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1
Introduction

Fault injection

It is unlikely that anyone reading this thesis has never experienced a computer sys-
tem failing. Almost certainly, you have experienced the situation where you lost a
document you were working on when your operating system suddenly stopped and
required a reboot to be able to continue. It is very likely that at some point you were
trying to use an online service but it was unavailable and would not respond to your
computer’s requests. There is a fair chance that at some point your hard drive just
stopped working and you had to recover all your important files from a backup, as-
suming you had one. In all these cases, the computer system you were using was not
behaving as it was designed to do because some fault caused something unexpected
to happen that the system was not able to deal with transparently. There are many
different types of faults possible. In case of the operating system crash, the most
likely possibility is that a programmer made a mistake while writing the program
code of the operating system. Due to this mistake, the operating system ended up
in a state where it was no longer able to provide the services required by applica-
tions, causing the system to hang and require a reboot. In case of the online service,
some external system failed to provide the proper response to your system, presum-
ably because either the server providing the service was unavailable or overloaded or
the network between the computers was not delivering the messages between them
properly. In case of the hard drive, wear may have caused the disk head to crash
into the disk platter, damaging the magnetic surface and making it unreadable. In
all these cases, users typically have no way of knowing which faults exist and when
and why they might be triggered. Still, because the system was not able to deal with
the consequences of the faults, the system failed and the user is left to deal with the
consequences of a hardware or software fault they had no part in.

1



2 CHAPTER 1. INTRODUCTION

Computers have been failing for such a long time that users have come to accept
this and started to live with it. In the best case they make backups and have redundant
systems available to reduce loss of data and to speed up recovery after failure. In fact,
if they do not, others would blame them and hold them responsible for the conse-
quences. If buildings were like computer systems, the present situation would be one
where buildings are expected to collapse every few weeks. Moreover, the people in-
side would be blamed for not wearing protective gear inside if they get hurt as a con-
sequence because they should have known that buildings fail from time to time. This
situation is highly undesirable not just for buildings, but also for computer systems.

The question, then, is what we can do about those failures. In an ideal world,
we would simply prevent the faults causing those failures from being introduced in
the first place. In case of the failing hard disk, this can be achieved by improving
the design and manufacturing process and by replacing the hard disk in time, before
wear introduces faults. In case of the Internet service, redundant servers and net-
works could be added that prevent your system from ever getting an error response
when trying to reach the service. Software, however, is different. To err is human
and computer programs are written by humans. Even the best programmers make
mistakes when writing code, introducing faults in the software as a consequence.
Safe programming languages [97] have been developed that can reduce the impact
of faults. Although this approach is promising, it cannot eliminate all faults and has
not yet caught on in widely-used operating systems for both legacy and performance
reasons. This is unfortunate, as a working operating system is essential for any appli-
cations program to work properly and the operating system runs at the highest priv-
ilege level, allowing it to do most damage in case of faults. As a consequence, there
is currently no viable solution to prevent faults from being introduced in software.

The second best option is to ensure that all faults are discovered and eliminated
before the product is shipped to the consumer. In case of hard drives, we expect
extensive quality assurance to detect defective drives and prevent them from leaving
the factory, especially for the high-end drives used in critical systems. For software
faults this means that we would need to test systems thoroughly to find these faults
and fix them before the software ever reaches the consumer. Unfortunately it turns
out that testing software is a very hard problem. Research has shown that even
in mature software, faults tend to persist over a large numbers of releases [100].
There has been considerable work on automatic bug detection tools, but even those
cannot prevent software bugs from being a major source of system crashes [83]. The
seL4 [72] system has shown that formal methods can be effective in proving that a
system is bug-free, but they require a heroic effort to be used in practical systems.
seL4’s correctness proof alone, for example, required around 20 person years for
9,300 lines of code. For comparison, the latest version of Linux (4.2.4) contains
13,598,692 lines of code (as counted by Cloc[3]). This projects out to 29,000 person
years to prove Linux correct even if we ignore the fact that Linux was not built
with correctness proofs in mind. This gets even worse due to the fact that operating
systems like Linux are constantly changing. We must conclude that, even though
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1there are some ways to reduce the number of software faults, it is not viable to
eliminate software faults from computer systems entirely.

Now that it has been established that we must accept the presence of software
faults as a fact of nature, we must shift our focus to building fault-tolerant systems
that are able to withstand the impact of faults without resulting in failure. Let us
once again revisit our examples to show what this would mean in practice. In case
of the hard drive, it is possible to build a RAID system that uses several disks, each
of which has a copy of all that data that is stored on the system. If one of the disks
fails, the other disks can continue to provide the data that is requested. Assuming
that disk faults are independent and the failed disk can be replaced on the fly, the
system as a whole continues working and users are never presented with a failure. In
case of the online service, the system can use local storage to allow users to continue
to work on the data they already downloaded. When the system becomes available
once more, the local copies can be updated and changes made by users uploaded
to the server. In case of software faults, this means that the system must be able
to contain to impact of faults to prevent them from bringing down the system, to
detect that something went wrong, and to restore the system to a proper working
state without user intervention.

The good news is that many techniques have been developed in the research
literature to prevent software faults from resulting in failures and make computer
systems more fault-tolerant (for example [107; 55; 64; 108; 112; 22; 103; 81; 127;
94; 44; 126]). The bad news is that they have not been widely adopted in prac-
tice. The reasoning behind this is easy to guess. Failure containment, detection and
recovery systems cost time, both in terms of development time and run-time perfor-
mance. Time is easy to measure and compare, in the simplest case simply by using
a stopwatch while making the system perform a particular task. Time is money. To
make a good case for improving reliability through fault-tolerance is is important to
be able to compare solutions and quantify how much time or money can be saved by
implementing techniques to improve system reliability.

Unfortunately, measuring fault-tolerance is much harder than measuring time. To
be able to measure fault-tolerance, one needs to evaluate how well a system works
in the presence of faults. Although, as we discussed before, there are plenty of soft-
ware faults present in production software, they are unfortunately very hard to use
for measuring reliability. They are often hard to trigger, as is shown by the fact that
it occasionally takes years of production use for them to be discovered. Of course,
plenty of more obvious faults are found in the testing phase, but such faults are not
representative of the residual faults that end up in production systems [96]. More-
over, it is not sufficient to determine how the system reacts to faults that have already
been found; it is more important to be able to predict how the system will behave
in response to the faults that have not been found yet. To be able to make meaning-
ful predictions, one needs to use statistical methods, which requires a large number
of experiments. Given the fact that each fault requires manual effort to find and to
create a workload that triggers it, this is not viable when using only real-world faults.
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Given that we need faults to be able to measure reliability and real faults are in-
sufficient to reach strong conclusions, it becomes clear that fault injection is neces-
sary. Fault injection is the introduction of deliberate faults into a system to determine
how the systems behaves in the face of faults. This important technique has is widely
used in reliability research. Even when considering just the injection of software
faults in operating systems, it has been used to evaluate operating system stability
in case of faults in the operating system itself [125; 71], to test isolation properties
to protect against faulty device drivers [39; 54], to certify safety properties [33], and
to improve fault tolerance by finding the most likely situations in which data can be
lost [98]. In the next section, we compare the various types of fault injection that are
used and explain why we focus on software fault injection in particular.

Software fault injection

The first step in a fault injection campaign is to select a fault model. The fault model
specifies what kinds of faults the fault tolerance mechanism that is being evaluated
should be able to deal with. In broad categories, fault models could specify external
faults, hardware faults or software faults.

The category of external faults refers to faults that are external to the (component
of the) system itself and observed on the interfaces of the (component of the) system
that is being evaluated. Using the examples from the previous section, this would
be the online service that is unavailable. Although there are many possible reasons
why the external server could have failed, the only thing that matters for the purpose
of fault tolerance is which message is received at the system’s interfaces. Hence,
the fault model essentially consists of all the possible responses on the external in-
terfaces or a subset thereof. Such fault models have the benefit of allowing for a
fairly simple specification based on a well-defined API or protocol. They are also
relatively easy to implement in practice as the system component being tested does
not need to be changed; it is sufficient to change the libraries implementing the API
or interpose in the message exchanges with external systems. Examples of systems
using this fault model are LFI [90] and FATE [50].

The second type of fault model, hardware faults, corresponds with the example
of the failed hard drive (assuming at least that it is considered part of the system
being tested, it could be considered an external failure from other perspectives).
Hardware faults often include fault types such as soft errors, for example bit flips in
the CPU or RAM that corrupt some code or data. Hardware faults can be transient
(for example due to a cosmic ray) or permanent (for example due to a defective
component, as in the hard drive example). The fault model specifies what kind of
transient errors or defects are likely and the impact on the running system can be
derived from the design of the hardware and physical models of their interaction
with the environment. This allows the faults to be realistically emulated using either
hardware (such as for example MESSALINE [12]) or software (like for example
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1FINE [68] and Xception [23]).
Finally, there are software fault models where the fault is caused by a program-

mer making a mistake while writing program code. Fault injection using such fault
models is also known as software mutation testing. This corresponds with our ear-
lier example of the computer requiring a reboot due to a bug in the operating system.
Software fault models stand out due to the fact that these are mistakes made by
humans; they do not follow a predefined specification nor any physical model of
an electronic component. As such, they cannot be predicted theoretically but must
rather be derived empirically from mistakes humans make in practice. Such fault
models have been derived in the literature [27; 41; 70]. The fault injector must then
find locations where a human programmer would have been likely to make the se-
lected mistakes and modify the code there according to the way a human would have
gotten it wrong. For example, the termination condition of a loop is changed to use
a less than comparison operator while it should have been less than or equal to. A
second major difference with the fault models discussed before is the fact that the
program itself must be modified. To faithfully emulate the selected fault model, the
introduced faults must carefully mimic those specified by the fault model. This is
more difficult than for the other types of fault models, where a suitable fault injection
is often simply an error code or a bit flip. These factors distinguish software fault
models from the other types of fault models and makes it particularly challenging to
get software fault injection right.

Even though software fault injection is widely used, it is rapidly developing and
still far from being a mature technology. As such, there remains much to be im-
proved before we can reach a situation where fault injection will be routinely applied
in a systematic and methodologically sound way. This dissertation provides some
steps in this direction, as will be explained in the next section.

Improving software fault injection

Given that software fault injection is both particularly important and difficult to per-
form in a methodologically sound way, this dissertation specifically focuses on ways
to advance the state of the art of software fault injection. This dissertation consists
of papers that have been published in or submitted to peer reviewed conferences and
journals, each identifying potential pitfalls that occur while using software fault in-
jection to measure fault-tolerance and suggesting solutions. The following papers
are included as chapters:

• Chapter 2 explores the relationship between faults injected and faults actually ac-
tivated to determine how the workload causes the activated faults to be distorted
with respect to the defined fault model. It provides a definition of fault injection
fidelity and shows the relevance of distortion problems in real-world fault injec-
tion experiments by performing a large-scale evaluation of fidelity on a number
of programs and workloads. It also analyzes the key factors that can help pre-
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dict and control distortion problems in fault injection experiments. Chapter 2
appeared in the Software Quality Journal[118]. This is an extended version of
an earlier paper that was presented at the IEEE Symposium on High-Assurance
Systems Engineering (HASE ’14)[117] and won the best paper award there. Cris-
tiano Giuffrida contributed to the related work section of this paper.

• Chapter 3 discusses the importance of silent failures for fault injection exper-
iments. It describes a new automated methodology to identify silent failures
in fault injection experiments that is generally applicable and can automatically
identify several classes of failures from the outcome of a given experiment.
This approach has been implemented and used to evaluate the impact of silent
failures across several different programs for various fault types and fault lo-
cations. Our results demonstrate that the impact of silent failures is relevant
and should be carefully considered in dependability benchmarking scenarios.
Chapter 3 was presented at the European Dependable Computing Conference
(EDCC ’14)[119]. Cristiano Giuffrida contributed to the related work section of
this paper.

• Chapter 4 provides a new measure of operating system stability in the face of
software faults that is, at the same time, comparable, representative, and scal-
able. The concept of stability is important because it is unreasonable to expect a
system to work according to specifications in case a fault is injected. We address
this by using pre-tests and post-tests to distinguish the impact of the fault itself
from the system becoming unstable after dealing with the fault. Our approach
uses statistical testing, allowing the researcher to determine whether enough
tests have been conducted to draw conclusions from the results. In addition,
we have implemented our approach in a way that is easily portable and we have
performed experiments to demonstrate the usefulness of our approach. Chap-
ter 4 was presented at the Symposium on High-Assurance Systems Engineering
(HASE ’15)[119]. Cristiano Giuffrida contributed to the related work section of
this paper and Razvan Ghitulete helped performing the experiments.

• Chapter 5 provides a new design point in software fault injection that combines
availability of source-level information to the fault injector with scalability to
large code bases. It also provides a practical implementation of this approach,
which is shown to deliver considerably better performance compared to other
source-level approaches. It comes close to the performance of binary-level ap-
proaches that lack source-level information. This paper is currently under review
for publication.
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Finding fault with fault injection

An Empirical Exploration of Distortion in Fault
Injection Experiments

Abstract

It has become well-established that software will never become bug-free, which has
spurred research in mechanisms to contain faults and recover from them. Since such
mechanisms deal with faults, fault injection is necessary to evaluate their effective-
ness. However, little thought has been put into the question whether fault injection
experiments faithfully represent the fault model designed by the user. Correspon-
dence with the fault model is crucial to be able to draw strong and general conclu-
sions from experimental results. The aim of this paper is twofold: to make a case
for carefully evaluating whether activated faults match the fault model and to gain a
better understanding of which parameters affect the deviation of the activated faults
from the fault model. To achieve the latter, we instrumented a number of programs
with our LLVM-based fault injection framework. We investigated the biases intro-
duced by limited coverage, parts of the program executed more often than others and
the nature of the workload. We evaluated the key factors that cause activated faults
to deviate from the model and from these results provide recommendations on how
to reduce such deviations.

2.1 Introduction

Despite decades of advances in software engineering and program verification tools,
many software systems are still plagued by critical software bugs. Several studies
have shown that the number of bugs is roughly linear with the program size [100]
even in mature software. Formal methods proposed to address such bugs, such as
used by seL4 [72], require a heroic effort. seL4’s correctness proof alone, for exam-

7
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ple, required around 20 person years for 9,300 lines of code. To scale to software
that is hundreds to thousands of times larger would not currently be realistic. Fur-
thermore, formal specifications can contain bugs or in turn rely on the correctness
of other components (i.e., compilers, hardware, documentation, etc.). As a result,
fault containment and recovery mechanisms still play a pivotal role in the design of
highly reliable systems.

To validate such mechanisms, it is often necessary to evaluate the behavior of a
system under faults. Identifying a sufficiently large number of real software faults
is normally not an option because it requires considerable manual work. Therefore,
fault injection techniques have been devised to artificially inject faults and compare
the run time behavior of the system during fault-free and faulty execution.

Several fault injection tools are described in the literature, with injection strate-
gies emulating simple hardware faults (e.g., bit flips or intermittent errors) [65; 16],
faults at the component interfaces (e.g., unexpected error conditions generated by
the libraries) [90; 89; 74], or real-world software faults introduced by program-
mers [99; 127; 41]. Each injection strategy reflects a particular fault scenario and
serves a unique purpose in the reliability testing process.

Although the principles outlined here are more general, our focus is specifically
on injection of realistic software bugs. Such injections are particularly critical to
evaluate the effectiveness of fault containment mechanisms (i.e., preventing faults
in one component from affecting other components), fault detection techniques (i.e.,
identifying the occurrence of faults during execution), and fault recovery mecha-
nisms (i.e., mitigating service disruption after the occurrence of faults).

To rigorously conduct fault injection experiments, an important step is to define
an appropriate fault model. The fault model specifies what kinds of faults should
be tested. This model includes at least the types of faults to be injected and the
locations selected for injection, but possibly also other factors such as fault trig-
gers [90; 89]. Prior work has investigated how to accurately construct a represen-
tative fault model, for example by considering which fault types occur in which
frequencies in real software [41] and at which locations faults are most likely to
occur in production [95; 96].

Nevertheless, defining a representative fault model and configuring a fault injec-
tion tool to follow that model is not sufficient to thoroughly assess the quality of
fault injection results. To show why, we must first understand how the fault model is
instantiated by the fault injection tool into an input and output fault load. The input
fault load consists of the faults that the tool inserts into the code of the program.
Generally, an effort is made to configure the fault injection tool such that the input
fault load carefully reflects the original fault model. Suppose, for example, that the
fault model specifies that 10% of faults should be branch condition flips in a location
that is executed by no more than two different tests. In this case, in an input fault
load consisting of 100 faults one would expect approximately 10 such faults.

The output fault load consists of the subset of faults activated during the ex-
periment, accounting for multiple activations. Multiple activations are important be-
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1  char *clear(char *buf, size_t size) {
2    if (!buf) {
3      buf = malloc(size);
4    }
5    while (size > 0) {
6      buf[--size] = 0;
7    }
8    return buf;
9  }

Figure 2.1: Example function to demonstrate distortion

cause some faults only have an impact in particular circumstances, such as a memory
leak only affecting the results when already low on memory. Some faults may be
activated only once, others very often, yet others may not be activated at all.

It should not be assumed that all faults in the output fault load cause actual fail-
ures, as it is possible for an activated fault not to affect any relevant state. For
example, a buffer overflow might corrupt only data that is not read before being
overwritten again or a memory leak might not be severe enough to cause later allo-
cations to fail. Whether faults cause failures is important, but strongly depends on
what types of failures one is interested in. For example, one might consider only
crashes or one might go as far as to consider even spelling errors in displayed mes-
sages or differences in timing. In this paper we only look at distortion introduced
by nonactivation and multiple activations, which is an important factor regardless of
the exact types of failures being considered.

The output fault load may differ considerably from the input fault load. Even if
the fault model is representative of real-world faults and the input fault load accu-
rately instantiates the original fault model, it is possible for the output fault load to
not represent a realistic fault model at all. We will refer to the difference between
input and output fault load as distortion. If the distortion is biased towards particu-
lar fault types or locations, activated faults do not faithfully reflect the original fault
model even if many experiments are carefully run. We will use the term fidelity to
refer to the degree to which the output fault load reflects the original fault model
with no distortion. The introduction of the new terminology is justified by our focus
on the quality of the output fault load generated by the fault injection tool. This is
in stark contrast with prior approaches described in the literature, which are solely
focused on representativeness and accuracy of the input fault load [41; 95; 96]. We
will provide a formal definition of fidelity and the other relevant terms in Section
2.3.

To demonstrate the concepts we introduced and indicate why fidelity is impor-
tant, we have included a small code example in Fig. 2.1. The first step is to identify
fault candidates. In working out the example we will use the same fault types used
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Table 2.1: Fault types

name description applicability

buffer-overflow size too large in memory operation
call to memcpy,
memmove, memset,
strcpy or strncpy

corrupt-index off-by-one error in array index array element access

corrupt-integer off-by-one error in integer operand operation with integer
arguments

corrupt-operator
replace binary operator with ran-
dom operator binary operator

corrupt-pointer
replace pointer operand with ran-
dom value pointer operation

dangling-pointer size too small in memory allocation call to malloc
flip-bool negate result of boolean operation boolean operation

flip-branch
negate controlling value for condi-
tional branch conditional branch

mem-leak remove memory de-allocation call to free or munmap
no-load load zero instead of intended value memory load
no-store remove store operation memory store

random-load
load random number instead of in-
tended value memory load

stuck-at-branch
fixed controlling value for condi-
tional branch conditional branch

stuck-at-loop fixed controlling value for loop conditional branch part
of loop construct

swap swap operands of binary operation binary operator

in our experiment. These are listed in Table 2.1. For illustration, we will point out
the fault candidates on the first line. Both the ‘flip-branch’ and the ‘stuck-at-branch’
fault types can be injected in the if statement. If the former is injected, the branch
is taken when it should not be taken and vice versa, a common programmer mistake.
If the latter is injected, the branch is either always or never taken. This corresponds
with omission of either the entire if statement or just the part that makes it condi-
tional. As this example shows, it is possible for multiple fault types to be applicable
to a single code location. Both of these are considered individual fault candidates,
although only one of them can be injected at a time. The controlling expression of
the if statement is also subject to several fault types. For example, a programmer
could accidentally invert the boolean operation (‘flip-bool’), use the wrong unary op-
erator (‘corrupt-operator’) or use the wrong variable (‘no-load’ and ‘random-load’).
In total, there are as many as 46 fault candidates of 9 different fault types in this
small code snippet.

The control flow of the code example can serve as an example for two elements
of distortion that we will consider. First, the memory allocation on line 2 (the only
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fault candidate of the ‘dangling-pointer’ in the example) is executed only in case
buf equals NULL. Depending on the context in which this function is called that
might happen on every run, it might never happen or it may depend on the workload
that is used to test the program. In the last case, the distribution of fault types of
accessible fault candidates is different between workloads that do reach this state-
ment and workloads that do not. Now let us assume that fault model specifies that
a certain fraction of the faults tested must be of the ‘dangling-pointer’ type and this
fault candidate was selected for injection of such a fault. This means that the fault
candidate is part of the input fault load. If, however, the workload never activates
this part of the code, it is not part of the output fault load. This does not necessarily
mean that the output fault load is skewed with regard to the fault model and the input
fault load. This depends on the question whether specific fault types or locations are
significantly more or less likely to be activated by the workload when considering
the program as a whole. Without testing, it is hard to tell whether the numbers will
average out at the larger scale or there is a systematic bias.

Another issue that can be illustrated with this code example is the impact of ex-
ecution count. The assignment on line 6 is executed on every iteration of the while
loop. There are various faults that could be injected here. One example target for
fault injection is the unary pre-decrement operator, which provides a fault candidate
for the ‘corrupt-operator’ fault type. If the operator is mistakenly changed by the
programmer into a post-decrement operator, the result is an off-by-one error that
overwrites a single byte past the end of the buffer. If, on the other hand, it is changed
to the unary minus operator, it overwrites size bytes before the start of the buffer.
As a result, the extent of the damage it can do depends on the number of loop iter-
ations. Since the number of loop iterations might depend on the workload (if, for
example, it is the size of a user-provided file), the potential for the fault to do dam-
age also depends on the workload. In this case it has more potential to do damage
than other instances of the same fault type that are executed only once. Again, we
cannot a priori make any assumptions on the question whether this averages out or
introduces bias that gives some fault type more potential of doing harm because they
are in loops more often. Therefore it is important to consider the issue of multiple
activation with an empirical test.

These examples demonstrate that it is important to determine whether these fac-
tors have an impact in practice. If they do, the output fault load cannot be assumed
to always accurately instantiate the fault model. This then needs to be taken into
account when designing fault injection experiments and workloads to compensate
for the biases identified. Our experiment is designed to determine whether this is
indeed necessary.

These considerations yield the following research question: “When performing
fault injection experiments, how faithful is the output fault load observed with re-
spect to the specified fault model and which factors affect its fidelity?” This question
is important for a number of reasons. First, if there is substantial distortion, the ex-
periment is no longer consistent with what the user intended to measure. Suppose,
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for example, that one wants to measure the probability of a recovery solution being
able to successfully recover state. If the output fault load is biased towards bugs that
are easier to recover from, the solution appears to be more effective than it would
be in reality. Second, fault injection experiments can be performed more efficiently
if they follow the fault model. As the output fault load differs more from the fault
model, more injections are needed to achieve the same rigor with regard to testing
those faults specified by the model. Third, it is harder to compare experiments when
there is distortion. If two experiments inject the same number of faults but it is not
known how faithful they are to the fault model, it is possible that they differ greatly
in their effectiveness in finding faults even though they both inject the same num-
ber of faults. Fourth, as fidelity is coupled with the behavior of the test workload,
a high level of distortion may indicate that the workload is not properly designed
for the experiment and may have to be reconsidered. These issues show that it is
crucial to consider the distortion between input and output fault loads and identify
the originating factors.

The main contributions of this paper are (1) providing a definition of fault injec-
tion fidelity and showing its relevance in fault injection campaigns, (2) performing
the first large-scale evaluation of fidelity on a number of programs and workloads to
evaluate the impact of distortion problems in real-world fault injection experiments,
and (3) analyzing the key factors that can help predict and control distortion prob-
lems in fault injection experiments. Please note that this is an extended version of the
earlier conference paper [117], which shares these contributions. Amongst others,
this version has a more complete empirical evaluation and discusses the methodol-
ogy and its limitations in more depth.

After this introduction, we continue with a description of relevant related work.
Then, we define the term ‘fidelity’ and introduce a number of factors that influence
the fidelity of a fault injection experiment. In the approach section we elaborate on
the experiments we performed to determine whether distortion is an important fac-
tor to consider. In the next section, we describe the programs and workloads used in
these experiments and explain how we have selected and constructed them. In the
results section, we present the outcomes of our experiments. Since we investigate a
number of different factors that play a role in distortion, it is split in several subsec-
tions, each dealing with one of these factors. The subsections provide the relevant
results and an analysis of their impact, as well as a consideration of the factors that
may threaten the validity and generalizability of these results. Finally, the conclusion
summarizes our main findings.

2.2 Related work

Fault injection is a popular technique to evaluate the impact of unforeseen faults
on a running software system. When compared to alternative strategies that aim
to uncover real software bugs (e.g., symbolic execution [21]), fault injection is rel-
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atively inexpensive, scales efficiently to large and complex programs, and allows
users to emulate special conditions not necessarily present in the original program
code. Fault injection is used to benchmark the dependability of several classes of
software, such as: device drivers [112; 127; 55], file caches [99], operating sys-
tems [49; 74], user programs [15; 90; 89], and distributed systems [50; 63]. Typi-
cal evaluation scenarios entail analyzing the behavior of a system under faults[74;
49], conducting high-coverage testing experiments for existing error recovery code
paths [15; 63; 50], or evaluating the effectiveness and containment properties of
fault-tolerance techniques [112; 127; 55].

While fault injection can theoretically be used to explore all the possible combi-
nations of faults in a given piece of software, in practice this strategy is computation-
ally infeasible for any nontrivial program. To address this problem, prior work has
proposed either using efficient fault space exploration strategies [50; 63; 15] or rely-
ing on a well-defined fault model tailored to the particular fault scenario of interest.

Several possible fault models are described in the literature, with fault injection
strategies emulating (i) hardware faults in hardware [51; 12; 87; 69] or software [65;
16], (ii) software faults [99; 127; 41], (iii) interface faults at the library level [90; 89]
or (iv) at the system call level [74]. Injection techniques range from static pro-
gram mutations—using simulation-based strategies [26; 59; 111], compiler-based
strategies [56; 127], or binary rewriting [65; 16; 99; 41]—to run time strategies that
periodically interrupt the execution—using timers [114; 65; 23] or predetermined
hardware or software traps [114; 65; 23; 67].

When selecting a fault model, an important question prior work has sought to
address is whether the model is representative for the fault scenario of interest. Rep-
resentativity is important for the validity and comparability of the final results. In
particular, much research on fault model representativeness is devoted to emulat-
ing realistic software faults found in the field. In this context, a number of stud-
ies consider the problem of how accurately artificially injected fault types represent
real-world fault types introduced by programmers [99; 40; 127; 41]. The G-SWFIT
tool [41], for instance, injects fault types based on real-world bugs found in existing
software. Other studies focus on the accuracy of the different injection strategies.
For example, Cotroneo et al. [31] consider the accuracy problems of binary-level in-
jection strategies when compared to source-level program mutations. Christmansson
et al. [28] compare location-based injection strategies with timer-based approaches.
Madeira et al. [88] investigate general limitations of traditional fault injection strate-
gies when compared to real faults found in the field. In another direction, Natella et
al. [95; 96] consider the problem of fault location representativeness, arguing that so-
called residual faults are most representative of real-world bugs that escape software
testing and can be found in production systems in the field.

