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CHAPTER 1

INTRODUCTION

Over the past decades, we have become more and more dependent on in-
formation technology. Computers and their software play an ever increas-
ing role in our daily life—software runs on our computers, phones, TVs and
around our wrists in the form of smart watches. But also out of our sight, soft-
ware has taken over a major role in our way of life as it controls the power
plants, flies airplanes, schedules trains and drives our car. Software has be-
come the linchpin of our infrastructure.

While one can argue that software has improved our quality of life in many
ways, it also is plagued by a problem, which is as old as software itself: Reli-
able software is hard to build. “Have you tried turning it off and on again”,
has become our pop-culture’s iconic manifestation of this problem.

Nearly everybody had to face the consequences of a computer crash, and
in many cases the cause was failing software. Sometimes this meant some
lost work, a dropped phone call or having to go to turn the router “off and on
again”. However, as software plays a more critical role in our lives the conse-
quences of software failures have become potentially disastrous and include
the loss of large sums of money (as nearly all trading happens in software
nowadays), structural damages (for instance in case of failure of software
controlling power plants) to lost lives (in case of failure of software in crit-
ical systems). No wonder a lot of resources are invested in dealing with the

1



2 | Chapter 1—Introduction

effects of failing software, for example using redundant computer systems,
increasing the resources needed achieve a certain goal.

The users of software systems are not the only ones to suffer the effects
of unreliable software. They also affect the creators of the software, who
are often the source of the problem. A large part of software developers’
time accounts to dealing with the consequences of their mistakes. Part of
this time can be accounted for ‘just’ fixing bugs. However, a considerable
amount of time is also spent on reliably reproducing a problem to eventually
understand and then fix it.

Consequentially, it does not come as a surprise that the research ofmethod-
ologies and technologies to tackle this problem originated at the same time
in which digital computers first hit the industry and universities.

Research on software reliability can be divided in two camps: One camp
investigates ways to create reliable software, to lower the risk of software de-
fects appearing, while another line of research takes it as a given that software
contains bugs and tries to find ways to deal with the consequences of these bugs.

Techniques developed by the former camp have helped to increase the
quality of software. Improvements in static and dynamic analysis [124][29]
and automated testing and test generation[34] can have a big impact on the
number of bugs introduced during the creation of the software. Static anal-
ysis can detect common errors in computer programs and enforce best prac-
tices during the development of software. Automated test generation in turn
helps to test portions of the code that may only run rarely or for which writ-
ing tests is cumbersome. Further, safe programming languages such as Java
make engineering reliable software easier, as they take control of certain com-
plex tasks such as memory management [101] and thread safety [92] away
from the software developers. Finally, formal methods can verify the cor-
rectness of software [73]. But, formal verification is expensive and hard to
apply for existing large code bases.

Despite the efforts to create bug-free software, in practice it seems un-
avoidable for bugs to end up in the released software: A study [107] from
2002 found the industry standard defect density in software to be around
1 to 25 defects per 1 000 lines of code (kLOC) and observed those bugs to
remain undetected for a long time after release. Microsoft in turn experi-
enced a defect density of 10 to 20 defects per kLOC during development
and 0.5 defects per kLOC for released code [93]. This translates to around
25 000 software defects in the ca. 50 million of lines of code of the Windows
operating system [87]. Coverity’s open source scan [131] from 2014 in turn
reported an average defect density of 0.61 defects per kLOC amongst 2650
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open source projects. For proprietary projects the same report notes 0.76
defects per kLOC. If we extrapolate this number, for example, to the Linux
kernel which accounts to ca. 20 million lines of code, this means 12 000 de-
fects. This means that defects in released software are a reality we have to
live with, at least for the foreseeable future.

The remaining bugs that end up in released software are targeted by the
second body of research that dedicates itself to the development of fault-
tolerant software or “damage-control,” that is, limiting the consequences of
a software defect manifesting itself at runtime.

