. For example, pressing the Fl-key dumps the process table
copied from the kernel’s system task. Because the information server itself remains
stateless and other services do not depend on its functionality, exceptions triggered
by the formatting can be transparently recovered via an automated restart or dynamic
update. The only thing that needs to be done after a restart is resetting the function
key mappings at the keyboard driver, but all other system services are unaffected.

4.4 Case Study: Monitoring Driver Correctness

As discussed in Sec.[4.3.1] MINIX 3 can restart crashed block-device drivers trans-
parently to the file server, but the driver manager lacks the necessary information
to detect protocol failures. First, even though block I/O is idempotent and can be
retried, the lack of end-to-end integrity means that the file server cannot detect silent
corruption of user data. Second, since the MINIX 3 driver manager does not have
semantic information about the driver’s correct operation and cannot monitor in-
dividual driver requests, it cannot detect, for example, a buggy driver that causes
legitimate 1/O requests to fail. Therefore, we have created a framework that allows
installing a filter driver between the file server and block-device driver. In this way,
the filter driver can transparently implement different protection strategies for safe-
guarding the user’s data. This idea is similar to I/O shepherding [Gunawi et al.,



4.4. CASE STUDY: MONITORING DRIVER CORRECTNESS 71

], but the filter driver implements the same interface as the block-device driver
so that it can be inserted between the file server and block-device driver without
having to modify either of them, or even having them to be aware of the filter. In
addition, the filter driver can leverage some of MINIX 3’s unique features. For ex-
ample, if a problem is detected, the filter driver can file a complaint with the driver
manager in order to restart the block-device driver.

The filter driver monitors the block-device driver’s operation and protects the
user’s file-system data in two ways. First, it introduces end-to-end integrity by trans-
parently checksumming and optionally mirroring file-system data ,
‘2005; Krioukov et al., 2008]. If both checksumming and mirroring are enabled, file-
server read requests are still served from the primary partition, but write requests
are transparently duplicated to the backup partition. Writes are read back in order
to verify that the data actually made it to the disk. In this way, the filter driver can
detect the otherwise silent data corruption, and recover the data from the backup
partition, if need be. Second, the filter driver verifies correct driver semantics by
monitoring requests and replies for deviations from the driver’s specified behavior,
for example, if the driver sends an unexpected reply or fails to handle a legitimate
request. Such semantics are device-specific. For block devices, we assume that
sector-aligned requests that span a sector-multiple and do not exceed the partition’s
size must succeed, that is, the driver must return OK in the reply.

The working of the filter driver is illustrated in Fig.[4.7. The sequence of actions
is as follows: (1) file server requests are transparently intercepted by the filter driver,
which (2) copies or maps the data into its address space, computes the checksum
for all data blocks, and writes out the checksummed data to disk. Next, the filter
driver awaits the reply from the block-device driver and (3) verifies that the result
of the I/O operation is as expected. If an anomaly is detected, the filter driver starts
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Figure 4.7: A filter driver between the file server and block-device driver can check for driver proto-
col violations. Different protection strategies based on checksumming and mirroring are supported.
If an error is detected, a complaint is filed with the driver manager.
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its recovery procedure and (4) files a complaint with the driver manager. Since the
filter driver’s isolation policy grants the privilege to control block-device drivers, the
driver manager acknowledges the complaint and (5) replaces the block-device driver
with a fresh copy. All this is done transparently to the rest of the storage stack.

One problem with this approach is that it is impossible to distinguish between
controller or drive failures that are faithfully reported by the driver and internal driver
failures. While a failed operation may be successfully retried for temporary driver
failures, the problem is likely to persist for hardware problems. The recovery strat-
egy acknowledges this fact by checking for similar failure characteristics and giving
up after a predefined number of retries.

In order to reserve space for the checksums, the filter driver presents to the file
server a virtual disk image smaller than the physical disk. Since the filter driver is
not aware of important file-system data structures nor the file-system layout on disk,
we checksummed each 512-B data sector independently. We decided to store the
checksums close to the data sectors in order to eliminate the overhead of extra disk
seeks. In addition, gaps in the on-disk layout of data and checksums should be pre-
vent to maximize the disk’s bandwidth and throughput. Therefore, we interspersed
data sectors and checksums sectors, as shown in Fig. In principle, each check-
sum sector can contain SECTOR_SIZE / CHECKSUM_SIZE checksums. However, if
the checksums for write requests do not cover a whole checksum sector, the check-
sum sector needs to be read before it can be written—or the checksums of the other
data will be lost. Because the optimal layout depends on the file-system block size,
we made the number of checksums per checksum sector a filter parameter.

With a single-driver and single-disk configuration, we can give hard guarantees
for only detection of data corruption—because a driver can simply wipe the entire
disk with no backup to recover from. Nevertheless, two best-effort recovery strate-
gies are possible. First, the filter driver can reissue the failed operation to the block-
device driver up to N times. Second, the filter driver can complain about the driver’s
behavior to have it replaced up to M times. After a total of M restarts x N retries,
the filter has to give up and return an error to the client file server. This strategy can
be attempted for either individual operations or the driver’s entire life span.
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Figure 4.8: The filter driver intersperses 1 checksum sector for every N data sectors. This figure
shows the file-system view and on-disk layout for N = 4 checksums per checksum sector.
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With a mirrored setup we can give hard guarantees for recovering from single-
disk or single-driver failures. Different approaches need to be distinguished for read-
ing and writing. Recovery in case of read failures can be attempted by reading data
from the backup partition and bringing the primary into a consistent state. The fil-
ter driver can either attempt the above best-effort recovery strategy for the primary
partition or directly switch to the backup. Recovery of write failures poses a differ-
ent problem because mirroring requires all data to be written to both disks. Upon a
block-device driver failure, the filter driver can first attempt best-effort recovery and,
if the failure persists, gracefully degrade the level of service by shutting down the
bad partition and continuing with the remaining one.

4.5 Case Study: Automating Server Recovery

As a second case study we now show how recovery of a stateful server can be auto-
mated using recovery scripts. Even though full transparent recovery is not possible,
we have implemented support for recovering from failures in the network server,
INET. A failure of INET closes all open network connections, including the sockets
used by the X Window System. Among other things, recovery requires restarting
the DHCP client and rerunning the DHCP exchange. Such a failure generally affects
the end user on a desktop machine, but we support the user by automating the recov-
ery process using a shell script that automatically reconfigures the system. This is
especially helpful to improve availability of (remotely managed) server machines.

In principle, INET could use the data store to backup its state and restore it after
a restart, but we did not investigate this option since INET’s state changes on every
network operation and hard guarantees cannot be given. As soon as INET acknowl-
edges that it successfully received a TCP packet, it is responsible for preventing data
loss. This implies that all network data should be copied to the data store before
sending the TCP ACK. In addition, there is a race condition in passing on the data
to its clients and updating the internal state such that the data is marked ‘success-
fully processed.” More advanced methods for restarting stateful servers are left as a
possible direction for future research.

In order to support the administrator in handling INET failures, we have created
a dedicated recovery script that automatically reconfigures the networking daemons,
as illustrated in Fig.[4.9. Lines 3—11 and lines 13-23 respectively show the functions
abort and daemonize that are used for stopping and starting daemons specified by
their binary name. Stopping is done by looking up the daemon’s process ID in the
process table and killing it. Starting is done by executing the daemon’s binary in the
background. Lines 25-32 show the actual recovery procedure: the daemons dhcpd,
nonamed and syslogd are stopped and INET is restarted along with the daemons.
A variant of this script is run on the web server that produces weekly snapshots of
MINIX 3. Since this server does not serve any X sessions, INET failures may cause
the server to be temporarily unavailable, but generally can be fully recovered.

<
N
i)
aQ
©
{=
O




74 CHAPTER 4. FAILURE RESILIENCE

1 #l/bin/sh # INET RECOVERY SCRIPT

3 #FUNCTION TO STOP A DAEMON

4+ abort() {

5 pid="ps ax | grep "$1" | grep -v grep | sed ’s,[ 1*([0-9]*).*,1,
6 if [ X"$pid" = X] # check for daemon pid

7 then

8 return 1 # no such process

9 fi

10 kill -9 $pid # configure daemon down

o}

13 #FUNCTION TO START A DAEMON
14 daemonize() {

15 for dir in $PATH # search entire path

16 do

17 if [ -f "$dir/$1" ] # check for executable
18 then

19 "$@" & # execute daemon

20 return

21 fi

2 done

3}

>s  # START OF ACTUAL RECOVERY SCRIPT

2 abort dhcpd # kill networking daemons

27 abort nonamed

28 abort syslogd

»  service restart "$1" # restart network server (INET)
50  daemonize dhcpd # restart networking daemons
31 daemonize nonamed -L

32 daemonize syslogd

Figure 4.9: Dedicated recovery script for the network server (INET). Networking daemons are
stopped and restarted only after INET has been recovered by the driver manager.



Chapter 5

Experimental Evaluation

Having presented in detail our design, we now discuss how we have evaluated its
implementation in MINIX 3. Rather than formally proving our system correct, we
have iteratively refined our design using a pragmatic, empirical approach based on
extensive software-implemented fault injection (SWIFI). Although not the focus of
this thesis, we also assess the system’s performance and analyze the engineering
effort. This chapter presents the raw results of our experiments; we will summarize
the lessons learned and draw conclusions in Chap.[7]

The remainder of this chapter is organized as follows. To begin with, Sec.[5.1
describes our SWIFI methodology and presents the test results, including the ef-
fectiveness of our fault-isolation and failure-resilience mechanisms. Next, Sec.[5.2
gives insight into the performance of MINIX 3 and compares its performance to
FreeBSD and Linux. Finally, Sec.[5.3 quantifies the engineering effort by analyzing
the MINIX 3 code base and comparing it to the Linux code base.

5.1 Software-implemented Fault Injection

We have used software-implemented fault injection (SWIFI) to assess two aspects of
MINIX 3’s design. First, we want to show that common errors in a properly isolated
device driver cannot propagate and damage the system. Second, we want to test the
effectiveness of our defect detection and recovery mechanisms.

5.1.1 SWIFI Test Methodology

The SWIFI tests emulated a variety of problems underlying OS crashes by inject-
ing selected machine-code mutations representative for both (i) low-level hardware
faults and (ii) a range of common programming errors. The fault injection is done
at run time and does not require driver modification before the fact. Below, we fur-
ther introduce the fault-injection procedure, fault types and test coverage, and driver
configurations tested.

75
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Fault-injection Procedure

An important goal of fault injection is to mimic real software bugs. Previous OS-
level robustness tests have injected faults at different locations in the system, includ-
ing (1) the application programming interface (API) [Koopman and DeVale, M;
Kalakech et al., \MJ], (2) selected kernel subsystems [Arlat et al., 2002;|Gu et al.,
m], (3) the driver programming interface (DPI) ﬂAlbinet et al., 2()04J], and (4) the
actual driver code ﬂDurﬁes and MadeiraJ, 2002‘]. Although these studies evaluated
different OS characteristics, a common pattern is the use of external faults injected
at the interfaces and internal faults injected into the test target. Interestingly, a com-
parison of internal faults and external faults found that they induce different kinds of
errors ﬂJarboui et al., 2002; Moraes et al., ZOOd]. In particular, external faults were
not able to produce errors matching the error patterns provoked by real faults in
drivers. In other words, external faults are not representative for residual software
faults. Therefore, our approach is to inject mutations representative for common
hardware faults and programming errors directly into the driver.

Each SWIFI test run is defined by the following parameters: fault type to be used,
number of SWIFI trials, number of faults injected per trial, and driver targeted. After
starting the driver, the test suite repeatedly injects the specified number of faults into
the driver’s text segment, sleeping 1 second between each SWIFI trial so that the
targeted driver can service the workload given. The workload used is designed to
exercise the driver’s functionality, that is, reading from and writing to the device. If
the injected fault is on the driver’s execution path it will be activated. A driver crash
triggers the test suite to sleep for 10 seconds, allowing the driver manager to refresh
the driver—transparently to application programs and without user intervention as
described in Sec.[4.2. When the test suite awakens, it looks up the process ID (PID)
of the (restarted) driver, and continues injecting faults until the experiment finishes.

The test suite injects faults without requiring changes to the targeted driver or
the rest of the OS. In particular, we use a variant of UNIX process tracing (ptrace) to
control execution of the driver and corrupt its code segment at run time. We do not
alter the data segment to simulate wrong initialization of global or static variables,
since we believe it to be more likely that programming errors occur in the actual
program code. For each fault injection, the code to be mutated is found by calcu-
lating a random offset into the driver’s text segment and finding the closest suitable
address for the desired fault type. This is done by reading the binary code and pass-
ing it through a disassembler to break down and inspect the instructions’ properties.
Finally, the test suite injects the selected fault by writing the corresponding code
modification into the driver’s text segment using the ptrace system call. Finally, the
driver is allowed to run again and may activate the fault injected.

During the SWIFI tests we verified that the driver could successfully execute its
workload and inspected the system logs for anomalies afterward. In order to col-
lect data we instrumented the test environment to produce debug output for specific
interesting actions. The test target itself, however, was run unmodified in order not



5.1. SOFTWARE-IMPLEMENTED FAULT INJECTION 77

to influence the experiment. The results presented below are based on the follow-
ing data. For each SWIFI trial the test suite outputs the fault type, number of faults
injected, and whether the test target has been restarted since the previous trial. The
kernel and trusted servers and drivers that interact with the driver log violations of
the driver’s isolation policy. Finally, if a process crashes, the driver manager logs the
component name, crash reason, and whether it could be restarted.

Fault Types and Test Coverage

Our test suite injected a meaningful subset of all fault types supported by the fault
injector ﬂNg and Chen, [1999; Swift et al., 2005‘]. For example, faults targeting dy-
namic memory allocation (malloc) were left out because this is not used by our
drivers. This selection process led to 8 suitable fault types, which are summarized
in Fig.[5.1. First, binary faults flip a bit in the program text to emulate hardware
faults ﬂKanawati et al., 1995]. This can cause a wide variety of crashes, but is dif-
ficult to relate to software bugs. It does, however, give some indication of how
resilient the system is to certain kinds of hardware errors, such as bit flips caused
by cosmic rays or bad memory banks. The other fault types approximate a range of
C-level programming errors commonly found in system code. For example, pointer
faults corrupt address calculation and source and destination faults respectively cor-
rupt the right-hand and left-hand assignment operand in order to emulate pointer
management errors, which were found to be a major cause (27%) of system out-
ages ﬂSullivan and Chillaregel, 1991]. Similarly, control faults change loop or branch
conditions to mimic off-by-one and other checking errors; parameter faults omit
operands loaded from the stack to change function invocations; and omission faults
can lead to a variety of errors due to missing statements [Chillarege et al., M].
Finally, random faults are randomly selected from the other fault types.

Our SWIFI methodology is aligned with the fault and failure model described
in Sec.[2.5. We limited ourselves to simulating soft intermittent faults, which were
found to be a common crash cause dGTaVL @%; m, @]. If a fault is triggered
and causes a driver failure, we refresh the driver and start over with a clean state. We

Fault type Text affected Code mutation performed

Binary Random address Flip one random bit in the selected instruction

Pointer In-memory operand Corrupt address calculation (ModR/R byte or SIB byte)
Source Assignment Corrupt the right-hand operand’s address calculation
Destination Assignment Corrupt the left-hand operand’s address calculation
Control Loop or branch Swap ‘rep’ and repe’ or invert the branch condition
Parameter Function invocation Delete operand loaded from stack, e.g. movl 4(ebp))
Omission Random address Replace the selected instruction with NOP instructions
Random One of the above Corresponding code mutation from above mutations

Figure 5.1: Fault types and code mutations used for SWIFI testing. Our test suite can either inject
faults of a predefined fault type or randomly pick one from the seven unique fault types.
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did not inject other faults types, such as hard permanent faults or Byzantine failures,
since they are outside the scope of MINIX 3’s protection mechanisms.

We have iteratively refined our design by injecting increasingly larger numbers of
faults using several different system configurations. We have not attempted to em-
ulate all possible (internal) error conditions ﬂChristmansson and Chillarege, 199@;
Duries and Madeira, ZOOd] because we believe that the real issue is exercising the
(external) techniques used to confine the test target. To illustrate this point, for ex-
ample, algorithmic errors would primarily test the driver’s functionality rather than
MINIX 3’s fault-tolerance mechanisms. For this reason, we also did not attempt to
analyze the fraction of driver code executed during testing. Instead, we focused on
the behavior of the (rest of the) system in the presence of a faulty component, and
injected increasingly larger number of faults to increase the likelihood of finding
shortcomings in MINIX 3’s defense mechanisms. While complete coverage cannot
be guaranteed without more formal approaches, our extensive SWIFI tests proved
to be very effective and pinpointed various design problems. Analysis of the sys-
tem logs also showed that we obtained a good test coverage, since the SWIFI tests
stressed each of the isolation techniques presented in Sec.

A final point worth mentioning is that we performed far more rigorous SWIFI
tests than related work that attempts to isolate drivers. Previous efforts often limited
their tests to a few thousand faults, which may not be enough to trigger rare faults
and find all the bugs in the rest of the system. For example, Nooks ,
m], Safedrive [Zhou et al., %], and BGI ﬂCastro et al., 2009‘] reported results
on the basis of only 2000, 44, and 3375 fault injections, respectively. However, in
our experiments, we found that this is not nearly enough. Instead, millions of faults
were injected before we found no more bugs in the fault-tolerance mechanisms,
because some bugs have a low probability of being triggered. To make the software
very reliable, even these bugs must be found and removed. MINIX 3 can now survive
several millions of fault injections, which strengthens our trust in its design.

Driver Configurations Tested

In order to ensure that our tests are representative we have experimented with each
of the device classes discussed in Sec.[4.3. We selected network-device drivers as
our primary test target after we found that networking forms by far the largest and
fastest-growing driver category in Linux 2.6. Nevertheless, we also experimented
with block-device drivers and characters-device drivers. Fig.[5.2] summarizes the
drivers and devices tested; the exact hardware configurations and workloads used are
described along with the results of each experiment in Secs.[5.1.245.1.4] Because
the first three configurations use the same MINIX 3 driver binary, we use the device
identifiers to distinguish the experiments in the text below.

We believe that the selected test targets cover a representative set of complex
interactions. Although each of the drivers represents at most thousands of lines of
code, complexity should not be assessed on the basis of lines of code. Instead, com-
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Class Driver Device Bus 1/0 method Results
Network DP8390 Emulated NE2000 ISA Programmed Sec.[5.1.2]
DP8390 NS DP8390 card ISA Programmed Sec.[5.1.2
DP8390 Realtek RTL8029 card PCI Programmed Sec.|5.1.2
RTL8139 Realtek RTL8139 card PCI DMA Sec.
FXP Intel PRO/100 card PCI DMA Sec.[5.1.2]
Block ATWINI Sitecom CN-033 card SATA Mixed Sec.|5.1.3
Character ES1371 Ensoniq ES1371 card PCI DMA Sec.[5.1.4

Figure 5.2: Overview of the MINIX 3 driver configurations that were subjected to fault injection.

plexity should be measured by a driver’s interactions with the surrounding software
and hardware, which determine the possible failure modes. We tested drivers for
several different hardware configurations, including network, block, and character
devices, because, as explained in Sec. each driver stack has different recov-
ery properties. In addition, we ensured that our tests covered the full spectrum
of isolation mechanisms devised. For example, we have tested drivers using both
programmed I/O and DMA. Moreover, all drivers heavily interact with the kernel,
system servers and support drivers such as the PCI-bus driver and IOMMU driver.
Our test setup also heavily relied on MINIX 3’s ability to restart failed drivers on the
fly, but we did not stress the state-management facilities offered by the data store,
because all of the drivers tested are stateless.