Unlike fault model representativeness, research on fidelity of fault injection to
the original fault model has received much less attention in the literature. A number
of prior approaches have considered the impact of code coverage on fault injection
experiments [115; 62; 61], but their focus is limited to ensuring reasonable fault ac-
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tivation. Unfortunately, fault activation itself is a poor metric to evaluate how the
nature of the program or workload can degrade the quality of the final fault injection
results. Our notion of fault injection fidelity, in contrast, is much more rigorous and
able to capture the full dynamics of both the test program and the workload. Our
investigation, in particular, provides a thorough analysis of the impact of code cov-
erage on fault injection experiments, while determining how low coverage distorts
the original fault model. This analysis is particularly crucial to quantify the validity
and comparability of fault injection results.

There is some literature on the estimation of coverage of the fault space in the
context of hardware fault injection, such as for example [36]. This work has similar
goals as ours—determining how thorough fault injection experiments are—but the
different context means that they focus on different issues than the ones considered
here, which are specific to software fault injection.

2.3 Fidelity

The first step in our research is to formally define the concept of fidelity. Fidelity is
defined as the extent to which the output fault load reflects the original fault model.
Here, the fault model is a model defined in advance of the experiment that specifies
which faults would be expected in a realistic setting. It specifies fault types and
their relative frequencies as well as the relative frequency of faults occurring per
code location. The output fault load is defined as the set of faults actually activated,
considering multiple activation. It is important to stress that this research does not
consider whether the faults actually have an impact, which would require a different
methodology involving the injection of actual faults. Investigating the impact of this
effect is left for future research.

Although not directly referenced in the definition of fidelity, the input fault load
is also important in the analysis of fidelity. We define the input fault load as the
set of faults actually injected in the target program. One of the main goals of this
paper is to make clear that there can be meaningful differences between the input
and output fault loads. We refer to this difference as distortion. To the extent that
distortion introduces bias in the faults actually activated, it threatens the fidelity of
the experiment if nothing is done to compensate for it.

It should be noted that our current definition of fidelity is qualitative, not quan-
titative. This paper aims to identify the issue and empirically show that distortion
occurs in commonly used fault injection settings. Our investigation of circumstances
that may influence whether distortion is an issue should be considered preliminary.
The definition of a quantitative metric to measure fidelity and using that definition
to reach stronger conclusions on the circumstances causing distortion is out of scope
for this paper and is left for future work.

To research fault injection fidelity, we investigate how the input fault load (faults
injected in the program) relates to the output fault load (faults actually executed).
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The factors that influence the transformation from input fault load to output fault
load make up the dependent variable of our research. Independent variables we
investigate include program types, program implementations, workloads, and com-
piler settings (in particular, optimization level). Although more factors could influ-
ence fidelity, we selected those that are intuitively important and easily controlled by
the researcher. To find the impact of the program and the workload independently,
we include some programs with multiple workload generators as well as workloads
that can be used across multiple programs.

The first factor we consider is coverage, defined as the fraction of the program
that gets executed when the test workloads are run. It can be measured in several
units, commonly lines of code, but alternatively in terms of machine instructions or
basic blocks (a basic block being a part of the code which has a single entry point
and a single exit point). In the context of fault injection, an alternative is to consider
which fraction of the fault candidates—that is, program locations that are suitable
to inject a fault of a particular type—is covered. This way of measuring coverage
has a clear relationship with distortion because the more fault candidates are left out,
the more difference is to be expected between the input and output fault loads (both
of which are also expressed in terms of fault candidates). Unfortunately, coverage
is rarely reported when performing fault injection experiments in research papers–
with some notable exceptions [115; 90; 89; 96]. In general, higher coverage is better
as it allows a larger part of the program to be tested. We address a new concern,
namely whether lack of coverage introduces bias that threatens the fidelity of the
experiment. Uncovered locations are not a random subset of all locations but rather
those that are hard to reach, like for example code that deals with error conditions.
Not just fault locations, but also fault types may be biased as uncovered code often
performs a different role than covered code.

The second factor is the distribution of the execution count per basic block. It
is expected that most of the run time of a program is spent executing only a small
part of the code. Faults injected in this part of the code get activated over and over,
whereas some other fault locations are activated only once per run. Execution count
is relevant in cases where the impact of the fault depends on the context. For exam-
ple, it might corrupt the state only in some particular context, it might affect different
parts of the state on each activation, or prior deviations in the local context may affect
the global state only after a subsequent activation. A typical example is a memory
leak, which does not have a visible impact on the initial execution. However, as it
is executed over and over again it might eventually deplete available memory com-
pletely, resulting in a crash. Our question is to what extent differences in execution
count introduce bias, affecting the fidelity of the experiment. Code executed mul-
tiple times is not a random subset of the program. Most likely, it is the functional
core of the program, which has been tested extensively. In particular, it seems likely
that when injecting residual faults [96] the locations less likely to be triggered are
also triggered less often. Assuming that activated faults may or may not propagate
depending on the context, faults activated more often have a higher chance of caus-
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ing anomalous behavior in excess of the impact of being activated by more of the
workloads. This introduces distortion with regard to the intended fault model.

It cannot be assumed that coverage and execution count of a basic block are
independent from the number and types of fault candidates present in the basic block.
Fault candidate types occurring more commonly in blocks likely to be executed are
another source of bias. In the case that some fault types are over- or underrepresented
in the part of the code covered by the workloads, it is still possible to make the output
fault load faithfully reflect the fault model. However, the effect must be measured
to allow the input fault load to be altered to compensate for the bias introduced. A
second issue is whether the execution count is the same between fault types. Again,
this is expected not to be the case. Backward branches, for example, are almost
always part of a loop hence more likely to get executed often than other types of
instructions. A fault type that is specific to branches is likely to have candidates in
such places, again introducing bias. In this case it is harder to compensate because
the impact of multiple activations depends not just on the fault type and location, but
also on the context. Still, it is important to know that multiple activations introduce
distortion into the experiment.

2.4 Approach

We aim to find and explain differences between the input and output fault loads. To
gather information on the behavior of the test program, we use compiler-based in-
strumentation implemented using the LLVM (Low-Level Virtual Machine) compiler
framework [79] (version 3.2). LLVM is a modular compiler that can write object
files in its intermediate format (also referred to as LLVM bitcode) and allows for
linking at that level. It provides an API that can be used to implement new com-
piler passes directly operating at the bitcode level. Such passes are independent of
both the front-end and the back-end of the compiler and hence portable between all
supported programming languages and target architectures. Because linking can be
performed at the bitcode level, compiler passes can also get an overall view of the
program while still having access to the extensive source-level information present
in the bitcode format. Our analysis operates at the LLVM bitcode level because the
availability of source-level information (in contrast to approaches using the binary
where this information is lost) is required for fault type representativeness [31; 47].

For our investigation, we chose the standard software fault types commonly used
in the literature [41; 27; 110]. The selected fault types are listed in Table 2.1. While
compiling each program, we identify all fault candidates and register in which basic
block they occur. It is convenient to do this at the basic block level, because nor-
mally a basic block is either executed in its entirety or not at all. The exception here
are signals and exceptions, which should be uncommon enough not to interfere with
the research as long as only a single fault is injected on each run. Without inject-
ing any actual faults, we apply our instrumentation to measure execution counts for
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each basic block while running one or more workload generator scripts for each test
program. This allows us to efficiently compute the output fault load for any input
fault load. The main disadvantage is that it is not possible to consider interactions
between faults. However, it should be noted that it is not possible to draw general
conclusions about the impact of interactions between faults regardless because the
interactions depend not just on the fault types and locations but also on the context.
Interactions may introduce additional distortions, such as faults activated early being
more likely to occur than faults activated late. However, these distortions are mostly
a problem if many faults are injected per run, which is quite unrealistic to begin with.
Our approach allows us to use a few real runs (multiple to capture random workload
variations) for each program/workload generator and use the statistics collected to
efficiently consider all possible single injections. Interactions would however be a
good topic for future research.

Although we have conducted all our experiments on x86 Linux, testing programs
written in the C programming language, our approach is more generally applicable.
Our tools are built on top of LLVM and make no assumptions about the programming
language or back-end used. This means that they should work with any program-
ming language for which an LLVM front-end is available, on any operating system
that can be targeted by LLVM and on any CPU architecture for which an LLVM
back-end is available. In other cases, our tools cannot be used but it is still possible
to apply our approach. To perform an analysis like ours, the main requirements are
a profiler that provides information at the basic block level and a fault injector that
can identify a relevant set of fault candidates in the programs. Depending on the
programming language, it may be necessary to select a different set of fault types.
For example, the memory leak fault type included in our tests would not apply for
garbage-collected languages such as Java. For future work, it would be interesting to
apply our approach in such different environments to determine whether our findings
also hold there.

2.5 Programs and workloads

We selected a number of programs that is reasonably diverse, while also contain-
ing several sets of programs that are functionally similar. The latter can be used to
compare different programs running the same workload. We preferentially chose
programs that offer their own regression test suite to have a ‘neutral’ workload, but
wrote our own workload generators for programs that do not offer regression tests.
We selected three compression programs (bzip2, gzip and xz), two implementa-
tions of sort (GNU Coreutils and Busybox) and two implementations of od (same
sources). Busybox is normally compiled into a single binary containing all tools, but
we configured it to provide each tool as a separate binary. In addition we selected
the bash shell because it does a lot of parsing and hence may encounter error condi-
tions in the input, gnuchess because the control flow of its artificial intelligence is
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expected to be relatively complex and the vim editor to have an interactive program
that has a good regression test suite. Because we also wanted to have a systems-
related program, we included ntfs-3g, which is a user-space implementation of the
NTFS file system.

Having a good workload with high coverage is desirable for fault injection ex-
periments. For this reason, regression tests are generally more suitable than perfor-
mance benchmarks and we have used these wherever they were available. We have
not attempted to increase the coverage in these cases as our aim is not to perform the
best fault injection experiments possible, but rather get an impression of the biases
present in commonly performed experiments. However, we did randomly select a
subset of the tests to ensure some variation. We ran enough runs to prevent this from
negatively impacting coverage.

Where regression tests were not available or where we wanted comparability be-
tween different programs with the same benchmark, we generated workloads that
randomly combine the available commands and options as specified by the docu-
mentation and randomly generate input files where needed. Some erroneous inputs
are also generated, but no attempt is made to test all anomalous conditions so as to
keep the results comparable with other experiments.

For the compression programs bzip2, gzip and xz we used the manual pages
to generate a random combination of supported flags on each run. The input file is
randomly generated using a Markov chain approach, randomly picking a transition
matrix from several types of files, including binaries as well as text in several lan-
guages. We test compression, testing, decompression and if supported also listing.
After compression, the result is sometimes corrupted by changing a byte, zeroing out
an aligned 512-byte block or truncating the file. Files are corrupted to trigger some
of the error handling code. These workloads are listed as bzip2-man, gzip-man,
and xz-man. For purposes of comparison, a common test script using only features
supported by all tools was also made (listed as bzip2-common, gzip-common, and
xz-common). For xz we also included a variant that uses the LZMA compression
method rather than the default (listed as xz-common-lzma). In addition, to allow
for comparison with the same program and a different workload generator, we have
included the regression tests included with the bzip2 and gzip programs (listed as
bzip2-rtest and gzip-rtest).

For sort (from both GNU Coreutils and Busybox) and od (from the same
sources) a similar approach was used. Here, flags were taken from the POSIX spec-
ification rather than the man-pages. Some parts had to be left out because Busybox
od did not implement them.

bash and vim come with extensive regression test suites. To introduce varia-
tion, on each run we executed a random subset of these regression tests. Each test
has a probability of 0.5 of being selected. Introducing variation is crucial to mimic
the behavior of real-world workloads. This strategy is in stark contrast with prior
approaches, which often resort to the assumption of deterministic workload behav-
ior [62].
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For gnuchess and ntfs-3g, we made a list of operations and selected a ran-
dom one on each iteration with random (but generally sensible) parameters. This
list consists of commands from the manual for gnuchess and operations from the
POSIX specification operating on the subtree where the file system was mounted
for ntfs-3g. For ntfs-3g, eight processes simultaneously performed operations to
trigger any code dealing with concurrency.

2.6 Results

The results section has been split in subsections, each representing a factor causing
distortion that our experiments can shed some light on. Each subsection provides
the relevant results and an analysis of their impact.

2.6.1 Coverage

Coverage is a major concern for fidelity because parts of the code that are never ex-
ecuted when a test workload is run can never activate any faults. Any fault model
in which these particular locations are important requires substantial effort to maxi-
mize coverage if any degree of fidelity is to be achieved. For this research, the goal
is not to maximize coverage but rather to evaluate a range of coverage levels that
might realistically occur in fault injection research.

Number of runs needed to measure coverage

Whenever the workload generator contains a degree of randomness, the coverage
increases as more runs are tested. Each random input has some chance to trigger
basic blocks that have not been triggered yet in previous runs. However, there are
strongly diminishing returns because the higher the level coverage was before, the
lower the chance of reaching a block that has not been reached previously. Hence,
as more runs are performed the coverage will eventually grow to some maximum
coverage for that particular workload generator. Fig. 2.2 shows the total coverage as
a function of the number of times the workload generator is executed with optimiza-
tion enabled. The number shown for run n is the percentage of basic blocks that has
been executed in any of the first n runs of the workload generator script. It should
be noted that each invocation of the workload generator consists of multiple execu-
tions of the tested program. This number is chosen in such a way that the per-run
execution time is comparable between the programs. For example, the compression
utilities are used to compress, test and decompress 500 times in each run, while the
sort utility sorts 50 files on each run.

The graph confirms the idea that, while it is important to have a sufficient num-
ber of runs, there are strongly diminishing returns. After only 18 runs, all programs
and workloads are within 1% of the final coverage at 50 runs, gnuchess being the
last to reach that point. We have performed the same analysis without optimization
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Figure 2.2: Coverage in basic blocks as a function of the number of runs with -O4 optimization

and the shapes of the graphs are very similar, with 21 runs needed for each workload
to be within 1% of the final coverage (again, gnuchess being the last). The graph
suggests that 50 runs is easily enough to get a good impression of the maximum cov-
erage that the the workload generators can achieve for all programs and workloads
we test. Given that up to some point increasing the number of runs is effective
in increasing coverage, we recommend fault injection experiments to systematically
consider this factor by measuring the number of runs needed before the maximum
coverage is reached.

Units for measuring coverage

Coverage is the percentage of a program that is executed while running a workload.
There are multiple ways to measure this. A commonly seen metric is the percentage
of the lines of code in the program that are executed. This has the advantage of
being intuitive because it considers the code written by programmers rather than the
(mostly invisible) compiler output. It has the disadvantage that some lines may be
much more complicated (and hence prone to bugs) than others. To address this, one
could instead consider what percentage of the machine instructions generated by the
compiler is executed. This way, complex code has more weight. Another considera-
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tion is how easy or hard it would be to increase coverage. If many machine instruc-
tions are on the same code path, it would be easy to exercise them by adding an input
to the workload that causes this code path to run. If, on the other hand, they are all
in conditional branches, many inputs might be needed to reach the same number of
instructions. If this is what counts, it is more convenient to measure code coverage in
terms of basic blocks, because usually each basic block is either executed or skipped
over in its entirety. One final consideration is how many opportunities there are for
bugs. Fault injectors identify fault candidates, code locations where the bugs of the
types known to the injector can be introduced. This means it may also be a good idea
to consider how many of these fault candidates can be activated by the workload as
a coverage metric. Given that there are so many ways to measure coverage, it is
important to find out how large the impact of the choice of metric is and, if there is
a substantial difference, which one is most suitable in the context of fault injection.

Fig. 2.3 shows the level of coverage we reached for each program using 50 runs
using all four metrics of coverage discussed in the previous paragraph. When con-
sidering the differences between programs and workloads, it is clear that there is
considerable diversity. This is the case even when using the same workload on dif-
ferent programs. For example, bzip2-common and gzip-common are identical work-
loads used on the different programs, but the former reaches 71.4% of basic block
coverage while the latter only activates 40.0% of basic blocks. The regression tests
included by the authors of these programs show a similar difference. This suggests
that program organization can have a large impact on coverage. We investigated
gzip’s poor coverage and found that much of the uncovered code is in reimplemen-
tations of functions normally imported from the C library such as printf. Many
features of these functions are never used, resulting in code that the compiler does
not know is unreachable. Unreachable code makes it harder to get meaningful in-
formation about coverage. Ideally, such code should be removed by the authors or
disabled by the researcher before performing any experiments.

Fig. 2.3 also shows that the way coverage is measured can make a substantial
difference. In almost all cases, coverage in terms of fault candidates is highest,
followed by coverage in terms of instructions and then lines of code. Expressing
coverage in terms of basic blocks tends to yield the lowest number. The clearest
deviation from this pattern is seen for xz-common and xz-common-lzma, where
coverage in terms of basic blocks is relatively high.

We computed correlations between the different metrics and found that correla-
tion was strongest between instructions and lines of code (0.991), instructions and
fault candidates (0.990), and basic blocks and lines of code (also 0.990). Correlation
is weakest between basic blocks and fault candidates (though still 0.954). All these
correlations are highly significant, which is to be expected since they measure the
same quantity even though they do so in different ways.

The fact that some coverage metrics are systematically higher than others sup-
ports our idea that uncovered code is not representative of all code. Hence, not
testing this part of the code introduces a bias that makes the output fault load a more
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Figure 2.3: Coverage per program and workload generator with -O4 optimization

distorted view of the input fault load and hence the fault model. In particular, the
fact that coverage in terms of basic blocks is lower than the other measures means
that the larger basic blocks (in terms of lines, instructions and fault candidates) are
more likely to get executed than smaller basic blocks. We think this may be due to
error handling code being tested less thoroughly, with regression tests mostly focus-
ing on the program working correctly on valid inputs. It seems reasonable to assume
that error handling code has smaller basic blocks when a common response to er-
rors is simply to print a message and terminate the program. We will consider this
hypothesis in more depth in Section 2.6.1.

Despite the strong correlations, the graph makes clear that there are cases where
the choice of metric has a substantial impact on how the coverage numbers compare
between programs and workloads. A clear example can be seen with the sort utility.
Even though the programs implement the same specification, the same workload is
used and coverage is very similar in terms of basic blocks (30.6% versus 31.1%),
lines of code (29.3% versus 30.3%) and instructions (33.1% versus 31.0%), coverage
of fault candidates is much higher for the Busybox implementation (41.3% versus
29.8%). Therefore, fault injection experiments using Busybox are expected to be
more faithful to the fault model. A similar situation is found with gzip-common and
xz-common, which have similar basic block coverage (40.0% versus 41.6%) but a
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Figure 2.4: Coverage per program and workload generator without optimization

large difference in fault candidate coverage (50.5% versus 41.9%). A comparison
of bzip2-rtest and bzip2-common shows that such situations can exist even with the
same programs when running different workloads. Although bzip2-common reaches
substantially more basic blocks (71.4% versus 60.7%) and lines of code (74.8%
versus 64.5%), its lead in terms of fault candidates is not nearly as large (80.0%
versus 77.9%). It has become clear that the choice of metric makes a substantial
difference, even when the same program or workload is used. Such differences are
visible in cases with very low coverage as well as with reasonably high coverage.

Given that the coverage metrics we discussed show small but meaningful dif-
ferences, care must be taken to measure coverage in the right way. In case of fault
injection experiments we believe coverage in terms of fault candidates to be most
appropriate because reaching fewer fault candidates increases distortion. This is es-
pecially relevant because our experiments have also shown that covered locations
are not representative of all code locations.

In addition to the comparison between programs and workloads, we have inves-
tigated the impact of optimization level on coverage by comparing the optimized
programs discussed before with unoptimized versions. In LLVM 3.2, -O4 is the
highest level of optimization possible, combining maximal compiler optimization
(-O3) with link-time optimization (-flto), so we are comparing the two extremes.
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Although optimization allows for the elimination of more dead code, it may also in-
crease code size due to inlining. Therefore, it is a priori unclear whether optimization
should have an impact on coverage.

Fig. 2.4 shows coverage when optimization is disabled. When taking the average
over all program/workload combinations, optimization only makes a minor differ-
ence. Coverage in terms of fault candidates is most affected, with coverage being
slightly higher with optimization (54.9% versus 54.0%). This difference is mostly
caused by gzip, which is the program for which optimization has most impact. For
example, the gzip-man test has 53.8% fault candidate coverage with optimization
and 49.7% without. To investigate why this program stands out, we listed the cov-
erage per function in the program to find where this impact of optimization comes
from. It turns out that it is mostly due to reimplemented C library functions with
poor coverage being optimized more aggressively than the rest of the code.

We have not found evidence that optimization has a meaningful impact on cover-
age. This does not rule out that it could be a factor in other cases and it is possible that
the impact may also depend on which specific optimizations are enabled. Unfortu-
nately we were unable to test levels between unoptimized and -O4 because of techni-
cal limitations of the version of LLVM used for the experiment when bitcode linking
is enabled. Based on these results we cannot give a general recommendation on the
preferred optimization level. In addition is should be considered that the exact mean-
ing of the optimization switches changes over time as more optimizations are added.
Hence, the most prudent approach would be to measure the impact of various levels
of optimization in the context where it is being used and base a decision on this. If
the coverage differences are minimal as in this case, we would recommend using the
same compiler settings as in production settings to bring the fault injection experi-
ment as close as possible to the way the software is used in production environment.

Relationship between code location and coverage

The claims that low coverage is caused in part by unreachable code and that error
handling code has different characteristics than other code need to be verified. To
check whether these are the plausible we analyzed bzip2 program, classifying each
basic block. This program has high coverage compared to the others (74.1% of basic
blocks) so it should give a good impression of the nature of the hard-to-reach parts.
Also, its control flow is relatively simple, making mistakes less likely. It should not
be taken as a representative sample, but rather as a proof of concept that our ideas
are plausible.

We classified basic blocks in the bzip2 program based on the circumstances un-
der which they are invoked. We then used out bzip2-man workload script to invoke
the program 600 times and used our instrumentation to keep track of how often each
basic block was executed. This allows us to determine coverage for each class of
block. The result is shown in Table 2.2. Basic blocks that are reachable without
error conditions are classified as ‘normal execution.’ ‘Data errors’ refers to code
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Table 2.2: Classification of basic blocks in bzip2

Basic block type % of Total % of LoC Lines/bb Coverage
average average at least once

Normal execution 78.1% 83.0% 1.7 39.7% 83.7%
Data errors 5.6% 4.2% 1.2 3.7% 34.0%
User errors 1.8% 2.6% 2.3 1.8% 15.2%
OS errors 3.2% 2.4% 1.2 0.0% 0.0%
Unreachable 4.2% 4.9% 1.8 0.0% 0.0%
Panic 4.2% 2.9% 1.1 0.0% 0.0%
No line info 2.9% 0.0% 0.0 43.3% 90.8%
Total 100.0% 100.0% 1.6 32.5% 70.1%

dealing with corrupted input files. ‘User errors’ refers to code run due to invalid user
input. The ‘OS errors’ class deals with unexpected error conditions, including error
codes returned from system calls as well as signal handling. ‘Unreachable’ code
can never be executed. In bzip2, most unreachable code consists of functions in
a library that may be used from other programs but that bzip2 itself does not use.
Note that our classification of basic blocks is based on the binary, which means that
any code the compiler eliminates because it can prove it to be unreachable is not in-
cluded. The ‘panic’ category refers to error conditions that should never occur, such
as assertion failures. A few basic blocks did not include line number information, so
we could not classify them.

Two of the columns in Table 2.2 specify coverage. The ‘average’ column speci-
fies the percentage of basic blocks in this class executed per run, averaged over all the
runs. The ‘at least once’ column specifies the percentage of basic blocks executed
in at least one of the runs. This means that the ‘normal execution’ class of basic
blocks, the basic blocks that can be reached by some input are on average reached
in half the runs. The ‘data errors’ and ‘user errors’ classes that are exercised by the
workload, on the other hand, are activated in only one in ten of the runs on average.
These findings are consistent with expectations, as it means that a relatively small
fraction of the test cases in the workload attempt to trigger error handling code.

When considering what percentage of the code is in each class, it is noteworthy
that 10.6% of the basic blocks can only be reached by triggering error conditions in
the workload while 8.4% cannot or should not be reached at all. It is important when
constructing high-coverage workloads as well regression tests that triggering error
conditions is essential and also that 100% coverage is not realistic. When consid-
ering the size of each class in terms of lines of code rather than basic blocks, these
numbers are 9.2% and 7.8% respectively. This further supports our previous finding
that using the de facto standard measure of lines of code tends to underrepresent
parts of the code that are particularly relevant in reliability research.

Previously, we have argued that the differences between the various coverage
metrics we discussed may be caused by error handling code having relatively low
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coverage as well as relatively small basic blocks. This hypothesis is clearly sup-
ported by our data for bzip2, with the ‘at least once’ coverage per basic block
averaging only 20.5% over all classes of error handling code, while it is more than
four times as high for the ‘normal execution’ code class. The idea that error handling
code consists of smaller basic blocks is also supported overall, but there are differ-
ences between the classes of error handling code. While code handling data and
operating system errors does indeed consist of small basic blocks, code handling
user errors tends to have larger basic blocks. We have looked into the code to find
an explanation for this unexpected result and found that this is because user errors
tend to give more verbose error messages so that more code is needed to print them.
Because user errors make up a relatively small part of the error handling code, our
hypothesis is still firmly supported. More generally speaking, our results show that
code structure differs between the classes we identified. Although we do not claim
these results are representative of other programs, it is clearly shown that this issue
should not be ignored when evaluating coverage.

2.6.2 Execution count

The degree to which some parts of the code execute more often than others is rarely
considered in fault injection experiments. Given that the impact of an activated fault
may depend on the context, it is reasonable to expect that a fault being activated
over and over again is more likely to have an impact than a fault activated only once
each run. Although this would probably not make a difference when dereferencing
an invalid pointer (which would lead to a segmentation fault on the first attempt), it
is very relevant in the case of for example a memory leak (where available memory
gradually runs out with subsequent activations). Therefore, it is prudent to consider
whether repeated activation could introduce bias in fault injection experiments.

Which parts of a program are executed often is mostly determined by the control
flow. Loops and recursion allow sections of the code to be executed arbitrary num-
bers of times. However, the workload often determines the bounds of loop counters
and the depth of recursion. We aim to determine whether the distribution of execu-
tion counts is affected mostly by the program or mostly by other factors such as the
workload. In the former case there is no difference between fault injection experi-
ments and production, so no bias is introduced. In the latter case this factor must be
carefully considered.

To investigate the distribution of execution counts, we have plotted histograms
showing the number of basic blocks with particular execution counts. These graphs
are shown in Fig. 2.5. Both axes are logarithmic because of the extreme ranges of
values they take. Both bash and vim (the programs with the most extensive regres-
sion test suites) show a more-or-less linear decline in frequencies as the execution
count goes up. The regression test suite for bzip2 is similar, though more ragged
because of the smaller workload. This shape in a log-log histogram is typical of
power law distributions [7], where the probability of each value k is proportional



2.6. RESULTS 27

C
ha

pt
er

2

to k−α. Some other plots show a graph that increases, reaches a peak and then de-
creases linearly. This is the case for bzip2, gzip and xz with the workloads we
constructed, as well as the gzip regression test suite, ntfs-3g and to some extent
gnuchess. These are still good candidates for a power law-like distribution as the
tail (higher values) is most important. Finally, both implementations of sort and od
have distributions with two peaks. Such a graph suggests that part of the program is
independent of input size, whereas another part runs a fixed number of times for each
byte/line of input. This graph as a whole does not fit any commonly used probability
distribution, but the behavior of the tail is still similar to a power law distribution.