One crucial step toward building a more reliable software stack is fault
isolation to limit the consequences of a crash to the failing component of
the system [130]. This way, a crashing component does not take down the
whole system and after the crash the component might be restarted. This
simple crash recovery approach is practical for components with little or no
state. One can extend this approach by introducing redundancy and run dif-
ferent implementations of the same software components. This n-version
programming approach [36] finds use in highly critical systems such as power
plants or flight control. Although the implementations of components dif-
fer, as the software is usually written by different teams according to a shared
specification, they are expected to produce the same output for the same in-
put. This is done to reduce the likelihood of the redundant components
failing for the same input. If the output of one of the redundant component
differs—or does not appear at all because the component crashed—the re-
sults of the remaining components may be used instead based on a conflict
resolution scheme (e.g., majority voting). While the operation continues
with only a subset of the redundant components, the crashed component
can be restarted.

These two approaches of crash recovery, however, have still to dealwith con-
sequences of losing a crashed component’s state. A common way to recover
the state is to keep a copy of it somewhere outside of the reach of the compo-
nent and request it later during the recovery operation. MINIX3 for example
allows a component to request its state to be stored in a separate “data store”
component. Further state changes have to be explicitly communicated to
this data store. After a component crashed, MINIX 3’s reincarnation server
will restart the component, which in turn can request the previously saved
state from the data store to reinitialize itself into the state before the crash
and resume its operation. However, doing so requires the component to be
crafted in a way that takes this state saving and restore operation into account.
These operations in turn have to take into account the structure of the data
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that comprise the state of a component.
This thesis dedicates itself to an alternative approach for capturing the

state of applications. This approach, called checkpointing, eliminates the
complexity of these explicit store and restore operations.

1.1 Checkpointing

Checkpointing is the process of storing a snapshot or checkpoint of a running
system. This system can be one or a group of processes, virtualmachines, the
whole operating system or even a distributed system. Checkpointing plays a
crucial role in increasing fault tolerance by automatic error recovering tech-
niques [152; 135; 53; 83; 54; 121; 117; 125; 51; 68; 115], as it allows one to
reset the application state to a checkpoint that was created before an error
occurred. However, improving fault tolerance is only one of the many ap-
plications of checkpointing. Instead of being restored, a checkpoint can be
used to ‘peek‘ into the state prior to the crash, exposing valuable information
that may help with debugging the problem [129; 128; 61; 72; 48]. Further,
checkpointing also finds applications outside of the reliability/dependabil-
ity domain such as process migration [106], intermittent computing [145],
facilitating automatic software updates [54] and kernel hot patching [70].

Note, that there is more to a process’ state then just its memory. In most
operating systems, for example, beside the process’ memory, also all kernel
objects associatedwith the process such as thread contexts, open file descrip-
tors and sockets have to be considered state of the process which may or may
not be subject to checkpointing.

Memory checkpointing is an important cost factor, especially for use cases
requiring high checkpointing frequencies, which makes it an interesting and
worthwhile target for optimization.

1.1.1 The Costs of Memory Checkpointing

The costs for memory checkpointing can be split in three parts:

Deployment Costs

Ideally, a checkpointing solution can be used on an off-the-shelf operating
system without the need to alter the kernel. For performance reasons, how-
ever, some solutions opt for an implementation in kernel space, which allows
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them tobenefit from functionalities anddata that are usually not accessible to
unprivileged user level processes. This advantage however has to be traded
off with the increased cost of deployment: The use of an automatically up-
dated binary kernel package, usually part of a system distribution, is not pos-
sible anymore and the users of a kernel-based technique have to compile the
kernel themselves. This disadvantage can be partially mitigated by imple-
menting the checkpointing functionality in a loadable kernel module. How-
ever, the burden of recompiling this module after installing a kernel upgrade
is still on the user. User-level checkpointing solutions instead are easier to
deploy, but only have a limited set of primitives at hand to implement the
actual checkpointing functionality.

Runtime Performance Costs

The process of taking a snapshot of a process’ memory slows down its exe-
cution. This cost generally increases with the checkpoint frequency. The
runtime overhead consists of direct cost, that is the actual cycles required to
copy the application state into a checkpoint, and indirect costs, caused by the
pollution of caches and handling of page faults caused by the checkpointing
mechanism.