5.1.2 Network-device Driver Results

First of foremost, we tested MINIX 3’s ability to withstand failures in the network
stack. Because network-device drivers can be recovered transparently, as described
in Sec.[4.3.1] we were able to automate the test procedure and inject literally millions
of faults in order to stress test the system’s fault-tolerance techniques. For these
experiments we used the following hardware configurations:

1. Emulated NE2000 ISA on Bochs v2.2.6.

2. NS DP8390 ISA card on Pentium III 700 MHz.

3. Realtek RTL8029 PCI card on Pentium III 700 MHz.

4. Realtek RTL8139 PCI card on AMD Athlon64 X2 3800+.
5. Intel PRO/100 PCI card on AMD Athlon64 X2 3800+.

The workload used in all SWIFI tests caused a continuous stream of network 1/0
requests in order to exercise the drivers’ functionality and increase the probability
that the injected faults are triggered. In particular, we sent TCP requests to a remote
daytime server. The workload is transparent to the working of the drivers, however,
since they simply put INET’s message buffers on the wire (and vice versa) without
inspecting the actual data transferred.
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Robustness against Failures

The first experiment was designed to stress test our fault-tolerance techniques by in-
ducing driver failures with a high probability. We conducted 32 series of 1000 SWIFI
trials injecting 100 faults each—adding up to a total of 3,200,000 faults—targeting
4 driver configurations for each of the 8 fault types used. As expected, the drivers
repeatedly crashed and had to be restarted by the driver manager.

The test results are shown in Fig 5.3} which gives the total number of failures,
and Fig.[5.4, which gives a stacked histogram highlighting the failure reasons for
each fault type and each driver. For example, for random faults injected into the
NE2000, DP8390, RTL8139, and PRO/100 drivers we found a total number of 826,
552, 819, and 931 failures, respectively. These failures are subdivided based on
the failure reasons logged by the driver manager. For example, for random faults
injected into the NE2000 driver the driver manager reported 349 (42.3%) failures
where the driver was signaled due to a CPU or MMU exception, 454 (54.9%) internal
panics, and 23 (2.8%) missing heartbeats. Although the fault injection induced a
total of 24,883 driver failures, never did the damage (noticeably) spread beyond the
driver’s protection domain and affect the rest of the OS. Moreover, in all these cases,
the system was able to recover the driver transparently and without data loss.

The figures also show that different fault types affected the drivers in different
ways. For example, source and destination faults more consistently caused fail-
ures than pointer and omission faults. In addition, we also observed some differ-
ences between the drivers themselves, which is clearly visible for pointer and con-
trol faults. For example, for pointer faults the NE2000, DP8390, RTL8139, and
PRO/100 drivers failed 293, 108, 849, and 757 times, respectively. Since one driver
may be programmed to panic and exit upon the first failure, whereas the other may
repeatedly retry failed operations until the driver manager Kkills it due to a missing
heartbeat, the differences seem logical for the configurations with different drivers.
However, the effect is also present for the NE2000 and DP8390 configurations that

Driver NE2000 DP8390 RTL8139 PRO/100
Source faults 947 907 877 960
Destination faults 954 915 883 970
Pointer faults 293 108 849 757
Parameter faults 555 921 890 986
Control faults 798 980 279 884
Binary faults 933 708 899 932
Omission faults 705 729 711 425
Random faults 826 552 819 931
Total failures 6011 5820 6207 6845

Figure 5.3: Total number of failures induced for 4 network-device drivers and 8 fault types. For
each driver and fault type we conducted 1000 SWIFI trials injecting 100 faults each.
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Figure 5.4: Number of driver failures and failure reasons for 4 network-device drivers and 8 fault
types. For each driver and fault type we conducted 1000 SWIFI trials injecting 100 faults each.

use the same driver binary. We were unable to trace the exact reasons from the logs,
but speculate that this can be attributed to the different driver-execution paths as well
as the exact timings of the fault injections.

Unauthorized Access Attempts

Next, we analyzed the nature and frequency of unauthorized access attempts and
correlated the results to the classification of privileged driver operations in Fig.[3.1!
In order to do so we instrumented the system with additional debugging output and
conducted 100,000 SWIFT trials that each injected 1 random fault into the RTL8139
driver. The results reported in Fig. should be taken as approximate because
the abundance of measurement data from various components cluttered the system
logs and sometimes caused unintelligible entries when multiple messages that logi-
cally belonged together were written in an interleaved fashion. Furthermore, while
MINIX 3 has many sanity checks in the system libraries linked into the driver, we
have focused on only the logs from the kernel and the trusted system servers, since
their checks cannot be circumvented.

The test results provide various insights into the working of our defenses. The
driver manager detected 5887 failures that caused the RTL8139 driver to be replaced:
3738 (63.5%) exits due to internal panics, 1870 (31.8%) crashes due to CPU or
MMU exceptions, and 279 (4.7%) kills due to missing heartbeats. However, as
shown in Fig.[5.5, the number of unauthorized access attempts found in the system
logs was up to three orders of magnitude higher, totaling 2,162,054. This could
happen because not all error conditions are immediately fatal and certain failed op-
erations were repeatedly retried. For example, the logs revealed 1,754,886 (81.1%)
device I/O attempts that were denied because the registers requested did not belong
to the RTL8139 card. Likewise, we found 390,741 (18.5%) IPC calls that were re-
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Unauthorized access # Violations Percentage
Total violations detected 2,162,054 100.00%
Unauthorized CPU access 1851 0.09%
General protection fault (interrupt vector 13) 1593 0.07%
Stack exception (interrupt vector 12) 133 0.01%
Invalid opcode (interrupt vector 6) 103 0.00%
Divide error (interrupt vector 0) 11 0.00%
Breakpoint (interrupt vector 3) 7 0.00%
Debug exception (interrupt vector 1) 4 0.00%
Unauthorized memory access 16,964 0.78%
Grant ID is out of range of grantor’s grant table 14,830 0.69%
Invalid grantor endpoint or invalid grant ID 1332 0.06%
Memory region requested exceeds memory granted 448 0.02%
Access type requested violates grant modifiers 326 0.02%
Grant ID refers to unused or invalid memory grant 28 0.00%
Unauthorized device I/0 1,754,886 81.08%
Device port or register not allowed by policy 1,754,886 81.08%
Unauthorized IPC 390,741 18.05%
Kernel call not allowed by driver policy 198,487 9.17%
Kernel call rejected due to invalid call number 123,518 5.71%
IPC trap with invalid destination IPC endpoint 51,041 2.36%
IPC attempted to unauthorized destination 15,214 0.70%
Unauthorized request rejected by IPC target 2361 0.11%
IPC trap with invalid IPC primitive number 20 0.00%

Figure 5.5: Unauthorized access attempts found in the system logs for an experiment with the
RTL8139 driver that consisted of 100,000 SWIFI trials injecting 1 random fault each.

jected because the kernel call or system service requested was not allowed by the
driver’s isolation policy. Code inspection confirmed that the RTL8139 driver repeat-
edly retried failed operations before exiting due to an internal panic, being killed
by the driver manager due to a missing heartbeat, or causing an exception due to
subsequent fault injections. Despite all these failures, we again found that the base
system was never (noticeably) affected by the driver’s misconduct.

Availability under Faults

We also tested the driver’s sensitivity to faults. In order to do so we have conducted
100,000 SWIFT trials that each injected 1 random fault into the DP8390 driver, and
measured how many faults it takes to disrupt the driver and how many more are
needed for a crash. Disruption means that the driver can no longer successfully
service its workload, but has not yet failed in a way detectable by the driver manager.
After injecting a fault several things can happen. If the fault injected is not on the
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path executed, the driver continues normal execution as if nothing happened. If the
fault injected is triggered, the fault activation can change the driver’s execution in
various ways, including no (immediately) noticeable effect, a nonfatal error where
the driver deviates from its specified behavior but does not crash, or a fatal error
that causes the driver to be replaced. We were able to distinguish these effects by
maintaining a connection to a remote server and checking for availability after each
SWIFI trial. If the connection works fine, the fault is either not triggered or has no
noticeable effect. If the connection does not work, the driver is either disrupted or
has crashed, which can be told apart based on the driver manager logs.
Figs.[5.6/and 5.7 show the distribution of the number of faults needed to dis-
rupt and crash the DP8390 driver and RTL8139 driver, respectively. Although the
RTL8139 driver seems slightly more sensitive to faults than the DP8390 driver, a
similar pattern is visible for both drivers. On the one hand, we found that disruption
usually happens after only a few faults. For example, we observed 664 disruptions
and 136 crashes for the DP8390 driver and 1245 disruptions and 815 crashes for
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Figure 5.6: Number of faults needed to disrupt and crash the DP8390 driver during 100,000 ran-
dom SWIFI trials. Crashes show a long tail to the right and surpass 99% only after 263 faults.
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Figure 5.7: Number of faults needed to disrupt and crash the RTL8139 driver during 100,000 ran-
dom SWIFI trials. Crashes show a long tail to the right and surpass 99% only after 282 faults.
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the RTL8139 driver after just 1 fault injection. On the other hand, we found that
the number of faults needed to induce a crash can be high and shows a long tail to
the right. For example, the cumulative distribution of the number of faults needed
to crash the DP8390 driver surpasses 99% only after 263 fault injections. One run
even required 2484 fault injections before the driver crashed. The median num-
bers of fault injections needed to disrupt and crash the DP8390 driver were 8 faults
and 10 faults, respectively. The medians for the RTL8139 driver were 5 faults and
9 faults, respectively. Experiments with other drivers gave similar results. On the
basis of these findings we picked a fault load of 100 faults per SWIFI trial for the
stress tests used to assess MINIX 3’s robustness.

Software and Hardware Problems Encountered

As mentioned above, we have taken a pragmatic approach toward dependability and
went through several design iterations before we arrived at the final system. In or-
der to underscore this point, Fig.[5.8/briefly summarizes some of the problems that
we encountered (and subsequently fixed) during the SWIFI tests. Interestingly, we
found many obscure bugs even though MINIX 3 was already designed with depend-
ability in mind, which illustrates the usefulness of fault injection.

A final but important result is that we experienced several insurmountable hard-
ware problems that put an upper limit on the amount of fault isolation and failure
resilience that can achieved. While the hardware is, in principle, not directly af-
fected by the faults injected into the driver software, in some cases the fault injection
caused the driver to program its device in such way that hardware problems became
apparent. Such hardware problems are virtually impossible to deal with in software,
and are not specific to our design. Unfortunately, these kind of problems can only
be solved with help from PC hardware manufacturers.

Kernel stuck in infinite loop during load update due to inconsistent scheduling queues.
Process manager using synchronous IPC blocked by a driver not willing to receive it.
Driver request to perform SENDREC with nonblocking flag goes undetected and fails.

IPC call to SENDREC with invalid target ANY not detected and kept pending forever.

IPC call to NOTIFY with invalid target ANY caused a panic rather than erroneous return.
Kernel panic due to dereferencing an uninitialized privilege structure pointer.

Network driver went into silent mode due to bad parameters upon driver manager restart.
Driver manager’s priority was too low to request heartbeats from a looping driver.
System-wide starvation occurred due to excessive debug messages during kernel calls.
Isolation policy allowed driver to make arbitrary memory copies, corrupting the INET server.
Driver reprogrammed RTL8139 hardware’s PCl device ID (unexpected code in the driver).
Wrong IOMMU setting caused legitimate DMA operation to fail and corrupt the file system.
Interrupt line table filled up because clean-up after driver exit was not correctly done.

Figure 5.8: Selected bugs that were encountered (and subsequently fixed) during SWIFI testing.
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The hardware failures manifested in two different ways. First, for one network
card, hardware shortcomings thwarted MINIX 3’s fault isolation. SWIFI tests with
the Realtek RTL8029 PCI card repeatedly caused the entire system to freeze within
just a few SWIFI trials. We narrowed down the problem to writing a specific (unex-
pected) value to an (allowed) control register of the PCI device—presumably causing
the PCI bus to hang. We believe this to be a peculiarity of the specific device and
a weakness in the PCI-bus architecture rather than a shortcoming of MINIX 3. A
possible workaround would be to inspect all of the driver’s I/O requests at the kernel
level—something we were not willing to do.

Second, for two other network cards, the effectiveness of recovery was limited
by the hardware. Fortunately, such cases occurred very infrequently; less than 0.1%
in these series of tests. In particular, the emulated NE2000 ISA card was put in an
unrecoverable state in fewer than 10 cases, whereas the PRO/100 PCI card showed
a similar problem in under 25 cases. The DP8390 ISA and RTL8139 PCI cards did
not have this problem. Although the device driver could be successfully restarted,
the cards could not be reinitialized by the restarted driver. The rest of the OS was
not affected by this problem, but a low-level BIOS reset was needed to get the card
to work again. If the card had had a ‘master-reset’ command, the driver could have
solved the problem, but our card did not have this.

5.1.3 Block-device Driver Results

We also tested MINIX 3’s ability to deal with failures in the storage stack. Because
the MINIX file system does not provide end-to-end integrity, we augmented the stor-
age stack with the filter driver presented in Sec.[4.4. We used an AMD Athlon64 X2
3200+ machine with a Sitecom CN-033 Serial ATA PCI RAID controller and two
hard disk drives, each of which was controlled by an independent ATWINI driver.
The faults were injected into one of the two ATWINI drivers. The workload con-
sisted of writing and reading back 5-MB randomly generated data using dd. We
checked the I/O stream’s data integrity by comparing the SHA-1 hashes afterward.

Manual and Automated Fault Injection

We started out by testing the principle working of the filter driver’s protection tech-
niques using a small number of carefully selected, manually injected faults. First, we
manipulated the code of one of the ATWINI drivers in order to mimic data-integrity
violations. For example, we let the driver respond OK while not doing any work,
changed the disk address to be read, and so on. Second, we provoked driver crashes
and other erroneous behavior in order to emulate driver-protocol failures. Third, we
caused (permanent) failures on one partition in order to test recovery with help of
the backup partition. These tests confirmed the filter driver’s correct working with
respect to detection of data corruption and protocol violations, retrying of failed
operations, recovery of corrupted data, and graceful degradation.
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Next, we conducted a series of automated fault-injection experiments. For each
test run we attempted 40 SWIFI trials that each injected 25 faults into the running
ATWINI driver. This fault load ensures that each SWIFI trial has a high probability
to induce a driver failure. The filter driver was configured to use checksumming
but no mirroring, so that the targeted partition would not be shut down due to re-
peated driver failures. The filter driver’s recovery strategy was set to a maximum
of M = 3 driver restarts and N = 3 retries per request. Experiments with different
parameters showed that further recovery attempts are usually pointless. The results
of 7 representative test runs are shown in Fig.

The results show a mixed picture. The successful test runs, T.1-T.3, indicate
that the filter driver is indeed effective in dealing with misbehaving and crashing
block-device drivers. Here, the system logs revealed a total of 94 driver restarts
due to 17 (18.1%) internal panics, 22 (23.4%) CPU or MMU exceptions, 6 (6.4%)
missing heartbeats, and 49 (52.1%) filter-driver complaints. The breakdown of prob-
lems shows that the filter driver can detect both data-integrity problems and driver-
protocol violations, such as time-outs and unexpected replies. If retrying did not
help, the filter driver asked the driver manager to replace the ATWINI driver—except
when a request was undeliverable due to a missing driver, in which case the driver

SWIFI test run TA T.2 T.3 T.4 T.5 T.6 T.7
SWIFI trials x 25 faults 40 40 40 12 9 18 13
Total driver requests 1648 1724 1796 566 249 745 504
Driver requests failed 0 0 0 0 2 11 12
SWIFI test result OK OK OK Hang Hang Hang Hang
Driver-manager restarts 33 31 30 11 18 63 59
Driver exit due to panic 5 7 5 0 0 3 3
Crashed due to exception 9 5 8 4 3 3 2
Missing driver heartbeat 1 4 1 2 10 38 38
Filter-driver complaint 18 15 16 5 5 19 16
Filter-driver output 92 88 95 26 18 64 49
Driver dead when sending 0 1 1 1 5 24 25
Driver receive time-out 18 14 17 5 4 7 10
Unexpected IPC reply 24 33 33 9 3 15 6
Legitimate request failed 35 40 38 11 3 18 8
Bad checksum detected 15 0 6 0 3 0 0
Read-after-write failed 0 0 0 0 0 0 0
ATWINI-driver output 1 4 2 5 17 84 95
Controller not ready 1 4 2 5 15 73 77
Reset failed, drive busy 0 0 0 0 2 11 13
Timeout on command 0 0 0 0 0 0 5

Figure 5.9: Results of seven SWIFI tests with 40 SWIFI trials that each injected 25 faults of a
random type into the ATWINI driver. Results are ordered by the number of requests that failed.
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manager automatically restarted the crashed driver. In all these cases, the driver
manager replaced the crashed or misbehaving driver with a fresh copy. Even though
a 100% success rate cannot be guaranteed without a backup to recover from, we
found that the filter driver’s best-effort recovery was generally effective, especially
after a requesting a dynamic update of a bad driver.

More Hardware Limitations

The remaining test runs, T.4-T.7, did not run to completion because the system hung
before completing the 40 SWIFI trials. While the filter driver behaved as intended,
the Sitecom CN-033 PCI card did not, and limited the number of faults we could
inject. Compared to the network-device driver tests we experienced a relative large
number of cases where (1) the CN-033 controller was confused and required a BIOS
reset and (2) the test PC completely froze, presumably due to a PCI bus hang. We
also encountered a small number of filter-to-driver requests with unrecoverable fail-
ures, but the mere fact that we can detect these failures and warn the user is an
improvement over silent data corruption. Interestingly, test run T.4 hung the system
without failed driver requests, although there might have been a race condition in
logging the filter driver’s messages. For test runs T.5-T.7 ATWINI’s diagnostic out-
put clearly showed that the controller had difficulties with the driver’s deviation from
normal behavior: we observed frequent warnings that the controller was not ready,
controller resets failed, or commands timed out. These are hardware problems and
there is nothing the OS can do when a buggy driver issues an I/O command that
causes the device to fail in a way that cannot be recovered in software.

5.1.4 Character-device Driver Results

Finally, we have experimented with character-device driver recovery where the I/O
stream is interrupted and data may be lost. In particular, we injected faults into a
driver for the Ensoniq ES1371 PCI audio card. The experiments were run on an
AMD Athlon64 X2 3200+. The workload consisted of playing a song with the
mplayer media player. The O_REOPEN flag was added to mplayer’s open call in
order to tell the virtual file system (VES) to recover automatically and reassociate the
file descriptor with the restarted driver; EREOPENED errors for failures occurring
during an I/O operation were ignored by the mplayer application.

Effectiveness of Isolation and Recovery

To start with, we conducted 1000 SWIFI trials of 100 random faults each in order to
stress test the character-device driver defenses. This showed that the ES1371 driver
could be successfully recovered, although hiccups in the audio playback generally
occurred, as discussed below. In total, this experiment injected 100,000 faults and
induced 484 detectable failures: 347 (71.7%) CPU or MMU exceptions, 8 (1.7%) in-
ternal panics, and 129 (26.6%) missing heartbeat messages. Interestingly, the audio
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driver showed a much higher number of failures due to missing heartbeat messages
than the network-device and block-device drivers. We were unable to find the un-
derlying reasons from the logs, but suspect that this is due to differences in how the
driver is programmed.

In order to analyze how the audio playback is affected by the ES1371 driver fail-
ures, we connected the audio card’s line out to the line in on a second PC. Fig. [5.10
shows the uninterrupted playback of a regularly shaped audio sample and the inter-
rupted playback during 10 SWIFI trials of 100 random faults each. Three different
effects are visible. First, if the driver fails to program the device in time, sample
repetition occurs because the card’s output buffer is no longer refreshed; the card
simply continues playing whichever sample it finds in the buffer. Next, the fault
injection may corrupt the audio sample, causing the card to output noise. This can
happen because the driver uses double buffering of audio data, that is, it prepares a
copy of the audio data in its address space, which may be garbled by the fault in-
jection before the data is actually read by the device. Alternatively, the driver may
program the audio card with a wrong I/O address pointing to arbitrary text or data
in the driver’s address space. Finally, DMA read operations that are rejected by the
IOMMU cause the card’s output buffer to be filled with ones, which translates to si-
lence in the playback. This can happen if the driver crashes and its DMA protection
domain is invalidated by the IOMMU driver or if the driver provides an unauthorized
I/0O address due to the fault injection.

The results show that, in general, normal operation continued after recovering
the driver. In contrast, drivers failures in OSes with a monolithic kernel may bring
down the entire system. If we translate this outcome to a normal usage scenario with
infrequent intermittent driver failures, recovery at the price of a small hiccup in the
audio playback brings a huge dependability improvement for the end user.
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Figure 5.10: Normal playback of a regular audio sample (top) and playback with 10 SWIFI trials
injecting 100 random faults each into the Ensoniq ES1371 PCI audio driver (bottom). Recovery is
transparent to the application, but the 1/O is repeatedly interrupted.
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Application-level Transparency

In a few cases, the fault injection not only affected the ES1371 driver, but also in-
duced a failure of the mplayer application due to unexpected driver replies. Since
the code to handle I/O control operations (IOCTLs) is driver-specific and may, in
principle, return any status code, the VES cannot detect invalid return values and
simply forwards the result to the application. A filter driver wrapping the ES1371
driver might be effective, but we did not investigate this option. Instead, we feel that
this problem should have been handled by a more defensive programming style in
the mplayer application. Applications making system calls should be prepared to
handle unexpected return values in a sensible way and should not just crash.