The fact that execution counts of basic blocks are distributed roughly according
to a power law and have fat tails means that the differences in execution counts
between basic blocks are huge. This effect can readily be seen from the ranges
of values in Fig. 2.5. Faults injected in the most executed locations get activated
incomparably more often than those injected in other places.

Our aim is to find which factors influence this behavior. It is hard to find out di-
rectly from the graphs and an attempt to do so would be highly inaccurate. Since the
execution count is generally either power law distributed or the tail can be approx-
imated by such a distribution, we estimate the exponent of the distribution. Higher
values of the exponent indicate that the frequencies go to zero faster, the tail is less
fat and the distortion introduced less extreme. Hence, the exponent is a suitable way
to characterize the execution count distributions. We assume the execution count
follows a zeta distribution, a discrete power law distribution where the probability
of the execution count being k is k−α/ζ(α). Here α is the exponent we want to
estimate and ζ is the Riemann zeta function. The exponent can be estimated by
performing a maximum likelihood fit [7].

The average estimated exponents (over 50 experiments) and the standard errors
are shown in Fig. 2.6. The standard errors are all very low, which is an indica-
tion that 50 experiments are enough to get an accurate estimate of the value of the
exponent. We have also considered the standard deviation, which is slightly over
seven times the standard deviation (

√
50 to be exact). In almost all cases, even the

standard deviations are very low. This indicates that the estimated parameter does
not strongly depend on the random seed used to generate the workload. The main
exception here is the Coreutils sort implementation, which has a standard deviation
of 0.056 in the optimized case and 0.066 without optimization. The high standard
deviations indicate that the random seed has considerable impact on distribution of
execution counts for this program. Considering the numbers for the individual runs,
they can be partitioned in two groups. The larger group (about 78% of the runs) has
an average exponent of 1.141 (standard error 0.003, standard deviation 0.019) while
the remainder averages at 1.291 (standard error 0.008, standard deviation 0.025).
Considering these numbers, our workload and the Coreutils sort source code, it
seems the difference is caused by the difference between merge operations and full
sorts, with the merge operations resulting in less extreme execution counts. This
suggests that the exponent of the execution count distribution provides a meaningful
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Figure 2.5: Log-log histograms of execution count (median over 50 runs) per basic block; the
x-axis shows the number of times a block was executed and the y axis how many basic blocks
have been executed that often

idea of what the program is doing.
It is noteworthy that the exponents are all close to one, which is the minimum for
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Figure 2.6: Estimation of the distribution exponent; lines indicate standard errors

the exponent of the zeta distribution. These exponents suggest that all distributions
are very fat-tailed and extreme execution counts are quite common.

The graph shows the impact of implementation and workload. The exponents
for the two implementations of od and sort are not even close to each other, even
though they run exactly the same workloads. The bzip2 and gzip programs show
that the workload also has a large impact. Although the difference is smaller than
between programs, it is much higher than the standard deviation. This is consistent
with the different shapes in Fig. 2.5. It is clear that both different implementations
of the same functionality and different workloads on the same program can result in
different distributions.

We also tested the impact of the level of optimization on the distribution of exe-
cution counts. However, even though the programs tend to have more blocks when
optimization is disabled, the distribution exponent barely changes in almost all cases.
This similarity suggests that it is the structure of the original program code that mat-
ters, with the compiler having little influence. Only the regression test suite for gzip
shows a substantial difference between the optimized and non-optimized case. The
exponent is clearly higher for the non-optimized version, which means the fat tail is
less extreme in this case. To find out why this is the case we investigated the raw
per basic block execution counts and found that a number of basic blocks is exe-
cuted approximately twice as often for the optimized version as the non-optimized
version. This includes code in the cyclic redundancy check (CRC) and deflate al-
gorithms, which are amongst the most often executed code sections. Considering
the code locations where this happens it seems that the optimizer moves the place
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where the condition for while loops is checked, causing part of these loops to be
executed an additional time. This should not be an issue for fault injection at the
source code because the optimizer will check the code for side effects that make
this optimization impossible. However, the modified code structure could have an
impact on binary-level fault injection, causing injected faults to be executed a differ-
ent number of times than was originally intended. For bitcode-level injection, this
problem is only experienced if optimization is performed before fault injection. We
used this approach here to be able to find the impact of optimization.

Our findings show that execution counts are affected by workload and have a
large potential introducing distortion due to their fat-tailed distribution. High-fidelity
fault injection requires execution counts similar to those in the production envi-
ronment. Since the number of iterations of loops in the program is an important
factor, care should be taken to select a realistic distribution of input sizes. In ad-
dition, the fact that the optimizer may modify the structure of loops in a way that
affects execution counts suggests that binary-level injection may suffer from addi-
tional optimization-induced distortion.

2.6.3 Relationship between execution count and coverage

Residual faults are activated only by a small fraction of the tests [96]. This definition
is based on the idea that such faults are likely to elude testing and are therefore
more representative of real-world faults than other faults. To evaluate the impact of
selection of residual faults on distortion, it is important to know whether residual
fault locations are repeatedly executed to a similar degree as other locations.

Fig. 2.7 classifies basic blocks based on the fraction of runs triggering them
(coverage) and shows geometric means of the maximum execution counts for the
basic blocks in each coverage group. We use the maximum rather than the mean or
median for each basic block to prevent the zero execution counts from automatically
introducing the effect of lower execution counts for residual locations. We use the
geometric mean because we do not want to ignore extreme values (as the median
would do) but we also do not want them to dominate all other values (as the arith-
metic mean would do). Nevertheless, using either of these other measures the pattern
is still the same. Standard errors are not directly applicable to geometric means, but
we computed the standard error of the mean of the natural logarithm for each data
point. This is at most 0.745, corresponding with a factor of 2.106. This shows that
the effects shown are far larger than the errors. Some of the programs and workloads
had either zero or very few basic blocks in some of the coverage groups. It is not
possible to include these cases in the graph in a meaningful way, so unfortunately
we had to leave them out.

Fig. 2.7 shows that basic blocks where residual faults would be injected execute
far less often than other blocks, even in the workloads that activate them. There-
fore, activated residual faults are expected to cause less damage compared to other
activated faults. As a consequence, fault models that include both types are at risk
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Figure 2.7: Geometric mean of maximum execution count per basic block depending on coverage

of underestimating the impact of the residual faults. If the impact of such faults is
expected to be important in production systems, they should be tested separately.

2.6.4 Relationship between faults and execution

We already considered impact of coverage and execution count on fault locations,
but we have not considered the fault types yet. If particular fault types are more
likely to execute or are executed more often, bias is introduced in the activated faults,
which should be compensated by adjusting the input fault load for the experiment to
be consistent with the fault model.

Our question is whether some fault types are more likely to execute than oth-
ers. For each basic block and each fault type, we compute the fraction of faults in
the block that is of that type. For each program, we compute the mean of these
fractions for covered blocks and for uncovered blocks. Fig. 2.8 shows the average
number of faults per basic block for each fault type, averaged over all programs (in
the ‘O4-total’ and ‘O0-total’ bars), along with the standard error for this average. In
optimized code, the corrupt-integer fault can be injected in most places, with an av-
erage of 0.922 per basic block (for a description of the fault types, see Table 2.1). For
unoptimized code, the most common fault candidate is corrupt-pointer at an average
of 1.552 per basic block. The difference can be explained by the fact that optimiza-
tion tends to remove memory operations in favor of register operations. The least
common fault candidate type is dangling-pointer, with only one in 400 basic blocks
having a fault candidate of this type. The fact that there are such large differences in
how often candidates for each fault type occur is relevant for fault injection. When
selecting fault locations at random from the set of fault candidates, dangling-pointer
faults would only be likely to be injected if a large number of faults is injected. If
testing all the different fault types is important, it may be wise to preferentially select
fault candidates of uncommon types.

There are large differences in the frequencies with which fault candidate types
occur depending on the program. The standard errors in Fig. 2.8 provide some
indication of the differences in how often fault types occur between the various
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Figure 2.8: Number of faults per basic block for each fault type, distinguishing whether blocks are
covered by the workload and whether the program is optimized (O4) or not (O0); the numbers are
an average over all programs/workloads and the lines refer to standard errors

workloads and programs. The full table of fault types per program is much too
large to present here, instead we summarize by discussing on a number of cases
where the differences between programs are particularly large. The corrupt-index,
dangling-pointer, mem-leak and stuck-at-loop fault types stand out for having very
high standard errors relative to the mean, in some cases in excess of 100% of the
mean. Corrupt-index is much more common in bzip2 (0.189 per basic block) and
gnuchess (0.168 per basic block) compared to the other programs. This means
these programs have a relatively high number of array accesses. Dangling-pointer
is relatively common in Coreutils od (0.008 per basic block) and gzip (0.005 per
basic block), suggesting that memory allocations are relatively common for these
programs. Mem-leak especially stands out for ntfs-3g (0.031 per basic block)
which means that allocated memory is freed in many places. Finally, stuck-at-loop
is exceptionally common in Busybox od (0.075 per basic block), Busybox sort
(0.059 per basic block) and bzip2 (0.034 per basic block), indicating that these pro-
grams have relatively many loops. These examples show that the fault candidate
type distribution differs considerably between programs. It seems reasonable to as-
sume that more fault candidates for a specific fault type would also lead to more real
bugs because it means there are more opportunities for a programmer to introduce a
fault. The implication for fault injection is that either the program should be consid-
ered explicitly when specifying a fault model or the fault model should be specified
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in such a way that the frequency of fault types being injected is proportional to the
frequencies of fault candidates of that type. This approach would favor a specifica-
tion such as ‘inject a fault for 1% of the candidates for a missing load fault’ over the
alternative ‘10% of the injected faults should be of the type missing load.’

In addition to the fact that the fault type distribution differs between programs,
Fig. 2.8 shows that some fault types are relatively likely to get activated while others
are relatively unlikely to get activated. The corrupt-index and stuck-at-loop stand
out for being relatively common in code that is actually executed. This means that
array accesses and loops (the locations where these faults can be injected) are rela-
tively common in the part of the program that performs the main task of the program.
Dangling-pointer and mem-leak, on the other hand, occur more frequently in parts
of the code that are not executed. This suggests that relatively many memory allo-
cations and deallocations are reached only for certain program inputs. These results
make clear that some fault types are more likely than others to get activated, intro-
ducing a bias in the output fault load. This should be dealt with by considering the
distortion introduced and adjusting the input fault load accordingly to compensate
for overrepresentation of fault types more likely to get activated and underrepresen-
tation of those less likely to get activated.

It has been shown now that there is a large difference in terms of fault types be-
tween covered code and uncovered code, but we have not considered yet how often
faults of different types get executed. The idea here is that specific types of faults
might be more likely to occur in inner loops than others. We computed correlations
between the relative fault candidate counts for each fault type and the execution
count for blocks that did actually get executed at least once. The conclusion is that
there is a significant correlation only for a few fault types and programs. In par-
ticular, loads tend to be executed relatively often in bzip2 while array indexing is
executed more often than other types of code in gzip. ntfs-3g executes integer
arithmetic and pointer arithmetic more often. This difference is not as large a source
of bias as for example coverage, but it is still important to monitor fault injection
experiments to find out which faults are executed more often. In cases where strict
adherence to the fault types specified in the fault model is required, it would be wise
to report on any distortion caused by certain fault types being executed more often
than others.

2.7 Threats to validity

Although we have taken care to set up our experiments in the most realistic way
possible, there are several factors that may have influenced the results that we pre-
sented and made them less realistic. In this section, we identify those factors that
apply to the experiment as a whole and explain the reasons for choosing an approach
that suffers from the issues identified. In addition there are several factors that apply
only to certain parts of the experiment presented. Those factors have already been
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considered in drawing the conclusions in the subsections presenting the results of
those experiments and are not repeated here.

In our experiments, we inject artificial software faults using fault types mod-
eled on classifications of real faults found in the literature. Although we have taken
care to select faults that are realistic, they are not real faults introduced by human
programmers. The main alternative would be to use real faults instead by working
through the log of fixed bugs, but we are not aware of any work using this approach in
a large-scale reliability experiment. Computer-generated faults can never perfectly
mimic real faults, which is a potential source of bias in our work. However, we feel
that the use of real faults is not widely applicable and hence not suitable for a paper
that aims to help improve practical fault injection experiments. This is due to the fact
that considerable manual work is needed for each program being tested to identify
a sufficient number of faults that have been fixed in the source control system. As
a consequence, the number of faults that can be used is far lower, limiting the use
of statistical techniques. For relatively new software, the number of bugs identified
may be too low regardless of the amount of manual work that can be invested. In
addition, the use of real faults is not without bias either because it can only use faults
that have already been identified and fixed. This means that the most elusive bugs
would not be considered if real faults were used.

This research aims to increase understanding of the impact of distortion on the
injection of software faults that resemble bugs that programmers might introduce.
Because the programmer works with the source code, this is also the best level to
identify fault candidates and inject such bugs. We, however, have opted to do so at
the intermediate code instead. The advantages of this approach are that our tools
work with all language front-ends available for the LLVM compiler and there is no
need to interfere with the build systems of target programs to intercept arguments to
the preprocessor. This threatens validity because the intermediate code may not be a
one-to-one mapping of the intermediate code. Fortunately, for the LLVM compiler
the intermediate representation is semantically very close to the original C code, for
example making pointer arithmetic explicit and modeling variables rather than stack
frames. If the intermediate code were further removed from the original code, in-
formation would be lost and fault injections would be less realistic. However, even
in the case of LLVM there is the issue of preprocessor macros. Because preproces-
sor macros are expanded before compilation, they are not represented in intermediate
code. This might be an issue if a fault were injected in the code resulting from macro
expansion, because the fault would be injected in only one instance of the macro be-
ing expanded. That said, many papers using fault injection actually inject faults at the
binary level (for example [41]), where this issue is far more pronounced [31; 47]. For
example, common compiler optimizations such as inlining and common subexpres-
sion elimination could cause faults to incorrectly affect more or less of the code than
intended. Hence, we expect the impact on validity to be relatively low in this work.

Another factor that should be considered is the impact of the fault model. We
have seen that there are meaningful differences in the locations where the various
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fault types occur. As a consequence, our own selection of fault types has had an im-
pact on the results as well. Our own fault model comes down to using the fault types
presented in Table 2.1 with the likelihood of selection proportional to the number
of fault candidates. Since the fault types used are based on the literature on faults
occurring in real software we consider this choice to be reasonable, but it is not the
only possibility and using a different fault model or adding additional fault types
could affect the results.

2.8 Recommendations

Throughout our evaluation, we have identified potential sources of distortion and
provided advice to either mitigate it or where that is not feasible to report it. This
section summarizes the recommendations to help readers reduce the impact of dis-
tortion on their fault injection work.

We found that the regression tests included with some programs resulted in lower
coverage than our own tests based on the manual pages, most likely because our
tests also introduce some errors in the input data. It is important to test not just
correct input, but also incorrect input because error handling code is a typical place
for residual errors to hide. Although this recommendation should be well-known,
regression tests included with common open source programs show that such test
cases are often omitted in practice. We found that error handling code is not only
less likely to be reached by the workload at all, even the part that is activated on
some runs is exercised on fewer runs. It is also recommended to avoid or remove
unreachable code where possible because it makes the results harder to interpret. To
increase coverage efficiently in case there is random variation in the workload, it
may be worthwhile to test how many runs are needed to maximize coverage before
performing the experiment itself.

It is also very important to use the most suitable definition of coverage and be
explicit about which was chosen, because we have shown that there can be substan-
tial differences between them. We have tested four different coverage metrics and
found that even though they are strongly correlated, there are meaningful differences
between them. In the context of fault injection, measuring coverage in terms of fault
candidates is recommended. In particular, definitions based on lines of code tend to
downplay the importance of error-handling code, which has relatively few lines of
code per basic block but is a particularly likely place to encounter real-world faults.
Another important finding is the fact that coverage is not independent from fault
types. Therefore, to achieve fidelity, fault injection tools should be configured to
make the output fault load rather than the input fault load match the fault model.

In addition to these findings regarding coverage, we also investigated the distri-
bution of basic block execution counts. The main conclusion is that this distribution
has a fat tail, which means that extreme execution counts are relatively common.
Since we have shown that the distribution is strongly influenced by the workload,
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it is important to select workloads with a similar input size distribution as would
be found in a production environment. Although optimization has little impact in
most cases, we found that optimizations may have a substantial impact on execution
counts in rare cases where they cause parts of loops to be executed more often. A
solution in this case would be to inject faults before optimization, using source-level
or bitcode-level fault injection techniques. Another important consideration is the
fact that execution counts tend to be higher in code that is executed by many runs of
the workloads. As a consequence, experiments that inject both residual faults [96]
and non-residual faults will most likely execute the non-residual fault more often,
causing them to be overrepresented in the output fault load.

Regarding model specification, it is important to note that different types of pro-
grams differ in the distribution of fault candidate types. Assuming that each time
a programmer writes code that could be subject to one of the fault types, there is a
small chance that he/she indeed makes such a mistake. Therefore, the distribution of
real faults can be expected to also be affected. To deal with this elegantly, it is rec-
ommended to specify the fault model in terms of the percentage of fault candidates
that will be injected rather than a percentage of the total. However, if the goal is to
test all fault types it is important to consider that the number of injection opportuni-
ties differs widely between fault types. In this case, it may be necessary to increase
the injection rate for fault types with few candidates.

We also investigated the impact of compiler flags, in particular optimization lev-
els. For most metrics, we did not find a meaningful impact of the choice of optimiza-
tion level, which means we cannot provide general recommendations based on those
experiments. However, we did show that optimization has a non-negligible impact
on the availability of fault candidates. Therefore it is recommended that compiler
flags are set as they are in a production environment, rather than compiling code in
debug mode for testing.

2.9 Conclusion

In this paper, we defined the concept of fidelity of a fault injection experiment to
mean that the activated faults faithfully represent the fault model We have shown that
careless fault injection experiments threaten fidelity and may not measure what the
user intended, may be less efficient, less comparable and that problems with work-
load construction may remain hidden if fidelity is not considered. We performed a
large-scale empirical evaluation of fidelity, resulting in advice on how to improve
fidelity and raising awareness of the problem of fault load distortion.

Our research should be considered a first step towards improving fault injection
fidelity. We identified the issue itself and performed experiments to confirm that
there is indeed a potential problem and to give some preliminary guidance with re-
gard reducing the impact on fault injection research. However, considerable future
work is needed to fully understand the issue of fidelity. The most important step
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would be to define a quantitative metric for fidelity, which would allow for easier
comparisons and hence stronger conclusions to be reached. Simple solutions such
the Euclidean distance between vectors of fault candidate activation probabilities/-
counts are not suitable because of the fat-tailed distribution of execution counts we
identified. Any work constructing a metric would need to find a meaningful way
to weigh execution counts without making the extreme execution counts dominate
the results. The only way to achieve this in our opinion is to look beyond activation
and also quantify the extent to which activated faults cause any crashes or incorrect
results. This is a direction for future work in itself and could also aid in identifying
the quantitative impact of execution count. It would also allow for testing fault in-
teractions by injecting multiple faults per run, another area for future research that
is not possible within our exploratory methodology. Finally, it would be valuable
to determine how robust our results are with regards to other environments, other
languages and other fault types by replicating an experiment similar to this one in
different settings. Our work is far from the last word on fidelity, but rather a starting
point to encourage more research in this direction that could eventually allow lack of
fidelity to be reported, compared and mitigated to improve the validity of software
fault injection experiments.
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3
On the Soundness of Silence

Investigating Silent Failures Using Fault Injection
Experiments

Abstract

Fault injection campaigns have been used extensively to characterize the behavior
of systems under errors. Traditional characterization studies, however, focus only
on analyzing fail-stop behavior, incorrect test results, and other obvious failures ob-
served during the experiment. More research is needed to evaluate the impact of
silent failures—a relevant and insidious class of real-world failures—and doing so
in a fully automated way in a fault injection setting.

This paper presents a new methodology to identify fault injection-induced silent
failures and assess their impact in a fully automated way. Drawing inspiration from
system call-based anomaly detection, we compare faulty and fault-free execution
runs and pinpoint behavioral differences that result in externally visible changes—
not reported to the user—to detect silent failures. Our investigation across several
different programs demonstrates that the impact of silent failures is relevant, consis-
tent with field data, and should be carefully considered to avoid compromising the
soundness of fault injection results.

3.1 Introduction

Practice shows that producing software that is entirely free of bugs is not feasi-
ble. As software becomes more mature, the number of bugs approximates a lin-
ear function of software complexity [100]. Given that software complexity is, in
turn, steadily increasing over time, software faults are naturally becoming more and
more prevalent. To mitigate this problem, researchers have devised several different
strategies to build fault-tolerant software systems. One approach is N -version pro-
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gramming [14], which relies on multiple semantically equivalent versions to achieve
software-implemented redundancy. Although this approach can tolerate several dif-
ferent classes of failures, the need to implement at least three versions of the same
software is often deemed prohibitively expensive.

Other, more cost-effective approaches to deal with unreliable software rely on a
predetermined failure model to implement fault detection and containment mecha-
nisms. For example, crash recovery techniques [44; 107; 103; 80] restart individual
components or computations when a fail-stop failure occurs. These techniques are
based on two key assumptions: the system can detect that a failure has occurred and
the underlying fault does not propagate outside the affected component before the
failure is detected. If these assumptions are violated, recovery actions may fail to
preserve the dependability of the system. To validate these assumptions, researchers
traditionally rely on fault injection [67; 15; 90; 89; 49; 74; 112; 55; 99], a popular
technique to evaluate the effectiveness of fault-tolerance mechanisms and charac-
terize the behavior of a system under errors. Most studies, however, limit their
analysis to trivially observable failures. Traditional dependability characterization
studies [8; 58; 39], for instance, focus only on fail-stop behavior and other high-
level properties directly exposed to the user. More research is needed to evaluate the
impact of silent failures in fault injection experiments. We define silent failures as
a situation where a fault causes externally visible behavior to deviate from normal
behavior (which makes it a failure) but with no clear indication of failure such as
an error exit status, a segmentation fault, or an abnormal run time (which makes it
silent). This scarcity of research is surprising, given that silent failures are a relevant
fraction of real-world bug manifestations [42] and also known to introduce insid-
ious errors that can completely compromise the dependability of a system or the
effectiveness of its fault containment mechanisms. As an example, a silent failure
introduced by a seemingly innocuous software update has been reported as “one of
the biggest computer errors in banking history”, leading to the system mistakenly
deducting about $15 million from over 100,000 customers’ accounts [53].

Assessing the impact of silent failures in a fault injection setting is more than a
simple academic exercise. If their impact is found to be marginal, researchers may
need more sophisticated fault injection tools to accurately emulate this important
class of real-world failures. If their impact is found to be significant, on the other
hand, characterization studies ignoring silent failures may undermine the soundness
of the results. Furthermore, the ability to identify silent failures may play an im-
portant role in the design of fault injection campaigns. For instance, prior studies
argued that faults that are activated during testing but do not result in directly ob-
servable failures are more representative of residual faults (faults that are actually
experienced in the field) and suggested a strategy to eliminate irrelevant fault injec-
tion runs [95; 96]. In this context, it is crucial to distinguish between residual faults
introducing silent failures and other faults introducing nonsilent failures that are only
triggered by a specific set of conditions. This distinction makes it possible to better
formulate the purpose of the experiments and interpret the results correctly.
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This paper presents a new automated methodology to identify and assess the im-
pact of silent failures in fault injection experiments. Our goal is to shed some light
on the relevance of these failures in an experimental setting, determine under which
circumstances they are most likely to occur and improve the general understanding
of what “silent” behavioral changes an artificially injected fault may introduce in a
system. To this end, our approach is to track programs’ externally visible behavior
(exposed through system calls), their run time, and their exit status. To identify the
relevant behavioral changes induced by fault injection, we perform both a fault-free
reference run and an experimental run with faults injected in a controlled setting—
with a predetermined workload and fault load [96]. The controlled setting allows us
to log all the relevant events and abstract away any irrelevant differences introduced
by the environment. This approach makes it possible to compare the behavior of
the two runs and identify relevant deviations using a simple system call matching
strategy. In contrast to prior work on anomalous system call detection [92; 93], our
strategy considers only externally visible behavioral deviations between isomorphic
execution runs to conservatively identify all the relevant differences. In contrast to
prior work on real-world bug characterization [42], our strategy allows us to rea-
son on the outcome of the fault injection experiment (i.e., nonfailure, silent failure,
other failures) in a fully automated fashion, opening up opportunities for large-scale
failure analyses.

The contribution of this paper is threefold. First, we describe a new automated
methodology to identify silent failures in fault injection experiments. Our methodol-
ogy is of general applicability and can automatically identify several classes of fail-
ures from the outcome of a given experiment. Second, we present an implementation
of our methodology for user-space programs. Our current prototype runs on Linux,
but can be easily extended to other UNIX operation systems that provide similar
tracing functionality. Finally, we have applied our methodology to evaluate the im-
pact of silent failures across several different programs and artificially injected fault
types and fault locations. Our results demonstrate that the impact of silent failures
is relevant, reflects field data, and should be carefully considered in dependability
benchmarking scenarios.

3.2 Approach

To determine how common silent failures are, we perform fault injection experi-
ments to introduce artificial but realistic software bugs into a number of popular
open source programs and analyze the impact of the injected faults on the externally
visible behavior of those programs. We have chosen to use fault injection rather
than real bugs because this allows us to perform a far larger number of experiments,
suitable for statistical analysis. The main steps we have taken are to: (i) inject real-
istic software faults into the target program, (ii) log the externally visible behavior
of the program when subject to a predetermined workload, and (iii) compare the re-
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Table 3.1: Fault types

corrupt-index off-by-one error in array index
corrupt-integer off-by-one error in integer operand
corrupt-operator replace binary operator with random operator
corrupt-pointer replace pointer operand with random value
flip-bool negate result of boolean operation
flip-branch negate controlling value for conditional branch
no-load load zero instead of intended value
no-store remove store operation
random-load load random number instead of intended value
stuck-at-branch fixed controlling value for conditional branch
swap swap operands of binary operation

sulting logs against the behavior of a fault-free reference run while preventing false
positives due to nondeterminism. This section illustrates these steps in detail.

3.2.1 Fault injection

We use the EDFI [47] framework to perform fault injection. This system is based
on the ability of the LLVM compiler framework [79] to support plug-ins that ma-
nipulate intermediate (LLVM IR) compiler code. The EDFI plug-in operates on the
intermediate code before any compiler optimizations are performed, so it has almost
as much information as systems working directly on the source code, but is more
easily portable due to its integration with LLVM. The only loss of information is the
fact that preprocessor macros are already expanded in the intermediate code, which
means that faults injected at the macro level cannot be directly supported.

One important step when designing a fault injection experiment is to decide
which types of faults are to be injected. Ideally, these fault types should be as similar
as possible to real bugs introduced by human programmers. A number of investiga-
tions on which types of faults are most commonly encountered can be found in the
literature [41; 27; 110]. The fault types injected by our program have been selected
based on these papers and are listed in table 3.1.

When injecting faults, for each run we inject a single fault that we know will
be activated by the workload. Doing so eliminates runs known not to trigger the
fault, similar to the fault acceleration strategies proposed in prior work [115; 62].
We use the EDFI framework to count how often each part of the code is executed
and have it write out a map file during compilation that lists all fault candidates. We
define a fault candidate as the combination of a code location and a fault type that
can be injected at that location. Execution counts are tracked per basic block, which
is a part of the code with a single entry point and a single exit point. We perform
a reference run which yields execution counts and randomly select fault candidates
from the set of fault candidates in the map file that are in basic blocks with nonzero
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execution counts.
We only inject a single fault at a time because simultaneous injection of mul-

tiple faults is less controllable. Execution of the first fault potentially influences
whether any subsequence faults are executed and potentially even changes their ef-
fects. While interactions between faults are also an interesting field of study, cur-
rently little is known about the relevance of silent failures in fault injection even for
the simpler case of a single fault per run. A single-fault strategy makes it easier to
analyze the results and ascribe the observed behavior to the injected fault.