A straightforward way to speed up the process of taking a checkpoint is to
limit the amount of data that is part of a checkpoint. An application agnostic
way to limit the amount of memory that has to be copied for a checkpoint
is to copy only incrementally the portion of the state that changed in relation
to the previous checkpoint [52; 136; 119; 77; 125; 72; 51; 128; 112; 33; 117].
Using this approach, memory regions only have to be copied if they get mod-
ified. To detect which memory regions are modified two approaches can
be used: 1) The copy-on-write–short CoW—approach detects writes to mem-
ory regions—for example, by limiting write access to the region—and copies
the old data before it gets modified. 2) The dirty-tracking approach works by
tracking during an checkpointing interval which regions got modified, that
is, are dirty, and then copying those regions containing the new data when
a new cycle gets started. Both approaches can be implemented in userland,
but they greatly benefit from using primitives or data that are solely accessi-
ble to kernel.

Another way to limit the amount of memory to be checkpointed, is to ig-
nore transient state changes. These are modifications to the application’s
state that are only valid between two checkpoints. By wisely choosing the
points on which checkpoints are taken—either with application knowledge



6 | Chapter 1—Introduction

or the use of profiling—this regions can be tuned to include portions of the
call-stack and memory regions that get allocated and deallocated during one
checkpointing interval. Further, it is not necessary to store application data
that can be easily recovered. Examples include data caches or data that can
be re-generated by re-reinitializing the application (e.g., configuration data).

An application developer may choose to mark those ’recoverable’ memory
regions to exclude them from being subject to checkpointing. However, the
need for this application-specific knowledge makes this solution harder to
deploy.

Storage Costs

Another factor to consider is the cost of storing the checkpoint. This af-
fects both the runtime overhead of checkpointing and the amount of mem-
ory needed for storing the checkpoints. For applications that require a short
checkpointing interval storing the checkpoints on persistent storage often in-
curs prohibitive performance costs, which is why in such cases checkpoints
are taken diskless and are kept in-memory [113]. To store as many checkpoints
as possible in memory, the checkpoints have to be stored efficiently. Incre-
mental checkpointing and limiting the amount of application state subject
to checkpointing can help to decrease the size of checkpoints. Also other
techniques like compression of checkpoints can help to decrease the size of
the checkpoints. They, however, slow down the process of storing a check-
point, creating a trade off between runtime overhead, storage efficiency and
recovery time.

1.2 High Frequency Checkpointing

Many use cases require checkpoints to be taken with a high frequency. Exam-
ples of such use cases are automatic error recovery techniques that require
checkpoints on every client request [53; 83] or on carefully selected rescue
points [115; 125]. Further, in debugging scenarios the ability take check-
points with very high frequency allows the inspection of arbitrary memory
states throughout the execution.

Current checkpointing solutions fail to offer the necessary performance
needed for this high frequency checkpointing applications, or are hard to
deploy.
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Further, high checkpointing frequencies lead to a large number of check-
points, which forces the user of the checkpointing solution to trade off mem-
ory space between checkpoint storage and the checkpointed application.

1.3 Improving In-Memory Checkpointing

We believe that the current solutions are not suitable for high frequency
checkpointing, as they do not offer sufficiently low performance and storage
overhead for high checkpointing frequencies and require awkward trade-offs
during deployment.

These drawbacks make it necessary to revisit current memory checkpoint-
ing techniques and either augment them with new capabilities for enabling
high checkpointing frequencies or design entirely new techniques when nec-
essary.

1.3.1 User-level High Frequency Checkpointing

Some situations make it impossible or undesirable to change the underlying
operating system kernel. This limits the effectiveness of user-level check-
pointing techniques, as some kernel mechanisms, such as efficient CoW, are
not directly exported, but only accessible through interfaces such as the fork
system call or POSIX signals. Those interfaces are not tuned for high fre-
quency checkpointing. Emerging instrumentation based approaches seem
to be better suited for pure user-level checkpointing solutions. In this thesis
we want to answer the following questions concerning pure user level check-
pointing:

Q1.1 What is the suitability of current user-level memory checkpointing
techniques?

Q1.2 How do emerging instrumentation based sub-page granular check-
pointing techniques compare to traditional page granular checkpointing tech-
niques?