A related problem is that, in some cases, the fault injection caused the driver to
execute an unwanted but otherwise legitimate IOCTL without crashing the driver.
For example, in one case, the mixer settings were changed to a different playback
frequency. In such an event, recovery of state with help of the data store is not pos-
sible, since the data store cannot distinguish good requests from bad ones, and also
would be updated with the wrong value. Although these kind of failures cannot be
prevented, they rarely occurred and were easily dealt with by restarting the mplayer
application, which causes the mixer settings to be reset.

5.2 Performance Measurements

Although the focus of this work is dependability rather than performance, we realize
that performance is important for the system’s usability. This section presents se-
lected experiments assessing MINIX 3’s performance. The results show that (1) the
user-perceived overhead depends on the workload and (2) the inherent overhead due
to a modular design seems to be less of an issue than careful optimization.

5.2.1 Costs of Fault Isolation

One objection that is often raised about modular designs is that they require ad-
ditional context switches and data copies when user-level modules interact with
one another. To find out how much overhead our design incurred, we conducted a
number of benchmarks that trigger IPC between the MINIX 3 applications, servers,
drivers, and kernel. Below, we present the results of a series of MINIX-specific tests
as well as a cross-platform comparison with Linux and FreeBSD.

Minix-specific Tests

As a first data point, MINIX 3 feels fast and responsive for research and develop-
ment usage, such editing files and (re)compiling system components. To illustrate
this point, we conducted the following measurements on an AMD AthlonXP X2
4400+ with 1-GB RAM. The time interval between leaving the multiboot monitor
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and getting the login prompt is about 6 sec. At that time a POSIX-conformant OS
is ready to use. Furthermore, the OS can do a full build of itself in about 19 sec.
This includes 256 calls to the MINIX 3 ANSI C compiler and 33 calls to the linker in
order to build the kernel and all the standard servers and drivers. As an aside, other
measurements showed that the MINIX 3 C compiler (cc) is faster than the GNU C
compiler (gcc), while the performance of the produced executables is only slightly
worse at the default optimization level [Ahma ,m]. Finally, when presented with
a new machine, MINIX 3 will install itself from the live CD in about 10 minutes.

Benchmarks comparing MINIX 2.0.4 to MINIX 3.0.0 showed that the transi-
tion from in-kernel to user-level drivers incurred a performance penalty of 5%-—
10% [Herder et al. ‘200&]. These experiments were conducted on an AMD Athlon64
3200+ with 1-GB RAM. The results are shown in Fig.5.11. First, system call times
for in-kernel versus user-level drivers showed an average overhead of 12%. For ex-
ample, creating and removing a directory had 7% overhead, opening and closing a
file had 9% overhead, and renaming a file had 16% overhead. With such simple
calls, the extra context switching required by user-level drivers slows the call down
measureably. Nevertheless, even though the percent difference for renaming a file is
16%, the delta in time is only 960 nsec per call, so even with 10,000 calls/sec the loss
is only 9.6 msec/sec, under 1%. This makes clear that the workload determines the
user-perceived overhead. Therefore, we also measured the performance of actual ap-
plications rather than pure system call times. The run times for various applications
showed an average overhead of 6%. For example, building a boot image had 7%
overhead, whereas grepping a 64-MB file was only 1% slower. These differences
show that I/O-bound programs have more overhead than CPU-bound programs that
do not depend on user-level drivers.

Next, we measured the performance of the MINIX 3 storage stack. We first
compared the disk read throughput of MINIX 2.0.4 and MINIX 3.0.0 for both the
raw-device and file-system interface using various I/O unit sizes. This experiment is

System call MINIX 2.0.4 MiNIx 3.0.0 Delta Ratio
getpid 0.831 us 1.011 pus 0.180 us 1.22
Iseek 0.721 us 0.797 us 0.076 us 1.11
open+close 3.048 us 3.315 us 0.267 us 1.09
read 64k+Iseek 81.207 us 87.999 us 6.792 s 1.08
write 64k+Iseek 80.165 us 86.832 us 6.667 us 1.08
creat+wr+del 12.465 us 13.465 us 1.000 ps 1.08
fork 10.499 us 12.399 s 1.900 s 1.18
fork+exec 38.832 us 43.365 us 4.533 us 1.12
mkdir+rmdir 13.357 us 14.265 pus 0.908 us 1.07
rename 5.852 us 6.812 us 0.960 us 1.16

Figure 5.11: System call times for in-kernel drivers (MINIX 2.0.4) versus user-level drivers
(MINIX 3.0.0). All times are wall-clock times in microseconds.
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Raw reads MiNIX 2.0.4 MiNIX 3.0.0 Delta Ratio
1 KB 2.602 s 2.965 us 0.363 us 1.14
16 KB 17.907 ps 19.968 s 2.061 pus 1.12
256 KB 303.749 us 332.246 s 28.497 us 1.09
4 MB 6184.568 us 6625.107 us 440.539 us 1.07
64 MB 16.729 s 17.599 s 0.870 s 1.05

Figure 5.12: Raw reads for in-kernel drivers (MINIX 2.0.4) versus user-level drivers (MINIX 3.0.0).
All times are in microseconds, except for the 64-MB operations, where they are in seconds.

File reads MiNIX 2.0.4 Minix 3.0.0 Delta Ratio
1 KB 2.619 s 2.904 s 0.285 yis 1.11
16 KB 18.891 us 20.728 us 1.837 us 1.10
256 KB 325.507 s 351.636 us 26.129 us 1.08
4 MB 6962.240 us 7363.498 us 401.258 us 1.06
64 MB 16.907 s 17.749 s 0.841s 1.05

Figure 5.13: File reads for in-kernel drivers (MINIX 2.0.4) versus user-level drivers (MINIX 3.0.0).
All times are in microseconds, except for the 64-MB operations, where they are in seconds.

representative for MINIX 3’s modularity, since the I/O triggered IPC between the test
program, file server, ATWINI driver, and kernel. The results are shown in Figs.[5.12
and[5.13] The overhead ranged from 14% and 11% for 1-KB units to 7% and 6%
for 4-MB units, respectively. The (relative) overhead thus decreases for larger I/0
units. Therefore, we changed the file-system block size from 1 KB to 8 KB, and
again measured the file-system throughput. Interestingly, we found that MINIX 3
now outperformed MINIX 2 despite the use of user-level drivers. The point we want
to make is that an 8% performance hit due to user-level drivers is on the same order
of magnitude as the gains or losses from configuring system parameters.

We also ran several application-level benchmarks with the filter driver on an
AMD Athlon64 X2 Dual Core 4400+ with 1-GB RAM and two identical 500-GB
Western Digital Caviar SE16 SATA hard-disk drives (WD5000AAKS). We used a
standard MINIX 3 file system with a 4-KB block size and a 32-MB buffer cache.
The test script created a new file system on the test partition, mounted it on /mnt,
copied the MINIX 3 installation, and executed the actual benchmark in a chroot
jail. After each benchmark we synchronized the cache to disk, which is included
in the reported run times. The average results out of three test runs are shown in
Fig.[5.14] These results again show that the workload dominates the user-perceived
overhead. First, workloads where writes dominate reads show higher overheads.
Second, while the filter driver’s overhead is visible for I/O-bound jobs, it is negligi-
ble for CPU-intensive jobs, even with the best protection strategy. For example, with
both checksumming and mirroring, the overhead compared to running without filter
is 28% for copying the source tree, 13% for doing a file system check, only 4% for
building the MINIX 3 OS, and 0% for building the system libraries.
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Benchmark No Filter Mirror Checksum Both

Copy root FS 14.89 (1.00) 15.44 (1.04) 17.11 (1.15) 18.34 (1.23)
Find and touch 2.75 (1.00) 2.83(1.03) 2.94 (1.07) 2.91 (1.06)
Build libraries 28.84 (1.00) 29.10 (1.01) 28.82 (1.00) 28.72 (1.00)
Build MiNIX 3 14.26 (1.00) 14.69 (1.03) 14.79 (1.04) 14.86 (1.04)
Copy source tree 2.54 (1.00) 2.73 (1.07) 3.06 (1.20) 3.26 (1.28)
Find and grep 5.16 (1.00) 5.23 (1.01) 5.65 (1.10) 5.67 (1.10)
File system check 3.46 (1.00) 3.55 (1.03) 3.91 (1.13) 3.91 (1.13)
Delete root FS 10.72 (1.00) 11.20 (1.05) 12.30 (1.15) 13.07 (1.22)

Figure 5.14: Application-level benchmarks for various filter driver configurations. Shown are the
average run times in seconds and performance relative to 'No Filter’ (in parentheses).

Finally, we tested the performance of the network stack. Because we initially did
not have drivers for gigabit Ethernet cards, we measured the performance of a Fast
Ethernet card. In particular, we used an Intel PRO/100 card, which is capable of car-
rying network traffic at a rate of 100 Mbit/s. This experiment triggered IPC between
the test program, virtual file system (VES), network server (INET), PRO/100 driver,
and kernel. We first transferred a 512-MB file from the local network, and were
able to drive the Ethernet at full speed. We also ran a loopback test and observed a
throughput of 1.7 Gbit/s, which is roughly equivalent to both sending at 1.7 Gbit/s
and receiving at 1.7 Gbit/s at the same time. A later port of the Intel PRO/1000
driver confirmed that MINIX 3 can indeed saturate gigabit Ethernet. However, the
high number of messages associated with gigabit Ethernet incurred a high CPU load,
and showed a need for further optimization [Linnenbank, \M].

Cross-platform Comparison

In order to see where MINIX 3 stands compared to other OSes we have briefly con-
trasted MINIX 3 to Linux and FreeBSD. In particular, we compared the throughput
and CPU utilization of sequential access to the raw-device interface of MINIX 3.1.2
to that of Linux 2.6.18 and FreeBSD 6.1. For each OS we used the out-of-the-box
configuration with the default parameters. This represents a worst case for MINIX 3,
since the overhead incurred by the user-level driver cannot be amortized over the
costs associated with disk seeks and file-system logic. The experiment was done
on an AMD AthlonXP 2200+ configured with 512-MB RAM and a 40-GB Maxtor
6E040L0 hard disk drive. Because the on-disk location influences the performance,
we ensured that all disk I/O was done from the same test partition. We focused
on the read performance in order to prevent possible caching effects from the disk
controller. The comparison exemplifies the overhead of MINIX 3’s modular de-
sign, since it involves IPC between the application, VFS server, file server, ATWINI
driver, and kernel. In contrast, both Linux 2.6 and FreeBSD 6.1 have a monolithic
kernel and require only a single system call to do I/O.
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The test script measured the performance of sequential access to the raw-device
interface by reading 2 GB worth of data using I/O unit sizes ranging from 1 KB to
256 KB. The throughput was calculated by putting the I/O operations between two
gettimeofday calls and dividing the amount of data read by the test’s duration. In or-
der eliminate semantic differences between the CPU loads reported by each OS, the
CPU utilization was measured by running the dhrystone CPU benchmark ,
m] in parallel with the test. First, a base run without I/O was done in order to
determine how many dhrystone iterations/sec could be done on an idle system. For
each test run we measured the number of dhrystone iterations performed in parallel
(Dyeq1) and extrapolated the base rate to the expected number of dhrystone iterations
for an idle system (D;q;.). Since the difference between the two is attributable to the
test run, the CPU utilization then was calculated as (D;qie — Dyeat) / Didie-

The results are plotted in Fig.[5.15. The results show that the disk through-
put increases and CPU utilization decreases for larger I/O unit sizes. Compared to
Linux 2.6, MINIX 3 shows a throughput degradation of 45.6% for 1-KB units, 31.2%
for 4-KB units, 7.0% for 16-KB units, but no overhead for larger unit sizes. How-
ever, MINIX 3 also has a lower CPU utilization—possibly because the MINIX 3 code
base is simpler and contains fewer optimization strategies—which might mean that
there is room for improvement. The maximum throughput of 57.8 MB/s is reached
at 64-KB units, but the CPU utilization still slowly decreases for larger unit sizes.
The differences in performance are caused, in part, by additional context switches
and data copies. However, FreeBSD 6.1 also has a lower throughput than Linux 2.6,
with a degradation of 16.9% for 1-KB units and 12.9% for 4-KB units. In other
words, the gap between MINIX 3 and FreeBSD is roughly equivalent to the gap be-
tween FreeBSD 6.1 and Linux 2.6. This shows that the impact of user-level drivers
is comparable to other trade-offs in system design.
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Figure 5.15: Cross-platform comparison of disk throughput and CPU utilization for a 2-GB read
with varying I/O units from the raw block device with a sequential access pattern.
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We want to emphasize that this test setup represents a worst-case scenario for
MINIX 3. As we have seen above, the actual user-perceived overhead depends on the
workload and can be significantly lower. Moreover, it has to be noted that the com-
parison not only highlights the costs of a modular design, but also is influenced by
many other factors, including differences in storage-stack strategies, amount of op-
timization, compiler quality, memory management algorithms, and so on. Linux 2.6
and FreeBSD 6.1 are far more mature than MINIX 3, and the test results have to be
interpreted with this difference in mind. We have not attempted to analyze and re-
move bottlenecks, since our research focuses on dependability. Nevertheless, several
possible performance optimizations are mentioned in Sec.[6.4]

5.2.2 Costs of Failure Resilience

In order to determine the overhead introduced by our failure-resilience mechanisms
we simulated driver crashes while I/O was in progress, and compared the perfor-
mance to an uninterrupted I/O transfer. The test script first initiates the I/O transfer,
and then repeatedly looks up the driver’s process ID and crashes the driver using
a SIGKILL signal. The test was run with varying intervals between the simulated
crashes. The recovery policy directly restarted the driver without introducing delays.
After the I/O completed we verified that no data corruption took place by compar-
ing the checksums of the data transferred. In all cases, we observed full transparent
recovery. The results are shown in Figs.[5.16/and5.17 and discussed below,

Network-stack Performance

We first measured the overhead for the recovery of network-device drivers using the
Realtek RTL8139 PCI Ethernet driver. Each test initiated a TCP transfer using the
wget utility to retrieve a 512-MB file from the local network. We ran multiple tests
with the period between the simulated crashes ranging from 1 to 15 seconds. In
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Figure 5.16: Throughput when using wget to retrieve a 512-MB file from the local network with
and without repeatedly killing the Realtek RTL8139 driver with various time intervals.
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all cases, wget successfully completed, with the only noticeable difference being a
small performance degradation as shown in Fig.[5.16 In order to verify that data
integrity was preserved we compared the MD5 checksums of the received data and
the original file. No data corruption was found. The uninterrupted transfer time was
47.4 sec with a throughput of 10.8 MB/s. The interrupted transfer times ranged from
47.9 sec to 63.0 sec, with a throughput of 10.7 MB/s and 8.1 MB/s, for simulated
crashes every 1 sec and 12 sec respectively. The mean recovery time for the network
driver failures was 0.5 sec. The loss in throughput due to network driver failures and
the subsequent recovery ranged from 25.0% to just 0.9% in the best case.

Storage-stack Performance

We also measured the overhead of block-device driver recovery by repeatedly send-
ing a SIGKILL signal to the ATWINI hard disk driver while reading a 1-GB file filled
with random data using dd. The input was immediately redirected to shalsum in
order to calculate the SHA-1 checksum. Again, we killed the driver with varying
intervals between the simulated crashes. Since the MINIX 3 file system does not
guarantee end-to-end integrity and we did not yet have the filter driver discussed in
Sec. 4.4] this experiment potentially could have caused data corruption. Neverthe-
less, we found that the data transfer successfully completed with the same SHA-1
checksum in all cases. The transfer rates are shown in Fig.[5.17] The uninterrupted
disk transfer completed in 31.3 sec with a throughput of 32.7 MB/s. The interrupted
transfer times ranged from 83.1 sec to 34.7 sec, with a throughput of 12.3 MB/s and
30.5 MB/s, for simulated crashes every 1 sec and 15 sec, respectively. The perfor-
mance overhead of disk driver recovery ranged from 62.4% to about 6.7% in this
test. Because the amount of work to be done to clean up the killed driver and start a
new one, and thus the recovery time needed, is roughly the same for each driver, the
higher recovery overhead compared to the previous experiment is due to the higher
steady-state I/O transfer rate.
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Figure 5.17: Throughput when using dd to read a 1-GB file from the hard disk with and without
killing the ATWINI driver with various time intervals.
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5.3 Source-code Analysis

Finally, we performed a source-code analysis in order to measure the system’s evo-
lution over time and estimate the amount of engineering effort that went into it. As
a metric we counted the number of lines of code (LoC) using the source-code line
counter sclc.pl A;Q;)leton, @]. The size of the code base was measured in lines
of assembly instructions and C code, excluding comments, and blank lines. Sys-
tem library code was excluded from the line counts because it is not specific to the
driver and (hopefully) better tested. Headers files were also excluded based on the
premise that constant and function definitions do not add to the code complexity. For
comparison purposes we performed the analysis for both MINIX 3 and Linux 2.6.

5.3.1 Evolution of MINIX 3

Our analysis of the MINIX 3 code base spans a 4-year period since the official re-
lease with 6-month deltas, and includes 9 SVN revisions ranging from r1171 to
r5545. We have focused on the core OS consisting of the kernel and the user-level
drivers and servers. The sources were obtained from the MINIX 3 source-code repos-
itory ﬂVrije Universiteit Amsterdam, 2009‘]. Although a small community of MINIX
enthusiasts has made valuable contributions, the majority of changes to the core
system is attributable to the in-house research and development team. An interest-
ing data point in this respect is that during the time frame analyzed the full-time
MINIX 3 team has grown from 1 graduate student and 1 scientific programmer to 5
graduate students and 3 scientific programmers. In addition, there have been various
contributions from students doing term projects. The results of our MINIX 3 analysis
are shown in Figs.[5.18 and[5.19/and discussed below.

Since the official release in October 2005 the kernel has grown by 101.6% from
3413 LoC to 6881 LoC. We observed a steady increase in the kernel-call handler
code, which indicates continuous addition of new features. Two notable events

MiNIX 3 Kernel Drivers Servers
Version  Release date LoC Growth LoC Growth LoC Growth
r1171 18 Oct 2005 3413 0.0% 22,777 0.0% 27,134 0.0%
r2145 18 Apr 2006 4014 17.6% 26,441 16.1% 28,921 6.6%
r2623 16 Oct 2006 4457 30.6% 28,148  23.6% 31,724  16.9%
2864 19 Apr 2007 4759 39.4% 28,436 24.8% 36,055 32.9%
r3044 17 Oct 2007 5231 53.3% 30,574  34.2% 37,642 38.7%
r3152 14 Apr 2008 5439 59.4% 34,988 53.6% 38,698 42.6%
3187 3 Oct 2008 5439 59.4% 34,988 53.6% 38,886  43.3%
14226 17 Apr 2009 6284 84.1% 34,888 53.2% 41,708 53.7%
r5545 19 Oct 2009 6881 101.6% 35,092 54.1% 45817  68.9%

Figure 5.18: Source-code analysis of the MINIX 3 kernel and the user-level drivers and servers for
a 4-year period since its official release with 6-month deltas.
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are a restructuring of the architecture-dependent and the architecture-independent
code (r2864) and the introduction of a new virtual memory (VM) subsystem (r4226
and r5545). The latter caused numerous kernel changes and explains the 1442-LoC
increase in just 12 months. (As an aside, the memory-management subsystem in
the Linux kernel is 34,702 LoC. Although it is obviously more feature-rich than
MINIX 3’s memory-management subsystem, it also measures more than 5 times the
size of the entire MINIX 3 kernel.) A similar picture exists for the user-level drivers
and servers. The drivers have grown by 54.1% from 22,777 LoC to 35,092 LoC.
While the amount of code per driver sometimes increased, most of the growth is
because the number of drivers has grown from 15 to 21 drivers. The average size of
a MINIX 3 driver is still only 1671 LoC. The servers have equally grown by 68.9%
from 27,134 LoC to 45,817 LoC. Notable changes include the addition of the vir-
tual file system (VFS) (12864), virtual memory (VM) (r4226), and System V IPC
(r5545). These results show that MINIX 3 has grown significantly due to the ad-
dition of new features and functionality. Still, as discussed below, the 6881-LoC
MINIX 3 kernel seems hardly bloated compared to the 5,319,731-LoC Linux 2.6
kernel. Of course, the MINIX 3 trusted computing base (TCB) also includes several
components running at the user level, but even if these are counted, the difference in
size is still two orders of magnitude.