3.2.2 Program behavior

To log the externally visible behavior of the program while running a workload, we
use the ptrace system call on Linux. This call allows the interception of system
calls before and after they are performed. By logging system calls rather than just
comparing the expected output with the logged output, we can identify many more
cases of deviant behavior. Suppose, for example, that the gzip program is run with
the -k flag that specifies that the input file should not be deleted. In this case, check-
ing the contents of the output file is not sufficient, because some faults could cause
the flag to be ignored and the input file to be deleted. Since it is impossible to predict
what a program will do when faults are injected, all externally visible behavior must
be monitored to be able to detect any possible failure.

An important question is which calls are externally visible. Our intuition here
is that, for example, a successful call to unlink would affect other application pro-
grams while a call to getpid has no impact whatsoever. We consider system calls
externally visible only if they can potentially affect the values returned by system
calls performed by unrelated processes. We consider two processes related if both
either are the root process started by our tracer or descend from it. For example, a
write to a file counts but a write to a pipe shared only with a child process does
not. Information from the /proc file system is not considered externally visible. It is
not normally used in application programs and including it would make every mem-
ory write externally visible. Writes to memory shared with unrelated programs do
count, although in our test set there were no cases of this happening. We ignore tim-
ing in the sense that, for example, we do not consider a sleep call to be externally
visible. Ordering of externally visible behavior, on the other hand, does count. For
example, if an old file is deleted and a new one created, swapping the sequence of the
operations would be considered an externally visible difference. For reproducibility,
we have made available a full list of externally visible system calls at [4].

3.2.3 Comparing logs

The major issue when comparing the logs is nondeterminism. The main source of
nondeterminism is multi-processing and multi-threading. Our log includes exter-
nally visible system calls made by all child processes and threads, tagged with the
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Figure 3.1: Scheduling of fork resulting in different pids

calling process or thread. As a result, system calls are interleaved randomly. To solve
this issue, we compare the log for each subprocess or thread separately, ensuring that
interleaving does not interfere with system call matching. As a consequence, some
ordering information is lost, but it is essential in making the logs comparable be-
tween different runs. A more subtle issue is naming. To compare the processes and
threads between different runs, we need to assign names to each that are consistent
between runs. There is no such guarantee with the pids provided by the operating
system, so we provide our own process naming scheme. A sequential scheme, such
as the one provided by Linux PID namespaces [18] is not sufficient here. Figure 3.1
shows the case of a process forking twice and its first child forking once. Numbers
are assigned based on the sequence in which the fork calls are scheduled. For exam-
ple, the grandchild is either number 3 or 4 depending on which process forks first.
To address this, we assign hierarchical process names. We use the name r for the
root process (pid 1), r.1 for its first child (pid 2), r.2 for its second child (3 on the
left, 4 on the right) and r.1.1 for its grandchild through r.1 (4 on the left, 3 on
the right). Our naming scheme allows the processes to be reliably matched between
runs, regardless of scheduling.

There are some other sources of nondeterminism we have to control to be able
to match the logs correctly. The most obvious one is time. Many programs write the
current time in their output or use it to initialize random seeds. To prevent time from
introducing differences, we intercept calls that read the clock and the rdtsc instruc-
tion to make them return a virtualized time. This time is initialized to a fixed value
when the tracer starts and only incremented when the time is read. It is inherited by
child processes and threads but not shared afterwards to prevent the introduction of
more scheduling-dependent behavior. The pid is also sometimes used in externally
visible ways, such as for pid files and as a random seed. For this reason, we virtualize
pids using a hierarchical scheme similar to the naming system described before, en-
coded in a pid_t value. We use six bits for the top level child index and four bits for
each level below. The highest-order (sign) bit is left untouched because some system
calls use negation of pids. The second highest-order bit is used to distinguish virtual
pids from real pids, because Linux never assigns such high pid numbers. Although
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ptrace-based pid virtualization means that we have to intercept and modify all sys-
tem calls that take pids as parameters or return them, there is little performance loss
as we already have to intercept all system calls. Compared to, for example, Linux
PID namespaces [18], our approach has the advantage of not requiring specific priv-
ileges, which makes the approach safer to use and easier to deploy. In addition,
we virtualized the /dev/random device to provide deterministic random data. The
position in this stream is inherited by subprocesses but never shared to avoid non-
determinism. One final source of nondeterminism is the port on which connections
are accepted by the accept call in the web servers. Because these do not affect any
other behavior, they need not be virtualized but can simply be filtered out of the log.

Having dealt with the relevant sources of nondeterminism, comparing the exter-
nally visible system calls performed by the faulty program with the fault-free refer-
ence run is as easy as invoking the diff tool for each subprocess log. We logged
each system call to a single line to make determining which calls are different as
simple as parsing them from the diff output. Wherever relevant, any data pointed
to by the parameters is included, such as the data written in case of the write call.
To prevent logs from getting excessively large, write buffers are hashed. Pointers
passed to system calls are never logged directly, because they might change between
runs and are not relevant to other processes. Performing system call matching offline
using a simple tool such as diff is much simpler than many other systems and has
the advantage of allowing all behavioral differences to be revealed without heuristics
because all the necessary information is available. Prior work, in contrast, typically
requires far more complex approaches [121].

Overall, we identified all the sources of nondeterminism that were an issue for
our test programs (and workloads) and successfully eliminated them. We verified
this by running fault-free runs at least 256 times for each program/workload combi-
nation to check for unexpected differences between the logs. The 16 fault-free runs
performed as a part of each injection experiment were also checked each time. We
do not claim that our system would be able to tackle any possible source of nondeter-
minism, but we believe that our approach is effective for a broad class of programs,
given the diversity in the programs we tested. To be able to deal with more difficult
cases, fully deterministic record-replay techniques [108; 9; 102; 52; 109; 77] would
be needed. Because we were able to deal with the nondeterminism present in our test
programs, we can compare logs from faulty runs directly with those from fault-free
runs, allowing us to identify all the externally visible failures.

3.2.4 Silent failures

We have described how to detect failures in terms of deviant externally visible be-
havior. The next step is to decide which of these failures are silent. Our approach is
to consider whether the exit status and the run time are anomalous. Exit status refers
to the value written into the stat_loc parameter when the parent which invoked the
program uses the waitpid system call. For correct runs, this value should normally
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indicate that the program exited with exit status zero. However, it also allows the pro-
gram to indicate to its caller that an error occurred by specifying a nonzero value. In
case the program is terminated by a signal, for example due to a segmentation fault,
the status code indicates both the fact that the program was killed and the number of
the signal that killed it. We compared the exit status of the faulty runs with the exit
status of the fault-free reference runs, because in some cases a nonzero exit status
can legitimately be returned (for example, the diff program returns 1 to report dif-
ferences between the input files). There were no cases where the reference run was
killed by a signal. Hence, an exit status indicating death by signal is always a clear
sign for the caller that something went wrong, making the observed failure nonsilent.

In addition to the exit status, we also consider the run time as a method of detect-
ing failures. Programs that exit very early or take an excessive amount of time are a
clear indication that something went wrong. We defined the run time as the real time
the caller would measure from the exec call to launch the program to the waitpid
call that confirms that the program has exited. The time taken is standardized using
only mean and standard deviation of the run time for the fault-free reference runs.
The standardized time gives a good indication of the degree to which the run time
is anomalous. We decided on a cut-off point of four standard deviations based on
our measurements. The details of this choice are described in Section 3.4, which
discusses the analysis of our measurements.

3.2.5 General applicability

We focus on legacy applications written in low-level languages and our tools can
easily be used with other programs written in languages for which an LLVM front-
end is available, including C and C++ as well as many others. To achieve this, the
only change that needs to be made is to use the LLVM compiler and set the flags to
generate bitcode. This is usually a matter of running the configure script to change
the compiler settings and then recompiling. Our tools are built for Linux, but could
easily be adapted to other POSIX-based platforms by changing the tracer to use
the appropriate ptrace alternative. For non-POSIX systems such as Windows, the
system calls would need to be reclassified based on their external visibility. For pro-
grams written in higher level languages, specific tools as well as a more appropriate
set of fault types would be needed. However, the general approach is still equally
applicable.

3.3 Programs and workloads

Our aim in selecting programs to test with has been to on the one hand have a di-
verse set of programs while on the other hand also having a few sets of similar
programs. Diversity in terms of size, complexity and type of work done makes the
results applicable to a wider set of software. Having sets of similar programs that
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can run the same workloads allows us to determine whether there are any patterns in
the variation of the results. This approach makes it possible to distinguish between
properties that apply to a specific class of programs and whether the results are more
affected by the implementation of the program itself or by the selected workload.
We define workload here as a fixed sequence of invocations to the program being
analyzed, which in practice is defined by the script performing these invocations.
We preferentially chose programs that offer their own regression test suite to have a
‘neutral’ workload but constructed our own workloads for programs that do not offer
regression tests.

The first set consists of the compression programs bzip2, gzip and xz. Al-
though the programs use different algorithms, they essentially perform the same
function and are invoked in the same way. Both bzip2 and gzip provide a small
regression test set, both of which we included in our testing. In addition, we used
the manual pages of these tools to construct a workload that is similar for the three
programs and provides more coverage than either of the regression tests. Our work-
load performs 500 iterations, performing zip, test and unzip operations on each it-
eration. Arguments are randomly combined from the available ones listed in the
manual page. Input files are also randomly generated, based on a Markov chain
approach. The transition matrix is randomly chosen from a number of matrices
representing different types of files, including both text and binary types. The inter-
mediate zipped files are sometimes randomly corrupted to also invoke some of the
error handling code in the programs tested.

Two other sets are the od and sort utilities taken from the Busybox and Core-
utils projects. Busybox is normally compiled into a single binary containing all
tools, but we configured it to provide each tool as a separate binary. We constructed
workloads for these tools using a similar approach as described for the compression
utilities. However, the arguments to provide are based on the POSIX specification
(which covers both tools) and are therefore exactly identical between the two im-
plementations of both programs. For sort, in addition to the randomly selected
command line arguments, we also specify a random language and include input files
in several languages to exercise more of its capabilities.

We selected bash and vim because they are considerably more complex than
the previously mentioned programs and both include extensive regression tests. In
addition, we expect the control flow to differ from the other programs because bash
performs complex parsing and vim is more interactive than the other programs. In
the case of bash, we selected the fastest half of the subtests to be able to perform a
sufficient number of fault injection experiments to be statistically meaningful in the
time available.

To also include some long-running programs, we added two HTTP servers, namely
Apache httpd and nginx. We tested both HTTP servers with the Apachebench
benchmark [1] (AB), configured to perform 1000 requests. One issue with these
programs is that they consist of a parent process and a number of worker processes.
Therefore, the parent process can deal with any failures occurring in the workers and
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recovery strategies could be implemented at that level. For this reason, we consider
not just the exit status of the root process started by our tracer, but also the exit status
of any workers that die while the benchmark is running. This information makes
our analysis more conservative as it results in fewer failures being considered silent.
Another consideration was that error codes being logged could be considered a non-
silent failure mode. We analyzed the logs and found that errors are logged in only
very few cases, not enough to influence the analysis. Specifically, httpd logged two
“403 Forbidden” errors, one “404 Not Found” and one “500 Internal Server Error”,
while nginx logged three “400 Bad Request” errors.

To achieve determinism in the externally visible behavior, we had to make some
very minor changes in three of the programs described. In bzip2, a field written to a
file was not initialized, causing the value to be different between runs. This problem
was fixed by always initializing the field to zero. The gzip regression test randomly
generates a directory name to save output files to. Since the regression test script is
not run by the tracer (unlike gzip itself), time virtualization did not make this name
deterministic. We modified the script to always use the same name. The xz program
prints an unterminated string to the error output under certain conditions. We fixed
the program to always terminate the string. With these small modifications, all pro-
grams and workloads ran sufficiently deterministically to allow for the comparison
described in the previous section. These changes remove what would otherwise be
spurious differences. Note that this does not affect the validity of the experiment
because writing uninitialized data is always a bug that requires fixing anyways while
in the gzip case the change in the test script does not affect program behavior.

3.4 Results

We have run each workload for each program 16 times without injecting faults and
256 times with a single injected fault. The runs without faults serve as a reference
for calls performed, exit status and timing. They have also been compared with each
other to ensure that there are no false positives due to nondeterminism. Faults to
inject have been selected randomly from the set of candidate faults that were acti-
vated in the reference runs, ensuring that all faulty runs result in activation of the
injected fault. This approach also means that the injected faults are representative of
activated candidate faults. Hence, fault types that can be injected in more different
executed code locations are represented proportionally more often. This choice is
based on the intuition that mistakes that can be made in more places are likely to be
made more often.

All experiments were performed in a Ubuntu 12.04.3 LTS virtual machine with
3GB of memory running a 32-bit x86 Linux 3.8.0-29 kernel. For virtualization, we
used QEMU 1.6.0 with KVM acceleration enabled. The host machines used CentOS
6.4 with a 64-bit x86 Linux 2.6.32-358 kernel. A new virtual machine was started
for each individual experiment to ensure that the context is exactly the same every
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Table 3.2: Coverage of test programs

program workld. % of basic blocks % of fault cand.
bash rtest 44.3% 46.4%
bzip2 doc 71.2% 83.1%
bzip2 rtest 60.2% 77.5%
gzip doc 41.1% 52.3%
gzip rtest 25.3% 31.6%
httpd ab 17.9% 19.3%
nginx ab 22.4% 23.8%
od (bb) doc 45.0% 55.9%
od (cu) doc 35.9% 44.5%
sort (bb) doc 34.4% 45.5%
sort (cu) doc 30.3% 28.6%
vim rtest 47.8% 53.5%
xz doc 60.6% 63.6%

time. To reduce interference that might make the time measurements unreliable, we
never ran more than one virtual machine on the same host machine at the same time.

It should be noted that the number of times we have run the workload is not the
same as the number of times the program has been invoked. The number of times
the tested program is invoked differs between workloads. On the low end, there are
the HTTP servers httpd and nginx, both of which are started once and continue to
serve requests until after the workload script has been completed. On the high end,
there are the compression programs bzip2, gzip and xz, which are invoked by our
workload many times to test different types of files and combinations of arguments.
For example, each workload run of gzip represents 1870 invocations of the program.

It should also be noted that the number of times the program is invoked by the
workload script is not the same as the number of processes. Each program may use
the fork or clone calls to create new processes and threads. These are tracked
by the same tracer instance so that we can consider the end result of the whole as
perceived by the script that invoked the program. In most cases, we consider the
exit status reported by the root process; that is, the process that was created directly
from the workload script. The idea is that any other exit codes are internal to the
application and the caller never learns about them. However, we made an exception
for the HTTP servers httpd and nginx, where we also consider the exit codes
of the worker processes. The reasoning here is that it is reasonable to expect that
these servers themselves deal with failing worker processes, for example by logging
errors and/or launching new ones. The results presented in this section are all per
invocation rather than per process, with the HTTP servers including a summary of
the behavior of the subprocesses of that invocation.

Table 3.2 indicates the levels of coverage we achieved. With regard to the work-
loads, rtest is the official regression test, doc means constructed based on documenta-
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tion and ab means ApacheBench [1] has been used. Coverage numbers are provided
both in terms of basic blocks and in terms of fault candidates. There is a clear differ-
ence between the two and generally coverage in terms of fault candidates is substan-
tially higher. This means that basic blocks executed by the workload tend to be larger
on average than basic blocks not executed. This seems reasonable if one assumes
that error handling code is on the one hand relatively unlikely to be executed and on
the other hand contains relatively many branches and hence smaller basic blocks.

The coverage numbers we reached are relatively low and could have been made
higher by using symbolic execution to artificially create coverage-maximizing work-
loads [21]. However, we specifically chose these workloads to mimic the types of
regression tests that would be used by software developers in practice. Artificial
workloads are of little use in this case because in most cases they cannot easily be
verified whether the program functions correctly for these inputs - in fact they often
specifically aim to make the program fail to exercise error handling code. In addi-
tion, such workloads would not allow comparison between similar programs with
the same workload as they are specifically tailored to a single program. Hence, we
believe that the workloads we use are most suitable for our specific purpose despite
their low coverage.

We cross-checked the coverage of basic blocks between runs and found that the
only program where variation between runs is found is httpd. The potential impact
is that faults may be selected that are not activated in all benchmark runs. Our anal-
ysis showed that this effect is minor, with more than 95% of the injected faults being
activated.

In this section we will use the results of the tests described to compare the impact
of a number of factors on silent failures. First, we consider to what extent there is a
difference between the programs we tested and whether it is the program itself or the
workload that makes a difference. Next, we consider how the different fault types
behave with regard to silent failures. Finally, we consider whether the number of
times a fault is activated makes a difference.

3.4.1 Differences across programs

With regard to timing, we have used the fault-free reference runs to estimate the
mean and standard deviation of the run time for each individual invocation. We con-
sider the run time to be anomalous if it is at least four standard deviations above or
below the mean of the reference run times. Using two standard deviations would
give 5.5% false positives and three standard deviations would give 1.7% false posi-
tives, while with four standard deviations there is not a single case in our reference
runs that would violate the time constraints. The standard deviations are generally
very low compared to the mean, allowing anomalies to be detected quite well. For
example, in the 95th percentile of the invocations (instances where program is started
by the workload script) the standard deviation is only 3% of the mean runtime.

To get an impression of what happens in cases where programs show failure, we
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Table 3.3: Number of failures per program/workload

program workld. total silent-exit silent-time silent-both
bash rtest 33.7% 14.7% 9.7% 8.0%
bzip2 doc 66.3% 32.1% 35.0% 23.1%
bzip2 rtest 57.1% 33.9% 34.6% 26.0%
gzip doc 64.3% 24.5% 26.1% 17.5%
gzip rtest 49.1% 7.2% 35.8% 7.0%
httpd ab 51.5% 15.8% 14.9% 14.4%
nginx ab 57.0% 13.3% 5.9% 4.7%
od (bb) doc 64.6% 30.9% 23.1% 19.6%
od (cu) doc 54.2% 22.9% 21.3% 17.8%
sort (bb) doc 52.8% 14.0% 9.5% 5.2%
sort (cu) doc 51.2% 10.2% 9.7% 5.0%
vim rtest 29.7% 17.8% 24.1% 16.9%
xz doc 46.1% 21.1% 23.0% 14.3%

have computed the frequencies of all combinations of calls that cause differences
between correct and faulty behavior. By far the most common case is that the differ-
ence is only due to write calls. This accounts for 38.3% of the faulty invocations
when weighing each program is equally. This case is also the hardest to detect, be-
cause there is no visible difference other than the incorrect output. In a further 17.6%
of the cases, open and write calls make up the only visible difference. In a further
2.5%, read and write calls together make up the difference. It should be noted here
that read calls are only externally visible when from sockets and pipes to unrelated
processes. No other common combinations of just a few calls differing are particu-
larly common; in most other instances there are many simultaneous differences.

Table 3.3 shows how many failures occurred and how many are considered silent
according to different criteria. Each number represents a percentage of the program
invocations in which the injected fault was activated. Although we only injected
faults that are activated by the workload at least once, there are invocations in which
the fault was not activated and these are excluded here. It should be noted that (as
explained before) for httpd and nginx we consider the exit status of the worker
processes as well as the main process.

The first interesting observation from Table 3.3 is that there are many faults that
do not cause any externally visible deviations in behavior even when they are ac-
tivated. The percentages suggest that the issue of nonfailure of activated faults is
of a similar magnitude as the issue as nonactivation due to limited coverage. The
different between programs is substantial. This means that, for example, to test a
similar number of failures one would have to inject more than twice as many faults
in vim as in Busybox od. Unlike coverage, this issue rarely receives any attention
in traditional fault injection campaigns, which typically only strive to provide rea-
sonable fault activation guarantees [115; 62]. When comparing between programs
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and benchmarks, what stands out most is that the number of failures is very low for
bash and vim. These programs perform relatively complex processing compared to
the others as they implement many different functionalities. Busybox od, bzip2 and
gzip, on the other hand, have relatively high failure rates. These programs linearly
process a single stream of input, always in more or less the same way. It seems
plausible that there is more opportunity for a corrupted state not to be used again in
case of the more complex programs, while the linear programs are using the same
state over and over again. This means that studies which examine the impact of
faults and recovery after faults for a single program (such as [49; 125]) should not
be generalized to different classes of programs.

Having looked at the failure rates in general, we will now consider the number
of silent failures. The “Silent-exit” column indicates what percentage of activated
faults consists of failures that would not be detected by the exit status. “Silent-
time” refers to failures that do not differ from the reference run time by more than
four standard deviations. The “Silent-both” column refers to failures that cannot be
detected from either exit status or run time. While performing checks on the exit
status and run time allows at least half of the failures to be detected in almost all
cases, it is also clear that each program has a substantial number of silent failures.
The average over all programs is 13.8% of all activated faults resulting in silent
failures, which, interestingly, seems to suggest high correlation with the fraction of
faults introducing latent bugs according to findings discussed in prior work [42].
This number is high enough to say that any research involving fault injection should
consider that a substantial number of faults might spread to other components (in
this case through system calls) while not being easily detected. Care must be taken
to detect these faults through their anomalous behavior. In addition, any research
performing state recovery based on the assumption that failures are usually fail-stop
(such as [107; 103]) should consider the implications of silent failures.

Which approach is more effective at detecting failures differs strongly between
programs. It is clear that different detection mechanisms are effective for differ-
ent programs. Many failures triggered by the gzip and vim regression tests can be
detected from the exit status, while it is relatively uncommon for failures in these
programs to have a large effect on the run time. For bash and Busybox sort, on the
other hand, run time is a better detection mechanism. There is no obvious pattern in
which programs and workloads are most like to have many silent failures. The num-
bers for od and sort are very similar between the Busybox and Coreutils implemen-
tations, which may be due to the fact that both implement the exact same functional-
ity and run the same benchmark. However, when considering the compression pro-
grams using the same benchmark, it is clear that bzip2 has more silent failures than
xz does. This might have to do with the fact that xz implements a more advanced al-
gorithm and is hence more complex, the same reasoning as for the failure rate in gen-
eral. Still, it is conceivable that programming style also plays a substantial role here.
A program that contains many checks and assertions, tests each return code and exits
whenever anything is wrong would be much less likely to have any silent failures.
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Table 3.4: Number of failures per fault type

fault type total silent-exit silent-time silent-both
corrupt-index 72.5% 48.7% 55.4% 42.7%
corrupt-integer 42.3% 24.7% 22.4% 17.8%
corrupt-operator 40.4% 21.3% 18.6% 12.7%
corrupt-pointer 92.1% 20.3% 7.7% 3.1%
flip-bool 61.9% 29.1% 25.6% 16.4%
flip-branch 54.3% 27.4% 23.7% 17.3%
no-load 48.1% 32.3% 25.4% 21.0%
no-store 44.2% 15.7% 12.9% 7.8%
random-load 55.4% 23.2% 17.0% 13.3%
stuck-at-branch 38.3% 19.5% 17.8% 11.9%
swap 12.0% 4.0% 5.6% 3.4%

The main conclusion from our experiments comparing programs is that silent
failures occur in sufficient numbers to be a serious threat in fault injection experi-
ments. We have not been able to pinpoint the source of variation between programs,
but it seems credible that coding style is a big factor. Error checks and consistency
checks (including assertions) should be able to make some silent failures nonsilent.
In addition, we found that considering just activation of faults is not enough because
many activated faults do not result in deviant behavior, especially in more complex
programs.

3.4.2 Differences across fault types

Usually fault injection experiments consider a variety of mistakes commonly made
by programmers (for fault types used by us, see Table 3.4). It is reasonable to expect
that different types of faults result in different program behavior. Table 3.4 shows the
percentage of activated faults resulting in failures per fault type, with each program
weighed equally. The differences in the likelihood of failure are very large. We will
discuss the fault types that stand out here.

The “corrupt-pointer” fault type stands out for almost always causing deviant
behavior when activated. This is easily explained by the fact that most random
pointers point into unallocated memory, causing a segmentation fault when they
are dereferenced. This is consistent with the fact that many failures triggered by
this fault type can be detected by exit code, either because of being killed by a
segmentation fault or by returning an error exit code after a segmentation fault is
caught or detected in a child process. Even more cases are detected based on run
time. Hence, although an activated “corrupted-pointer” fault is very likely to result
in failure, this failure is very unlikely to be silent.

The “swap” fault, on the other hand, stands out for resulting in very few failures.
The most likely reason here is that some of the most commonly used operators, such
as +, *, ==, !=, & and | are commutative so that swapping the operands has no effect.
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Potential effects for the other operators are quite diverse, including incorrect values,
buffer over- or underflows, divisions by zero or NULL pointer dereferences. Many of
these cases are caught by exit status, which suggests that the more dramatic results
are quite common for the noncommutative operators.

Another interesting fault type is “corrupt-index”, where activated faults are most
likely by far to result in silent failures. This is caused in part by a high failure rate
in general, but it also has the highest proportion of silent failures of all fault types.
Since this fault type is an off-by-one error, it is likely to cause small deviations in
buffers and minimal buffer overflows. Unless this happens to affect another variable
used as a pointer or as an index or it overwrites a string terminator, segmentation
faults are relatively unlikely to result (only 5.8% of the cases). Hence, the relatively
few cases where it is detected from the exit status are most likely due to consistency
checks and assertions.

Summarizing, it has been shown that different fault types differ greatly with
regard to the likelihood to cause failure and the ease with which failures can be
detected. In both senses, experiments injecting pointer-related faults are much easier
to perform and control than experiments with data-related faults. Branch-related
faults are somewhere in between, often triggering silent failures but having more
potential of being uncovered by anomaly detection systems.

3.4.3 Impact of ease of reachability

We have now considered differences between programs and fault types with regard to
the occurrence of silent failures. The final factor we consider is fault location. One
particularly important aspect of fault location is which locations are easy to reach
while testing and which locations are harder to reach. Considering for example
the compression programs, we would say that the main compression loop is easy
to reach as any test that does not cause the program to fail early (for example by
specifying invalid arguments) would reach it. Some other parts of the code execute
in some operation modes but not others. Those are considered moderately easy to
reach. There are many error handlers, on the other hand, that only execute under
a very specific set of conditions. These are the locations we consider to be harder
to reach. In addition, there is the question of how likely a fault is to cause failure
when it has been activated. This is a similar idea to being in a hard-to-reach location
if we consider it hard-to-reach in an input space. A typical example to illustrate
this is a buffer overflow. Even if the code location of the bug is easy to reach (for
example in the main loop), an input size must also be found that is sufficiently large
to overflow the buffer into some relevant state while not being so large as to fail input
size checks earlier on. An overflow of a small buffer is therefore easier to reach in
the input search space than an overflow of a large buffer. Because hard-to-reach bugs
are more likely to escape testing, it is important to know whether they suffer as much
from silent failures as other fault locations.

To determine which fault locations are hard-to-reach, we consider the fraction
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Figure 3.2: Histograms of fault activation and failure ratios; frequency refers to the total number of
runs for all programs/benchmarks in that bracket

of invocations in which they are activated (reachability in code space) or in which
they result in failure when activated (reachability in input space). A histogram of
both variables is shown in figure 3.2. It should be noted that the HTTP servers
have been excluded here because they only involve a single invocation. All other
programs have been weighed equally. The “frequency” axis specifies the number of
injected faults in the bins on the x-axis. It is clear that for both issues, there is great
diversity between fault locations. Some faults are (almost) always activated while
other faults are activated only in a few test cases. Similarly, while many faults either
always cause failure or never cause failure when activated, there is also a substantial
number of faults that only cause failure in a part of the cases.