Q1.3 Further, how can we solve the problem of memory unboundedness
of these instrumentation based approaches?
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1.3.2 Kernel-level High Frequency Checkpointing

If modifications to the kernel are acceptable, memory checkpointing tech-
niques can benefit from the accessibility of data and mechanisms that are
not accessible to pure user-level solutions. For instance, modifications to the
kernel may allow us to export an efficient CoW mechanism as a first class
primitive to userland.

In this thesis, we want to answer the following questions:

Q2.1 What are the key cost factors for page granular memory checkpoint-
ing?

Q2.2 How to expose the kernel’s efficient CoW implementation to a high
frequency checkpointing solution?

Q2.3 Can we speed up high frequency checkpointing speculatively copy-
ing the writable working set into the checkpoint thus reducing the overhead
of CoW and what are viable algorithms to establish the writable working set
in a checkpointing scenario in the first place?

1.3.3 Dealing with Millions of Checkpoints

Ahigh checkpoint frequency leads to a lot of checkpoints, possiblymore than
tens of thousands checkpoints per second. In this thesis we explore how to
deal with such large numbers of checkpoints.

Q3.2 Canhigh frequency checkpointing and storingmillions of checkpoints
ever be practical?

Q3.1 If the answer to the previous question is yes, what is the best way to
store a large number of checkpoints in memory taking into account the space
and performance trade-offs involved?

1.4 Structure of this Thesis

The three main chapters of this thesis consist of published peer reviewed
publications. The first two papers focus on the performance and deploya-
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bility aspects of high frequency memory checkpointing. The third paper in
turn describes a debugging use case of high frequency checkpointing and
concentrates on efficient checkpoint storage and exploration.

Chapter 2 This chapter investigates the performance of current checkpoint-
ing techniques, focusing on solutions that do not require changes to the op-
erating system kernel. We propose “Lightweight Memory Checkpointing” a
byte-granular checkpointing solution that utilizes a compiler-assisted shadow
state organization to store the checkpointed state. We compare LMC against
three state-of-the-art page granular userland memory checkpointing solu-
tions and show that, while implemented completely in userland and thus
offering good deployability. LMC also offers better performance and an up-
per bound on memory usage unlike most some existing approaches.

Chapter 2 was presented at the 45th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN 2015) [140]. Cristiano Giuf-
frida contributed to the related work section of this paper.

Chapter 3 Chapter 3 in turn re-examines the costs of traditional page gran-
ular checkpointing and proposes a new set of abstractions for page granu-
lar in-memory checkpointing. We implement those first class checkpointing
primitives as an easy to deploy kernel module. Motivated by the results of
the examination of checkpointing costs, we propose and evaluate a specula-
tion mechanism to further improve the checkpointing overhead by specula-
tively pre-copying memory pages that are likely to be accessed during the
next checkpointing interval.

Chapter 3 was presented at the 16th Annual Middleware Conference (Middle-
ware ’15) [141]. Cristiano Giuffrida contributed to the related work section
of this paper, Georgios Portokalidis contributed to the background section
and Armando Miraglia helped to prepare the paper for submission.

Chapter 4 Finally, Chapter 4 proposes checkpointing as an alternative to
record and replay debugging solutions. It introduces “DeLorean,” a debug-
ging system based on gdb, which allows developers to investigate previous
states of execution. To do so, DeLorian makes use of the newly implemented
checkpointing primitives introduced in the previous chapter. Further, it puts
its emphasis on the investigation of ways to efficiently store a large number—
up to millions—of checkpoints in memory.

Chapter 4 was presented at the 27th International Symposium on Software
Reliability Engineering (ISSRE 2016) [95]. The idea and design of DeLorean
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is mine. Armando Miraglia implemented Delorean as an extension of SMC’s
kernel extension and ran experiments as part of his master thesis under my
daily supervision. He further contributed to the architecture overview and
evaluation section of the paper. Cristiano Giuffrida contributed to the re-
lated work section of this paper.

Chapter 5 InChapter 5we conclude this thesis by summarizing its content
and proposing directions for further research.