Directory LoC TCB Explanation

src/kernel 2095 yes MINIX 3 kernel

src/kernel/arch 2730 yes Architecture-dependent code
src/kernel/system 2056 yes Kernel-call handlers
src/drivers/pci 2905 yes Generic PCl-bus driver
src/drivers/iommu/amddev 431 yes AMD-DEV IOMMU driver
src/drivers/libdriver 466 no Device-independent driver interface
src/drivers/libdriver-asyn 594 no Asynchronous driver interface
src/drivers/net/dp8390 3176 no NE2000/ DP8390/ RTL8029 driver
src/drivers/net/fxp 2530 no Intel PRO/100 driver
src/drivers/net/rtl8139 2469 no Realtek RTL8139 driver
src/drivers/block/atwini 2100 no Generic SATA driver
src/drivers/audio/es 1371 1295 no Ensoniqg ES1731 audio driver
src/drivers/audio/framework 728 no Audio-driver framework
src/servers/pm 2605 yes Process manager
src/servers/rs 2477 yes Driver manager
src/servers/ds 390 yes Data store

src/servers/inet 20,133 no Network server
src/servers/vfs 7109 yes Virtual file system
src/servers/mfs 4878 no MINIX file server
src/servers/vm 4635 yes Virtual memory server

Figure 5.19: Lines of executable code (LoC) for the most important MINIX 3 components. The
figure also shows whether the component is part of the trusted computing base (TCB).
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Zooming in on the changes required to isolate and recover drivers, we find that
most engineering effort went into preparing the core OS to deal with untrusted
drivers. Although the driver manager measures only 2477 LoC, it heavily relies on
the rest of the TCB to isolate drivers. For example, the PCI-bus driver and IOMMU
driver measure another 2905 LoC and 431 LoC, respectively. In addition, the run-
time checks performed by the TCB usually required new code to look up the isolation
policy and check the driver’s authorization. Furthermore, several new kernel calls
had to be added to control access to privileged resources, such as peripheral devices
and memory. Another important change to the TCB concerns the handling of IPC.
In order to protect against blockage due to untrusted drivers, synchronous IPC has
been replaced by asynchronous and nonblocking IPC. This is evidenced, for exam-
ple, by the new 594-LoC libdriver-asyn library. The recovery support also affected
various parts of the TCB. Most of the driver manager’s logic to start dynamically
servers and drivers could be reused, but new code was needed for defect detection
and execution of recovery scripts. Likewise, the system servers needed little change
to support restarting drivers, but gained new code to retry failed I/O operations. Most
of this error-handling logic could be centralized in the device I/O routines. Finally,
the kernel is not aware of defect detection and recovery.

Most importantly, the fault-tolerance mechanisms required only limited modifi-
cations to the drivers themselves. The majority of the changes concerned removing
drivers from the kernel. This involved mostly replacing direct function calls with
kernel calls, but did not demand structural changes to the way drivers work. The
fault isolation is mostly transparent to the working of the driver: unauthorized ac-
cess attempts will be denied, but the driver is unaware of the underlying mecha-
nisms that constrain it. Several small modifications were required for the run-time
memory-protection mechanisms, however. For example, the use of safe copies and
IOMMU protection generally affected a few lines of code at all sites relating to mem-
ory access. In addition, the changes needed to implement failure resilience were also
limited. In general, drivers are only required to reply to heartbeat and shutdown re-
quests from the driver manager. For most drivers this change comprised only 5 LoC
in the shared driver library to handle the new request types. Device-specific driver
code almost never had to be changed. For a few drivers, however, the code to initial-
ize the hardware had to be modified in order to support reinitialization after a restart.
Overall, the changes required are negligible compared to the amount of driver code
that potentially can be guarded by our fault-tolerant design.

A final point worth mentioning is that porting device drivers from other OSes to
MINIX 3 can be done with relatively little effort. Because MINIX 3 mostly looks and
feels like a normal UNIX OS, the hardest part is understanding how the hardware
works and separating the driver code from the foreign OS. Once that has been done,
it is relatively straightforward to get it to work under MINIX 3, where it can imme-
diately benefit from MINIX 3’s protection mechanisms. As a case in point, the Intel
PRO/1000 gigabit Ethernet driver was ported from DragonFly BSD to MINIX 3 by
a single student in the course of two weeks ﬂLinnenbank, 2009].
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5.3.2 Evolution of Linux 2.6

We have also analyzed the Linux 2.6 code base. This analysis spans a 5-year pe-
riod since its official release with 6-month deltas, and includes 11 versions ranging
from 2.6.0 to 2.6.27.11. The kernel images were obtained from the Linux kernel
archives [Linux Kernel Organization, Inc., M]. Linux 2.6 kernel development is
done by a large, distributed community of about 5000 developers representing over
500 corporations ﬂKroah—Hartman etal., 2009‘]. Still, a small number of develop-
ers and corporations is responsible for the majority of the kernel changes. Looking
at individual contributors, the top 10 developers contributed 11.9% of the changes.
Looking at corporate support, the developers employed by the top 10 companies,
including Red Hat, IBM, and Novell, contributed 43.5% of the changes. The results
of our Linux 2.6 analysis are shown in Figs.[5.20 and[5.21]and discussed below.

The Linux kernel shows a sustained linear growth in LoC of about 5.5% ev-
ery 6 months. In 5 years, the kernel has grown by 65.4% from 3.2 MLoC to over
5.3 MLoC. The /drivers subsystem is by far the largest subsystem and comprises
about half the kernel code base. In 5 years, the /drivers subsystem has grown by
76.4% and now surpasses 2.7 MLoC. The second largest subsystem is /arch and
comprises 1.1 MLoC. Next, the /fs, /net, and /sound subsystems—which can be re-
garded as special kinds of OS extensions—together comprise another 1.2 MLoC.
The core /kernel subsystem is relatively small and comprises 70,756 LoC or 1.3%
of the entire kernel. Within the /drivers subsystem, network drivers are by far the
largest and fastest-growing driver category. In the past 5 years, network drivers have
grown by 77% and now comprise 683,375 LoC. This means that network drivers
alone are responsible for 12.9% of the entire kernel code base. Interestingly, these
findings match the trends found during an earlier study of Linux 1.0 to Linux 2.3
over 6-year lifespan (96 versions) [Godfrey and Tu,‘ZOOO].

Linux 2.6 Entire kernel Drivers subsystem
Version Release date LoC Growth LoC Growth Ratio
2.6.0 18 Dec 2003 3,216,751 0.0% 1,564,699 0.0% 0.486
2.6.7 16 Jun 2004 3,427,140 6.5% 1,713,226 9.5% 0.500
2.6.10 24 Dec 2004 3,594,857 11.8% 1,806,297 15.4% 0.502
2.6.12.3 15 Jul 2005 3,757,899 16.8% 1,903,616 21.7% 0.507
2.6.14.6 08 Jan 2006 3,947,373 22.7% 2,001,213 27.9% 0.507
2.6.17.5 15 Jul 2006 4,203,430 30.7% 2,093,988 33.8% 0.498
2.6.19.2 10 Jan 2007 4,403,895 36.9% 2,197,216 40.4% 0.499
2.6.22.1 10 Jul 2007 4,680,941 45.5% 2,341,407 49.6% 0.500
2.6.23.13 09 Jan 2008 4,729,971 47.0% 2,388,677 52.7% 0.505
2.6.26.0 13 Jul 2008 5,177,093 60.9% 2,639,686 68.7% 0.510
2.6.27.11 14 Jan 2009 5,319,731 65.4% 2,760,476 76.4% 0.519

Figure 5.20: Source code analysis of the Linux 2.6 kernel and the device-driver subsystem for a
5-year period since its official release in October 2005 with 6-month deltas.
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Figure 5.21: Linux 2.6 driver growth in lines of executable code (excluding comments and white
space). Network-device drivers are both the largest and fastest-growing driver category.

These results show that both MINIX 3 and Linux 2.6 have experienced a sub-
stantial growth of the code base due to the addition of new features and functionality.
However, there are several important differences as well. To start with, Linux 2.6 has
a larger and more complex code-base in all respects. Looking at just the kernel, we
found that the Linux 2.6 kernel is three orders of magnitudes larger than the MINIX 3
kernel. While this is partly because Linux 2.6 is more mature than MINIX 3, the real
reason is that Linux 2.6 implements the entire OS in the kernel. This means that all
the code runs in a single protection domain with no fault isolation between the com-
ponents. In contrast, MINIX 3 completely compartmentalizes the OS, implementing
only the most crucial mechanisms at the kernel level and all policies in independent
user processes. While it is hard to quantify this difference in structure, we strongly
believe that it makes the MINIX 3 code base much more manageable.



Chapter 6

Related Work

This chapter surveys related work and compares it to our research. As discussed
in Sec.[1.5] we primarily focus on run-time systems for improving OS dependabil-
ity and distinguish four different approaches. First, in-kernel sandboxing isolates
drivers inside the kernel. Second, virtualization techniques can safely run multiple
services on a single computer platform. Third, formal methods build on advances in
safe languages and verification tools. Fourth, user-level frameworks remove drivers
from the kernel and run them in independent user processes. Approaches aimed at
prevention of bugs, such as static driver analysis, are outside the scope of this work,
since they cannot protect the OS against bugs that are not found.

Below, we assess the working of each class and discuss several representative
concrete systems. In particular, Sec.[6.1 introduces in-kernel sandboxing, Sec.[6.2
covers virtualization techniques, Sec. @presents formal methods, and Sec.[6.4]de-
scribes user-level frameworks. For each class we first provide a high-level discus-
sion of the techniques used and then study a concrete system in more detail. Finally,
Sec.[6.5 briefly compares MINIX 3 to the other approaches.

6.1 In-kernel Sandboxing

In-kernel sandboxing restricts the driver’s execution environment without removing
the driver from the kernel by setting up separate protection domains and intercepting
unsafe calls from the driver to the core kernel. As discussed below, this can be done
using either hardware-enforced protection or software-based isolation. One partic-
ular benefit of in-kernel sandboxing is that it requires only minor modifications to
existing drivers and commodity OSes. Furthermore, the use of wrapping and inter-
position allows catching different kinds of faults than just hardware protection can.
For example, BGI provides dynamic type safety for kernel objects ,
2009]. On the downside, the approach typically requires substantial run-time sup-
port, which adds kernel complexity and increases the burden of maintenance. For
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example, Nooks added 22,266 lines of code (LoC) to the Linux kernel ,
]. In addition, the level of indirection introduced by wrapping and interposition
can result in significant performance overheads. Nevertheless, in-kernel sandboxing
is an important technique for retrofitting dependability in legacy OSes.

6.1.1 Hardware-enforced Protection

A first approach to in-kernel sandboxing is to run drivers in separate hardware-
enforced protection domains. The basic idea is to use the MMU hardware to set up
intra-address-space protection for untrusted extensions [Chase et al., ‘1994l]. Such
protection can be realized by loading each extension in a separate, less-privileged
memory segment that falls in the kernel address space. In this way, the MMU en-
sures that extensions cannot directly access unauthorized memory regions or corrupt
kernel memory other than their own. Since extensions and the core kernel run in dif-
ferent protection domains, direct cross-domain communication is no longer possible.
Instead, control and data transfer between protection domains is done using wrap-
pers or capabilities that interpose all communication using a variant of a lightweight
remote procedure call (LRPC) ﬂBershad et al.‘, ‘1990]. If the access is authorized,
the stub routine changes the protection domain, and executes the requested function
using the caller’s thread.

Intra-address-space protection has been used by a range of single-address-space
operating system (SASOS) implementations, including Opal ﬂChase etal., 1994l],
Nemesis [Leslie et al., 199&], and Mungi ﬂHeiser et al., 1998‘]. A SASOS runs all
OS services in a globally shared virtual address space, which reduces the com-
plexity of pointer management and facilitates data sharing. Although virtual ad-
dresses are context independent, the access rights depend on the protection domain
in which a thread executes, limiting its access to a specific set of pages at a spe-
cific instant. Capabilities are commonly used to enforce the use of well-defined
interfaces and protect system objects ﬂVochteloo et al.‘. ‘ 1993]. For example, Mungi
isolates drivers using capabilities that enforce fine-grained protection for devices and
OS services ﬂLeslie et al., 2004].

In-kernel sandboxing has also been used to retrofit dependability in legacy OSes.
For example, Palladium [Chiueh et al., 1999], Kernel Plugins [Ganev et al., 2004],
Nooks ﬂSwift et al., 2005], and CuriOS [David et al., 2008] use this technique to
isolate untrusted extensions inside the kernel. By changing the module loader, ex-
tensions can be loaded in their own protection domain. In addition, all kernel API
calls are dynamically linked with wrappers that transparently interpose all outside
communication. In this way, access to privileged kernel functionality can be me-
diated and integrity constraints enforced. For example, Nooks created extensive
wrappers for each class of device drivers in order to track the use of kernel resources
and perform consistency checks [Swift et al., m].

The trust in this approach lies with the correctness of the wrapper-code or ca-
pabilities that are responsible for cross-domain transfers. It is crucial that mem-
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ory protection is set up before control is transferred to the extension. In addition,
the consistency checks should be implemented correctly. If in-kernel extensions
can use privileged CPU instructions, complete isolation is sacrificed. For example,
Mungi runs extensions with user-mode CPU privileges ﬂLeslie etal., 2004J], whereas
Nooks’ extensions still have kernel-mode CPU privileges , @]. There-
fore, a buggy or malicious driver can still change the page tables, perform unautho-
rized 1/0, disable interrupts, or halt the CPU. This strategy represents a trade-off
between hard isolation guarantees and practicality of the approach.

Case Study: Nooks

Nooks is a reliability subsystem for the Linux kernel that aims to address a large
fraction of driver problems with only minor changes to legacy code [Swift et al.,
w]. The design of Nooks is shown in Fig.[6.1. Kernel extensions are isolated
using both hardware-enforced protection domains and software-based interposition.
Upon loading the Linux module loader gives the extension read-only access to ker-
nel memory other than its own and binds kernel calls to wrappers that interpose on
all communication. Cross-domain communication is done using an extension pro-
cedure call (XPC) that changes the page table, copies data structures to and from the
extension, if need be, and calls the requested function. In this way, the Nooks isola-
tion manager can track the use of kernel resources and perform consistency checks.
If the extension causes an MMU hardware exception or invokes a kernel service
improperly, Nooks releases all resources used by the extension, unloads the exten-
sion, and signals a user-level recovery agent. The recovery agent can run a script to
restart and reconfigure the driver after a failure. However, because extensions still
run with kernel-mode CPU privileges, nothing can prevent them from reloading the
page table and corrupting the rest of the kernel. This is unlikely to happen acciden-
tally though. In addition, Nooks does not provide IOMMU support to protect against
invalid direct memory access (DMA).

Application| _, _ . [ Recovery
program agent

P I I Kernel memory
1 Nooks isolation manage : <— s read-only to
E . :1;_1_ o, isolated drivers
E I |,— ______ " |,— ______ !
pra 1, Wrapped > Kernel ' Wrapper checks
) L _d_rl)/?r_(s_)_,:e\ _service <—all cross—-domain

communication

Figure 6.1: Hardware-enforced protection in Nooks. Nooks sets up protection domains for kernel
memory and wraps drivers in a layer of protective software. If a failure is detected, the isolation
manager calls a user-level recovery agent that can restart the driver.
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In a successor project, Nooks’ failure detection mechanisms were augmented
with shadow drivers to make recovery more transparent to applications ,
M]. A shadow driver is not a replica of the real driver, but implements only the
services needed for recovery. In passive mode, a shadow driver monitors all com-
munication between the driver and the kernel, and logs configuration messages that
change the driver’s state. When a driver failure is reported by Nooks, the shadow
driver impersonates the failed driver and governs the recovery procedure. It accepts
requests until a new driver has been started and, depending on the state collected,
immediately replies, drops the request, or queues it for later processing. In addition,
the shadow driver restarts the failed driver, restores its state by replaying logged
configuration messages, and resubmits pendings requests from the queue. This ap-
proach thus supports recovery of stateful drivers. However, shadow drivers cannot
guarantee exactly-once behavior for driver requests and must rely on higher-level
protocols to maintain data integrity, just like is done in MINIX 3.

The Nooks code base consist of 22,266 LoC, including 14,396 LoC of wrapper
code, all of which runs in the kernel domain and thus must be trusted. About two
thirds of the 248 wrappers were used to isolate drivers; the rest were meant for a file
system (VFAT) and an in-kernel web server (kHTTPd). Out of eight drivers tested,
seven drivers required no code changes and only 13 lines had to be changed in the
eighth driver. Support for shadow drivers added about 3300 LoC to Nooks and about
2150 LoC for other support infrastructure. Individual shadow drivers were much
smaller, for example, 198 LoC for the class of network-device drivers. A software-
implemented fault-injection (SWIFI) test injecting 2000 faults showed that Nooks
could prevent 99% of 365 Linux crashes, but only half of the nonfatal extension fail-
ures, rendering the service unavailable to applications in 210 cases. Another SWIFI
test with 2400 fault injections showed that shadow drivers could automatically re-
cover 65% of 390 applications failures. The effectiveness was limited by Nooks’
failure detection mechanism, which did not detect, for example, I/O requests that
were never completed and errors in the driver’s device interaction. Finally, perfor-
mance measurements showed that the overhead incurred by Nooks ranged from no
overhead to 56% in the worst case. Shadow drivers imposed a negligible additional
overhead of 1% on average for nine applications tested.

6.1.2 Software-based Isolation

A completely different technique for in-kernel sandboxing is software-based fault
isolation (SFT) [Wahbe et al., 1993]. SFI modifies the object code of drivers in such
a way that it cannot execute unsafe instructions. In particular, the compiler or bi-
nary rewriter inserts run-time software guards before every instruction that jumps or
writes to an address that cannot be statically verified to fall within the driver’s (logi-
cal) protection domain. The software guard verifies that the driver has authorization
for the computed address before writing to it. Optionally, load instructions can also
be guarded in order to prevent malicious code from reading unauthorized memory.
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In addition, cross-domain calls are mediated by arbitration code in order to verify
that the call performed by the other domain is safe. This provides protection against
memory corruption by buggy code.

Traditionally, SFI was used to enforce memory protection, but several advances
made it possible to specify richer protection policies. For example, control flow
integrity (CF]) instruments binaries in order to ensure that the code path executed
adheres to a static policy that comprises a control-flow graph [Abadi et al., 2005‘].
CFlI is enforced by inserting known labels at each branch destination and preceding
branches with run-time guards that verify that the destination contains the expected
label. These checks ensure that calls enter functions only at the beginning and returns
transfer control to a point after a valid call site, and thereby prevent code-injection
and return-to-libc attacks. Next, XFI builds on CFI to provide a generalized form
of SFI that can enforce memory access constraints, restrict the use of interfaces,
prevent execution of privileged instructions, and provide system state integrity guar-
antees [Erlingsson et al., ]. Finally, BGI extends these checks with dynamic
type safety for kernel objects ﬂCastro et al.,‘2009].

The use of software rather than hardware protection represents a trade-off with
respect to execution time overhead. Although software protection provides faster
cross-domain communication than hardware protection, the binary instrumentation
incurs an overhead proportional to the code size. Because SFI requires every un-
safe instruction to be preceded by a run-time guard, the execution-time overhead
of memory-intensive applications can be nearly 200% ﬂSeltzer etal., 199@]. XFI re-
duces this performance penalty by checking memory ranges with a fast path for com-
mon accesses and hoisting software guards out of frequently executed code paths
such as loops. Benchmarks show that XFI incurs an overhead ranging from 1% to
94% ﬂErlingsson etal., 200@]. Recently, Native Client (NaCl) implemented SFI-like
protection for browser plug-ins using hardware segments, such that load and store
instructions do not have to be preceded by a software guard , @]. Nor-
mal hardware page protection is still required between processes. This model allows
for less fine-grained policies, but the performance overhead was limited to 12% in
the worst case and less than 5% on average.