For our further analysis, we classified both the activation and failure variables in
three groups: <20% is considered hard to reach, ≥ 80% is considered easy to reach
and the remainder is considered moderately easy to reach.

Table 3.5 shows the relationship between reachability and hidden failures. The
most interesting result is found when considering the likelihood of activation. Faults
that are activated only in a few of the test invocations, suggesting that they are rel-
atively hard to reach in a test set, do not only result in failure more often but are
also especially likely to result in hidden failures. This suggests that more extensive
error checking is in place in code locations that are often used, exposing failures that
would otherwise remain hidden. However, it is known that especially those code lo-
cations that are rarely used are more likely to contain bugs [95; 96]. This means that
developers need to spend more effort into extending their regression tests to cover a
larger part of the code and that they should perform more sanity checking especially
in those regions that are not often used and hence more likely to contain bugs.

With regard to faults that are relatively unlikely to result in failure when acti-
vated, table 3.5 shows that, although (by definition) a relatively small fraction of
those result in failure, a relatively large fraction of those failures remain silent. This
supports our argument that considering whether or how often faults are activated is
not enough to identify which faults are likely to escape testing. There is also a class
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Table 3.5: Number of failures per reachability class

reachability class total silent-exit silent-time silent-both
Activation <20% 62.1% 36.1% 33.9% 26.6%

20-80% 56.9% 26.1% 23.2% 17.6%
≥ 80% 57.0% 14.5% 26.5% 10.5%

Failure <20% 1.5% 0.9% 0.9% 0.7%
20-80% 52.6% 34.0% 27.6% 21.6%
≥ 80% 97.7% 36.1% 42.2% 25.6%

of faults that can be triggered often but only results in failure under very specific
conditions. The fact that these faults are also relatively likely to be silent supports
the idea that fault injection experiments should not focus on just activation of faults,
but also consider how many faults result in behavioral differences.

3.5 Threats to validity

In this section, we consider various factors that may have interfered with our exper-
iments and the extent to which they influenced the results.

Although most of our data was gathered outside the faulty program by our tracer,
the number of fault activations was determined from the per-basic block execution
information gathered by EDFI inside the faulty program. The choice to take this ap-
proach was made because externally logging such events would be prohibitively ex-
pensive since we counted execution of every basic block. It is therefore possible that
faults overwriting random memory could have interfered with activation counts read
from the faulty program’s memory by the tracer. The worst thing that could happen
in this case would be an activated fault resetting the activation count to zero. If the
fault were to result in a failure, this would be visible as a failure without fault activa-
tion. This did not happen a single time in our experiments. We think it is therefore
safe to assume that if the activation count was reset in cases without failure, it would
at most affect an insignificant number of runs and have no impact on the results.

Another concern is the faulty program interfering with the tracer itself. Because
there is no shared memory between them, the only way to interfere would be through
system calls, which are monitored. To prevent interference, we have the tracer check
the arguments of risky system calls against a white list. The system call is canceled
with error code EPERM for system calls that modify resources not on the white list,
such as opening a file or sending a signal to an external (untraced) program. We
manually expanded the white list to the point where no calls need to be canceled and
because there are no resources on the white list that would affect the tracer, we know
that it is safe from interference.

Another potential issue is the use of virtualization, which could potentially inter-
fere with the times measured. To minimize this effect, we only run a single virtual
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machine per host at a time. In addition (as described in the Section 3.4), we found
that there were no extreme deviations in run time in the reference run, which sug-
gests that we successfully mitigated this issue.

Although our approach has the advantage of allowing detection of any externally
visible failure because system call logs can be compared to reference runs, it also
comes with some limitations. Ordering information between processes or threads is
lost. This is desirable in most cases because it prevents scheduling from introducing
false positives, but it could miss failures caused by incorrect interactions between
processes. Suppose, for example, that process A performs action X and process B
performs action Y. It could be the case that process X has to be performed before
action Y, for example if the former is the deletion of an old log file and the latter is
creation of a new one. In this case, processes A and B need to use some form of inter-
process communication, such as signals, semaphores, pipes or shared memory, to en-
force the correct order. If a fault causes Y to be performed prematurely, it would be a
failure that our system call matching approach would not be able to detect. However,
if programs are to be studied that perform this kind of behavior, it would be possible
to address this issue by identifying synchronization points between threads and pro-
cesses. If the synchronization point is marked in the logs for both processes, reorder-
ing with respect to the synchronization point would be detected and race condition-
inducing failures would also be found. Alternatively, for particularly complicated
cases it would be possible to complement our analysis with general-purpose deter-
ministic record-replay frameworks [108; 9; 102; 52; 109; 77] to address this issue.

3.6 Related work

Fault injection is the de facto standard technique for system dependability bench-
marking. Its versatility and relatively low implementation costs have helped many
researchers assess the dependability of several classes of systems, spanning from
distributed [67] and local [15; 90; 89] user programs to operating systems [49; 74],
file caches [99], and device drivers [112; 55].

Much prior work in the area focuses on the development of general-purpose
fault injection tools. A common implementation strategy is to introduce program
mutations that mimic realistic software or hardware faults. Mutations have been
applied at the source level [56; 127; 96], at the binary level [65; 99; 41], or, more
recently, at the intermediate code level [106; 113; 47]. An alternative is to introduce
program mutations at runtime, using software and hardware traps [114; 65; 23; 67]
or library interposition mechanisms [90; 89].

Until recently, however, there has been little attempt to investigate the general
properties of fault injection and its impact on the running system. A number of stud-
ies evaluate the ability to inject realistic and representative software faults, typically
focusing on what to inject [88; 41] where to inject [95; 96], and how to inject [28].
This is useful to reliably draw general conclusions from experimental results. Other
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studies investigate how to improve fault activation guarantees, typically injecting
faults into hot code spots identified by program profiling [115; 62]. This is useful to
eliminate invalid runs with no faults activated and ultimately improve the efficiency
of large-scale fault injection experiments. The latter is also the goal of efficient fault
exploration strategies [89; 15], which rely on domain-specific heuristics to drasti-
cally reduce the number of fault injection runs to the interesting cases. While useful
to analyze and improve the general properties of fault injection, all these studies
reveal little insight into its impact on the system behavior.

Other studies have sought to analyze the impact of artificially injected faults on a
running system, but without attempting to fully characterize its behavior—and thus
unable to thoroughly investigate the impact of silent failures. Traditional character-
ization studies, for instance, solely focus on fail-stop behavior [8; 58] or high-level
properties directly exposed to the user view of the system [39]. More recent studies
investigate how faults progressively propagate throughout the system [125; 94]. The
typical strategy is to rely on taint analysis techniques to identify all the corrupted
portions of the internal system state. While able to expose some failures that do
not normally result in fail-stop behavior during the experiment, this strategy cannot
alone pinpoint behavioral changes that corrupt the external state of the system and
eventually lead to subtle long-term failures. Given that prior work has demonstrated
that fault propagation normally results in transient internal state corruption [94], we
expect any strategy that ignores behavioral changes and external state corruption to
heavily underestimate the impact of silent failures.

Relatedly, bug characterization studies have also attempted to analyze the system
behavior in presence of real-world software faults. Most studies, however, do not
specifically consider silent failures, but typically focus on fail-stop behavior [49; 86],
fault propagation [49], or bug reproducibility [104; 24]. A notable exception is rep-
resented by the work of Fonseca et al. [42], which investigates internal and external
effects of real-world concurrency bugs. Their notion of latent bugs is similar, in
spirit, to our definition of silent failures in that they both lead to subtle long-term
errors not immediately reported to the user. Their study demonstrates the substantial
presence of silent failures in real-world bug manifestations and also confirms that
they are most often induced by corruption of external system state—persistent on-
disk state, in particular. When compared to our analysis, however, their investigation
is limited to concurrency bugs, requires extensive manual analysis, and is based on
a relatively small sample size. Our investigation, in contrast, is supported by auto-
mated analysis of fault injection results, which requires no manual inspection and
naturally provides much more stable and general results.

To conclude, our work draws inspiration from prior work in different research
areas. The general methodology used in our analysis is inspired by prior work com-
paring faulty and fault-free execution runs using state diffing techniques [99; 45].
Compared to our work, prior efforts differ in purpose—evaluating the effective-
ness of fault-tolerance mechanisms—and scope—analyzing differences in the sys-
tem state (and not in its behavior). Our system call-based behavior characterization
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is inspired by prior work on anomalous system call detection [92; 93]. In contrast
to prior work, our detection strategy compares semantically equivalent execution
runs, naturally resulting in a simpler and more conservative behavioral analysis.
Our detection strategy, in turn, is inspired by prior work comparing similar exe-
cution runs to detect deviant program behavior. In contrast to our work, N -variant
systems [105; 35] compare semantically equivalent execution runs with different
memory layout (to detect security attacks) and multi-version execution [116; 20],
compares execution runs from multiple program versions (to perform online patch
validation). Finally, our cross-execution system call matching strategy is inspired by
recent mutable record-replay techniques [75; 121], which seek to deterministically
replay a recorded execution on a different program version. In our work, however,
mutability is solely induced by fault injection and system call matching is only op-
erated after “replaying” the fault-free execution run. This drastically simplifies our
matching strategy, which only compares completed execution runs and need not rely
on the sophisticated heuristics proposed in prior work [121].

3.7 Conclusion

Based on our findings, we can now answer the research questions behind our in-
vestigation. First, it has become clear that silent failures are very common in fault
injection experiments. On the one hand, this confirms that research based on fault
injection experiments can be safely used to investigate the impact of real-world soft-
ware bugs, where silent failures have been shown to be of similar relevance [43].
On the other hand, this also means that any research dealing with fault injection
must carefully consider the impact of silent failures. Our results demonstrate that
the widely adopted assumption that failures are generally fail-stop is hardly sound,
as all the programs we investigated revealed a significant number of silent failures.
When faults are activated but no failure is observed at the end of an experiment, it
is important to assess the effectiveness of the adopted failure-detection techniques.
This is important since the program might have actually failed during the experiment
but the impact of the failure gone completely unnoticed. In particular, we encoun-
tered many cases of faults that only deviate from correct behavior in terms of the
data read or written by the program. Such deviations could easily go unnoticed even
when anomaly detection systems are used. Our approach of comparing externally
visible behavior against a reference run, on the other hand, is a more sensitive tool
for detecting failures and hence allows for more conservative experiments where no
failure goes unnoticed.

In addition to finding that silent failures are an important concern that cannot
be ignored, we also identified the circumstances in which silent failures are particu-
larly common. In general, it can be said that complex programs with many different
functionalities are more likely to show silent failure behavior than programs that
linearly perform a single task. However, there is considerable variation across pro-
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grams that cannot easily be explained from high-level characteristics. Instead, it
seems reasonable to expect that the programs which use more consistency checks
and assertions are less likely to fail silently. Given the similarity between injected
faults and real-world bugs, this reinforces the idea that defensive programming is an
important practice, even if the response to an unexpected condition is not more than
an immediate panic.

Besides the programs tested in a fault injection experiment, the design of the
experiment itself has also a substantial impact. We found large differences between
fault types, with pointer corruption faults behaving most predictably (failing often,
generally in highly visible ways) and faults leading to data corruption being the most
difficult to address (failing infrequently, often in subtle ways). Hard-to-reach code
tends to generate a relatively large number of silent failures, which, in turn, means
that low-coverage benchmarks run a risk of masking the presence of silent failures.
It can generally be said that a well-designed fault injection experiment using a broad
range of fault types and good coverage is more likely to encounter silent failures
than a poorly designed experiment with only the most obvious fault types and poor
coverage.

In addition to providing the first thorough measurement of silent failures, our
work also introduces a new framework to automatically identify fault-induced de-
viations in externally visible behavior. Our framework implements a simple and
conservative system call matching strategy, without resorting to complex heuristics
or missing any relevant deviations. In our future work, we are planning to extend our
framework to deal with more complex forms of nondeterminism that are even more
generally applicable. Detecting synchronization points across processes and threads,
for instance, could be a viable option to eliminate common forms of scheduling non-
determinism. More complicated situations, such as test programs that adapt their
process model to the system load, could be tackled using deterministic record-replay
techniques [108; 9; 102; 52; 109; 77]. This would allow us to extend our analysis to
generic systems software. Another potential application of our tool could be to study
the interactions between multiple injected faults. Overall, we believe our framework
could be used in dependability research to improve the soundness of fault injection
experiments.
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4
A Methodology to Efficiently Compare Operating

System Stability

Abstract

Despite decades of advances in software engineering, operating systems (OSes) are
still plagued by crashes due to software faults, calling for techniques to improve OS
stability when faults occur. Evaluating such techniques requires a way to compare
the stability of different OSes that is both representative of real faults and scales to
the large code bases of modern OSes and a large (and statistically sound) number of
experiments.

In this paper, we propose a widely applicable methodology meeting all such re-
quirements. Our methodology relies on a novel fault injection strategy based on
a combination of static and run-time instrumentation, which yields representative
software faults while drastically reducing the instrumentation time and thus greatly
enhancing scalability. To guarantee unbiased and comparable results, finally, our
methodology relies on the use of pre- and posttests to isolate the direct impact of
faults from the stability of the OS itself. We demonstrate our methodology by com-
paring the stability of Linux and MINIX 3, saving a total of 115 computer-days
for the 12,000 Linux fault injection runs compared to the traditional approach of
re-instrumenting for every run.

4.1 Introduction

While decades of advances in computer science have identified many ways to make
software more reliable, crashes and downtime due to bugs in operating systems are
still common. Even mature software contains a number of bugs proportional to the
code size [100], so the key to making today’s systems more stable is to deal with the
presence of software faults.

61



62
CHAPTER 4. A METHODOLOGY TO EFFICIENTLY COMPARE OPERATING

SYSTEM STABILITY

While anecdotal evidence often suggests that some OSes are more stable than
others, empirical measures of system stability are necessary if we wish to objectively
determine the effectiveness of stability-improving mechanisms. This is crucial to
uncover the trade-offs imposed on other properties, for instance, performance, code
complexity, or portability.

In this paper, we present a novel way to measure OS stability that is comparable,
representative, and scalable, allowing for a large (and statistically sound) number of
measurements in a reasonable time frame. Our methodology guarantees comparabil-
ity because it tests systems systematically, using the same workload, a similar fault
load, and providing unbiased stability results. Our methodology guarantees rep-
resentativeness because it emulates only real-world programmer-introduced faults
which are most likely to remain in production software [96]. Finally, our methodol-
ogy guarantees scalability for large OS code bases (up to millions of lines of code)
because it operates the fault selection process entirely at runtime, eliminating the
need for lengthy recompilation runs across experiments. By combining these proper-
ties, our methodology makes a fair comparison possible and allows stability-related
decisions to be taken in a systematic and rational way.

To determine how robust a piece of software is in the face of bugs, one needs
to confront the OS with a software fault (software fault injection) and determine
whether its response to the fault is appropriate. An analogy can be made with
crash-testing cars: to evaluate and compare the effectiveness of their safety features,
crashes are deliberately induced under controlled circumstances and the impact on
the passengers accurately measured. In the case of software fault injection, there are
two ways to test response to faults: (i) using real-world faults that were previously
identified in the software or (ii) injecting artificial faults designed to mimic real-
world faults. While both approaches can be useful, our focus is on the latter because
it allows us to compare systems facing with the same types of faults (comparability)
and to obtain much larger sample sizes (scalability). As in the car crash example,
these are not real-world faults but we attempt to mimic real-world faults as closely
as possible (representativeness).

To develop a meaningful measure of stability, we need to define the anatomy of
a legitimate OS response to a fault. We consider stability as the ability of an OS to
remain usable in spite of the presence of faults, which may, however, still degrade
the functionality of certain OS components. After a major car crash, one may expect
the car can no longer be driven. In a similar vein, we expect the OS not to be fully
functional after a fault has been injected, but we do hope that faulty OS components
have minimal impact on the rest of the system.

Summarizing, the contribution of this paper lies in the introduction of a new
measure of OS stability in the face of software faults that is, at the same time, com-
parable, representative, and scalable. Our approach uses statistical testing, allowing
the user to determine whether enough tests have been conducted to draw conclu-
sions from the results. In addition, we have implemented our approach in a way that
is easily portable to widely used OSes and we have performed experiments to com-
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pare two OSes (Linux and MINIX 3) to demonstrate the usefulness of our approach.

4.2 Related work

Many researchers have investigated methodologies to benchmark the dependability
of operating systems using fault injection experiments. Two orthogonal fault injec-
tion strategies, in particular, prevail in prior work in the area: (i) supplying invalid
inputs at the OS interface boundaries and (ii) operating targeted mutations in the OS
code.

The former strategy is popular in robustness testing campaigns, which seek to
evaluate the ability of the OS to function correctly in the presence of unexpected
inputs or events. Pioneering work in the area of robustness testing was undertaken
by researchers in the Ballista project [73], which first developed a methodology
to supply invalid parameters to the system call interface for OS testing purposes.
Their methodology was used to compare the robustness of several POSIX operat-
ing systems, eventually uncovering a number of critical and previously unknown
bugs. Since then, robustness testing has been applied to a variety of domains, in-
cluding comparing the dependability of different OS architectures [66], implemen-
tations [11], or evaluating the impact of faulty drivers on the robustness of the op-
erating system [8; 61; 62]. A number of robustness testing studies have also sought
to evaluate the experimental impact of different fault models [61], injection tech-
niques [58], and injection triggers [62; 32]. While robustness testing methodologies
share some similarities with our work—for example, our methodology relies on fail-
ure modes inspired by standard dependability benchmarking metrics which have
been influential in the area [66]—they also pursue radically different objectives in
that they aim to elicit erroneous behavior but do not actively inject faults inside the
OS and evaluate their stability impact.

The latter strategy is popular in mutation testing campaigns, which seek to em-
ulate realistic software or hardware faults inside the OS and analyze error propa-
gation, thus sharing more similarities with our work. Prior mutation testing cam-
paigns have served a number of purposes, including evaluating the effectiveness
of fault-tolerance mechanisms [39; 54], evaluating the OS behavior in presence of
errors [58; 39; 49; 48], or comparing the dependability of different operating sys-
tems [11; 25]. The testing methodologies proposed in prior work encompass differ-
ent code mutation techniques, ranging from run-time injection [25; 49; 54] to binary
rewriting [48; 11] and compile-time injection [127]. Run-time injection is popular
for its scalability properties—the very same OS binary can be reused across many
experiments with no relinking required—allowing, for instance, researchers to in-
ject as many as 3,400,000 faults into the OS in [54]. Prior studies, however, have
found run-time injection strategies to be poorly representative of realistic software
faults [88]. Similar representativeness problems have been also evidenced for bi-
nary rewriting strategies [31], which still operate entirely at the binary level. Not
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surprisingly, prior work based on all such strategies has focused on the emulation
of hardware faults, with the only exception of the methodology proposed in [39],
which attempts to mitigate accuracy problems by surgically reflecting source-level
faults into binary-level mutations.

Compile-time injection strategies, in contrast, have been successfully used to in-
ject realistic software faults into OS code [127], but at the cost of a less scalable ex-
perimental setting—each experiment requires recompiling the OS. Unlike prior ap-
proaches, our methodology relies on a hybrid instrumentation strategy, which intro-
duces pervasive software fault mutations at compile time, but carefully selects those
to actually inject only at run time. This approach results in a both scalable and rep-
resentative fault injection strategy, which allows our methodology to efficiently and
reliably compare the stability of different operating systems. Further, unlike prior ap-
proaches, our methodology sets out to discards nonresidual faults, which have been
shown to potentially hinder the representativeness of fault injection campaigns [96].

4.3 Approach

This section discusses how we inject faults into the system, how we select them and
how we determine the impact of the faults. We also list the workloads we used and
discuss to what other systems our approach would apply.

4.3.1 Fault injection

To be able to study the impact of faults on the systems being compared, we perform
software fault injection. Our goal is to inject the types of faults that programmers
are likely to introduce accidentally in real programs. Common software fault types
have been identified in the literature [41; 27; 110]. These works form the basis for
our selection of fault types, which is listed in table 4.1. Selecting realistic fault types
is an important element to achieve good representativeness.

After injecting faults in it, the OS cannot be relied upon to properly report the
impact of the fault. For this reason, our methodology performs fault injection ex-
periments inside a virtual machine (VM). Since faults are only injected in the guest
OS, results of the test can safely be logged on the host. Our methodology relies on
QEMU, with KVM to benefit from hardware acceleration. For each run, the VM
is booted until a workload script provided by the host machine takes control. This
script executes one of our workloads to stress the system and activate the injected
fault. The guest reports whenever it reaches a new phase and before fault activation
using a hypercall. We enabled hypercalls through simple memory accesses by im-
plementing a new QEMU device. QEMU logs the data provided by the guest for
later analysis.

The starting point for fault injection is to scan the target programs to identify
fault candidates. A fault candidate is a pair of a code location and a fault type that
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Table 4.1: Fault types

name description applicability

buffer-overflow size too large in memory operation
call to memcpy,
memmove, memset,
strcpy or strncpy

corrupt-index off-by-one error in array index array element access

corrupt-integer off-by-one error in integer operand
operation with integer
arguments

corrupt-operator replace binary operator with random operator binary operator
corrupt-pointer replace pointer operand with random value pointer operation
dangling-pointer size too small in memory allocation call to malloc
flip-bool negate result of boolean operation boolean operation
flip-branch negate controlling value for conditional branch conditional branch
mem-leak remove memory de-allocation call to free or munmap
no-load load zero instead of intended value memory load
no-store remove store operation memory store
random-load load random number instead of intended value memory load
stuck-at-branch fixed controlling value for conditional branch conditional branch

stuck-at-loop fixed controlling value for loop
conditional branch part
of loop construct

swap swap operands of binary operation binary operator

can be injected at that location [117]. Fault candidates can be identified at three
different levels: source code, intermediate code, and binary code. The source and
intermediate levels offer better representativeness because source-level information
is lost during compilation [31; 47]. The intermediate code level is decoupled from
both the source language and the target architecture, resulting in better portability.
This makes it easier to compare systems. For these reasons, we decided to work on
the intermediate code level. To gain access to the intermediate code, we have written
a compiler pass for the LLVM compiler framework [79].

4.3.2 Fault selection

To accelerate the experiments and make our system more scalable, we inject faults
only in locations that we expect to be executed. To determine which locations will be
executed, we perform a number of profiling runs [61] before starting the experiment
itself. During a profiling run, the workload is executed (just as in a faulty run) but
no fault is injected. We register which basic blocks (parts of the code with a single
entry point and a single exit point) are executed during the profiling run and inject
only faults in those basic blocks that are executed in at least one profiling run.

In our methodology, only one fault is injected per run. Applying the principle
of Occam’s razor, our reasoning is that faults are rare enough that in most cases
crashes experienced by users are due to a single fault. This approach also allows us
to identify the circumstances of the crash better. The disadvantage of our choice is
that we cannot study fault interactions.

In addition to the number of faults to inject, it is also important to decide which
faults to inject. According to [117], the most representative way to select faults is
to make the chance of selecting a certain location or fault type proportional to the
number of fault candidates. This means that larger components have a proportionally
larger chance of being selected (consistent with [100]) and fault types for which there
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are many opportunities to introduce are injected more often.
The standard approach to inject a single fault per run at the intermediate code

level entails relinking the program for each experiment. Unfortunately, this strat-
egy does not scale to large code bases (like most operating systems), since linking
can take a very long time. To improve scalability we opted for a radically differ-
ent instrumentation strategy, which shifts overhead from compile time to run time.
For this purpose, our fault injection compiler pass clones each basic block into a
clean version and a faulty version. In the faulty version, a single randomly selected
fault candidate is injected. This basic block cloning approach is inspired by prior
techniques [47], but serves as a basis for a completely different injection strategy in
our methodology. Our compiler pass always mutates all basic blocks in the program
with faults—thus eliminating the need for recompilation across the experiments. Our
compiler pass injects per-basic block fault triggers [47] that guarantee that only one
faulty basic block (different for each experiment) is actually executed at runtime—
thus preserving our single-fault-per-run assumption. Our compiler pass writes a map
file with information on all fault candidates and injections.

Before starting the faulty runs, we randomly select basic blocks that were acti-
vated in the profiling runs for fault injection. The likelihood of a basic block being
chosen is proportional to the number of fault candidates in that basic block, ensuring
that each fault candidate has the same chance of being selected. The chosen basic
block is passed to QEMU as an argument. The guest OS is slightly modified to per-
form a hypercall at the earliest opportunity to retrieve the number of the faulty basic
block. In modular operating systems, each module does so individually. At run-time,
each per-basic block fault trigger checks whether the stored basic block number cor-
responds with its own and executes the faulty version of itself if this is the case.
This incurs some runtime overhead, but our measurements show that this takes far
less time than the additional linking that would otherwise be needed. Hence, this
strategy is effective in lifting the scalability of static bitcode-level injection close
to that of run-time binary-level injection, while retaining similar representativeness
guarantees to that of source level injection—the best of both worlds.

Figure 4.1 illustrates the steps that have been described here. The main con-
sequence of the sequencing as shown in this diagram (chronologically from left to
right) is that due to run-time fault selection only the “testing” phase is performed
multiple times. This allows for scaling with regard to both size of the code base and
number of experiments because the linking time is not multiplied by the number of
experiments.

4.3.3 Classification of results

It is hard to automatically classify the state of a system after fault execution. We aim
to determine the stability of the OS itself rather than the impact of the fault. We con-
sider it acceptable for a fault to prevent the part of the system it was injected in from
working properly, but we are interested in evaluating the degree to which the OS can
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Figure 4.1: Phases of our approach

prevent arbitrary faults from bringing the system as a whole into an unstable state.
Our approach takes the problem of separating the direct impact of the fault from

system stability into account by testing whether the faulty system is functional both
before and after running a workload. Once the system is booted, it loads a script that
will perform the tests and the workloads. Before running our workloads, a pretest is
performed. If it succeeds, the run is considered valid. If it fails or is never reached,
the run is marked as invalid and is not considered when determining how many faults
make the system unstable. The reasoning is that a fault that prevents the system from
booting or that breaks basic functionality would never go unnoticed and therefore
would not end up in production software. Hence, the faults injected in valid runs
are similar to what is termed “residual faults” elsewhere [96]. For valid runs, the
workload is executed and afterwards a posttest (same as the pretest) is performed.
If the second test also passes, we conclude that the system has retained its original
functionality. This is interpreted as a sign of stability. If the pretest succeeds but
the posttest fails or is never reached, the fault is considered residual and made the
system unstable. This is interpreted as an indication that the OS is not very stable in
the presence of faults. Such runs will be referred to as “crash” runs.

Unfortunately our methodology does not allow us to determine exactly what
went wrong. We cannot distinguish different types of crashes and hangs. The aim of
this paper is to provide a first demonstration of our methodology for efficient fault
injection. Since the way the results are analyzed is orthogonal to this, a crude but
simple approach is most suitable. More advanced approaches can be explored in
future work.

The tests serve to determine whether the system would be perceived by a user as
alive and functional. They test functionality that would be easily found to be broken
while the system was being tested. As such, they are less rigorous than the workload,
which should stress as much of the system as possible. In this work, we model the
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Table 4.2: Workloads

code description tests
bsh Bash regression test shell functionality
gdb GDB-like workload ptrace
htp Apache workload networking
mnx Reduced MINIX test set calls provided by MINIX (incl. POSIX)
uxb Unixbench performance-sensitive POSIX calls
vim Vim regression test interactive use of the tty

OS being tested as a server system that is reachable from the outside through the
network. We make the host system connect to the guest through SSH and create a
file inside the VM. If the file is successfully created, the system is reachable and
would be considered to be alive by a user. However, our methodology could easily
use other kinds of tests for other types of systems. Test selection influences which
faults are tested because faults detected by the pretest are excluded as invalid runs.
We recommend adapting the test to the role of the operating systems being tested
to most effectively identify residual faults and decide whether the system would be
considered to be functional by a user.