CHAPTER 2

LIGHTWEIGHT MEMORY
CHECKPOINTING

2.1 Introduction

Memory checkpointing has great potential to improve the reliability of to-
day’s software stack as it plays a vital role in many important application do-
mains. Unfortunately, prior solutions generally impose awkward tradeoffs of
deployability, performance, and memory usage—in the common scenario of
high-frequency memory checkpointing. This paper presents a novel mem-
ory checkpointing strategy that combines deployability, performance, and
memory usage guarantees for such scenarios, facilitating practical deploy-
ment of memory checkpointing in real-world systems.

2.1.1 Memory Checkpointing

The last decade has witnessed a growing interest in memory checkpointing,
an important technique that allows users to snapshot the memory image of a
running program inmainmemory (as opposed to the disk, which ismuch less

11
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efficient [113]), and restore (or simply inspect) the checkpointed image later
on. This is, for example, a fundamental building block in automatic error re-
covery techniques, which need to periodically revert the active memory im-
age to a safe and stable state [82; 152; 53; 83; 117; 125; 51; 68; 115]. Memory
checkpointing has also been applied to several other application scenarios,
including debugging [129; 128; 61; 72], software transactional memory [83],
program backtracking [159; 33], fast initialization [144], and memory reju-
venation [144].

To be of practical use, most application scenarios require high checkpoint-
ing frequencies. For example, automatic error recovery techniques typically
checkpoint the active memory image at every client request [53; 83] or at
carefully selected rescue points [115; 125], commonly resulting in thousands
of checkpoints per second. In debugging applications, frequent checkpoints
allow users to efficiently inspect arbitrary memory states throughout the ob-
served execution [72].

Memory checkpointing can be implemented at the user or at the kernel
level. Kernel-level solutions are generally more efficient, but also increase
the reliable computing base [43] of the entire system. For this reason, prior
kernel-level solutions [2; 106; 77; 76] have failed to reach adoption in com-
modity kernels—even when explicitly seeking mainline inclusion [76]. The
lack of mainline support forces users to manually patch the kernel, which
ultimately results in poor deployability guarantees of the solution in practice.
Further, kernel-based implementations, in general, are very specific to the
targeted kernel and as a consequence offer bad portability to other operating
systems.

2.1.2 User-level Memory Checkpointing

Most existing solutions rely on page-granular copy-on-write (COW) or dirty
page tracking mechanisms. Both can be implemented either by means of ker-
nel mechanisms (e.g., fork-based COW [117] and soft dirty bit-based dirty
page tracking [13]), or in userland using application-level page fault han-
dling [119; 112]. All these techniques, however, ultimately rely on hardware-
supported page protection mechanisms to trigger a minor page fault every
time the application tries to first modify a particular memory page. At high
checkpointing frequencies, the cost for implementing checkpointing opera-
tions and handling those minor page faults inevitably translates to poor per-
formance, confirming that traditional user-level interfaces are ill-suited for
efficient low-level memory management tasks such as memory checkpoint-
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ing [28]. To address these limitations, several recent memory checkpoint-
ing solutions resort to more fine-grained instrumentation-based strategies,
which—as demonstrated by preliminary results in our prior work [139]—
are promising to improve memory checkpointing performance especially in
high-frequency checkpointing scenarios. Some solutions rely on static anal-
ysis [53; 68] to identify all the memory objects to checkpoint, but are forced
to make strong assumptions on the system model to avoid unnecessary copy-
ing (and thus poor performance) induced by the conservativeness of the analy-
sis.

Those solutions record all the memory writes in an undo log generated
by static [83; 159] or dynamic [115] instrumentation. Simply recording all
writes in a log provides an efficient checkpointing strategy, but also yields
very poor memory usage guarantees—as the log may grow uncontrollably when
programs repeatedly write data into the same memory location. Current
remedies to this problem are largely unsatisfactory. These include swapping
the log to disk [152]—translating to poor performance—hashing to identify du-
plicate log entries [159]—translating to poor performance—or relying on spe-
cialized hardware support—translating to poor deployability.

In this paper, we present Lightweight Memory Checkpointing (LMC), a new
memory checkpointing technique, which combines the performance guaran-
tees of undolog-based checkpointing with the memory guarantees of tradi-
tional page-granular checkpointing. LMCrelies on a compiler-assisted shadow
state organization—similar, in spirit, to shadow memory approaches used in
state-of-the-art memory tracing techniques [124; 160; 162; 102; 111; 147;
161; 103]—to incrementally checkpoint the active memory image at the byte
granularity. Our prototype implementation of LMC is targeted to Linux, but
as it is a pure userland solution it is easily portable to other operating systems.