The protection provided by SFI depends either on the correctness of the com-
piler or binary patching tool or on an independent verifier. The absence of hardware
protection domains, means that all trust lies with the software guards. The sim-
plest approach is to assume that the tools used generate sufficient software guards
for all unsafe instructions, just like ordinary compilers are trusted to work cor-
rectly Thomosoa M]. Alternatively, an independent verification tool can be
used to check all code paths for unprotected unsafe accesses. Because of all the
low-level complexity involved certain corner cases may be missed though. For ex-
ample, Native Client’s validator logic was shown to contain flaws that can lead to
memory corruption in the run-time system , @]. In addition, the support
infrastructure, such as the interposition libraries that enforce integrity constraints,
introduces additional kernel-level complexity that must be trusted.
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Case Study: BGI

BGI provides fast byte-granular protection for existing Windows drivers with low
overhead and no modifications to the source code ﬂCastro et al., 2009‘]. The working
of BGl is depicted in Fig.[6.2. A BGI compiler takes an unmodified Windows driver
and replaces all direct kernel API calls with calls to a trusted interposition library.
In addition, unsafe accesses, such as direct memory writes and indirect jumps, are
instrumented with software guards. In-line assembly is disallowed by the compiler
to prevent the extension from executing privileged CPU instructions. The software
guards and wrapper functions enforce a fine-grained access control model through
run-time checking, granting, and revoking of memory write and ownership rights,
kernel call rights, and type rights. In particular, for each byte of virtual memory BGI
maintains a list of access rights per untrusted domain. Memory write and ownership
rights prevent corruption of kernel memory, kernel call rights are used to enforce
control flow integrity, and type rights are used to enforce dynamic type safety for
kernel objects. The latter dynamically changes the set of operations allowed on ker-
nel objects in order to catch (temporal) errors when using complex kernel interfaces.
Memory reads by the driver and direct memory access (DMA) from the device layer
are unprotected in order to limit BGI’s overhead.

BGI also provides limited recovery support. If the interposition library detects an
extension failure, BGI unloads all extensions in the domain, releases all the resources
held, and restarts the extensions. Because BGI relies on the Windows plug-and-play
(PnP) manager, only PnP drivers can currently be recovered. Moreover, recovery
transparent to applications is not supported. When an extension call is attempted
during the recovery procedure, the interposition library returns an error code. Re-

Unmodified
driver code

Wrapper code for KelnitializeDpc API call:
_BGI_KeInitializeDpc (PRKDPC d,
PKDEFERRED_ROUTINE r, PVOID a) {
CheckRight (d, sizeof (KPDC), write);
CheckFunc (r, icallle);
KelInitializeDpc(d, r, a);
SetType (d, sizeof (KDPC), dpc);

Replace API calls and
<«— add software guards
for unsafe accesses

Instrumented
driver

— Link trusted wrappers
(Interposmon HLinker -«— that check, grant, and

library revoke access rights
BGI
driver

Figure 6.2: Software-based fault isolation in BGI. A BGI compiler replaces direct kernel API calls
with wrapper calls and adds software guards before direct memory accesses and indirect calls.
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quests from the PnP manager to remove the device are automatically acknowledged,
however. The last unload call causes all resources associated with the domain to be
released. There is no need for a separate object tracker as in Nooks because BGI
already keeps track of all ownership rights for each domain.

BGI was applied to 16 Windows drivers that comprise over 400,000 LoC and use
350 different API functions from WDM, IFS, NDIS, and KMDF [Microsoft Corp.,
M]. BGI required wrappers for 262 kernel API calls and 88 extension callbacks,
some of which could be automatically generated from source annotations. The size
of the resulting interposition library is 16,700 LoC. In order to test BGI’s effective-
ness two drivers were subjected to fault-injection experiments. Buggy BGI drivers
were produced by injecting 5 random bugs into the driver source before calling the
BGI compiler. In total, 675 buggy driver versions were tested by running them in an
isolated BGI domain. BGI was able to prevent 47%—60% of all Windows hangs and
98%—100% of all Windows crashes. Driver hangs were caused by infinite loops and
resource leaks, which are not checked for by the BGI wrappers. Because BGI can
only recover PnP drivers, the recovery could only be tested with one driver. During
50 test runs the recovery was successful in 19 out of 21 failures detected by BGI.
Finally, performance measurements showed that the overhead incurred by BGI is
limited: for TCP and UDP network benchmarks the average CPU overhead was 8%
with an average throughput degradation of 2%.

6.2 Virtualization Techniques

Virtualization is used to run multiple services on a single system [Smith and Nair,

‘2005; Rosenblum and Garfinkel, 2005‘]. The basic idea is to create a virtual execu-
tion environment, known as a virtual machine (VM), by replicating the computer
hardware, or a variant thereof, in software. Below we discuss both flavors: full
virtualization and paravirtualization. The VM runs under the control of a small
privileged kernel, commonly referred to as a hypervisor or virtual machine moni-
tor (VMM). Hypervisors share architectural commonalities with microkernels, but
export richer primitives and more closely resemble the hardware [Hand et al., M;
‘Heiser etal., ‘2006]. Virtualization provides strong guarantees by running untrusted
code in user-mode in a private address space monitored by the VMM. Unmodified
driver reuse is possible by running the driver in its original OS in a VM. How-
ever, running multiple OSes in different VMs complicates resource and configura-
tion management [Ganev et al., 2004, LeVasseur, pers. comm., 2006].

6.2.1 Full Virtualization

Full virtualization provides a faithful software replica of the underlying hardware
and allows the guest OS to execute unmodified. Although the guest OS runsina VM,
it appears to the OS as though it runs on its own dedicated hardware. This technique
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was originally developed by IBM in the 1960s to provide concurrent access to main-
frame computers, with VM/370 as a notable example [Seawright and MacKinnon,
‘1979; Creasy, 1981‘]. Today, virtualization is widely used for consolidating servers,
improving manageability, sandboxing untrusted code, and running different OSes on
a single computer. Two common VM designs include running the virtual machine
monitor (VMM) directly on the hardware, as in VMware ESX ﬂWaldSDurger ‘2002]
and Hyper-V ﬂKelbley et al.,2009], or using a hosted architecture where the VMM
co-exists with a preinstalled OS, as in VMware Workstation ﬂSugerman et al.‘, 200117,
QEMU [Bellard, 2005], KVM [Kivity et al., 2007], and VirtualBox [Méller, 2008].

Unfortunately, full virtualization can incur a significant performance and re-
source penalty. On the one hand, the VMM must provide each VM with virtual priv-
ileged CPU instructions, memory spaces, and device I/0. This introduces overhead
since the associated data structures must be updated for each access and more state
has to be stored and loaded on each context switch. On the other hand, not all in-
structions of the x86 (IA-32) architecture are classically virtualizable, meaning that
it is not possible to run the VM on the real hardware and apply a trap-and-emulate
approach for privileged instructions ﬂPopek and Goldberg, ﬁ&ﬁ]. This problem can
be addressed either by running the guest OS in an emulator that dynamically trans-
lates nonvirtualizable instructions or by relying on x86-architecture virtualization
extensions provided by AMD-V and Intel VT-x, but both strategies come at a price.
For example, a web server benchmark showed a slowdown of 33%—62% compared
to native execution [Adams and Agesed, \M]. If backward compatibility is not an
issue, modifying the guest OS to let it work together with the VMM is an efficient
alternative, as discussed below.

Although virtualization provides strong inter-VM isolation guarantees, the pro-
tection is too coarse-grained to deal with intra-VM failures due to buggy drivers.
If the guest OS has a monolithic structure, faults can still propagate and crash the
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Figure 6.3: Full virtualization cannot isolate individual drivers. Although each virtual machine runs
in isolation, a single driver fault in a guest OS can still take down an entire virtual machine.
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entire VM, as illustrated in Fig.[6.3. Because a VM failure does not require a full
machine reboot, a faster OS restart may result, but all running application programs
and unsaved user data on that VM are still lost. If the virtualization platform sup-
ports snapshots, the state and data of the VM can be saved periodically and restored
at a later point ﬂTa—Shma et al.‘.‘ZOOS]. Such checkpointing speeds up recovery after
a VM failure, since it is often possible to revert to a point in time just before the
failure occurred. However, the effectiveness of recovery is inherently limited be-
cause all information between the last checkpoint and the failure is lost. Moreover,
checkpoints may still contain the corruption that eventually leads to failure.

What is needed instead is running the core OS and untrusted extensions in dif-
ferent protection domains. Because full virtualization does not support such fine-
grained isolation, we do not further discuss this approach.

6.2.2 Paravirtualization

Paravirtualization exposes an interface that is similar to the underlying hardware, but
includes strategic modifications in order to increase performance or provide a richer
programming interface. For example, Denali uses paravirtualization to prevent wast-
ing CPU resources and provide a simplified view of /O devices [Whitaker et al.,
]. The guest OS can request VMM services via a hypercall that loads the pa-
rameters in registers and traps to the VMM. By adapting the guest OS to the un-
derlying VMM all the code can be executed without run-time translation and near-
native performance can be achieved. The only overhead is the use of hypercalls
instead of direct hardware access. For example, a web server benchmark on a para-
virtualized Linux OS running on the Xen VMM performed within 1% of native
Linux ﬂBarham et al., 2003‘].

An important extension that can be provided by paravirtualization is controlled
VM-to-VM communication ﬂHohmuth et al.,2004]. This overcomes limitations of
full virtualization because driver faults can be isolated from the core OS by running
each untrusted driver in its original OS in a dedicated VM. External clients can in-
terface with the driver via a translation module that runs in the driver OS and maps
requests onto normal driver calls. Although the lowest parts of the driver OS need
to be paravirtualized, device drivers can still use the normal kernel APIs and often
do not have to be modified. In addition to driver isolation, simple recovery support
may be provided by restarting the VM of a failed driver. This approach was recently
demonstrated by various systems. For example, L*Linux provides driver reuse via
a paravirtualized Linux OS running on top of the L4 microkernel [LeVasseur et al.,
2004]. Next, reuse of Linux drivers via a unified device API is done with the Xen
VMM [Fraser et al., ‘2004l]. Finally, VEXE’DD sets up virtual execution environ-
ments providing binary compatibility for Windows drivers using a modified version
of Microsoft Virtual PC ﬂErlingsson et al., 2005‘].

There are several downsides to paravirtualization as well. To start with, the
source code has to be available in order to paravirtualize the guest OS, which makes
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the approach impractical for proprietary, closed-source OSes. Furthermore, the ap-
proach is relatively complex and requires an intimate understanding of the guest OS,
which can make all kinds of assumptions about its execution environment. A re-
lated issue is the programming effort needed, although techniques to automate part
of the work exist ﬂLeVasseur et al.‘, ‘2008]. Next, the approach does not work for
drivers that cannot be replaced dynamically, including the interrupt controller, real-
time clock, keyboard, and mouse in Linux. In these cases, the VMM must provide
full hardware emulation. Finally, in order to achieve the same fine-grained compart-
mentalization as in multiserver OSes like MINIX 3, each server and driver should
run in a dedicated VM. Such a design would have to face the same challenges as a
multiserver OS, but the problems of resource management and configuration man-
agement become more pronounced when using VMs and legacy OSes rather than
processes [LeVasseur, pers. comm., 2006].

The trust in this approach lies with the implementation of the hypervisor or
VMM that sets up the hardware-enforced protection domains, translates or emu-
lates privileged instructions, and manages the resources of each VM. Virtualization
platforms have traditionally demonstrated to be capable of providing proper inter-
VM protection. However, paravirtualization-based driver isolation gives up strict
VM separation by allowing VM-to-VM communication and is complicated because
VMMs typically do not support IPC, data copying, and the like ,
]. However, the case study below demonstrates that safe inter-VM communica-
tion can realized by building on microkernel technologies.

Case Study: L*Linux

L*Linux is a paravirtualized version of Linux running on top of the L4 micro-
kernel [Hirtig et al., ‘1997]. In order to keep the porting effort low only minimal
changes were made to the architecture-dependent parts. Physical memory is mapped
one-to-one into the LLinux server, which acts as a pager for applications running
on Linux. All communication to L*Linux induced by system calls, page faults, and
interrupts is done using the native L4 IPC primitives. Application-to-L*Linux sys-
tem calls are mapped onto IPC using a modified version of the standard C library
or a trampoline if binary compatibility is needed. This setup allows (re)using Linux
functionality next to real-time components, as in DROPS [Hartig et al., H§9§], or
security extensions, as in PERSEUS [Pfitzmann and Stublé, \M].

L*Linux supports unmodified reuse of device drivers ﬂLeVasseur etal., 2004l].
Drivers are isolated by running them in a VM with their original OS to preserve
semantics and prevent incompatibilities. A client OS communicates with reused
drivers via a kernel module that implements a virtual device abstraction for each
device class. Client-server communication with the device-driver OS (DD/OS) is
implemented using L4 IPC and memory sharing. A translation module in the DD/OS
catches the IPC and forwards the request to the actual driver. For example, client-
side disk operations are converted into server-side block request to the Linux block
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Figure 6.4: Paravirtualization supports safe and unmodified driver reuse by running them in their
original, paravirtualized OS inside a VM. The client OS and device-driver OS (DD/OS) communi-
cate via VM-to-VM communication primitives provided by the L4 microkernel.

User—level L4 task

layer. A pass-through mechanism controlled by the VMM—which is implemented
as a separate user-level L4 task—grants drivers direct access to only the device(s)
they control. Driver reuse can be recursively applied to hardware that is inherently
shared and cannot be partitioned. For example, stub code in each DD/OS forwards
PClI-related requests to a PCI DD/OS that centrally controls PCI-bus access. This
setup is illustrated in Fig.[6.4] The granularity of isolation depends on the number of
drivers colocated per DD/OS. Failed drivers potentially can be recovered via a VM
reboot, but this was not implemented.

The original paravirtualization effort required about 6500 LoC to adapt Linux’
architecture-dependent code. The additional effort required for driver reuse was
about the same, with 1024 LoC for common functionality used by both the client
and server, 2184 LoC for virtual device drivers added to the client, and 3304 LoC
for translation modules added to the server. Application-level benchmarks showed
that L*Linux performs within 5%-10% of vanilla Linux—up to 7 times faster than
MkLinux running on top of Mach ﬂBarbou des Places et al.‘, ‘1996]. Performance
measurements showed that the cost of driver reuse is also reasonable. For example,
running 3 DD/OS instances has a 6-MB memory footprint and consumes just 0.36%
of the CPU in a steady state. Furthermore, an encapsulated network driver displayed
a throughput degradation of just 3%—8%, although the CPU utilization was relatively
large at 1.6x—2.2x higher than normal. We are not aware of fault-injection testing or
another form of empirical dependability assessment in the context of L*Linux.

6.3 Formal Methods

Formal methods isolate extensions by exploiting advances in programming lan-
guages and verification tools. Many of the ideas have been around for decades,
but were recently revisited to address dependability problems. Below we focus on
language-based protection and driver synthesis. The use of safe, high-level lan-
guages prevents many driver problems caused by the inherent complexity of low-
level languages, such as C and C++. A problem with this approach is that it often
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breaks with current programming models and throws away all legacy. Virtualization
presents a possible path to adoption, however, by running a trusted OS for important
applications next to an untrusted OS for legacy support. An alternative strategy is
to support the programmer by automatically generating safe driver code. Arriving
at a correct specification that can be used to synthesize the driver is a hard problem
though, but automatic reverse engineering may be of help [Chipounov and Candea,
’ﬁlﬁ. In some cases, program analysis and verification tools can be used to find
driver bugs and prove code correct [e.g. ‘Ball et al.,2006; Zamfir and Candei 201d].
Such tools are orthogonal to the work presented here, however, since they cannot
protect the OS against driver bugs that are not found. This thesis primarily focuses
on systems that ensure run-time safety. Nevertheless, even though it may not yet be
possible to deploy formal methods on a large scale, it is important to assess novel
dependability techniques for next-generation OSes.

6.3.1 Language-based Protection

Currently, OSes are usually written in low-level languages like C or C++, which
make heavy use of memory pointers and low-level bit manipulations that are hard
to verify and a rich source of bugs. Therefore, various projects investigated the
use of safe languages that eliminate memory corruption due to invalid pointers and
buffer overruns through a combination of static, compile-time and dynamic, run-
time checks. In particular, type safety makes it impossible to construct a pointer to
an arbitrary memory location or to perform illegal operations. In addition, mem-
ory safety ensures the validity of references by preventing null-pointer references
and references to deallocated memory. However, the run-time checks and garbage
collection incur an overhead that is approximately proportional to the amount of
code executed. On the other hand, protection domain crossings are cheaper than
with hardware-based protection. We have seen a similar trade-off for software-based
fault isolation above. Various systems have experimented with safe languages, in-
cluding Modula-3 in SPIN ﬂBershad et al.‘ ‘1995], Java in JavaOS ﬂMitChell, 1996],
Cyclone in OKE ﬂBos and Samwel, ZOOZJ], Deputy in SafeDrive ﬂZhou et al., 2006],
and Sing# in Singularity ﬂHunt and Larus, ‘2007‘].

In order to guarantee safety all code that cannot be statically verified must con-
tain sufficient checks inserted by the compiler and run under the control of the run-
time system. Unsafe code that does not meet this requirement is considered trusted.
This includes, for example, the run-time system itself as well as low-level C and as-
sembly code for bootstrapping the system and performing I/O. This safety require-
ment precludes the use of existing device drivers and application programs writting
in an unsafe language. In addition, porting of legacy code is complicated because
all unsafe code must be rewritten in a safe language. This is an important draw-
back, but a possible solution is to combine language-based protection with hardware
protection. For example, Singularity explored augmenting pure software isolation
with hardware protection, although this model is primarily used as a defense against
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potential failures in software isolation mechanisms [Aiken et al.H2006]. This combi-
nation of language-based protection and hardware protection resembles the structure
of a microkernel-based multiserver system, such as MINIX 3.

A related approach that often relies on the use of (functional) languages is formal
verification. While formal verification potentially gives high assurance, the high
computational complexity associated with formal verification limits its application
to individual subsystems. Although, some projects explicitly aim to construct a
formally verified general-purpose OS [Shapiro et al., 2004], to date, checking an
entire OS for correctness has been infeasible. The current state-of-the-art proved the
functional correctness of the seL4 microkernel by deriving its implementation from
a formally checked prototype written in Haskell [Klein et al., 2009]. With a formal
model of the kernel in place, it becomes possible to reason about the trustworthiness
of (modular) systems built on top of it [Heiser, 2005]. We are not aware of device
drivers for which a formal correctness proof has been established, however.

Language-based protection relies on the correctness of the compiler and run-
time system. For example, the compiler must be trusted to generate safe code and
structures for run-time checking and garbage collection. A buggy compiler that gen-
erates unsafe low-level code may corrupt the OS even if the high-level implementa-
tion is correct. For example, dependability testing revealed a bug in the Modula-3
compiler used by SPIN ﬂSmall and Seltzeﬂ, 1996] and the Bartrok compiler used by
Singularity is ‘likely to contain bugs’ ﬂHunt and Larus, 2007]. Therefore, it is im-
portant to perform verification at a level close to the native code, for example, using
typed assembly language “Glew and Morrisett ‘1999‘]. Bugs in the run-time sys-
tem, including the memory allocator and garbage collector, also may break the iso-
lation, but practical safety and correctness proofs were recently demonstrated [e.g.
‘Hawblitzel and PetranH,‘2009‘]. Finally, hardware faults corrupting a pointer value or
computation may also break software isolation [Govindavajhala and Appel ‘2003‘].
Although this potentially poses a threat with hardware-based isolation as well, the
problem is less likely to occur since only a few components run with a privileged
CPU mode and less code needs to be trusted at run time.