4.3.4 Operating systems and workloads

Because our system operates at the intermediate code level, it requires the source
code. To demonstrate our methodology we selected two open-source systems. The
first is Linux as it is one of the most popular open-source operating systems. As for
the second system, we opted for a system with a very different structure to test the
versatility of our methodology. It seemed appropriate to select a multi-server micro-
kernel system based on theoretical claims that this design should be more reliable
than the more common monolithic design [54]. If there is indeed a difference, our
methodology should be able to measure it. Based on these constraints we picked
MINIX 3, an open-source multi-server microkernel system that has good POSIX
support due to its use of the NetBSD C library. An additional advantage is that the
latest release supports LLVM bitcode compilation out of the box.

Our aim in selecting the workloads was to find tests that work identically on
both systems and use a variety of different system calls. The workloads we selected
are listed in Table 4.2. The codes will be used to refer to the workloads in the
results section. Unixbench and the MINIX test set were included because both use
a wide range of system calls. For the MINIX test set, we had to disable a few tests
because they use functionality not provided by Linux. The other workloads were
all included to test specific parts of the system to determine whether this results in
different stability behavior.
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4.3.5 General applicability

The main requirement to be able to use our tools is that the OS can be built with the
LLVM compiler in bitcode mode. The LLVM compiler has front-ends for many dif-
ferent languages, amongst others C and C++, which are used for most OSes. It also
has a high degree of compatibility with GCC, a compiler which is very widely used
for such systems. In the case of our experiment, MINIX 3 was already fully compat-
ible with LLVM bitcode while for Linux we had to use the LLVM Linux project [2],
which removes reliance on some obscure GCC extensions of the C language that
LLVM chose not to implement. We expect that in time these changes will be merged
into mainline Linux. Some small build system changes were required to support bit-
code linking. More and more OSes are starting to provide support for LLVM, such
as for example Apple and the BSDs. Also, for standards-compliant code there is no
need to even make changes to be able to use it.

To be able to use our approach as described here, a few very small changes must
be made to the OS. In particular, the system must be linked against the fault injection
library, provide a way to perform the required hypercalls and request which fault is to
be injected at boot time. Other invocations of the hypervisor are performed automat-
ically by the compiler pass (reporting whenever the fault is activated) or the script
controlling the experiment (reporting whether the pre- and posttest have succeeded).
Our changes introduced 127 new lines of code in Linux and 208 in MINIX. These ad-
ditions implement hooks called by compiler-generated code and add a hypercall dur-
ing early boot. This means the only OS-specific knowledge needed is how to access
physical memory and what is the earliest time after booting when this can be done.

4.4 Results

To compare how stable Linux and MINIX 3 are according to the methodology out-
lined in this paper, we have performed a total of 24,768 experiments. For each com-
bination of the two systems and six workloads, we performed 64 profiling runs and
2,000 faulty runs. We believe the number of profiling runs is adequate because per-
forming more runs does not increase coverage any further (for MINIX it increases up
to 32 runs, for Linux up to 16) and because the standard errors on the timing are very
low compared to the total runtime (see Table 4.4). As for the faulty runs, more is
always better because it allows statistical tests to be performed for more uncommon
events, such as faults injected in components with small code size.

To give some crude indication of the desired number of experiments we start
from the common rule of thumb that the χ2 test (used to test whether crashes are
more common in some cases than in others) is only accurate if the expected value is
at least five in all of the cells of the contingency table [124]. Overall, approximately
2% of the total number of runs are “crash” runs, the case that we are most interested
in. Theefore, we require approximately 250 runs to be able to perform a χ2 test.
For example, the total number of fault injection experiments we ran per OS (n =
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12, 000) allows us to perform tests for components making up at least 2% of the code
base. These numbers are not exact because it depends on the number of valid crash
runs in the part used as a reference but it gives some indication of the total number
of experiments required. For our purposes, the number of experiments performed
turned out to be sufficient to perform tests for all relevant cases.

For the experiments, we used two VMs with 4GB RAM each. One runs Linux
3.11 rc4 (the version supported by LLVM Linux [2]) with the Ubuntu Server 12.04
LTS distribution, the other a pre-release of MINIX 3.3.0 (the first version supporting
LLVM bitcode linking). Both OSes were slightly modified to report fault activa-
tions through our hypercall interface (127 lines in Linux and 208 in MINIX). As a
hypervisor we used QEMU 2.0.0 with KVM acceleration. We modified QEMU by
implementing an additional device to provide the hypercall interface for the guests
(899 lines added). The experiments were conducted on nodes of a computer cluster,
each with two Intel Xeon E5620 CPUs at 2.40GHz and 24GB of memory. These
nodes were used exclusively for our experiments, with only one experiment running
per node at a time to avoid interference of other jobs with the timing.

4.4.1 Coverage

Table 4.3 shows the coverage reached by our workloads. in terms of both fault
candidates (“fc”) and lines of code (“loc”). The units show reasonable agreement,
which means our approach of making the likelihood of injection proportional to
the number of fault candidates is in agreement with the most common measure of
code size. Unfortunately, the combined coverage reached is quite low, especially
on Linux. While it would be desirable to reach higher coverage [117], it is hard to
do so because we can only use features supported by both operating systems in our
workloads. It may be possible to reach higher coverage in systems that are more
similar, but then there is still the issue that much of the hardware support is not
used, especially when run in an emulator. For example, running the full MINIX test
set (including the tests that do not run on Linux) does not give substantially better
results because many hardware-related modules have very poor coverage.

When considering the individual workloads listed in Table 4.3, it is clear that
the reduced MINIX test set (“mnx”) is the most extensive workload, reaching the
highest coverage on both systems in both units. The combined coverage, however,
is still clearly better than any individual workload. This shows that the workloads
test different parts of the system, so there is value in keeping them separate to find
whether the response to faults is affected by the types of operations performed.

4.4.2 Fault activation

There is some nondeterminism that causes the parts of the program executed not to
be exactly the same from run to run, even if no faults were injected. Although we
only injected faults in basic blocks activated in the profiling runs, 1.8% of the faults
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Table 4.3: Coverage as % of fault candidates (fc) and lines of code (loc)

workload Linux MINIX
fc (%) loc (%) fc (%) loc (%)

bsh 15.9 16.5 38.5 38.0
gdb 15.6 16.4 37.5 36.4
htp 15.8 16.5 37.6 36.5
mnx 16.2 16.9 39.1 38.5
uxb 15.9 16.5 37.4 36.4
vim 15.9 16.5 37.4 36.4
(combined) 16.9 17.4 40.0 39.4

did not get activated on Linux and 0.3% on MINIX. Although we could re-run these
experiments until the fault was activated, we opted not do do so because it would
bias the results. In real-world situations faults in these locations would also be less
likely to trigger than those in deterministically executed locations, so our stability
conclusions should reflect this. Instead, we discarded these runs and did not consider
them for the statistics. This approach seems to have the least risk of introducing bias
compared to real-world faults. However, given that the number of nonactivated runs
is so small, the alternative choice would not have influenced our conclusion.

4.4.3 Scalability

As discussed in the approach section, we have opted to accept a slowdown to select
the active fault at runtime to save compilation time and overall hope to accelerate
the experiments. Table 4.4 shows the impact of the overhead on the time each exper-
iment takes, from starting up QEMU to the completion of the posttest. The results
are averages over 64 runs, which is sufficient to obtain very reliable measurements
judging from the standard errors. On our system, using LLVM with bitcode, it takes
59m10s to compile Linux, 1m4s to instrument it and 15m0s to link it. With standard
bitcode-level fault injection (i.e., no runtime fault selection), the system has to be re-
instrumented and re-linked before each run. This would cost 5784s for all workloads
together (six runs) and would save only 811s of runtime. This means our solution
is more than seven times as fast. MINIX takes 3m44s to compile, 1m16s to instru-
ment and 3m5s to link. This is 1566s for six runs to save 629s of overhead. Here,
our approach is a factor 2.5 faster than the alternative. On the whole, we save 115
computer-days on the Linux runs and 22 computer-days on the MINIX runs. This
is a low estimate, as many runs crash early, resulting in even less runtime overhead.
Clearly, our choice is very effective in making our approach more scalable. That
said, it should be noted that the decision must be made on a case-by-case basis, as
the best choice could turn out differently for smaller OSes running larger workloads.
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Table 4.4: Runtime with and without instrumentation

system workload uninstrumented (s) instrumented (s) slowdown (%)
mean std.err. mean std.err.

linux bsh 154.6 0.0 212.0 0.1 37.1
linux gdb 211.7 0.0 220.4 0.0 4.1
linux htp 271.3 1.9 301.7 0.1 11.2
linux mnx 236.3 0.2 364.7 1.2 54.3
linux uxb 554.7 0.1 1112.1 0.1 100.5
linux vim 176.8 1.7 205.8 1.6 16.4
linux (total) 1605.5 4.0 2416.6 3.2 50.5
minix bsh 168.7 0.0 224.6 0.0 33.2
minix gdb 93.4 0.1 109.6 0.0 17.4
minix htp 415.5 0.3 546.7 0.4 31.6
minix mnx 377.6 0.1 682.4 0.5 80.7
minix uxb 1097.2 0.1 1110.8 0.1 1.2
minix vim 120.8 0.1 227.7 0.1 88.4
minix (total) 2273.2 0.7 2901.7 1.1 27.6

4.4.4 Systems and workloads

Although it provides more information, the main aim of our methodology is to deter-
mine in a systematic way whether one system is more stable than another. Table 4.5
provides the outcome of this test. Note that the number of valid runs is not split
between workloads because it is inherently unaffected by the workload, which runs
after the result of the pretest has already been reported. There is a substantial and
significant difference between Linux and MINIX in the number of runs that are valid
but the difference in the number of valid runs where the posttest fails (further referred
to as “crash” runs here) is small and not statistically significant. This is consistent
between the workloads, some of them giving the benefit of the doubt to Linux and
others to MINIX but not one of them showing a significant difference. Based on this
result and contrary to what might have been expected theoretically, MINIX cannot
claim to be more stable that Linux. Residual faults are approximately equally likely
to crash both systems.

However, MINIX does have the advantage that more faults are detected early by
interfering with the basic functionality of the system of booting and performing the
pretest. As a consequence, it is expected that faults are on average easier to detect
and fewer of them will remain in production releases. This suggests that MINIX’
use of memory protection between modules is effective in causing early crashes for
some faults, but in the end the implemented isolation and recovery mechanisms are
not sufficient to prevent faults from spreading or bringing down the system. How-
ever, to know for sure would require more in-depth analysis of what is happening
on the crash runs. To do this automatically would require dropping the black box
assumption. It could be a suitable topic for future research but is out of scope for
this paper because it is not as widely applicable as our methodology presented here.

Comparing the workloads between each other, the reduced MINIX test (“mnx”)
stands out for triggering significantly more crash runs than the other workloads.
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Table 4.5: Stability of systems per workload

workload Linux MINIX
valid (%) crash (%) valid (%) crash (%)

bsh 2.9 * 4.2
gdb 4.6 3.5
htp 4.0 4.5
mnx 5.3 * 7.3 ***
uxb 4.4 4.3
vim 4.2 4.3
(total) 59.2 4.2 39.9 ### 4.7

χ2 comparing with other workloads significant at *=p < 0.05, **=p < 0.01, ***=p < 0.001; χ2

comparing with other system significant at #=p < 0.05, ##=p < 0.01, ###=p < 0.001

Given that this workload also reaches the highest coverage (see Table 4.3) this seems
to be due to the fact that it is simply the most extensive workload, most capable
of triggering crashes. The Bash regression test (“bsh”) triggers significantly fewer
crashes than the other workloads on Linux. This may be cause by the fact that Linux
heavily relies on shell scripting to initialize the system at boot time, so the fault most
affecting the Bash shell would have been spotted earlier and resulted in invalid runs.

In addition to providing a comparison between the systems and workloads tested,
another interesting result is the fact that the vast majority of residual faults (more
than 95% of them) do not crash the system. Despite the lack of isolation in the Linux
kernel, they apparently do not cause enough corruption to interfere with the posttest.
We plan to delve into this phenomenon deeper in future work by determining what
kind of impact these faults do have - are they inherently harmless or do they cause
some damage eventually that can only be noticed after specific triggers?

4.4.5 Operating system components

To find why MINIX is not more resilient against injected faults than Linux, we have
used the code paths provided by the LLVM debug symbols to classify the locations in
which we have injected faults. The results are presented in Table 4.6. We did not per-
form statistical tests between the systems here because, as accurate as we tried to be
in classifying the code paths into components, the differences between the systems
are too large to make the (groups of) components fully comparable. For example,
the Linux kernel contains functionality that in MINIX is provided by the process
manager (“pm”), virtual file system (“vfs”) and the other system servers (“servers”).
However, these different organizations do not prevent us from identifying the more
and less robust parts of both systems individually.

Microkernel systems such as MINIX aim to reduce the trusted code base (TCB)
of programs that have sufficient privilege to bring down the system as a whole (rather
than just the parts that directly depend on its functionality). Ideally, components
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Table 4.6: Fault types

component Linux MINIX
n valid (%) crash (%) n valid (%) crash (%)

driver 2189 61.41 * 1.06 *** 1037 52.84 *** 1.82 ***
fs 2262 57.55 9.3 *** 1057 51.18 *** 4.07
kernel 1332 65.24 *** 1.99 *** 1620 37.61 * 7.65 ***
lib 2383 57.24 * 4.1 1738 33.24 *** 4.34
mm 730 61.1 2.03 * 1234 25.61 *** 3.8
net 1496 63.03 ** 3.83 2000 41.94 * 1.79 ***
pm 535 53.46 *** 12.59 ***
servers 352 43.75 3.9
vfs 1896 39.7 6.12 *
other 1608 51.73 *** 5.59 * 531 30.19 *** 3.75
(total) 12000 59.15 4.23 12000 39.87 4.69

χ2 comparing with other components significant at *=p < 0.05, **=p < 0.01, ***=p < 0.001

such as the drivers and networking (“net”) should be outside the TCB. As expected,
residual faults injected in either of these components result in significantly fewer
crashes than faults injected elsewhere. Apparently, privilege reduction and isolation
are effective here. The kernel, PM and VFS, on the other hand, show significantly
more crashes. These three components are firmly within the TCB, with considerable
privileges and the entire system depending on them. The memory manager (“mm”)
is also in the TCB but does not show a high number of crash runs. Given the very low
number of valid runs, it seems faults in this component tend to bring down the system
early and are therefore unlikely to make it into production systems. Summarizing, it
seems the microkernel design is effective but the TCB is highly vulnerable, causing
the average not to be better than Linux’ average.

For Linux, the most vulnerable component is by far the file system. This might be
due to the fact that Linux uses the EXT4 file system, which is far more complicated
than MINIX’ MFS. The more complex code could allow serious bugs to “hide” for
a longer period of time before corrupting the experiment. In the light of arguments
commonly made in favor of microkernels, it is remarkable that the drivers and the
core kernel are actually Linux’ least vulnerable parts. Apparently the spread of
corruption in a highly privileged part of the source code is not as large an issue in
practice as would be expected. To find out why this is the case, one would need to
perform a more in-depth analysis, something which we plan to do in future work.

4.4.6 Activation time and fault latency

Because we log each fault activation, it is possible to determine the impact of the
timing of the fault on the outcome of the experiment. Because timing in terms
of seconds is hard to compare between systems and workloads, we have opted to
instead consider during which step of the experiment the fault was first activated.
Table 4.7 shows the results.

The first thing that stands out it the fact that the vast majority of faults (87% on
Linux, 89% on MINIX) is first activated while booting. Because the likelihood of



4.5. THREATS TO VALIDITY 75

C
ha

pt
er

4

Table 4.7: Step of first fault activation

first act. Linux MINIX
n valid (%) crash (%) n valid (%) crash (%)

boot 10432 56.7 *** 1.6 *** 10689 37.3 * 3.2 ***
pretest 907 66.7 *** 7.1 *** 1048 53.1 * 3.2
workload 415 100.0 *** 35.9 *** 226 98.2 * 34.7 ***
posttest 31 100.0 *** 25.8 5 100.0 0.0
shutdown 3 100.0 0.0 0
(never) 212 32
(total) 12000 59.2 4.2 12000 39.9 4.7

χ2 comparing with other steps significant at ***=p < 0.001

fault injection is proportional to code size, this means there is relatively little code
that is used while the OS is running but not used when initializing the system at boot
time.

Considering the number of valid runs, faults first activated during boot time are
most likely to cause the run to become invalid (fail or not reach the pretest). Due to
the large number of faults activated at boot time and the fact that faults activated after
the pretest cannot make a run invalid, this group of faults is dominant in determining
the overall percentage of valid runs.

The percentage of valid runs that fails to pass the posttest (listed as “crash” in
the table) also differs greatly depending on the first activation of the fault. Faults
triggered during boot time and (for Linux) during the pretest are significantly less
likely to be counted as crash runs than the average while faults first activated by the
workload are far more likely to cause crash runs. Combining this with the previ-
ous result, it becomes clear that many of more serious early faults are weeded out
because they crash the system while booting or undermine the basic functionality
of the system tested in the pretest. This means that on average boot-time activated
faults are less likely to go unnoticed and make it into production software and those
that do are on average less dangerous that late-activation faults. However, this does
not take into account that the total number of early-activation faults is much larger.
When considering the total n, we find that many crash runs are caused by faults first
activated at boot time (32% of them on Linux and 58% on MINIX). This means that
long-latency faults cannot be ignored. It is worthy of note that MINIX seems to suf-
fer more from long-latency faults than Linux does. Our current experiment does not
allow us to identify the reason why, but we will delve deeper into latent corruption
and long-latency faults in future work.

4.5 Threats to validity

Although we believe our methodology is one of the most effective ways to compare
OS stability, some factors that threaten its validity must be considered when using
it. For representativeness it is important to note that although we took care to select
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realistic faults, the faults we test are artificial. Real-world faults are more repre-
sentative, but are problematic when trying to achieve comparability and scalability.
Another issue that introduces differences with real-world situations is the fact that
we have to virtualize and instrument our code. While necessary to run the experi-
ments in an automated fashion, this introduces timing differences that could change
the behavior of race condition bugs. Another limitation is the fact that the choice of
pre- and posttest influences the bugs that will be tested by determining which ones
are classified as residual (and hence potentially harmful). This can be addressed by
selecting a test that is consistent with the way the system would normally be used
in practice. A related issue is the fact that it is very hard to tell whether a system is
functional, especially in a black box setting. For example, one cannot tell whether a
system hangs or is just being slow. It is therefore impossible to automatically classify
the state of the system in all cases. Using the posttest is a workaround to bypass this
issue. Finally, we cannot determine whether latent corruption is present after fault
activation that could be exposed by a more thorough workload. This is something
we will address in future work by determining whether the internal system state is
still correct after fault activation.

With regard to our evaluation, it should be noted that we only compare against a
traditional compilation-based approach. Run-time (binary-level) approaches would
be faster but we do not consider them comparable due to their representativeness is-
sues [88]. It should also be considered that we used only LLVM and other compilers
may generate code that reacts to faults differently.

4.6 Conclusion

In this paper, we have presented a novel methodology to systematically compare OS
stability in a way that allows for meaningful comparison using statistical methods, is
representative of faults made by programmers that make it into production software
and can scale to a large number of experiments even for very large code bases. Our
methodology is widely applicable. We have successfully applied this approach to
two structurally very different operating systems, showing that our unconventional
choice to shift work from compile time to run time is highly effective in speeding up
experiments without compromising on the source-level information available to the
fault injector.
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5
HSFI: representative fault injection scalable to large

code bases

Abstract

When software fault injection is used in current research, faults are typically inserted
at the binary or source level. The former is fast but provides poor fault representa-
tiveness while the latter cannot scale to large code bases because of large rebuild
times. Alternatives that do not require rebuilding incur large run-time overheads by
applying fault injection decisions at run-time. HSFI, our new design, allows faults
to be injected with all context information from the source level and applies fault in-
jection decisions efficiently on the final binary. It does so by placing markers in the
original code that can be recognized after code generation. We implemented a tool
according to the new design and evaluated the time taken per fault injection exper-
iment when using operating systems as targets. We can perform experiments more
quickly than other source-based approaches, achieving performance that come close
to that of binary-level fault injection while retaining the benefits of source-level fault
injection.

5.1 Introduction

Despite significant advances in bug detection tools, software bugs continue to be a
major source of system crashes [83]. Moreover, the number of bugs in mature code
is a linear function of the number of lines of code [100] so as software continues to
grow more and more complex it is reasonable to expect that software bugs will be
an even bigger threat to system reliability in the future. This means that we have
no choice but to accept the presence of bugs as a given and devote our attention to
mechanisms that allow the systems we build to tolerate bugs. To build such systems,
we need to be able to quantify fault tolerance to verify whether we are doing a good

77
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job. Fortunately, fault injection is an effective way to measure the impact of real
faults if a sufficiently large number of experiments are performed [37; 10].

Although there has been substantial research into software fault injection and
several techniques are widely used, each of the existing approaches has some impor-
tant limitations. Injection of hardware faults such as bit flips is not representative of
software bugs [88] and neither are faults injected at the interfaces between compo-
nents [91; 78]. The main alternative is mutation testing, where software is modified
to introduce deliberate bugs similar to those that a real programmer might have ac-
cidentally introduced. This can be performed at several levels. At the binary level,
the machine code is analyzed to recognize coding patterns and mutate them directly
in the machine code. Unfortunately, Cotroneo et al. [31] have shown that in prac-
tice this approach poorly represents true software faults. This can be explained by
the fact that context information is lost when the compiler transforms a program’s
source code into binary code. The main alternative is to modify the source code
itself. Daran et al. [37] and Andrews et al. [10] have shown this approach to be ef-
fective in mimicking real software faults. Source-level fault injection is increasingly
popular [60] but unfortunately it scales poorly to large code bases due to relinking
overhead [19]. Van der Kouwe et al. [120] have reduced this overhead by injecting
multiple faults at a time and selecting the desired ones at run time but this incurs a
severe run-time performance penalty. To the best of our knowledge, there are cur-
rently no approaches that allow high-representativeness mutation testing on large
code bases without a substantial performance penalty.

In this paper, we introduce a new design called HSFI (Hybrid Software Fault In-
jection) that allows source-level context information to be used to inject faults while
making it possible to enable and disable those faults in the final binary without re-
building. As a consequence we do not have to rebuild the code for each experi-
ment, which allows the approach to scale to large code bases without substantial
run-time overhead. This allows for substantial savings when testing fault tolerance
of large software systems such as operating systems. These savings are becoming
even more important as we move towards multiple-fault models [122], which greatly
increase the number of potential fault scenarios. Our technique complements other
approaches to reduce the cost of fault injection, such as pruning the search space to
test the most important failure scenarios first [15; 50; 63; 30] or performing multiple
experiments in parallel [123]. Moreover, within the domain of software faults, our
design is agnostic to the fault model and our implementation can easily be extended
with new fault types or fault injection policies.

The core idea of HSFI is to inject many faults at the same time before the code
generation phase and selectively enable or disable the individual faults by directly
modifying the machine code in the final binary. For each injected fault, two versions
of the code are generated: a pristine version that performs the original operations as
specified in the source code and a faulty version where those operations are mutated
according to the fault type that is applied. For each location where a fault is injected,
a marker is generated that can be recognized by our binary pass. The binary pass
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then uses these markers to recognize which code sections are pristine and which
are faulty and uses this information to efficiently enable or disable individual faults
without the need to rebuild the program.

Our evaluation shows that our approach performs well and is highly effective at
marker detection. It provides performance close to that of binary-level fault injec-
tion for both operating systems we used as fault injection targets while alternative
approaches that allow source-level information to be used are shown to result in
substantial overhead.

5.1.1 Contributions

This paper makes the following contributions:

• A new design point in software fault injection that combines availability of
source-level information with low overhead even for large code bases.

• A practical implementation of this design that outperforms both source-level
fault injection and previous approaches in most cases and is close to binary-
level fault injection performance in all cases.

• Source code will be made available after publication, allowing others to bene-
fit.

• An empirical evaluation that shows in which cases it would be beneficial to
use our new approach instead of traditional ones.

5.2 Background

To show why a new approach for fault injection is needed, in this section we will first
discuss why fault injection itself is important. Next, we briefly go through the vari-
ous types of fault injection currently used in academic research and their purposes.
Finally, we go through the available techniques for software fault injection in more
detail to demonstrate why it would be beneficial to obtain a new trade-off between
availability of source-level information and performance on large code bases.

Fault injection is used for a wide variety of purposes, usually related to quanti-
fying and/or improving reliability. Although fault injection is used in many different
domains and our solution is also widely applicable, we will focus particularly on
fault injection into operating systems. Operating systems are typically very large
pieces of software and they perform a critical role in system reliability as a failing
operating system causes the entire system to be unavailable. Because operating sys-
tems run at a high privilege level, bugs can do a lot of damage. Even just in the
limited context of operating systems, fault injection has been used in many differ-
ent ways. Examples include evaluating operating system stability in case of faults
in the operating system itself [125; 71; 120], testing isolation properties to protect
against faulty device drivers [39; 54], determining to what extent faults can go un-
noticed and cause corruption later [119], certification of safety properties [33], and
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improving fault tolerance by finding the most likely situations in which data can be
lost [98]. Fault injection is a critical tool that is necessary to reach more acceptable
levels of operating system reliability in the face of faults.

The first step of any fault injection campaign should be to decide on a fault
model. The fault model specifies what types of faults will be injected and should be
consistent with the types of faults the target system will be expected to tolerate. Fault
models can be broadly categorized in three groups that typically require different
fault emulation techniques to be used: faults external to the system that are observed
at the system’s interfaces, faults in the hardware the system is run on, and faults in
the software of the system itself.

Fault models where interface-level faults are injected are appropriate to test sys-
tem responses to external changes without changing the target system itself. An
external fault could occur in a library (for example LFI [90]), another software com-
ponent on the system or another system entirely (such as FATE [50] which emulates
I/O failures). In all cases, such faults can be easily emulated by providing an in-
correct response at the interfaces that delimit the target component, for example by
replacing a system library or interposition in inter-component communications. Al-
though these models are suitable to evaluate robustness in the face of unexpected
external events, they are not appropriate for cases where we must deal with software
bugs in the target component itself [91; 78].

We will refer to models where hardware faults are emulated as hardware fault in-
jection, although it should be noted that this term is sometimes used to indicate that
hardware is used as a tool to inject faults (such as for example MESSALINE [12]).
However, many more recent systems emulate hardware faults in software; for exam-
ple, FINE [68] and Xception [23]) inject faults in program binaries, LLFI [85] in-
jects hardware faults in intermediate compiler representation, and GemFI [101] uses
a cycle-accurate full-system emulator to inject hardware faults. Hardware fault mod-
els have been widely used for a long time and are well-researched. Typical example
fault types include memory faults, CPU faults, bus faults and I/O faults, all of which
can be either permanent or transient [68]. Although such fault models are suitable to
research to impact of failing hardware, Madeira et al. [88] have shown that hardware-
based fault models are not suitable to emulate the impact of software faults.