Case Study: Singularity

The Singularity project builds on advances in programming languages, run-time sys-
tems, and program analysis tools to explore new strategies toward dependable sys-
tems ﬂHunt and Larus, 2007‘]. The design of Singularity is centered around three
architectural principles. First, all code executes in the context of a software-isolated
process (SIP), which is a closed object space consisting of a set of memory pages
and one or more threads of execution [Hunt et al., 2007]. Each SIP has its own
run-time system and garbage collector. Since SIPs rely on the use of static veri-
fication and run-time checks, multiple SIPs can safely run inside a single address
space. Second, although SIPs cannot directly share data, they can communicate by
passing messages over channels ﬂFéihndrich et al., 2006]. The Sing# language in-
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Figure 6.5: Combined hardware and software isolation in Singularity. Software isolated processes
(SIPs) running in the kernel domain are either trusted or verified. User domains can contain code
with various levels of trust. Channels copy data between protection domains.

corporates support for channel contracts that describe valid messages and message
sequences leading to other states in the state machine. Contracts are amenable to
static verification, which prevents execution of channel operations in a wrong pro-
tocol state. Exchange of large data structures is done by passing a reference and
transferring exclusive ownership via an exchange heap. Third, all programs are as-
sociated with a manifest that is consulted at install time to verify that all resources
needed by a driver are present and that no configuration conflicts occur [Spear et al.,
]. Driver manifests are generated by the compiler on the basis of programmer
declarations. Like the MINIX 3 isolation policies, these declarations include the IPC
and device-1/0 resources needed by the driver.

Although Singularity primarily relies on software isolation, the use of hardware-
protected domains has also been explored ﬂAlken et al‘ ‘200&] Each domain has a
private MMU-protected address space and, optionally, a lower CPU privilege level.
A domain can contain one or more SIPs and has its own exchange heap. Inter-
nal communication is still done using reference passing, but data copying is used for
external communication between domains. Singularity can selectively combine soft-
ware and hardware isolation depending on the level of trust needed. Code running
in the kernel domain must be either trusted or verified. This is illustrated in Fig.
If the kernel, system services, and applications are all run in separate hardware pro-
tection domains, the configuration mimics a microkernel-based multiserver system
like MINIX 3. One of the motivating factors is to defend against failures in software
isolation mechanisms. As an aside, regardless of the use of software isolation or
hardware isolation, [OMMU hardware support is needed in order to protect against
memory corruption by incorrectly programmed devices.

The Singularity kernel is approximately 165,000 LoC. While 90% of the kernel
consists of safe Sing# code, a significant portion of about 16,500 LoC is unsafe code,
such as C++ and assembly language. This code comprises performance-critical
functionality and low-level code, including the garbage collector, memory manager,
I/O subsystem, kernel debugger, and initialization code. A comparison of software
isolation and hardware isolation showed that the latter incurs a performance cost
of up to 25%—33%. However, the comparison seems unfavorable because context
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switches forced unnecessary translation-lookaside-buffer (TLB) flushes, each IPC
call required two message copies, and software-isolation overhead was still present.
A meaningful comparison is only possible if known optimizations to reduce the
costs of hardware protection are applied. Finally, we are not aware of an empirical
dependability assessment of Singularity.

6.3.2 Driver Synthesis

Another method to improve dependability is synthesizing drivers based on formal
specifications of the device and OS interface. One approach is to support pro-
grammers with domain-specific languages that provide high-level abstractions for
expressing error-prone low-level driver code, such as register access and bit manip-
ulation. For example, several projects have attempted to formalize device interac-
tions using an interface definition language (IDL), including Devil [Mérillon et al.,
], NDL [Conway and Edwards, 2004], and HAIL [Sun et al., @]. Because
the IDL captures the layout of device registers and allows specifying access con-
straints, consistent use of interfaces can be enforced and safe code for device access
can be generated automatically. Likewise, OS protocols have been captured using a
state-machine-based language in Dingo [Ryzhyk et al., ‘20094]. The protocol speci-
fication can be mapped onto a driver implementation and used at run time to check
for protocol violations. However, while domain-specific languages help improving
driver quality by supporting programmers, they address only part of the problem and
cannot provide isolation guarantees for untrusted drivers.

Complete driver synthesis further reduces the impact of human error on driver
reliability. If drivers are automatically generated from formal device specifications
provided by the hardware manufacturer, programming mistakes can no longer oc-
cur and driver correctness can be guaranteed by construction. In addition, because
driver development normally is complex and time-consuming, driver synthesis can
potentially cut down on development costs. Termite demonstrated a concrete tool
chain to perform driver synthesis based on formal specifications of the OS and de-
vice ﬂszhvk etal., 2009b]. However, a key challenge for driver synthesis is the
correct definition of the formal specifications used the generate the code. Although
OS vendors and hardware manufacturers are in a good position to provide an ac-
curate and complete model of operation, current practices still require substantial
manual effort from the driver developer, which makes wide-scale adoption of driver
synthesis unlikely in the short term. However, since synthesized drivers can coexist
with normal drivers, they can be adopted incrementally. Finally, since synthesized
drivers can safely run inside the kernel without run-time checks, their performance
is on par with manually developed drivers.

The working and correctness driver synthesis depends on two aspects. First,
the formal specifications used to generate the code must be correct. Because OS
specifications are shared by many drivers, they will be extensively tested over time.
Interface changes or bug fixes need only be reflected in the OS specification in order
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to regenerate all drivers for that OS. The correctness of device specifications can po-
tentially be established by checking correspondence with the actual device behavior,
as defined in its register-transfer-level description ﬂRyzhyk et al., 2()09&]. Second,
the tool chain used to synthesize drivers must be trusted. For example, the code
generator must correctly transform the driver’s state machine into runnable C code.

Case Study: Termite Termite provides automatic synthesis of drivers based on for-
mal specifications of device, device-class, and OS interfaces ﬂRVZth et al.‘, ‘2009b‘].
Each of the specifications deals with a separate concern. First, the device specifi-
cation contains hardware registers and interrupt lines and describes how the device
reacts to software commands. Second, the device-class specification encompasses
events that characterize a class of similar devices, such as Ethernet controllers.
Events for the class of Ethernet controllers include, for example, packet transmis-
sion and link status change. In practice, many I/O devices are not 100% compliant,
which means that extended versions of the device-class specification must be created
to support features that are unique to a device. Third, the OS specification defines a
state machine with the requests that must be handled by the driver, the ordering in
which these requests can occur, and how the driver should respond. By separating
the OS specification, a single device specification can be used to synthesize drivers
for any supported OS. The device specification and OS specification sometimes refer
to functionality in the device-class specification. This is illustrated in Fig.[6.6.

The goal of Termite driver synthesis is to generate driver code that complies
with all interface specifications. The actual driver-synthesis procedure consists of
three phases. Phase one aggregates all specifications into a single, aggregate state
machine that contains all possible states and transitions. The state machine adheres
to the specified ordering of operations, but certain execution traces may still con-
tain deadlocks or infinite loops. Therefore, phase two computes a driver strategy
that reaches a target state in a finite number of steps. This results in a driver state
machine that guarantees forward progress. Finally, in phase three, the driver state
machine is used to generate the actual C code. The resulting driver implementa-
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Figure 6.6: Formal method to synthesize drivers in Termite. Device, device-class, and OS specifi-
cations are aggregated, a driver strategy machine is computed, and driver code is generated.

Aggregate specifications,
compute driver strategy,
and generate code

e

Termite Synthesized
engine driver




6.4. USER-LEVEL FRAMEWORKS 117

tion consists of a C structure that describes the driver’s state and entry points that
handle incoming requests. The generated driver assumes a single thread of exe-
cution, whereas many OSes provide a multithreaded execution environment. This
problem is solved by running the driver in a thin wrapper that serializes concurrent
requests [Ryzhyk et al, ‘20094].

Termite was used to synthesize two drivers for Linux, namely a low-bandwidth
SD-host-controller driver and a USB-to-Ethernet driver. The native drivers consisted
of 1174 LoC and 1200 LoC, respectively. Because the corresponding devices were
based on proprietary designs, the device specifications had to be manually created
with help of the data sheets and the original drivers. The resulting device specifi-
cations were 653 LoC and 463 LoC and the OS specifications were 641 LoC and
309 LoC, respectively. Because it is computationally infeasible to include values of
a variable during the driver synthesis, the Termite engine manipulates variables sym-
bolically. However, one of the two drivers was not compatible with this approach,
and required manually written support functionality comprising 110 LoC. The syn-
thesized drivers measured 4667 LoC and 2620 LoC, respectively. Performance mea-
surements showed that both drivers performed virtually identical to native drivers,
even under heavy workloads.

6.4 User-level Frameworks

Finally, user-level frameworks that encapsulate drivers in UNIX processes can be
used to isolate extensions. Two key properties leading to strong isolation are address-
space separation enforced by the (I0O)MMU and user-mode privileges enforced by
the CPU. User-level framework are typically deployed in microkernel and multi-
server environments, but they are also slowly being adopted by commodity OSes.
Below we focus on two variants, namely full process encapsulation and split-driver
architectures. MINIX 3 fits in the former variant. Several projects have shown that
the performance of user-level frameworks can be competitive with only 5%—10%
overhead compared to native execution ﬁHértig et al.‘, {1997; Gefflaut et al., ‘ZOOd;
Leslie et al., ‘20054]. Another advantage of user-level frameworks is that normal
programming practices can be used. Although user-level frameworks are not fully
compatible with existing drivers, drivers may be ported relatively easily and future
hardware requires new drivers in any event. Developers do not need to learn new
languages or adopt new programming styles. In fact, as discussed in Sec.[1.4] the
development cycle is shortened because drivers can be written and tested like ordi-
nary applications. Therefore, user-level frameworks represent a pragmatic approach
to dependability for both current and future OSes.

6.4.1 Process Encapsulation

User-level frameworks that apply full process encapsulation have a long and rich
history in microkernel and multiserver systems, as shown in Fig. At an early
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Figure 6.7: Granularity of process encapsulation over the years: (a) monolithic design, 1970s,
e.g. BSD UNIX; (b) reduced-kernel design, 1980s, e.g. Mach; (c) single-server design, 1990s, e.g.
L*Linux; and (d) multiserver design, 2000s, e.g. SawMill Linux and MINIX 3.

stage, the OS personality was run as a single process on top of a reduced kernel that
still contained drivers, for example, UNIX on the Mach microkernel [Accetta et al.,
‘198&; Golub et al. ‘199d]. More recently, single-server OSes that encapsulate drivers
have been built on top of the L4 microkernel, including L*Linux ﬂHiirti,q et al..‘ 1997]
and Wombat ﬂLeslie et al., 2005b]. However, since drivers still run closely inte-
grated with the OS, these designs cannot improve OS dependability in the face of
driver bugs. A driver crash would still take down the entire OS server and all appli-
cations depending on it. Other designs provide more fine-grained isolation by en-
capsulating individual device drivers in user processes or even compartmentalizin
the entire OS. Examples of such modular systems include, Chorus/MiX Armanj,
1991], QNX [Hildebrand, 1992], Mach-US [Stevenson and Julin, 1995], SawMill
Linux [Gefflaut et al. M] and GNU Hurd [Le Mignot, 2005]. Despite all these
effort to encapsulate drivers, these system do not specifically aim to improve OS de-
pendability in the face of buggy drivers and have not been subjected to fault-injection
tests like MINIX 3.

Recently, process encapsulation of drivers has also been proposed for commodity
OSes like Windows and Linux, but, to date, has not yet been fully adopted. An early
project showed how to construct user-level drivers on Windows using an in-kernel
proxy that routes requests between the application and the driver ﬂH—uni W]. This
design suffers from significant performance degradation due to the level of indi-
rection introduced by the proxy: each driver request must cross the kernel/user-level
boundary at least four times. Nevertheless, Windows Driver Foundation (WDF) uses
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a similar approach for the User-Mode Driver Framework (UMDF) ,
]. UMDF currently provides support for user-level software drivers, but cannot
manage drivers that control hardware devices or that rely on kernel resources. The
Jungo WinDriver framework also supports user-level driver development by mediat-
ing device access with a proprietary kernel module Shmerliné, 2001]. However, the
framework seems to promote running drivers as a kernel plug-in in order to achieve
better performance. Experiments with user-level drivers on Linux are more promis-
ing in this respect. For example, one project provided support infrastructure for
user-level PCI drivers, and showed that the performance of user-level IDE disk and
gigabit Ethernet drivers is comparable to native execution with CPU overheads lim-
ited to just a few percent ﬂChubH, 2004‘; Leslie et al., 2005&]. However, even though
buggy drivers were listed as one of the motivating factors, we are not aware of an
empirical dependability evaluation.

Trust lies with the process manager, which is responsible for providing the pro-
cess execution model, as well as with the driver manager, which is responsible for
installing driver policies. In addition, the hardware must be trusted to function cor-
rectly, but this is not different from any of the other techniques discussed in this
chapter. Fortunately, hardware provides a much higher level of correctness due to
the substantially more formal approach in the development process. Nevertheless,
sometimes even hardware suffers from bugs that threaten dependability, as evidenced
by CPU specification updates and errata [Kaspersky and Chang, 2008].

Case Study: the L4 family

Although MINIX 3 has different goals, our work bears many relations to L4. L4 is a
family of microkernel APIs with implementations available for many architectures,
including x86 (IA-32), MIPS, and ARM. The original L4/x86 kernel was written in
assembly language, but later versions are written in C and C++ to improve porta-
bility. The L4 microkernel is built around three basic concepts: mechanisms to
construct address spaces recursively, threads that execute inside an address space,
and interprocess communication (IPC). The widely used L4Ka::Pistachio kernel is
implemented on the basis of these ideas ﬂL4Ka Projecd, 2003‘]. However, certain
features needed for fine-grained isolation are lacking in L4Ka::Pistachio. For ex-
ample, since all IPC is synchronous and the use of IPC is not protected, a buggy
driver can potentially block another thread or send arbitrary messages throughout
the system, respectively. The newer seL.4 kernel overcomes these limitations by pro-
viding asynchronous IPC facilities and capabilities for fine-grained authorization.
Its implementation comprises about 8700 lines of C code and 600 lines of assem-
bly language. A major milestone was the formal verification of the seL4 kernel’s
functional correctness [Klein et al., M].

While various L4-based user-level frameworks exist, their potential for building
a highly robust version of UNIX that can automatically recover from driver failures
was not yet fully explored. Previous designs have often focused on performance and
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security rather than dependability. For example, DROPS provides real-time support
for multimedia applications [Hartig et al., ‘1998‘] and Nizza securely wraps untrusted
extensions to reduce the size of the trusted computing base (TCB) [Singaravelu et al.,
M]. Although security and dependability are overlapping domains, there are im-
portant differences as well. A secure design may incorporate untrusted drivers by
encrypting all data before passing it to the driver, but is not necessarily concerned
with driver availability. This idea has been put as follows: “I don’t care if it works,
as long as it is secure [Gasser, m] 7 In contrast, a dependable design must be able
to tolerate driver faults and repair failures on the fly. In this respect, the work closest
to ours are two L4-based driver frameworks that show how untrusted drivers can be
encapsulated ﬂHéirtig et al., 2003; Elphinstone and Gétﬂ, 2004]. However, the fault
isolation was not augmented with failure resilience, and the dependability evaluation
was limited to a qualitative analysis.

To conclude, an important area where MINIX 3 can build on L4 is performance.
While modular designs sometimes have been criticized for being slow, work on L4
clearly showed that high-performance microkernel-based systems can be built. For
example, fast IPC is realized using direct message transfers, putting arguments in
CPU registers, and minimizing cache-miss rates , ]. Likewise, address
space switching without the need for a costly translation-lookaside-buffer (TLB)
flush is done by sharing page tables between processes and using segments for
protection on the x86 (IA-32) architecture [Liedtke, @]. Furthermore, SawMill
Linux showed how multiserver IPC protocols can help reduce context-switching and
data-copying overheads ﬂGefﬂaut et al., 2000]. Finally, even IPC stub-code genera-
tion was optimized for performance ﬂHaeberlen et al.,2000]. All these efforts have
proven extremely helpful to increase the performance and usability of multiserver
systems. It was shown, for example, that user-level frameworks can perform within
5%—-10% of a monolithic design ﬂHiirtig et al,, |[1997; Gefflaut et al., ZOOd]. It may
be possible to build on these results in order to improve MINIX 3’s performance. Al-
though performance improvements do not directly increase dependability, they may
make it affordable to employ certain dependability techniques.

6.4.2 Split-driver Architectures

A middle ground is provided by split-driver architectures that leave the lowest-level
driver functionality in the kernel, but puts other parts in isolated user-level processes.
For example, performance-critical operations such as device I/O and interrupt han-
dling may be left in the kernel, whereas code for driver initialization, device configu-
ration, error handling, and reporting statistics may be run at the user level. Analysis
of 297 drivers showed that, on average, 67% of the code could be moved to user
level ﬂGanapathy et al., 2008‘]. Applications are not aware of the driver split and still
interface with the kernel-level part, which signals the user-level part if there is work

to do. Various split-driver variants have been proposed. For example, the Micro-
drivers project marshals and copies shared data on function calls [Ganapathy et al.,
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], whereas Windows UMDF sets up a shared memory region accessible to both
driver parts [Lee et al., @].

Although the literature gives two motivating factors for split drivers, namely per-
formance and compatibility, the added value over user-level frameworks that provide
full process encapsulation seems limited. Because experiments with process encap-
sulation already demonstrated near-native performance ﬂChubb, 2004; Leslie et al.,
2005a], the main benefit of split drivers is the ability to retain the same kernel inter-
face and work with unmodified OS kernels. However, the downside of this design is
that it still leaves untrusted code in the kernel, separates functionality that logically
belongs together, and complicates the driver development cycle. Furthermore, even
though a large fraction of the work required can be automated using a driver rewrit-
ing tool ﬂGanaDathV etal., ‘2008], developers still are in the loop and must annotate
the original source code and test the split driver. While tool support for split drivers
has great potential for improving the dependability of the legacy driver code base,
a user-level driver framework based on process encapsulation seems a better choice
for newly developed drivers.

The trust model of split-driver architectures is similar to that of full process en-
capsulation, but with the important distinction that the kernel-level driver parts also
must be trusted. In other words, this design weakens the protection in favor of per-
formance and compatibility. Furthermore, although the majority of driver code typi-
cally is not performance critical and can be moved to the user level, bugs may not be
distributed uniformly due to differences in code complexity. The remaining kernel-
level parts should therefore be protected using in-kernel sandboxing techniques, such
as the ones described in Sec. For example, XFI protection has been suggested
to isolate the in-kernel parts in UMDF [Lee et al., ’2—00%].

Case Study: Microdrivers

Microdrivers provides a split-driver architecture for the Linux OS [Ganafgathi et al.,
]. As shown in Fig.[6.8, the design consists of user-level and kernel-level driver
parts, stub code, and run-time libraries. The U-driver, K-driver, and all stub code
are automatically generated with help of a DriverSlicer tool. In order to do so, the
user must specify the driver’s critical root functions and add marshaling annotations
to the driver’s source code. The DriverSlicer operates in two stages. First, a splitter
component builds a call graph starting at the root functions and determines which
code should stay in the kernel. Second, a code generator emits the U-driver and K-
driver as well as the RPC code for kernel-user communication. The code generator
limits the amount of data transferred for complex data structures by copying only
the fields that are actually accessed on the other side. The Microdriver run-time li-
braries are responsible for control and data transfer across protection domains and
synchronization of driver data structures. The current implementation does not in-
clude defect detection mechanisms, however. Therefore, bugs in the user-level part
can still propagate to the kernel.
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Figure 6.8: Split-driver architecture used by Microdrivers: applications interface with the normal
kernel APlIs. The kernel-level part (K-driver) calls the user-level part (U-driver) for control opera-
tions that are not performance critical.

With the Microdriver framework in place the use of additional protection tech-
niques has been studied. To start with, the Decaf project aims to (re)write user-level
drivers in a safe language, such as Java [Renzelmann and Swift, \M‘]. The Driver-
Slicer supports the programmer in converting a driver written in C to a Decaf driver
written in Java by generating stub code and marshaling code for both kernel-user
communication and C-Java communication. A user-level support library provides

access to low-level C functionality that is not available in Java. Another project at-
tempts to protect the kernel against device-driver vulnerabilities , ].
In particular, an RPC monitor mediates all communication with the kernel in order
to prevent the user-level driver from making unauthorized kernel calls and preserve
the integrity of kernel data structures. Permissible control transfers are extracted by
statically analyzing the driver’s possible responses to an upcall from the kernel part.
Permissible data transfers are automatically inferred during a training phase with
benign workloads.