We refer to the final group of fault models as software fault injection because
software faults are being injected. Again, it should be noted that the term is used in-
consistently in the literature: it is sometimes used to indicate that software is used as
a tool to inject faults (as for example in FERRARI [65]). Another commonly used
term is mutation testing. While the other types of fault model have been used by
many engineers for a long time, software fault injection has started to see widespread
use mostly in recent years [60]. Compared to the other types of fault injection, injec-
tion of software faults gives rise to a number of unique challenges. Software faults,
also commonly known as bugs, are introduced accidentally by human programmers.
This means that fault models cannot be derived from system designs or API speci-
fications, but should ideally be empirically derived from mistakes humans make in
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practice. Several such models have been proposed in the literature, most notably
G-SWFIT [41], which provides both such an analysis and a tool to apply the fault
model and has seen considerable use in the literature. Another key difference with
the other models is that software faults are always persistent and the target system
itself must be modified, which means that the use of hardware to emulate faults is
not practical and run-time approaches like virtualization are not needed. It should be
noted that, although persistent, software faults need not be deterministic, as for ex-
ample race condition faults can be persistent yet nondeterministic. Since improving
software fault injection is the focus of this paper, we will continue by discussing the
implications of these unique properties of software fault injection.

When performing software fault injection, the next step after deciding on a spe-
cific fault model is to identify fault candidates in the target system. A fault candidate
is the combination of a code location and a type of fault that would be likely to be
introduced at that location according to the fault model. Because software faults are
introduced by humans, it is necessary to take into consideration the context in which
the programmer wrote the code to determine whether some code location should be
considered a viable fault candidate. After all, to get a realistic impression of the
impact of faults, the introduced faults must be representative of those that a real pro-
grammer would make, and that is potentially influenced by the context. After fault
candidate identification, one or more fault candidates are chosen for each individual
fault injection experiment. The fault injector then mutates the program to introduce
the selected fault types at the selected locations. Finally, the modified target system
will be run with a workload to examine the impact of the injected fault(s).

One common way to implement software fault injection is to perform these steps
on the binary after it has been generated by the compiler and the linker, either in the
binary file or in the executable image after it has been loaded into memory. We will
refer to this approach as binary-level fault injection. This approach is used, for ex-
ample, by the widely used G-SWFIT [41] tool and has also been used to quantify and
improve the fault tolerance of the RIO file cache [98]. Binary-level fault injection
can be done very efficiently because recompilation and relinking is not necessary
and no run-time overhead is introduced. Moreover, this approach is applicable even
if the source code is not available. To identify fault candidates in binary-level fault
injection, the machine code in the binary must be disassembled and the tool has to
identify programming constructs in the resulting assembly code. Mutations are also
introduced at this level. Unfortunately, however, context information is lost when
binary code is generated. This means that binary-level fault injectors have limited
knowledge about the context. For example, when functions are inlined or loops are
unrolled, the binary fault injector cannot distinguish these cases from code that was
manually written multiple times. Because information is lost in this way, faults in-
jected at the binary level do not properly represent bugs that would be introduced by
a real programmer, as shown by Cotroneo et al. [31]. Another drawback of binary-
level fault injection is that each processor architecture requires its own fault injector.
It is likely that different fault candidates will be detected on different architectures,
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which limits comparability between systems. Such differences may arise even when
just comparing different compilers or compiler settings on the same architecture.

The main alternative is source-level fault injection. In this method, fault candi-
dates are identified and mutations performed on the source code itself, before the
compiler generates machine code. A widely used example is SAFE [96], which is
based on the G-SWFIT fault model. As an alternative to modifying the source code
itself, this approach can also be implemented as a compiler pass (like in SCEMIT [84]).
In either case, no context information is lost; the code seen by the fault injector is
what the programmers themselves wrote. This approach has been shown to result
in good representativeness of real software faults [37; 10]. However, every time
mutations are performed in the source code, the system must be rebuilt to obtain
a modified binary to test with. Programs are usually split up in many small source
files that are individually compiled if they are changed, using a system such as make.
Recompiling a single source file usually does not take a lot of time even for large
programs. However, in the end all source files need to be linked together into a single
binary. This step can take a lot of time for large programs such as operating systems
and must be performed every time one or more source files are changed. Rebuild
time can be sufficiently long that it becomes the dominant factor in fault injection
experiments on large code bases[120]. Although it is possible to bypass rebuilding
by injecting multiple faults and selecting one or more at run time, this results in sub-
stantial run-time overhead[120], which takes away some of the gains. This overhead
is especially important for long-running workloads and makes testing of timing-
related faults such as race conditions less representative of real-world conditions. It
can be concluded that, although there are many techniques available for software
fault injection, none of them combines the good representativeness of source-level
techniques with the good performance offered by binary-level techniques.

5.3 Overview

In this section we describe the steps performed by a fault injector tool following
the HSFI design. Fig. 5.1 provides an overview of this design. We only discuss
elements that are fundamental to the design in this section, while leaving elements
that are specific to our implementation of the design for the next section.

When setting up a fault injection campaign, the first step is to select an appropri-
ate fault model. Although our design is specific to the injection of software faults,
it is agnostic to the exact fault types defined by the fault model and these can be
chosen freely. For maximum representativeness it is recommended to select a fault
model based on software bugs found in real-world software, for example using prior
research such as that of Duraes et al. [41] or Kidwell et al. [70]. It is also important
to ensure that the selected faults are representative of residual faults that are likely
to elude testing and end up in production systems [96]. The fault model can be
implemented by writing simple fault type plug-ins for our framework. One plug-in
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Figure 5.1: Fault injection design; IR=intermediate representation

is created for each fault type and it should implement two callbacks. The “canIn-
ject” callback receives an instruction and its context in the source code and returns
a nonzero value if there is a fault candidate for the fault type at that location. The
“apply” callback modifies the program at the given instruction to inject the fault.
This allows our approach to be easily extensible and widely applicable.

The second step is to run the fault injector on the program code. Depending on
the implementation this can be done either on the source code directly (in a language
such as C) or inside the compiler on an intermediate representation (IR) used by
the compiler to represent the parsed code. The fault injector iterates through the
program and calls the plug-ins to identify fault candidates. It then applies as many
fault candidates as possible to the code by first duplicating the target code and then
applying the appropriate fault type to only one of the copies. This yields one pristine
copy and one faulty copy. It then inserts a marker in the code that allows the two
copies to be identified even after the source code or IR is converted into machine
code. In addition, it writes a map file that contains a list of all the markers, including
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context information such as the fault type and the original code location that may
help in fault selection later on. It should be noted that the addresses of the markers
in the final binary are not yet known at this point.

After running the fault injector pass, the program can be compiled and linked
together into an executable binary. Because many faults have been injected by the
fault injector, this step does not need to be repeated for every experiment like in
traditional source-level fault injection.

Now that the binary has been obtained, a binary pass is run on the code. This
pass scans through the binary and identifies the markers. For each marker, it mod-
ifies the binary to ensure that the pristine code is executed. It also writes a binary
patch for each fault injected that can later be used to switch to the faulty version
instead. Although this pass is architecture-specific, it only needs to recognize pre-
defined markers and perform very simple patches. While some porting effort would
be required to support multiple architectures, this does not affect the code related
to recognizing the fault types or code manipulation. Moreover, our approach would
identify the same fault candidates and make functionally equivalent mutations re-
gardless of the underlying architecture.

Finally, the experiments can be performed. This is the only part that needs to
be repeated for each experiment. A patch tool is invoked to enable the fault(s) that
are to be tested. Because the patches usually involve changing only a few bytes, the
patching is near-instant. Moreover, it can be done in-place, which avoids making a
copy of the (potentially large) binary. In this case the fault patches must be reverted
after the experiment. After injecting the appropriate fault(s), one can run a workload
to exercise the code and observe the system’s response to the fault(s).

5.4 Implementation

We have implemented a fault injector and a binary pass according to the design de-
scribed in the previous section. We have opted to implement our fault injector using
the intermediate compiler representation. We use LLVM [79] for this purpose as it
provides an extension framework that allows the creation of passes to analyze and
modify the intermediate code, during the compilation process. Using the LLVM in-
termediate representation has the benefit of greatly simplifying code manipulation
by leveraging LLVM’s parsing and rewriting mechanisms. It also provides porta-
bility to multiple source languages for free. Simplifying code manipulation is im-
portant because it makes writing fault type plug-ins easier, which allows others to
more easily apply their fault models using our tool. This approach comes at a small
representativeness cost compared to approaches that operate directly on the source
code because the compiler expands preprocessor macros, but the intermediate code
is a good and platform-independent representation of the source code otherwise [47].
If macros are considered to be critically important, it would be possible to replace
them by function calls using demacrofication [76].
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Figure 5.2: Traditional compilation (left) and LLVM with bitcode linking (right)

We will refer to the intermediate representation as bitcode from now on, in accor-
dance with the terminology used by the LLVM project itself. LLVM allows linking
to be performed directly on the bitcode, using the GNU Gold linker with an LLVM
plug-in. Fig. 5.2 compares the traditional build process with source-level or binary-
level fault injection (on the left) to our approach (on the right). The main difference
in the build process is the fact that linking and code generation have been swapped.
This provides the benefit of being able to run the pass over all the code at once,
giving access to context information from the entire program.

In this section we will discuss implementation details of our fault injection solu-
tion based on the HSFI design. First, we explain how fault candidates are identified
and the code is modified to apply them conditionally. Next we discuss how fault can-
didate markers are inserted in the bitcode and later recognized in the binary. Finally,
we consider how binary patches are generated to enable and disable specific faults.

5.4.1 Injecting faults

We first compile the program to bitcode using the Clang compiler. This allows our
tool to be applied to any language for which an LLVM front-end is available. The
bitcode provides a mostly faithful representation of the original source code, with
the main exception of macros being expanded. Next, all bitcode files are linked to-
gether using the Gold linker, which makes it easy to integrate bitcode compilation
in existing build systems and allows our tool to operate on all code at once, pro-
viding maximal context information. Code generation is postponed until after fault
injection, causing source-level information to remain available to the fault injector.

The fault injector has been implemented as an LLVM pass, which is invoked on
the bitcode using the LLVM optimizer. The fault injector loops through all LLVM
instructions in the code and invokes the fault type plug-ins for each instruction. The
fault type plug-in then determines whether this particular instruction is a suitable
target for fault injection (a fault candidate). For example, an assignment operation
could be a target for injecting a “wrong value assigned to variable” fault type and the
instruction performing the memory store is considered a fault candidate for that fault
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1  void setanswer(int *p) {
2    if (p != NULL) {
3      *p = 42;
4    }
5  }

Figure 5.3: Code example for basic block cloning
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Figure 5.4: Control flow graph of the code example before (left) and after (right) fault injection

type. While scanning through the code this way, the pass writes out a map file that
contains information that is potentially relevant to the fault selector later on. This
file provides a list of all modules, functions, basic blocks and instructions. Where
available, instructions specify which the file and line number in the source code they
derive from. Each instruction also has a list of fault candidates and their fault types.
Multiple fault types can apply to a single instruction.

The actual fault injection is performed using basic block cloning, which we use
in a manner similar to EDFI [47]. A basic block is a node in the control flow graph
(CFG), defined as a code sequence with exactly one entry point and exactly one
exit point. Once the start of the basic block is reached, it will be executed in its
entirety, assuming its execution is not interrupted by an exception, a signal or a
similar deviation from the CFG that is not visible to the compiler. At the end of the
basic block, a new block is selected to be executed. As an example, consider the
code in Fig. 5.3. The left-hand side of Fig. 5.4 shows what the CFG looks like for
this code example, with the boxes representing basic blocks (the nodes of the CFG)
and the lines representing the control flow between them (the edges of the CFG).

To insert faulty code while retaining the original code, we duplicate every basic
block that is subject to fault injection. One of the clones remains pristine while a
single fault is injected into the other one. Our implementation only supports one
fault per basic block, which means one of the fault candidates must be selected at
this point. The injected fault is documented in the map file. It would be possible
to create further clones to allow simultaneous injections in the same basic block,
with the drawback that the code size increases exponentially with the number of
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faults injected per basic block. After cloning, the incoming edges are redirected to a
new basic block which we will refer to as the fault decision point (FDP). The FDP
conditionally selects either of the basic blocks and is needed to embed the new basic
block into the CFG. Outgoing edges are cloned, but may be changed by the injected
fault. The result is a duplicated CFG with all original code as well as many injected
faults (but at most one per basic block in our implementation). The right-hand side
of Fig. 5.4 shows our example code after injecting two faults, with the diamonds
representing the FDPs.

5.4.2 Fault candidate markers

To be able to identify pristine and faulty basic blocks in the binary, we must in-
sert markers in the bitcode (or, alternatively, the source code itself) that can still be
recognized after the code generation step. Unfortunately, debug symbols are not
sufficiently accurate for this purpose and they are often even less accurate after op-
timization. Moreover, they have no concept of pristine or faulty basic blocks, nor of
basic block identification. Although we have discussed basic block cloning, which
requires the insertion of fault decision points (FDPs), we have not yet indicated what
code is inserted in the FDPs. Both successor basic blocks must be reachable to pre-
vent the compiler from optimizing them out as dead code. To solve both issues, we
use the FDPs as markers. Each basic block in the original code is assigned a consec-
utive number. A global variable is inserted in the program and each FDP performs a
test that jumps to the faulty basic block if the global variable equals the basic block
number and jumps to the pristine basic block otherwise. These tests cannot be op-
timized away as the value of the global variable is only known at run-time and the
compiler must assume it can change during execution, so that the FDP ends up as a
piece of code in the binary selecting either the pristine or the faulty basic block. The
name of the global variable can be looked up in the symbol table and the binary dis-
assembled to find references to its address, both in memory pointers and immediate
values. From our experiments on the x86 architecture, we have verified that every
reference to this address is indeed an FDP. Moreover, we were able to find almost
all inserted FDPs in the binary (we found a false negative rate of just 0.01 %, see
section 5.5.3). In all cases, the basic block number is directly compared against the
value of the global variable in a single instruction, which means it is very simple to
determine exactly which basic block ended up where. Any deviations from this pat-
tern (for example due to optimizations) as reported by our tool, but we have found
none. We conclude that this is a reliable way to pass information across the code
generation step without the need to change the compiler itself. Moreover, although
the binary code is architecture-dependent, recognizing an address is very simple to
implement on other architectures if a suitable disassembler is available.
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5.4.3 Binary patching

As explained, the markers in the binary code are comparisons of a global variable
with an immediate value, which is the number of the basic block for which the orig-
inal FDP was added. On x86, such a comparison set the flags registers to control a
later conditional jump. The compiler is allowed to insert instructions that do not af-
fect the relevant flags between the comparison and the jump to optimize the code but
we have found no instance of this happening, presumably because the FDP is a sepa-
rate basic block and there is therefore no code available to insert. In all instances we
found a compare (“cmp”) opcode directly followed by either a jump-if-equal (“je”)
or jump-if-not-equal (“jne”) opcode. To enable the pristine code and make the faulty
code unreachable, our binary pass simply replaces the comparison and jump-if-equal
instructions with no-operation instructions (“nop”), while jump-if-not-equal instruc-
tions are replaced with unconditional jumps (“jmp”). This can all be done in place.
Because the patching is so simple, it would be easy to port to other architectures if
the following assumptions hold: there exist no-operation instructions with a sizes
that can be combined to the size of a comparison and a conditional jump and the
unconditional jump instruction is no longer than a conditional jump. Our program
issues a warning for any unrecognized code sequences, which means it is easy to
debug and ensure every FDP is indeed patched.

While patching the binary to assure that only the pristine code is accessible, the
binary pass also writes binary patch files that can be used to switch individual blocks
from pristine to faulty and vice versa. These patches simply reverse the cases where
conditional jumps are replaced with no-operation instructions and the cases where
they are replaced with unconditional jumps. For most basic blocks, only up to six
consecutive bytes in the binary need to be changed to switch between correct and
faulty execution, which makes patching nearly instantaneous.

As a performance optimization, we assign branch weight metadata to the FDPs
that indicate that the pristine block is very likely to be selected. As a consequence,
LLVM places all faulty basic blocks at the ends of functions. This means that in
practice no extra jumps are inserted in the common code path and cache pollution is
limited. However, some slowdown is still to be expected because the compiler has
to set up register usage in a way that works for both the pristine and the faulty basic
block. The presence of no-operation instructions and the expansion of the total code
size are also expected to have a small performance impact.

5.5 Evaluation

In this section we will evaluate our system in terms of performance, both run-time
performance and the total time it takes per experiment, and marker recognition ac-
curacy. We have chosen to evaluate HSFI with operating systems, because they are
large pieces of software (making scalability to large code bases important) for which
reliability is of particular importance. This is demonstrated by the fact that there
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is much prior work evaluating operating system stability in the face of faults (for
example [39; 54; 125; 71; 120; 119; 33; 98]). We have chosen to use the Linux and
MINIX3 operating systems to evaluate our system. Linux is widely used, particu-
larly in situations where reliability is especially important such as servers. We use
LLVMLinux [2], which allows Linux to be built with LLVM bitcode linking. We
use MINIX3 because it has a modular design, making it structurally different from
Linux and demonstrating that our approach is applicable to a wide range of operating
systems. Moreover, it is designed specifically for reliability and comes with support
for LLVM bitcode linking out-of-the-box. As workloads, we use Unixbench [6] and
the MINIX3 POSIX test suite. Unixbench is widely used for performance measure-
ments of Unix-like operating systems The MINIX3 POSIX test set is an example
of a regression test workload that aims for high coverage, which is important to
perform representative fault injection experiments [118]. Unfortunately it contains
some tests that are specific to MINIX3. We have omitted those tests on both systems
to keep the results comparable. We test all combinations of operating systems and
workloads, with the operating system itself instrumented for fault injection.

We performed the compilation of the target systems as well as the tests them-
selves on Intel Xeon E5-2630 machines with 16 cores at 2.40 GHz and 128 GB of
memory, running 64-bit CentOS Linux 7. We used the lto-3.11 branch of LLVM-
Linux and the llvm_squashed branch of MINIX3. The operating systems were virtu-
alized using QEMU 2.3.0 [5] with KVM enabled. We virtualized the operating sys-
tems because this is the most convenient way to perform fault injection experiments
on operating systems. We modified QEMU to provide a hypercall interface that al-
lows the guest to report its progress by writing to a fixed physical memory address.
This allows times to be measured and logged on the host, with the benefit that the
measurements are more accurate and the logs are retained even if the guest system
crashes (which is likely to happen when faults are injected into the operating system).

We compare our new approach against binary-level fault injection, source-level
fault injection and EDFI [47] with reduced linking overhead as proposed by Van der
Kouwe et al. [120]. To achieve a fair comparison, we have taken an optimistic ap-
proach of estimating the overhead of competing techniques. To evaluate binary fault
injection, we use an uninstrumented binary and consider the build time only once
for all experiments. This means we assume run-time overhead and instrumentation
time to be zero. We achieve the same for source-level fault injection by measuring
run-time performance on the uninstrumented binary and measuring the rebuild time
by changing the last modified date of a single small source file and calling make.
This means we assume run-time overhead and instrumentation time to be zero and
recompile time to be minimal. These decisions allow us to compare the performance
of our solution against the fastest possible alternatives.

The fault model we use is taken from EDFI [47], which in turn is based on G-
SWFIT [41]. Table 5.1 provides an overview for the code size and number of fault
candidates found for both targets. Most numbers are reported by our compiler pass.
Here we included only the code that is actually visible to the compiler; that is, we ex-
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Table 5.1: Code metrics for the target programs

Linux MINIX3
Modules loaded during execution 1 28
Functions 34578 3389
Basic blocks 313028 41884
LLVM instructions 1817389 244775
Fault candidates 2281880 343176
Lines of code 6775204 1128797
Binary code size uninstrumented (KB) 646 995
Binary code size EDFI (KB) 2230 3158
Binary code size HSFI (KB) 1553 2525

clude source files not compiled and code disabled by preprocessor conditionals and
we count static libraries used by multiple modules only once. The number of lines of
code is counted by the Cloc utility [3] and includes all code files that are not disabled
due to configuration or architecture. The binary code size is computed as the sum of
executable sections in the ELF files, so in this case static libraries are counted twice
to accurately represent the memory overhead introduced by our solution.

In this section, we first discuss the run-time performance of the various ap-
proaches. Next, we present the build times and use those to compare the average
time taken for each experiment. Then, we show how well our marker detection ap-
proach does in terms of false positives and false negatives. Finally, we discuss some
potential threats to validity that might influence our results presented here.

5.5.1 Run-time performance

Our approach introduces a run-time overhead compared to binary-level and source-
level approaches because basic block cloning is performed throughout the program.
Although the branches are fixed to avoid any extra conditional jumps, this does af-
fect code generation and the larger code size also affects caching. We have measured
the time taken by the system to boot and the time taken to run the MINIX 3 test set.
The results are presented in Table 5.2 and Table 5.3 respectively. The “system CPU
usage” indicates how much of the time the CPU has been running system code as
reported by the “time” utility (system time divides by real time). The numbers pre-
sented are medians over 32 runs and the numbers between parentheses are sample
standard deviations. The high standard deviation on the binary/source MINIX 3
boot is due to an outlier where the boot time was excessively long; the boot times
are consistent otherwise and the result is not affected because the median reduces
the influence of outliers. The numbers show that our approach generally incurs a
modest slowdown that is at most about 10% compared to binary and source ap-
proaches. EDFI show considerably larger slowdowns. It is important to note that
our instrumentation only affects system code. The fact that MINIX 3 reports larger
slowdowns seems to be due to the fact that more of the time is spent running system
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Table 5.2: Boot time (lower is better, std. dev. in parentheses)

Binary/source EDFI HSFI
Linux Boot time (s) 7.9 (1.1) 11.5 (1.1) 8.7 (1.1)

Slowdown (%) 45.6 10.5
MINIX 3 Boot time (s) 9.5 (9.5) 24.6 (6.7) 9.7 (0.8)

Slowdown (%) 159.8 2.0

code, which may mean that MINIX 3 is less efficient at handling system calls due to
its modular design. This is consistent with the fact that system CPU usage is higher
for MINIX 3. Based on the total run times and the percentage of time spent by the
CPU executing system code, we made an estimate of the overhead while running
system code, which is included in Table 5.3. As expected, it shows considerably
larger overhead for system code than for the time spent executing the test set as a
whole. Nevertheless, HSFI still has a reasonable overhead compared to source and
binary approaches (below 20 % for both Linux and MINIX 3) while EDFI shows
even larger overheads than before.

While the MINIX 3 test set gives an indication of the slowdown for a full high-
coverage workload, it runs at low CPU usage and does not stress the system very
much. To provide an indication of system performance under load, we have run
Unixbench 32 times on both systems. The resulting performance numbers are shown
in Fig. 5.5 and Fig. 5.6. These numbers are normalized to 100 for the uninstrumented
system. They represent the number of operations that can be performed in a fixed
time, so that higher numbers indicate better performance. Unixbench scores are
based on averages where the 33% worst results are left out to reduce the influence of
outliers. The error bars give the sample standard deviation based on all experiments.
It should be noted that the dhry2reg and whetstone-double benchmarks do not use
the operating system, so the lack of slowdown is to be expected. The other subtests
all give similar results. To compare the overall results, we have taken the geometric
means of the scores for those other tests. EDFI averages 26.6 on Linux and 8.6 on
MINIX 3, showing a very large slowdown of respectively about 3.8x and 11.6x. The
fact that the slowdown is higher on MINIX 3 suggests that it handles system calls
less efficiently (as was also seen with the test set), executing more (instrumented)
operating system code for each call. These are substantial slowdowns that cause
stress-test experiments to take considerably longer. HSFI averages at 92.6 (Linux)
and 80.0 (MINIX 3), so the slowdown is just 1.1x and 1.3x respectively. This means
run-time overhead is just a minor factor compared to EDFI.

5.5.2 Time taken per experiment

To determine how long each experiment takes, we must measure not just the run
time but also the time needed to prepare the experiment. Different experimental se-
tups require different steps to be performed for each experiment. Table 5.4 shows
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Table 5.3: Run time and overhead on MINIX 3 test set (lower is better, std. dev. in parentheses)

Binary/source EDFI HSFI
Linux Run time (s) 369.6 (12.4) 457.6 (17.1) 372.6 (14.2)

Slowdown (%) 23.8 0.8
System CPU usage (%) 7.8 (0.4) 25.1 (0.7) 8.6 (0.4)
System overhead (%) 298.5 11.5

MINIX 3 Run time (s) 392.9 (11.0) 1096.7 (28.4) 410.1 (5.8)
Slowdown (%) 179.1 4.4
System CPU usage (%) 21.7 (0.5) 23.0 (2.9) 24.6 (0.6)
System overhead (%) 196.9 18.5

Figure 5.5: Unixbench performance on Linux (higher is better)

Figure 5.6: Unixbench performance on MINIX 3 (higher is better)
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Table 5.4: Build time to prepare experiments in seconds (std. dev. in parentheses)

Needed for Time taken (s)
Binary Source EDFI HSFI Linux MINIX 3

Rebuild once often rarely rarely 3798.5 (216.3) 232.5 (13.8)
EDFI pass never never rarely never 670.0 (15.3) 174.0 (4.5)
HSFI passes never never never rarely 580.6 (12.7) 214.7 (4.9)
Patch application never never never often 17.3 (0.1) 0.0 (0.0)

an overview. For binary-level approaches, the target program only needs to be com-
piled once because faults are injected directly into the binary. For source-level ap-
proaches, rebuilding the system introduces very large overhead. Every time a source
file is changed, the build system must go through the source tree, recompile the ap-
propriate file(s) and eventually relink the entire program. In the case of Linux, some
postprocessing on the binary is also required to perform linker tricks such as support
for kernel modules. Both EDFI and HSFI require the system to be fully built only
a few times for many experiments, namely when all faults injected on the previous
build have been tested. In addition, they require their passes to be applied to the
system to perform fault injection and (in the case of HSFI) generate patch files from
the binary. For HSFI, the binary must be patched for every experiment. In principle
this is near-instant as it requires only modifying a few bytes at a known file offset.
However, in case of Linux it takes longer because we also have to rebuild the boot
image, which includes a compressed version of the kernel. The numbers show that
rebuilding introduces a large amount of overhead, especially for a large program
such as Linux. Although the passes also take some time to run, this is not needed for
every experiment.

To compare how efficient the approaches are overall, we need to compute the
average time taken per experiment. Here, it is very important the know how often
the “rarely” from Table 5.4 actually is. With our implementation, many faults can
be injected with one compilation, but just one for each basic block. This means
the number of largest number of selected faults in a single basic block determines
how often we must recompile. It is not clear a priori how large this number will be
and the probability distribution is fairly complicated. If we assume a fixed number
of faults is selected for injection and equal probability of selection for each fault
candidate, the number of faults selected in a basic block is binomially distributed
but the number of faults selected per basic block is not independent between basic
blocks; a large number selected in one leaves fewer for the others. For this reason, we
took the distribution of fault candidates per basic block for both target systems and
performed a Monte Carlo simulation[13] to determine the number of rebuilds needed
for various numbers of faults to inject. For this simulation, we assume that each fault
candidate is equally likely to be selected. The results are shown in Fig. 5.7 (Linux)
and Fig. 5.8 (MINIX 3). There is clearly a linear relationship between the number of
faults injected and the number of rebuilds needed, although the ratio between the two
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Figure 5.7: Monte Carlo simulation of rebuilds needed for Linux with HSFI

Figure 5.8: Monte Carlo simulation of rebuilds needed for MINIX 3 with HSFI

differs between the operating systems. This difference is caused by the distribution
of fault candidates over basic blocks; if there are relatively more large basic blocks
with many fault candidates, more recompiles should be needed on average.

Now that we know the boot time, the slowdown of the workload, the time it takes
to rebuild and instrument the system and how often a rebuild is needed, we can com-
pute the average time taken per experiment by adding up the expected values of the
numbers. The results are shown in Fig. 5.9 (Linux) and Fig. 5.10 (MINIX 3). We
show both the slowdowns from the MINIX 3 test set to represent a high-coverage
regression test workload and Unixbench to represent a stress test. Source-level fault
injection is suitable on smaller code bases with large workload durations, but intro-
duces substantial rebuild overhead otherwise. EDFI, on the other hand, works well
for large code bases but only in case the workload duration is short and the workload
is not too intense. With stress tests or long-running workloads the run-time overhead
becomes a problem. HSFI, on the other hand, always achieves performance close to
binary-level fault injection, regardless of the target system and workload.
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Figure 5.9: Time taken per experiment depending on the workload duration for Linux; ts=test set,
ub=Unixbench

Figure 5.10: Time taken per experiment depending on the workload duration for MINIX 3; ts=test
set, ub=Unixbench

5.5.3 Marker recognition

To determine whether our approach yields false positives and false negatives, our
tool reports any unexpected code sequences involving any references to the marker
variable. We have also cross-referenced the patches, the map files and the output
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from the objdump utility on the final binary. We have not found any instances of
false positives; every reference to the marker variable was indeed a valid marker.
In case of Linux we found that out of the 313028 basic blocks for which markers
were inserted, 125 were not found by our binary pass. Out of these, 93 do not seem
to be present in the binary at all and were presumably eliminated by the optimizer.
The remaining 32 were present but not found, so those should be considered false
negatives. In all those cases, this seems to be because Dyninst did not recognize
some instructions included in inline assembly, causing it to produce an incomplete
control-flow graph. The result is a false negative rate of just 0.01 % for Linux. In
case of MINIX 3, all compiled modules together contain 219261 basic blocks with
markers (with some occurring multiple times due to static libraries). In 6602 cases,
the marker was not found. We found that just 25 of these are actually false negatives,
the remainder not ending up in the final binaries. All 25 false negatives were in the
kernel module, which contains 5706 basic blocks. Like for Linux, the false negatives
were found near assembly instructions not recognized by Dyninst. The false negative
rate is 0.01 % for all of MINIX 3 and 0.38 % for the kernel. Given that we have
found no false positives and very few false negatives, we conclude that our marker
mechanism is very effective in mapping binary code to the original basic blocks.

5.5.4 Threats to validity

There are several factors that might influence the results presented here. First, we
measured performance when running on a virtual machine, namely QEMU with
KVM. This is a deliberate choice because fault injection experiments on operating
systems are likely to be performed in virtual machines in practice because this makes
the experiments much easier to set up. Times measured in inside the virtual machine
may not be as accurate as on the host machine. For this reason we implemented a
hypercall that causes the current status including timestamp to be logged on the host.
We have used these timestamps to get our performance results. The only exception is
CPU usage, which has been measured on the guest. Any inaccuracies here would not
affect the comparison. A second threat is the fact that we only measured performance
without enabling any faults. If a fault is hit, it could cause the system to crash, cutting
the test short, or hang, causing the test to last until some set timeout. We decided not
to consider this as the behavior depends strongly on the exact fault model, something
which is out of scope for this paper. A third threat is the fact that we have not
measured any actual binary-level or source-level fault injection tools. However, we
made an optimistic estimate which means that they should not be able to perform
any faster than what we measured. As a result, the conclusions would either remain
unchanged or become even more favorable to our proposed approach. Finally, it is
possible that we missed false negatives in cases where basic blocks were duplicated
by the optimizer, for example due to inlining or loop unrolling, and at least one
instance was detected. Given the very low number of false negatives overall, it is
unlikely this has happened on a substantial scale.
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5.6 Limitations

The evaluation confirms that our new approach is able to perform fault injection with
the benefits of source-level fault injection at a performance close to that of binary-
level fault injection. That said, some limitations of this approach still need to be
considered. One fundamental limitation that it shares with other source-based ap-
proaches is that the source code of the target program must be available. If no source
code is available, a binary-level approach must be used. Another limitation is the
fact that our implementation requires the target program to be ported to LLVM with
bitcode-based linking. Fortunately, Clang mostly provides a drop-in replacement for
the more widely used GCC and the GNU Gold allows linking to be performed on
bitcode files in the same way machine code object files are normally linked together.
This means that often the configure script is versatile enough to allow LLVM with
bitcode linking to be used, but in other cases small build system changes may be re-
quired. Moreover, this is not a fundamental limitation of our design but rather an im-
plementation choice. If the design were implemented working directly on the source
code, this step would not be needed. Another limitation is the fact that, due to the
use of the intermediate representation, some information from the source code does
get lost. However this mostly affects preprocessor macros and demacrofication [76]
allows those to be replaced by function calls, which are accurately represented in the
bitcode. Moreover, this is again just a limitation of our implementation because the
design could be implemented modifying the source code directly. Finally, our imple-
mentation only allows a single fault to be selected for each basic block. This could
be solved within the design by creating more clones of the basic blocks to be able to
select one of several combinations of faults. The drawback would be that the code
size of the basic block would grow exponentially in the number of faults injected.
The number of rebuilds needed has been shown to be very low even when selecting
just one fault candidate per basic block at a time, so such a change is unlikely to be
worthwhile unless the fault model requires it.

5.7 Related work

In this section we will consider the use of various software fault injection imple-
mentations in research, papers assessing the representativeness of fault injection,
and finally other research about improving the performance of fault injection. We
do not repeat the classification of the various types of fault injection (which has
been discussed in section 5.2) and will instead focus specifically on software fault
injection, which is the approach used in this paper.

5.7.1 Use of software fault injection

Software fault injection is widely used in the research literature for many different
purposes. For binary-level fault injection, G-SWFIT [41] stands out for being reused
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for many purposes. It has been used, amongst others, to compare binary-level injec-
tion against source-level fault injection [31] and interface-based faults models [91],
for failure prediction [57], and to evaluate suitable fault loads for large systems[30].
Another tool has been produced to quantify and improve fault tolerance for the RIO
file cache [98], which has been reused to study impact of faults on Linux kernel [125]
and the isolation properties of MINIX 3 device drivers [54]. Duraes et al. [39] have
implemented this approach to evaluate the impact of faults in drivers on system. A
different approach to binary-level fault injection is found in XEMU [17], which uses
QEMU to perform binary rewriting to inject faults.

As for source-level software fault injection, Jia and Harman [60] provide a liter-
ature review which shows how the use of this technique has greatly increased over
time. Recently SAFE [96] has gained popularity and has been reused for certifica-
tion of software [33], to evaluate the relationship between fault types and software
metrics [34], to compare monitoring techniques [29], for evaluating whether Linux
crashes in response to faults [71], and for evaluating the impact of running multiple
fault injection experiments simultaneously [123]. SCEMIT [84] is notable for be-
ing implemented as a compiler pass rather than modifying the source code directly.
EDFI [47] is implemented deeper in the compiler, performing fault injection on the
intermediate representation after linking as we do. This still provides most benefits
of source-level injection while allowing for easy build system integration and access
to the entire program. This tool has been reused to determine how common silent
failures are [119], to measure the impact fault load distortion [118], and to compare
operating system stability [120].

Both source-level and binary-level approaches are widely used to improve soft-
ware reliability. Our design provides a hybrid of the two, offering access to the
source code or intermediate representation when injecting the faults, while achiev-
ing performance close to that of binary-level approaches through a binary-level pass
selecting which of the injected faults to enable.

5.7.2 Fault representativeness

There are several papers providing an overview of representative fault types based
on bugs found in real software [27; 41; 70]. Natella et al. [96] consider which fault
locations are most representative of residual faults that are likely to remain in the
software in production systems. These works are orthogonal to our approach, which
applies equally to any fault model based on software mutation testing. Our imple-
mentation allows the desired fault model to be implemented quickly, using the code
rewriting abilities of the LLVM framework.

Several papers compare the representativeness of different fault models or in-
jection techniques. Of particular importance is Cotroneo et al. [31], who show that
source-level fault injection is more representative of real software faults than binary-
level injection. Lanzaro et al. [78] and Moraes et al. [91] show that interface-level
faults do not accurately mimic software faults. [88] shows that hardware faults
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poorly represent software faults. Daran et al. [37] and Andrews et al. [10] per-
form source-level fault injection and show that their approach is representative of
real faults. These results supports the case for preferring source-level fault injection
if real software faults are to be emulated.

The influence of other factors on fault representativeness has also been consid-
ered. Winter et al. [122] argue that injection of multiple simultaneous faults is a more
realistic fault model than the traditional approach of injecting just one fault at a time.
Our design allows for arbitrary combinations of faults, while our implementation al-
lows almost all combinations. Kikuchi et al. [71] and Van der Kouwe et al.[118]
show that using an improper workload leads to poor fault representativeness. As our
evaluation shows, our approach is suitable for both high-coverage and stress-testing
workloads and beneficial for a wide range of workload durations, allowing flexibility
to select the most suitable workload.

5.7.3 Fault injection performance

Many previous papers have worked on improving the performance of fault injec-
tion. One common theme is speeding up fault space exploration to try the most
relevant failures first. Banabic et al. [15] use fitness-guided exploration to search for
high-impact faults that impact system recovery code. FATE [50] searches the most
different failure scenarios first. Prefail [63] prunes the search space by finding which
(combination of) faults is most promising to uncover bugs. Li et al. [82] use static
analysis to determine which faults are most likely to cause long latency crashes. Al-
though these papers are based on different fault models than ours (interface-level and
hardware faults), variations that deal with software faults would be complementary
to our approach and could help to speed up fault injection experiments even further.

There has also been some work that, like ours, proposes ways to speed up the
experiments themselves. Winter et al. [123] investigate parallel fault injection, per-
forming multiple experiments simultaneously on the same machine. This approach
is complementary to ours. Van der Kouwe et al. [120] use EDFI to inject multiple
faults at compile time and select a single one at run-time. This approach is closest to
ours, but it introduces considerable run-time overhead because the decision to inject
must be made at run-time. Our proposed solution performs better in all cases.

5.8 Conclusion

Although source-level software fault injection is a good technique to inject faults
that are representative of software faults, it suffers from poor scalability to large
code bases. In this paper, we presented a design that solves the scalability issue by
reducing the number of times the target program needs to be rebuilt. We also built an
implementation of this design, which can easily be adjusted for different fault mod-
els and different programming languages, which has most source-level information
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available to the fault injection logic, and which can inject software faults fully auto-
matically. Although porting the binary pass to different architectures would require
some effort, this effort is greatly reduced due to its simplicity and the fact that the
binary pass is not involved in the actual fault injection. Although our approach
incurs run-time overhead compared to source-level fault injection, our evaluation
shows that this overhead is reasonable even for stress-testing workloads. As a con-
sequence, the total time needed per experiment is considerably lower for large code
bases, which means that statistically sound fault injection results can be reached at
lower cost. Our approach also outperforms another solution for source-level injec-
tion with reduced rebuild overhead by a wide margin due to a much lower run-time
overhead. We conclude that our solution retains the benefits of source-level source
injection while achieving performance close to that of binary-level approaches, pro-
viding the best of both worlds.



C
ha

pt
er

6

6
Conclusion

Software fault injection is an essential technique to be able to test and improve fault
tolerance and is widely used in computer science research, but there is need for
improvement to allow it to be performed more systematically and to allow it to gain
widespread use outside the academic community as well. This dissertation provides
several improvements that help us get closer to this goal.

In Chapter 2 we raised the issue of fault load distortion and defined the concept
of fidelity to formalize its impact on fault injection representativeness. Our experi-
ments demonstrate that fault activation correlates with factors that are important in
defining the fault model, such as fault types and code locations with specific prop-
erties. In particular, it shows that low coverage and extreme execution counts due to
loops distort the faults that are activated with respect to the fault model. It is there-
fore important to design workloads carefully to maximize coverage and to mimic
job sizes encountered in production. Moreover, it is important to report coverage
and do so in the units that are most relevant given the goal of the fault injection ex-
periment, because there is a meaningful difference between (for example) coverage
expressed in terms of basic blocks and coverage in terms of fault candidates. The
results also have implications for fault model specification. Software has different
fault type distributions depending on its purpose, which means it is better to specify
the model in terms of the number of fault candidates available per fault type rather
than injecting a fixed number of faults for each fault type. By showing the relevance
of fault load distortion, demonstrating its importance empirically and providing sug-
gestions to minimize its impact, we hope to increase the quality of the results from
future software fault injection experiments.

In Chapter 3 we presented a widely applicable methodology to identify silent
failures in fault injection experiments and presented a tool that can do so in a fully
automated way. Our approach consists of comparing externally visible behavior be-
tween a golden run using the original program and a faulty run where a fault has been
injected in the program. The main challenge is to prevent nondeterminism from in-
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troducing false positives, which we succeed in doing for the programs we tested.
We performed an experiment which demonstrates that silent failures are common.
The good news is that the numbers are consistent with field data about silent failures
in real-world systems [43], which suggests that software fault injection is a suit-
able approach to investigate their impact. The bad news is that the widely relied on
fail-stop assumption does not hold. Experiments based on this assumption risk pro-
ducing unsound results and fault-tolerance mechanisms assuming fail-stop behavior
are unable to deal with what we have shown to be an important class of failures.

In Chapter 4 we presented an approach to compare the stability of different op-
erating systems. The main contribution is the definition of stability, a methodology
to measure it and an implementation that we use to demonstrate how it can be used
to compare operating systems. Rather then simply comparing the number of crashes
when performing fault injection experiments, we make the point that one cannot ex-
pect the operating system to function correctly if faults are injected. Instead, we use
a pre-test and a post-test to determine whether running a workload that triggers the
fault causes the system to become unstable afterwards. This allows for a meaningful
comparison of the effectiveness of fault-tolerance mechanisms in operating systems,
even if they are structured differently. In addition, our approach improves scalability
of representative fault injection to large code bases such as the Linux kernel, though
at the cost of substantial run-time overhead. The idea behind this approach serves as
a basis that is further improved on in Chapter 5. Another contribution is the fact that
our methodology provides a way to estimate how many fault injection experiments
are needed to be able to draw statistical conclusions. Together, these elements pro-
vide a major step towards the systematic evaluation of fault-tolerance mechanisms
in operating systems.

Finally, Chapter 5 presents a methodology to run software fault injection exper-
iments in such a way that source-level information is available to the fault injector
while avoiding the slowdown caused by the need to recompile the (potentially very
large) source code for each experiment. It offers the best of both worlds: the rep-
resentativeness of source-level approaches and performance close to that of binary-
level fault injection. In practice, this means high-quality fault injection experiments
on large code bases can be run at lower cost. In contrast to the solution used to speed
up fault injection experiments on large code bases in Chapter 4, this approach has
considerably lower run-time overhead, which is necessary to achieve performance
close to that of binary-level fault injection. Moreover, it can do so even for stress-
testing and long-running workloads. The key is to create markers before code gen-
eration that can be recognized with very high accuracy (no false positives, only 0.01
% false negatives) in the resulting binary. Our evaluation compares this approach
against alternatives and shows that it is the only one that can reach performance
close to that of binary-level fault injection in all cases.

Taken together, the contributions made in this dissertation allow software fault
injection to be applied to evaluate fault-tolerance mechanisms in a way that is sound,
low-cost even for large code bases such as operating systems and that provides state-
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of-the-art fault representativeness. By making it easier to measure fault-tolerance
accurately, we hope to contribute to a future where reliability becomes a key con-
sideration in software development and the software crashes we have all become so
accustomed to will eventually become a thing of the past.

Future Directions

Although this dissertation advances the state of the art in software fault injection in
various ways, there remains much room for further improvement. In this section, we
discuss possibilities to expand on the presented work.

The work in Chapter 2 could be taken further by developing a quantitative met-
ric of fidelity. Unfortunately, it is hard to do this in terms of the input fault load
and output fault load directly because the fat tail of the execution count distribution
would cause overrepresentation of the code locations that are executed very often.
To obtain a proper metric would require a study of the exact impact of repeatedly
executing a fault. How likely is it for repeated activation of the same fault to trigger
new failure behavior? This depends on both the fault type and the context. It seems
to us that a viable solution would be to go beyond the output fault load and consider
actual failures. The work presented in Chapter 3 could serve as a basis to be able to
detect these failures even if they do not cause fail-stop behavior.

Another direction to extend Chapter 2 would be to compare against systems in
production use to determine how well fault injection techniques manage to approx-
imate those situations. It would be very useful to compare the output fault load
against activation of real faults on production workloads. It would be possible to
record a workload on a system in production use and replay it while recording fault
activation. The main difficulty would be to find a sufficient number of real faults to
reach statistical conclusions.

The methodology presented in Chapter 3 to detect silent failures could be im-
proved to make it even more widely applicable. Most importantly, although we
have shown that we can successfully deal with the nondeterminism present in the
programs we tested, there are some scenarios where further steps are needed. For
example, in both server programs and operating systems, requests are initiated by
external processes or hardware. If there are multiple sources of requests or those
sources themselves issue requests in a nondeterministic order, our approach would
be unable to decide which externally visible behavior is linked to which request,
causing false positives because the resulting behavior differs from run to run. White-
box methods could be used to link requests to responses, allowing silent failures to be
detected in such scenarios. Alternatively, the entire system (including the processes
that make the requests) could be emulated using record-replay techniques [108; 9;
102; 52; 109; 77] to force determinism.

Another possibility to extend Chapter 3 would be to take the analysis one step
further and consider not just externally visible behavior but also the internal state.
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This could be done by using either taint tracking [38] or a more lightweight approach
that only instruments memory allocations [46] where the memory image is compared
at the end of the experiment. This would allow us to uncover silent data corruption
even in cases where the workload is unable to activate the point where the corruption
affects externally visible behavior.

While the methodology proposed in Chapter 4 provides an important step to-
wards being able to systematically evaluate operating system stability, the analysis
of the system state could be improved to obtain more information about the source
of instability. The approach that is used to determine whether the system crashed or
not has the benefit of being black-box (and therefore easy to apply to many different
systems) but the information provided is fairly crude. By using knowledge of the
operating system it would be possible to distinguish various causes of crashes such
as different types of hardware exceptions, assertion failures, deadlocks, and hang-
ing components. In a multiserver system like MINIX 3 it might also be valuable to
identify the module that caused the crash, which may not be the same module that
the fault was injected in. In addition, introspection into the state of the operating
system at the time of the post-test might reveal more information about why the sys-
tem became unstable. With these additions, we could take the step from comparing
stability to providing a tool that helps to improve a lack of stability.

The evaluation in Chapter 5 helps in taking an informed decision for one of the
available software fault injection techniques based on performance and the availabil-
ity of source-level information to the fault injector. Although Cotroneo et al. [31]
have shown that source-level fault injection provides better fault representativeness
than binary-level fault injection and Daran et al. [37] and Andrews et al. [10] have
shown that source-level fault injection is representative of real faults, there is still
no comparison of the various ways source-level fault injection can be performed:
directly on the source code or in the compiler, using the compiler’s intermediate
representation. We have used the latter due to its superior portability and ease of
code rewriting, allowing it to be extended with new fault models easily. An explicit
comparison between the fault representativeness of both solutions would help decide
whether this approach is indeed appropriate. Going further, it would be even better
if a quantitative metric of fault representativeness were available to indicate whether
a more representative approach is worthwhile in a particular situation and allow the
choice in this trade-off to be made in a fully informed manner.
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Summary

Despite decades of advances in computer science, computer systems are still plagued
by crashes and security lapses due to software faults caused by programmer mis-
takes. As a consequence, there is a great need for fault-tolerance in software sys-
tems. To be able to compare such approaches and justify their use, we need better
ways to be able to determine how much they contribute to fault-tolerance in practi-
cal settings. To measure the fault tolerance of a software system, one must expose it
to actual software faults. Software fault injection, also known as software mutation
testing, is a suitable approach to achieve this purpose. By introducing deliberate
software faults that are similar to those that could have been introduced by a hu-
man programmer, it becomes possible to perform a sufficiently large number of such
experiments to be able to reach statistically significant conclusions. However, com-
pared to other types of fault injection, software fault injection faces some unique
challenges that make it harder to perform such experiments in a way that is repre-
sentative of real-world faults. Because human mistakes can not be predicted with
purely theoretical models, they must be based on empirical analyses that investigate
faults that humans have made in practice. A second difficulty is the fact that the sys-
tem itself must be modified; it is not sufficient to alter the environment the system is
running in. As a consequence, it is still hard to perform software fault injection in a
methodologically sound way.

In this dissertation, we aim to advance the state of the art in software fault injec-
tion to allow this technique to be used for measuring fault tolerance in a way that is
methodologically sound as well as efficient.

First, we raise the issue of fault load distortion. Our experiments demonstrate
that fault activation correlates with factors that are important in defining the fault
model, such as fault types and code locations with specific properties. We explain
the implications of these results for workload selection and fault model specification.
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By raising awareness of the issue of fault load distortion and providing guidelines
to minimize its impact, we hope to increase the quality of the results from future
software fault injection experiments.

Next, we present a widely applicable methodology to identify silent failures in
fault injection experiments. Our approach consists of comparing externally visible
behavior between a golden run using the original program and a faulty run where
a fault has been injected in the program, while avoiding false positives due to non-
determinism. We show that silent failures are common and consistent with field data,
which suggests they they can be accurately emulated through fault injection. The
main implication is that the fail-stop assumption does not hold, which means that
fault-tolerance mechanisms depending on it need to be extended and re-evaluated
using a method such as ours.

Then, we present an approach to compare the stability of operating systems.
Rather then simply comparing the number of crashes when performing fault injec-
tion experiments, we make the point that one cannot expect the operating system to
function correctly if faults are injected. Instead, we use a pre-test and a post-test to
determine whether running a workload that triggers the fault causes the system to
become unstable afterwards. This allows for a meaningful comparison of the effec-
tiveness of fault-tolerance mechanisms in operating systems. Another contribution
is the fact that our methodology provides a way to estimate how many fault injection
experiments are needed to be able to draw statistical conclusions. Together, these
elements provide a major step towards the systematic evaluation of fault-tolerance
mechanisms in operating systems.

Finally, we present a methodology to run software fault injection experiments
in such a way that source-level information is available to the fault injector while
avoiding the slowdown caused by the need to recompile the source code for each
experiment. The key is to create markers before code generation that can be rec-
ognized with very high accuracy in the resulting binary. Our evaluation compares
this approach against alternatives and shows that it is the only one that can reach
performance close to that of binary-level fault injection in all cases. This means
high-quality fault injection experiments on large code bases can be run at lower cost.

Taken together, the contributions made in this dissertation allow software fault
injection to be applied to evaluate fault-tolerance mechanisms in a way that is sound,
low-cost even for large code bases such as operating systems and that provides state-
of-the-art fault representativeness.



Samenvatting

Ondanks decennia van voortuitgang in de informatica worden computersystemen
nog altijd geplaagd door crashes en beveiligingslekken door softwarefouten veroor-
zaakt door fouten van programmeurs. Hierdoor is er een grote behoefte aan fout-
tolerantie in softwaresystemen. Om dergelijke methodes te kunnen vergelijken en
hun kosten te kunnen rechtvaardigen hebben we betere manieren nodig om te kun-
nen bepalen hoeveel ze in de praktijk bijdragen aan verbeterde fouttolerantie. Om
de fouttolerantie van een softwaresysteem te meten moet het worden blootgesteld
aan echte softwarefouten. Software foutinjectie, ook bekend als software mutation
testing, is een geschikte aanpak om dit doel te bereiken. Door doelbewust fouten
te introduceren die lijken op de fouten die een menselijke programmeur zou maken
is het mogelijk om genoeg experimenten uit te voeren om statistisch relevante con-
clusies te trekken. Echter, in vergelijking met andere vormen van foutinjectie heeft
software foutinjectie te maken met een aantal unieke uitdagingen die het moeilijker
maken om experimenten zodanig uit te voeren dat ze representatief zijn voor fouten
die in de praktijk gemaakt worden. Omdat menselijke fouten niet voorspeld kunnen
worden door puur theoretische modellen moeten ze gebaseerd worden op empirische
analyses waarin onderzocht wordt welke fouten mensen in de praktijk maken. Ver-
der is het lastig dat het systeem zelf gewijzigd moet worden; het is niet voldoende
om enkel de omgeving waarin het systeem wordt uitgevoerd aan te passen. Als ge-
volg van deze moeilijkheden is het nog altijd lastig om software foutinjectie uit te
voeren op een manier die methodologisch deugdelijk is.

Met deze dissertatie streven we ernaar de kennis over software foutinjectie te
vergroten zodat deze techniek gebruikt kan worden voor het meten van fouttolerantie
op een manier die zowel methodologisch deugdelijk als efficiënt is.

Als eerste brengen we fault load distortion ter sprake. Onze experimenten tonen
aan dat de activatie van fouten correleert met factoren die belangrijk zijn voor het
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definiëren van het foutmodel, zoals fouttypes en locaties in de code met specifieke
eigenschappen. We leggen de implicaties van deze resultaten uit met betrekking tot
de keuze van een werklast en de specificatie van het foutmodel. Door de aandacht
te vestigen op fault load distortion en richtlijnen te geven om het effect daarvan de
minimaliseren hopen we de kwaliteit van de resultaten uit toekomstige foutinjectie
experimenten te verbeteren.

Vervolgens presenteren we een breed toepasbare methodologie om silent failures
in foutinjectie experimenten te kunnen identificeren. Onze aanpak bestaat uit het ver-
gelijken van het extern zichtbare gedrag tussen een golden run die gebruik maakt van
het oorspronkelijke programma en een faulty run waar een fout in het programma
is geïnjecteerd, waarbij we valse positieven door nondeterminisme vermijden. We
tonen aan dat silent failures regelmatig voorkomt en consistent is met metingen in
het wild, hetgeen het idee dat het nauwkeurig door foutinjectie geëmuleerd kan wor-
den ondersteunt. De belangrijkste implicatie is dat de fail-stop aanname onjuist is,
hetgeen betekent dat mechanismes voor fouttolerantie die ervan afhankelijk zijn uit-
gebreid moeten worden en opnieuw geëvalueerd moeten worden met een methode
zoals de onze.

Daarna presenteren we een aanpak om de stabiliteit van besturingssystemen te
vergelijken. In plaats van het simpelweg vergelijken van het aantal crashes tijdens
het uitvoeren van foutinjectie experimenten beargumenteren we dat men niet kan
verwachten dat het besturingssysteem nog correct werkt als er fouten in geïnjecteerd
zijn. In plaats daarvan gebruiken we een voortest en een natest om te bepalen of
het uitvoeren van een werklast die de fout activeert ervoor zorgt dat het systeem
achteraf instabiel wordt. Dit maakt een betekenisvolle vergelijking mogelijk van de
effectiviteit van mechanismes voor fouttolerantie in besturingssystemen. Een andere
bijdrage is het feit dat onze methodologie een mogelijkheid biedt om in te schatten
hoeveel foutinjectie experimenten nodig zijn om statistisch relevante conclusies te
kunnen trekken. Samen genomen leveren deze elementen een grote stap in het sys-
tematisch kunnen evalueren van fouttolerantie mechanismes in besturingssystemen.

Tenslotte presenteren we een methodologie om software foutinjectie experimen-
ten zodanig uit te voeren dat informatie uit de broncode beschikbaar is voor de fout-
injector terwijl we de vertraging die ontstaat door de noodzaak om de broncode te
hercompileren voor elk experiment kunnen vermijden. De oplossing is om mar-
keringen aan te maken voor de codegeneratie die met zeer hoge nauwkeurigheid
herkend kunnen worden in het resulterende binaire bestand. Onze evaluatie verge-
lijkt deze aanpak met alternatieven en toont aan dat het de enige aanpak is die in alle
gevallen bijna net zo goed presteert als foutinjectie op binair niveau. Dit betekent
dat foutinjectie experimenten van hoge kwaliteit kunnen worden uitgevoerd op grote
programma’s tegen lagere kosten.

Bij elkaar maken de bijdragen in deze dissertatie het mogelijk om software fout-
injectie toe te passen om mechanismes voor fouttolerantie te evalueren op een manier
die deugdelijk is, goedkoop zelfs voor grote programma’s zoals besturingssystemen
en die foutrepresentativiteit biedt die state-of-the-art is.
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