The Microdrivers code base consists of about 10,000 LoC for the DriverSlicer
and 6750 LoC for the kernel-level and user-level run-time libraries. The DriverSlicer
was run on 4 drivers, which required annotations for 1%—6% of the driver code. The
amount of code that could be moved to the U-driver ranged from 19% to 65%. The
generated kernel-level stub code comprised 6100 LoC up to 37,900 LoC. Testing
showed that the stub code was not always correctly generated, however. While de-
bugging the code generator represents a one-time effort, this problem makes clear
that the DriverSlicer is part of the trusted computing base (TCB). Experiments with
5 Decaf drivers showed that the amount of user-level code that could be converted to
Java ranged from 13% to 100%. Since the majority of code converted is on the con-
trol path rather than the data path, Microdrivers performed nearly identical to native
drivers. The Decaf drivers also displayed a near-native performance, but the latency
to initialize the driver was 5.2x higher on average due to the safe-code tax. Micro-
drivers were not subjected to automated fault-injection testing, because the current
implementation does not provide a recovery subsystem.
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6.5 Comparison

Having surveyed four different approaches to deal with untrusted drivers, we now
briefly compare our work to related efforts. First, we contrast the use of user-level
frameworks to the use of in-kernel sandboxing, virtualization techniques, and formal
methods. While all approaches can effectively isolate untrusted drivers, each ap-
proach seems to target a particular application. For example, in-kernel sandboxing
is particularly suited for retrofitting dependability into legacy OSes, whereas formal
methods explore novel techniques for next-generation OSes. User-level frameworks
like MINIX 3 are somewhere in the middle of this spectrum, and present a pragmatic
approach to improve the dependability of both current and future systems. Inter-
estingly, user-level frameworks can often be combined with other fault-tolerance
techniques—while the converse is not always true. In this way, multiple levels of
protection can be selectively provided for important components. For example, Mi-
crodrivers ﬂGanapathy et al., 2008] experimented with user-level drivers in a safe
language and monitored communication for protocol violations. Another benefit dis-
cussed in Sec.[1.4.3 is that user-level frameworks keep the UNIX look and feel, and
even seem to make driver development and maintenance easier—something which
is not clear for the other approaches.

Furthermore, we want to point out that the use of hardware protection versus
software isolation is a recurring theme. We have seen hardware protection with,
for instance, virtualization techniques and user-level frameworks, whereas software
isolation is used with in-kernel sandboxing and formal methods. Several interesting
differences exist. First, software and hardware pose different performance trade-
offs. Although software isolation often incurs a run-time overhead due to the in-line
checks needed to guarantee safety, cross-domain communication is less expensive
because hardware tables do not have to be reloaded. However, both techniques can
achieve good performance, as demonstrated by L4 [Liedtke, @] and Singular-
ity ﬂHunt and Larus, 2007‘]. Second, software isolation based on formal methods
breaks with legacy code because code must be either verified or trusted. In contrast,
hardware protection can be used to run legacy code in untrusted domains. Third,
the correctness of software isolation is a concern, because verification is not done at
execution time, which leaves a window of vulnerability. For example, bugs may be
introduced by the compiler or caused by hardware faults corrupting a pointer value
or a computation. Therefore, hardware protection remains valuable as a defense-in-
depth [Aiken et al. 200&].

Next, we compare how MINIX 3 ranks against other systems that performed an
empirical dependability assessment. In particular, both Nooks [Swift et al., M]
and BGI ﬂCastro et al., 2009] used software-implemented fault-injection (SWIFI)
tests similar to the tests we did on MINIX 3. In the comparison below, we ignore
hardware limitations, such as PCI bus hangs, since these represent an issue orthog-
onal to system design. Nooks was subjected to thousands of fault injections, which
showed that Linux crashes could be prevented in up to 99% of the cases, but trans-
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parent recovery could be provided in only 65% of the cases. BGI was also sub-
jected to thousands of fault injections, which showed that Windows crashes could
be prevented in 98%—-100% of the cases, but only 47%—60% of the hangs could
be prevented. Transparent recovery is not supported by BGI. In contrast, we in-
jected literally many millions of faults, inducing far more driver failures than any of
the other experiments, and showed that—hardware limitations aside—MINIX 3 was
able to survive 100% of the faults and could recover in over 99.9% of the failures.
In other words, MINIX 3 not only was tested with more rigor than its peers, but also
demonstrated the highest degree of fault tolerance.

Finally, we highlight some differences between MINIX 3 and other user-level
frameworks. Although many modular systems have been built, the primary focus
seems to have been performance and security. For example, L4 ﬂLiedtk , 1 1995]
clearly showed that microkernel-based systems can achieve high performance. As
suggested in Sec.[6.4.1] these results provide various ideas for improving the per-
formance of MINIX 3. However, the focus of our research has been dependability.
To the best of our knowledge, we are the first to explore this area in depth by ac-
tually building a complete OS and subjecting it to rigorous testing. For example,
while process encapsulation provides coarse-grained isolation, the literature often
does not discuss how fine-grained per-driver policies and dynamic access control
mechanisms are realized—although L4-based user-level driver frameworks form a
notable exception [Hirtig et al., Eg()()—3‘; Elphinstone and Gétﬂ, ‘2004-‘]. Furthermore,
we are not aware of user-level frameworks that combine fault isolation with failure
resilience beyond a simple unload-and-restart approach. Finally, none of the user-
level frameworks was subjected to extensive SWIFI tests to assess empirically the
system’s dependability like we did for MINIX 3.




Chapter 7

Summary and Conclusion

This chapter brings this thesis to an end by summarizing the research, highlighting
the lessons learned, and recapitulating the contributions. The central question in
this thesis was whether it is possible to build a highly dependable OS. We have
met this challenge by building a fault-tolerant OS, MINIX 3, that isolates untrusted
drivers and recovers failed ones. Although many of the concepts presented are not
completely new, no one has put all the pieces together and subjected the resulting
system to rigorous dependability testing. This effort has led to various new insights
and advanced the state of the art in dependable OS design.

The remainder of this chapter is organized as follows. To start with, Sec.[7.1
summarizes the research problems and our solutions. Next, Sec.[7.2 presents the
lessons that we learned. Then, Sec. recapitulates the thesis’ contributions, dis-
cusses practical applications, and outlines directions for future research. Finally,
Sec.[7.4 tells how the resulting OS, MINIX 3, can be obtained.

7.1 Summary of this Thesis

In this thesis, we have researched how we can build a highly dependable OS that is
tolerant to driver failures. We first introduced the problem statement and described
our approach. Then, we presented in detail the fault-tolerance techniques employed
by MINIX 3. Below, we briefly reiterate these issues.

7.1.1 Problem Statement and Approach

We started out with the observation that one of the biggest problems with using
computers is that they do not meet user expectations regarding reliability, availabil-
ity, safety, security, maintainability, etc. Dependability of the operating system (OS)
is of particular importance, because of the central role of the OS in virtually any
computer system. Although dependability problems with commodity PC operating
systems (OSes), such as Windows, Linux, FreeBSD, and MacOS, are well-known,
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mobile and embedded OSes are not much different and face similar challenges. For
example, a survey of Windows users showed that 77% of the customers experi-
enced 1-5 crashes per month, whereas 23% of the customers experienced more
than 5 monthly crashes ﬂOrgovan and Dykstri 2004]. In order to change this sit-
uation and improve the end-user experience, this thesis has addressed the problem
of buggy device drivers, which were found to be responsible for the majority of all
OS crashes. To begin with, Chaps. 1land[2 introduced the problem domain and gave
an architectural overview of our solution, respectively.

Why Systems Crash

A study of the literature suggested that unplanned downtime is mainly due to faulty
system software ﬂGray @gi Thakur et al., 1995; Xu et al., 1999‘]. Within this class
OS failures are especially problematic because they take down all running applica-
tions and destroy unsaved user data ﬂGanapathi and PattersonL 2005‘]. We identified
that OS extensions and device drivers in particular are responsible for the major-
ity of OS crashes. Drivers comprise up to 70% of the code base and have an error
rate 3-7 times higher than other code ﬂChou etal., 2001‘]. Indeed, Windows XP
crash dumps showed that 70% of all crashes are caused by drivers, whereas 15%
is unknown due to severe memory corruption [Orgovan and Dykstra, ‘2004]. Fixing
buggy drivers is infeasible due to the large and complex code base as well as con-
tinuously changing software and hardware configurations. For example, 25 new and
100 revised Windows drivers are released per day ﬂGlerum et al. 2009‘].

We then focused on the more fundamental principles that cause OS crashes.
We asserted that software is buggy by nature on the basis of various studies that
reported fault densities ranging from 0.5 to 75 faults per thousand lines of code
(LoC) , @]. For example, the open-source FreeBSD OS was found to
have 1.89 faults/KLoC ﬂDinh—Trong and Biemalﬂ, 2005]. Bugs could be correlated
to (a) limited exposure of newly developed driver code ﬂOstrand et al., 2005‘] and (b)
maintainability problems with existing drivers due to changing kernel interfaces and
unwieldy growth of the code base [Padioleau et al.,‘ZOOQ]. Our analysis of Linux 2.6
underscored this problem: the kernel has grown by 65.4% in just 5 years, and now
surpasses 5.3 MLoC. Over 50% of the code is taken up by the /drivers subsystem,
which consists of 2.7 MLoC. Not surprisingly, Linux’ creator, Linus Torvalds, re-
cently called the kernel ‘bloated and huge’ [Modine, ].

In addition, we pointed out several design flaws that make current OSes so sus-
ceptible to bugs. The main problem is the use of a monolithic kernel structure that
runs the entire OS as a single binary program running with all powers of the machine
and no protection barriers between the modules. This design violates the principle
of least authority (POLA) ﬂSaltzer and Schroeder, 1975‘] by granting excessive privi-
leges to untrusted driver code. This code is often provided by third parties, who may
be ignorant of system rules. Because all the code runs in a single protection domain,
a single driver bug can easily spread and crash the entire OS.
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High-level Design

Having stated the problem we outlined our approach to improve OS dependability.
We advocated the use of a modular, multiserver OS design that runs untrusted driver
code in independent user-level processes, just like is done for ordinary application
programs. In this model, CPU and (I0O)MMU hardware protection is complemented
with OS-level software protection in order to enforce strictly separate protection do-
mains. As a consequence, the effects of a user-level bug that is triggered will be less
devastating. The compartmentalization made it possible to explore the idea of fault
tolerance, that is, the ability to continue to operate normally in the presence of faults
and failures [Nelson, |1990]. In particular, we outlined two fault-tolerance strate-
gies: (1) fault isolation to increase the mean time to failure (MTTF) and (2) failure
resilience to reduce the mean time to recover (MTTR) ﬂGraV and SiewioreH ‘1991‘].
MTTF and MTTR are equally important to increase OS availability. Finally, we de-
scribed several other benefits of a modular OS design, including a short development
cycle, normal programming model, easy debugging, and simple maintenance.

Next, we introduced the open-source MINIX OS ﬂTanenbaumL ‘1987], which we
used to prototype and test our ideas. We first described how MINIX 3 runs all drivers,
servers, and applications in independent user-level processes on top of a small micro-
kernel of about 7500 LoC [Herder, ]. Interprocess communication (IPC) is done
by passing small, fixed-length messages between process address spaces. For exam-
ple, the application that wants to do I/O sends a message to the virtual file system
(VES), which forwards the request to the corresponding device driver, which, in
turn, may request the kernel to do the actual I/O. We also presented the support
infrastructure that we added to MINIX 3 to manage all servers and drivers: the driver
manager. The driver manager can be instructed by the administrator via the service
utility in order start and stop system services on the fly and set custom policies for
the system’s fault-tolerance mechanisms.

Context and Scope

We also examined how technological advances and changing user expectations pro-
vided a suitable context for this work. Hardware improvements made it possi-
ble to revisit the design choices of the past. On the one hand, modern hardware
provides better support for isolation, for example, in the form of IOMMUs that
can protect against memory corruption due to unauthorized direct memory access
(DMA) ﬂIntel Corp., ZOOS;KAdvanced Micro Devices, Inc. 2009‘]. Although certain
hardware limitations still exist, for example, shared IRQ lines that may cause in-
terdriver dependencies, we have been able to work around most of them. On the
other hand, performance has increased to the point where software techniques that
previously were infeasible or too costly have become practical. For example, modu-
lar designs have been criticized for performance problems due to context switching
and data copying, but we showed how hardware advances have dramatically reduced
the absolute costs and thereby mitigated the problem [Moore, W}. For example,
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an IPC roundtrip on MINIX 3 takes only 1 s on modern hardware. Moreover, the
performance-versus-dependability trade-off has changed and most users would now
be more than willing to sacrifice some performance for improved dependability.

Because several other research groups have also acknowledged the problem of
buggy drivers, we briefly surveyed related attempts to make drivers more manage-
able. In particular, we classified the approaches as in-kernel sandboxing, virtual-
ization techniques, formal methods, and user-level frameworks. MINIX 3 fits in the
latter class. In-kernel sandboxing uses wrapping and interposition to improve the de-
pendability of legacy OSes, but cannot always provide hard safety guarantees. Vir-
tualization and paravirtualization run legacy OSes in a sandbox, but cannot elegantly
isolate individual drivers in a scalable manner. Formal methods use languages-based
protection and driver synthesis to improve dependability, but often are not backward
compatible. In contrast, user-level frameworks balance these factors by restructur-
ing only the OS internals to provide hard safety guarantees, but keeping the UNIX
look and feel for higher layers. While various user-level frameworks have been built,
many projects focused on performance and security. To date, no one had explored
the limits of isolating and recovering faulty drivers.

Finally, we discussed the assumptions underlying our design and pointed out
known limitations. The fault and failure model our system is designed for encom-
passes soft intermittent faults in drivers, including transient physical faults, interac-
tion faults, and elusive development faults or residual faults that remain after test-
ing ﬂAViiienis et al., ‘2004]. Such bugs are a common crash cause ﬂChouL 1997‘].
They are referred to as Heisenbugs, because their activation is hard to reproduce. By
isolating faults and making failures fail-stop [Schlichting and Schneider, M], the
Heisenbug hypothesis can be exploited by simply retrying failed operations m,
1986]. As an example, consider resources leaks that underlie 25.7% of the defects
found in a study of 250 open-source projects [Coverity, Inc.‘, ‘2008‘]. While our de-
sign does not attempt to prevent such bugs, the damage can be contained in the buggy
module and the problem tends to go away after a restart.

7.1.2 Fault-tolerance Techniques

Because software seems to be buggy by nature, we have attempted to make our OS
fault tolerant. As a first defense, we isolated drivers from each other and the rest of
the OS in order to limit the damage that can result from faults. In addition, because
isolated faults can still cause local failures, we made the OS resilient so that failures
can be masked to higher levels. To make things concrete, a bug in, say, an audio
driver may cause the sound to stop, but may not crash the entire OS. In this way,
the OS gets a chance to restart the failed driver and resume normal operation. In the
best case, the user does not even notice that there has been a problem. The lion’s
share of this thesis focused on techniques for achieving such a level of OS fault
tolerance. In particular, Chaps. [3] and [4] presented our fault-isolation and failure-
resilience techniques, respectively.
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Achieving Fault Isolation

The goal of fault isolation is to prevent problems from spreading beyond the module
in which a fault is contained. A buggy device driver may cause a local failure, but a
global failure of the entire OS should never occur. Our method to achieve this was
to restrict untrusted code according to the principle of least authority, granting each
component access to only those resources needed to do its job.

We started out by classifying the privileged operations that drivers need to per-
form and that, unless properly restricted, are root causes of fault propagation. We
distinguished four orthogonal classes that map onto the core components found in
any computer system (CPU, memory, peripheral devices, and system software), and
subdivided each class into subclasses. We also discussed the threats posed by bugs
in each class. This classification allowed us to reason systematically about the pro-
tection mechanisms needed to restrict drivers. This led to a set of general rules
demanding no-privilege defaults in order to isolate faults in each class.

First, we removed all untrusted drivers from the kernel and encapsulated each
in an independent UNIX process, so that they became more manageable and could
be controlled like ordinary applications. To do so we had to disentangle the drivers’
dependencies on the trusted computing base (TCB). For example, drivers need to do
device I/0 and interrupt handling, copy data between processes, access kernel infor-
mation, and so on, which they can no longer directly do at the user level. The solution
was to add new system calls and kernel calls, such as SAFECOPY and VDEVIO, that
allow authorized drivers to access privileged resources in a controlled manner. We
also added a new driver manager in order to administer all servers and drivers. This
support infrastructure constitutes the MINIX 3 user-level driver framework.

With the user-level driver framework in place, we developed further techniques
for curtailing the driver’s privileges in each of the operational classes that we distin-
guished. We gained proper fault isolation through a combination of structural con-
straints imposed by a multiserver design, fine-grained per-driver isolation policies,
and run-time memory-protection mechanisms. For example, CPU usage and mem-
ory access were constrained by running each driver in a user-mode process with a
private address space. Furthermore, since drivers typically have different I/O and
IPC requirements, we associated each with a dedicated isolation policy that grants
access to only the resources needed. Finally, because memory allocation typically
involves dynamically allocated buffers, we also developed a new delegatable grant
mechanism for safe byte-granular memory sharing at run time.

Achieving Failure Resilience

The goal of failure resilience is to recover quickly from failures such that normal
operation can continue with minimum disturbance of application programs and end
users. In other words, driver problems should be detected automatically and repaired
transparently. Building on the fault-isolation properties discussed above, our method
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to achieve this was to monitor drivers at run time and design the OS such that it can
handle on-the-fly replacement of failing or failed drivers.

We started out by discussing how the driver manager can detect failures. We
did not use introspection to detect erroneous system states, but instead focused on
detecting component failures, that is, deviations from the specified service. This led
to three defect detection techniques. First, all drivers are monitored for unexpected
process exits due to CPU or MMU exceptions and internal panics. Second, the driver
manager proactively checks for liveness by periodically requesting a driver heartbeat
message. Third, dynamic updates can be requested by the administrator or trusted
OS components. In this way, informed decisions can be made for problems that can-
not be detected by the driver manager, such as server-to-driver protocol violations.

Next, we showed how the system can recover once a failure has been detected.
By default the driver manager directly restarts failed drivers, but if more flexibility
is needed, individual drivers can be associated with a recovery script. This script is
a normal shell script that can be used, for example, to log the failed component and
its execution environment, to implement a binary exponential backoff for repeated
failures, to send a failure alert to a remote administrator, and so on. Once a driver
has been restarted, the rest of the system is informed so that further recovery, such
as reissuing pending I/O requests, can be done. In addition, the driver may need to
reset its device and recover lost state. Although we provided a data store to backup
state, we also pointed out various gaps in state management. Therefore, we assume
fail-stop behavior where erroneous state transformations do not occur. This did not
pose a problem since the MINIX 3 drivers are mostly stateless.

Having outlined the basic ideas we analyzed the effectiveness of MINIX 3’s
failure-resilience mechanisms. Two properties are important in this respect. First,
recovery is transparent if it can be done internal to the OS without returning an error
to application programs and without user intervention. Second, recovery is full or
lossless if no user data is lost or corrupted. We studied recovery schemes for different
OS components. First, the effectiveness of driver recovery depends on (a) whether
I/0 is idempotent, that is, can be repeated without affecting the end result, and (b)
whether the protocol stack provides end-to-end integrity. We found that full trans-
parent recovery is possible for network-device drivers and block-device drivers, but
not always for character-device drivers. Second, server recovery is typically limited
by the amount of internal state that is lost during a restart.

7.2 Lessons Learned

All concepts described in this thesis have been prototyped and tested in MINIX 3.
Our experimental evaluation was based on software-implemented fault injection
(SWIFI), performance measurements, and a source code analysis. Chap. 5] gave
a detailed overview of the raw results of these experiments. Below, we present the
most important lessons that we have learned.
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7.2.1 Dependability Challenges

We have taken an empirical approach toward dependability and have iteratively re-
fined our fault-tolerance techniques using extensive SWIFI tests. We injected 8 fault
types at run time into the text segment of unmodified drivers. The faults types used
were shown to be representative for both transient hardware errors and common
programming errors. We targeted various driver configurations covering a represen-
tative set of interactions with the surrounding software and hardware. The SWIFI
tests have led to the following insights.

e To start with, we learned that extensive SWIFI campaigns are needed to find
the majority of the bugs. While the SWIFI tests immediately proved helpful
to debug the system, some hard-to-trigger bugs showed up only after several
design iterations and injecting many millions of faults. However, in the past,
for example, Nooks [Swift et al., 2005] and BGI ﬂCastro et al.‘, ‘2009‘] were
subjected to only 2000 and 3375 fault injections, respectively, which is almost
certainly not enough to find all the bugs. Even though robustness to injected
faults gives no quantitative prediction of robustness to real faults, we believe
that our extensive SWIFI campaign sets a new standard for hardening systems
against possible bugs.

e Stress tests demonstrated that our design can indeed tolerate faults occurring
in untrusted drivers. In a test targeting 4 different network-device drivers,
MINIX 3 was able withstand 100% of 3,200,000 common, randomly injected
faults. Although the targeted drivers failed 24,883 times, the OS was never af-
fected and user programs correctly executed despite the driver failures. In fact,
the OS could transparently recover failed network-device drivers in 99.9% of
the cases. This result represents a much higher degree of fault tolerance than
other systems that empirically assessed their dependability. While SWIFI
testing alone cannot prove our design correct, we are assured that our fault-
tolerance techniques help to improve OS dependability.

e Even if full recovery was not possible, our fault-tolerance techniques still im-
proved dependability, either by limiting the consequences of failures or by
speeding up recovery. For example, in a few cases the restarted network-
device driver could not reinitialize the hardware, which caused the network-
ing to stop working, but did not affect the rest of the OS. Furthermore, while
audio-driver recovery was inherently limited because the I/O operations were
not idempotent, recovery at the cost of hiccups in the audio playback was
still possible. Finally, although recovery of the network server (INET) was
not transparent due to the amount of internal state lost on a restart, recov-
ery scripts helped automating the recovery procedure for a remote web server
where minor downtime was tolerable. These examples show that full transpar-
ent recovery is not always needed to improve dependability.
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» Experiments with a filter driver in the storage stack showed that monitoring
of untrusted drivers can improve availability. While the driver manager could
not detect driver-specific protocol violations, we found recovery triggered by
complaints from trusted components to be effective. We did not use this strat-
egy in the network stack, but the logs revealed that the number of unauthorized
access attempts can be several orders of magnitude higher than the number of
failures seen by the driver manager. The use of more introspection and proac-
tive recovery thus seems worth investigating.

* Although this research focused on mechanisms rather than policies, it must
go hand in hand with careful policy definition. At some point, a driver’s iso-
lation policy accidentally granted access to a kernel call for copying arbitrary
memory without the grant-based protection, causing memory corruption in the
network server. Even though policy definition is an orthogonal issue, it is key
to the effectiveness of the mechanisms provided. We ‘manually’ reduced the
privileges granted by the driver’s policy, but techniques such as formalized in-
terfaces [Ryzhyk et al. ‘2009a] and compiler-generated manifests ,
M] may be helpful to define correct policies.

* Finally, the SWIFI tests also revealed several hardware limitations that sug-
gest that safe systems cannot be realized by software alone. First, while the
OS could successfully restart failed drivers, the hardware devices were some-
times put in an unrecoverable state and required a BIOS reset. This shows
that all devices should have a master reset command to allow recovery from
unexpected (software) bugs. Second, tests with two PCI cards even caused the
entire system to freeze, presumably due to a PCI bus hang. We believe this to
be a weakness of the PCI bus, which should have confined the problem and
shut down the malfunctioning device. These problems must be addressed by
hardware manufacturers through more fault-tolerant hardware designs.

7.2.2 Performance Perspective

Although our primary focus was dependability, we also conducted several perfor-
mance measurements on MINIX 3, FreeBSD, and Linux in order to determine the
costs of our fault-tolerance techniques. The benchmarks exemplified MINIX 3’s
modular design by triggering IPC between applications, servers, drivers, and the
kernel. We did not optimize the system, however, and the results should be taken as
arough estimate. Nevertheless, we gained various insights.

e We found that MINIX 3 is fast and responsive for typical research and de-
velopment usage. For example, on modern hardware, installing MINIX 3 on
a fresh PC takes about 10 minutes, a full build of the OS can be done under
20 sec, and a reboot of the machine takes just over 5 sec. In addition, the infra-
structure to start and stop system services on the fly helps to speed up testing of
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new components. Measurements also showed that the overhead introduced by
MINIX 3’s fault-tolerance mechanisms is limited. These characteristics make
MINIX 3 very suitable as a prototype platform.

» Performance measurements showed that the user-perceived overhead is mostly
determined by the usage scenario rather than MINIX 3’s raw performance.
System-call-level microbenchmarks showed an average overhead of 12% for
user-level versus in-kernel drivers, whereas the average overhead decreased to
only 6% for application-level macrobenchmarks. Most overhead was found
for I/0O-bound workloads, whereas CPU-bound workloads displayed a negli-
gible overhead or no overhead at all. While these findings are not surprising,
they show how important it is to take the workload into account when assess-
ing the system’s usability.

e The comparison of MINIX 3 with other OSes showed how trade-offs in sys-
tem design affect the overall performance. While a small performance gap
was visible between MINIX 3 and FreeBSD 6.1, a roughly equivalent gap
exists between FreeBSD 6.1 and Linux 2.6. This shows that the use of a mod-
ular design has a similar effect on performance as other system parameters,
including storage-stack strategies, compiler quality, memory management al-
gorithms, and so on. None of these aspects have been optimized in MINIX 3,
which indicates that there is room for improvement. While we cannot remove
the inherent costs incurred by a modular design, various independent stud-
ies have already shown that the overhead can be limited to 5%—10% through
careful analysis and removal of bottlenecks Liedtke,m,m; Hirtig et al.,

‘1997 Gefflaut et al., 2000; Haeberlen et al., 2000; Leslie et al., 2005;].

i

7.2.3 Engineering Effort

The last part of our experimental evaluation consisted of a source-code analysis of
MINIX 3 and Linux 2.6. For both systems we started with the initial release and
picked subsequent versions with 6-month deltas. The analysis spanned 4 years of
MINIX 3 development (9 versions) and 5 years of Linux 2.6 development (11 ver-
sions). Measurements were done by counting lines of executable code (LoC). The
source-code analysis has led to the following insights.

» The source code analysis showed that the reengineering effort needed to make
MINIX 3 fault tolerant is both limited and local. In general, all interactions
with drivers, which are now considered untrusted, required a more defensive
programming style, such as performing additional access control and sanity
checks. These OS changes represent a one-time effort. We also found that
some of the existing drivers had to be modified, for example, to use safe system
call variants. Fortunately, such changes typically required little effort. Porting
or writing new drivers is not complicated because we were able to maintain a
UNIX-like development environment.
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e The previous finding makes us believe that our ideas might be applicable to

other OSes with only modest changes. Although the process encapsulation
provided by our prototype platform, MINIX 3, enabled us to implement and
test our ideas with relatively little engineering effort, a similar trend toward
isolation of untrusted extensions on other OSes is ongoing. For example, there
already have been experiments with user-level drivers on both Linux ,
M] and Windows ﬂMicrosoft Corp., 2007‘]. Once the drivers run at the user-
level, these systems may be able to build on the fault-isolation and failure-
resilience techniques presented here.

Although the MINIX 3 code base grew by 64.4% to 87.8 KLoC in 4 years,
MINIX 3’s source-code evolution seems sustainable. Because MINIX 3 runs
most of the OS in isolated user-level compartments, the addition of new func-
tionality generally does not pose a direct risk to the trusted computing base
(TCB). However, due to new, low-level infrastructure the kernel also doubled
in size and now measures 6881 LoC—and further growth is expected with
multicore support and kernel threads still in the pipeline. Nevertheless, we ex-
pect the kernel’s size to stabilize once it becomes more mature. A case in point
is that more mature microkernels such as L4Ka::Pistachio and seL.4 measure
on the order of 10 KLoC [Heiser, W]. The bottom line is that compartmen-
talization makes the code base more manageable.

We also found that the Linux 2.6 kernel grew by 65.4% to 5.3 MLoC in
5 years, which may pose a threat to its dependability. The problem is not
only that Linux 2.6 is several orders of magnitude larger than MINIX 3, but
also that the entire OS is part of the kernel. All source-code evolution thus
directly affects the size and complexity of the TCB. We realize that not all
drivers can be active at the same time, but Linux’ monolithic design means
that any fault can potentially be fatal. Despite its huge code base the Linux 2.6
kernel has been very stable, but structural changes still seem advisable. Even
though the problem is no longer ignored [Modine, m}, the concerns raised
thus far seem to focus on performance rather than dependability. A different
mindset is needed in this respect.

A final point worth mentioning is that, in our experience, driver developement
and maintenance indeed has become easier due to MINIX 3’s modular design.
Despite all the fault-tolerance techniques that we introduced, we were able to
maintain the normal UNIX programming model. Interestingly, the changes
even helped to shorten the driver development cycle, since drivers now can be
programmed, tested, and debugged without tedious reboots after each build.
Furthermore, we ran into various driver problems that could be fixed either au-
tomatically or by dynamically updating the faulty driver with a new or patched
version. While we did not quantitatively analyze these benefits, we do believe
that the use of a modular OS design indeed leads to higher productivity.
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7.3 Epilogue

Arriving at the end of this thesis it is time to reflect. Below, we briefly summarize the
main contributions, discuss possible applications, and outline future research areas.

7.3.1 Contribution of this Thesis

The goal of this work was to build a dependable OS that can survive and recover
from common bugs in device drivers. We realized this goal by making the OS fault
tolerant such that it can continue to operate normally in the presence of faults and
failures. Although many of the ideas and techniques presented are not completely
new, their combined potential to improve OS dependability had not yet been fully
explored. By doing so we have made the following major contributions:

* We demonstrated how OS dependability can be improved without sacrificing
the widely used UNIX programming model. In contrast to related work, we
have redesigned only the OS internals, maintaining backward compatibility
with existing software and presenting an incremental path to adoption.

* We presented a classification of privileged device-driver operations that are
root causes of fault propagation and developed a set of fault-isolation tech-
niques for each class in order to limit the damage bugs can do. We believe this
to be an important result for any effort to isolate drivers in any system.

* We presented a failure-resilient OS design that can detect and recover from a
wide range of failures in drivers and other critical components, transparently
to applications and without user intervention. We believe that many of these
ideas are also applicable in a broader context.

* We have evaluated our design using extensive software-implemented fault-
injection (SWIFI) testing. In contrast to earlier efforts, we literally injected
millions of faults, which allowed us to find also many rare faults and demon-
strate improved dependability with high assurance.

* We showed how recent hardware virtualization techniques can be used to over-
come shortcomings of previous isolation techniques. At the same time we dis-
cussed a number of PC-hardware shortcomings that still allow even a properly
isolated device driver to hang the entire system.

* Finally, we have not only designed, but also implemented the complete sys-
tem, resulting in a freely available, open-source OS, MINIX 3, which can be
obtained from the official website at http://www.minix3.org/. The MINIX 3
OS effectively demonstrates the practicality of our approach.

All in all, we believe that our effort to build a fault-tolerant OS that can withstand
the threats posed by buggy device drivers represents a small step toward more de-
pendable OSes and helps to improve the end-user experience.
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7.3.2 Application of this Research

We hope that our research will find its way into practical applications so that ac-
tual end users can benefit from a more dependable computing environment. The
direct real-world impact of this research is the MINIX 3 OS, which has already been
downloaded over 250,000 times and sparked many discussions about OS design [e.g.
‘Slashdoﬂ, 2005, 2006, 2008]. However, we believe that an even wider audience may
be reached by improving MINIX 3’s usability and applying the ideas put forward in
this thesis to other OSes.

Adoption of MiNIX 3

Wide-spread adoption of MINIX 3 can only become a reality if the system becomes
more usable for ordinary end users. While MINIX 3 is not yet competitive with much
more mature systems, there is clearly enough already to eliminate any doubt that it
could be done given ‘some’ programming effort. At the same time, we realize that
the system still has plenty of shortcomings.

The completeness of MINIX 3 needs to be assessed at various levels. For exam-
ple, at the application level, about 500 UNIX programs have already been written or
ported, but many of the larger, widely used applications are still missing, including
the GNOME and KDE desktop environments, the Firefox web browser, and a Java
virtual machine. Looking at library and framework support, MINIX 3 provides ba-
sic POSIX compliance, but better POSIX compatibility and more system libraries
would be needed to support developers. At the driver level, MINIX 3 provides the
most crucial drivers to run on standard hardware and popular emulators, but still
needs drivers for a range of peripheral devices, I/O buses, and hardware standards,
such as the Universal Serial Bus (USB) and Advanced Configuration and Power
Interface (ACPI). At the architecture level, MINIX 3 currently runs on the x86 (IA-
32) architecture, but does not yet support the MIPS and ARM architectures that are
widely used in embedded systems. In addition, MINIX 3 lacks support for multipro-
cessor architectures. Finally, looking at user support, there is a small community to
support MINIX 3 users, but better developer documentation and end-user manuals
would be needed in order to reach a wider audience.

Due to the small size of the core MINIX team, it will be hard to address all of
these issues, and the gap with more mature general-purpose OSes is likely to grow.
Therefore, a more promising approach seems to target a narrow application domain.
One important area where MINIX 3 is already widely used is education and research.
The development of additional course and training materials could potentially help to
spread the ideas underlying MINIX 3’s design even further. Another, more practical
possibility would be to showcase MINIX 3’s features by building a highly dependable
dedicated system, for example, a set-top box, cell phone, voting machine, router,
firewall, and so on. Besides less demanding functional requirements, the primary
nonfunctional requirement for such applications is aligned with MINIX 3’s goals:
showing how dependable systems can be built.
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Improving Commodity OSes

Finally, even if MINIX 3 itself would not become a mainstream OS, commodity
OSes such as Windows, Linux, FreeBSD, and MacOS can potentially benefit from
the ideas presented in this thesis. Although we have implemented our design in
MINIX 3, many of the techniques are generally applicable and can be ported to im-
prove the dependability of other systems. For example, [OMMU protection against
invalid DMA requests can be adopted even with in-kernel drivers. Likewise, drivers
could be associated with fine-grained isolation policies to restrict access to privileged
OS functionality. For example, the Windows hardware abstraction layer (HAL)
might be a suitable starting point to enforce such protection. However, even though
the engineering effort was modest in the case of MINIX 3, it is hard to estimate the
amount of work required without intimate knowledge of the target OS.

In order to benefit most, however, we believe it is crucial to remove drivers from
the kernel. Fortunately, as discussed in Sec. work in this area is already in
progress and user-level driver frameworks are slowly making their way into com-
modity OSes ﬂMicrosoft Corp., 2007; [Leslie et al., 2005a]. While the sheer size of
Windows and Linux makes it infeasible to transform all existing in-kernel drivers,
user-level drivers can be adopted incrementally. As a starting point, the most widely
used drivers and the most error-prone drivers (as pinpointed by crash-dump analysis)
should be moved out of the kernel. In addition, drivers for new hardware should be
developed at the user level by default. Once drivers run at the user level it becomes
easier to apply the full set of fault-tolerance techniques described in this thesis.

i

7.3.3 Directions for Future Research

The research on MINIX 3 has opened several opportunities for future work. Below
we suggest two potentially fruitful areas for follow-up research projects.

Dependability and Security

Follow-up studies can build on our work to further enhance dependability and se-
curity. In particular, as suggested in Sec.[1.5] it would be interesting to investigate
whether MINIX 3’s fault-isolation techniques can be combined with other protec-
tion techniques. For example, wrapping and interposition could be used to monitor
drivers for protocol violations, which proved useful in our filter-driver case study.
Likewise, it may be worthwhile to focus on driver intrusion detection ,
M], since code that is relatively error-prone might also be relatively vulnerable.
Furthermore, many of the other techniques discussed in Chap.[6] such as software-
based fault isolation and safe languages, could be applied to improve the protection
of user-level drivers. With drivers running in independent processes, each individual
driver can potentially get a different protection strategy.

Another interesting area would be to improve the system’s failure-resilience
techniques. To start with, dynamic updates may be facilitated by using a cooperative
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model whereby the system is requested to converge to a stable state before replacing
a component [Giuffrida and Tanenbaum, \M‘]. Next, improved state management,
including transaction support, is needed to deal with crashes of stateful components.
Possible approaches based on checkpointing state using the data store were already
outlined in Sec.4.2.3. Furthermore, the restart process might be made more trans-
parent to the rest of the OS by associating system services with stable, virtual IPC
endpoints. Finally, rather than cleaning up and restarting components after a prob-
lem has been detected, OS services could be replicated a priori using a shadow driver
or ‘hot standby’, so that a backup process can take over and impersonate the primary
process in case of a failure [Swift et al., M]. State synchronization between the
primary and backup would still be needed though.

In addition to fault tolerance for drivers, it also may be interesting to investigate
whether similar ideas can be applied to system servers and application programs.
Making system servers, such as file servers, untrusted helps reducing the size of
the TCB and thereby makes it easier to reason about the dependability or security
of a system. The strategies could be similar to those for drivers, but it would be
important to overcome the current problems relating to state management. It also
may be possible to take some of our techniques to the application layer. Modern
applications, such as web browsers, office suites, and photo editors, allow their base
functionality to be extended via (third-party) plug-ins, but put the user at risk because
buggy and potentially hostile plug-ins are run with the same user ID and in the same
address space as the host application. What would be needed instead is to isolate
plug-ins from the application and each using separate protection domains. This is
analogous to isolating drivers from the core OS.

Performance and Multicore

Although this research has not focused on performance, we realize that performance
is important for the system’s usability. In addition, because there sometimes is a
trade-off between performance and dependability, improving the system’s perfor-
mance may also improve the practicality of certain dependability techniques. Even
though various research projects have achieved good performance, within 5%-10%
of a monolithic design [Hartig et al. ‘1997; Gefflaut et al., ‘2000], modular systems
are still being criticized. Therefore, we believe that it is important to make MINIX 3’s
performance more competitive to commodity OSes. While this is, in part, a matter
of careful engineering, such as profiling and removal of bottlenecks, there is ample
opportunity to build on and possibly extend previous research projects. Sec. 6.4.1
already listed several techniques that were successfully used in L4. For example,
one interesting area may be to look into multiserver IPC protocols that aim to min-
imize context switching and data copying ﬂGefﬂaut et al., ZOOd]. In particular, with
the recent addition of a new virtual-memory (VM) subsystem to MINIX 3, it may be
worthwhile to investigate VM-based optimizations such as setting up shared mem-
ory regions to transfer efficiently IPC messages and data structures.
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Another interesting research question is whether modular, multiserver OSes can
take advantage of multicore platforms. After approximately three decades of yearly
performance gains of 40%-50%, CPU speeds no longer seem to increase in line
with Moore’s law, and most performance benefits are expected from multicore CPU
designs , ]. However, monolithic OSes might be difficult to scale be-
cause of inter-CPU locking complexities and data-locality issues on massive multi-
core architectures. Multiserver OS designs, in contrast, seem to map more naturally
onto multicore systems. For example, it might be possible to compartmentalize
the OS such that the file server and the network server along with their clients run
on different sets of CPUs, so that they can be active at the same time. Further-
more, the original criticism against modular OS designs—expensive IPC—might
turn out to be a benefit in the long run. In particular, message-passing-based IPC
might be cheaper than shared memory due to the latency of fetching remote mem-
ory [Baumann et al., \M]. Recent chip designs even feature hardware support for
message passing [Feldman, M]. Future research should further investigate how
modular designs compare to monolithic designs with respect to complexity and per-
formance when they are scaled to massive multicore architectures.

7.4 Availability of MINIX 3

To conclude this thesis, we would like to emphasize that the MINIX 3 OS is free and
open-source software. All the fault-tolerance mechanisms as well as the test infra-
structure described in this thesis are publicly available from the MINIX 3 source-
code repository ﬂVrije Universiteit Amsterdam, ‘2009]. The official MINIX 3 web-
site can be found at http://www.minix3.org/ and provides a live CD, beta versions,
source code, user documentation, news and updates, a community wiki, contributed
software, and more. Since the official release of MINIX 3 in October 2005, over
250,000 people have already downloaded the OS, resulting in a large and growing
user community that communicates using the Google Group minix3. MINIX 3 is
being actively developed, and your help and feedback are much appreciated.
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DHCP dynamic host configuration protocol
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MLFQ multilevel-feedback-queue scheduler
MMU memory management unit

MSI message-signaled interrupt

MTTF mean time to failure
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small computer system interface
software-based fault isolation
secure-hash algorithm 1
software-isolated process
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software-implemented fault injection
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Windows driver foundation
Windows driver model
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