The contribution of this paper is threefold: (i) we present the design of
lightweight memory checkpointing; (ii) we present a prototype implementa-
tion of LMC; (iii) we thoroughly evaluate and compare our prototype imple-
mentation to existing user-level memory checkpointing solutions and show
that a carefully optimized instrumentation design can provide strong mem-
ory usage guarantees without sacrificing performance and, in some cases,
even significantly improve the performance of prior undolog-based strate-
gies [159].
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2.2 Overview

Figure 2.1 presents a high-level overview of LMC. To deploy LMC, users
need to link their program against the LMC checkpointing library (that is
liblmc.a) and instrument it using the LMC transformation/optimization
passes (which are lmc.so and lmc-opt.so) implemented using LLVM [79].
Both are accomplished by instructing the linker (ld) to use our instrumen-
tation strategy via build flags. LMC is currently tailored to Linux programs,
but our prototype is portable to other Unix systems—Linux-specific exten-
sions will be explicitly mentioned, hereafter.

The LMC checkpointing library exports a simple API to create and re-
store memory checkpoints from user programs. Internally, it also maintains
LMC’s shadow state organization and implements all the necessary hooks
used by our instrumentation. The LMC transformation pass relies on such
hooks to instrument all thememorywrites in the program and incrementally
maintain memory checkpoints using byte-granular copy-on-write semantics,
i.e., copying every byte of memory to the shadow state at the first modifi-
cation in the current checkpoint interval—interval between consecutive mem-
ory checkpoint/restore operations. Finally, the LMCoptimization pass care-
fully reoptimizes the transformed code before generating the final binary.

When a user program issues a memory checkpoint request to our check-
pointing library, LMC prepares a new shadow state for the current check-
point and instructs our instrumentation to track all the changes to the cur-
rent program state into it. By the end of the checkpoint interval, the shadow
state contains a copy of all the data in the original program state that has been
modified by the program since the last checkpoint operation, as well as all
the necessary tracking information to locate suchmodifications. When a user
program issues a memory restore request to our checkpointing library, this in-
formation allows LMC to automatically revert the current memory image to
a given memory checkpoint.

This strategy requires maintaining one shadow state for each checkpoint
stored in memory. In the following, we assume a single checkpoint main-
tained in memory at any given time for simplicity—a common assumption in
traditional memory checkpointing applications [144; 152; 53; 83; 117; 125;
51; 68; 115]—but LMCcan, in principle, retain an arbitrary number of check-
points during the execution of the program. The latter is only constrained by
the amount of the virtual memory address space available—limited on 32-bit
programs, but a plentiful resource on modern 64-bit architectures.
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Figure 2.1: High-level overview of LMC.

2.2.1 Memory Write Instrumentation

Our memory write instrumentation tracks all the possible memory alter-
ing instructions in the original program, i.e., write instructions and calls to
standard memory intrinsics—memcpy and memset—both referred to as store
instructions from now on. Our transformation pass replaces each store in-
struction with a call to a store_hook function provided by liblmc, which
(i) checks if the soon-to-be-altered memory location has not already been
saved in the current checkpoint interval, (ii) copies the original data to the
shadow state if necessary, and finally (iii) performs the store instruction as
originally intended. Our instrumentation operates entirely at the LLVM IR
level, allowing LMC to employ effective optimization strategies on the trans-
formed code. In particular, for optimization purposes, LMC relies both on
standard compiler optimizations—e.g., inlining, to reduce the costs associ-
ated to frequent calls to the store_hook function in our library—and on
checkpointing-specific optimizations implemented in our optimization pass
(Section 2.5).
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2.2.2 Shadow State

Our memory checkpointing strategy splits the original program state into a
primary state—the portion of the memory address space in use by the run-
ning program—and a shadow state—the portion of the memory address space
in use by our instrumentation to incrementally store the data associated to
the current checkpoint. The tracking information for the checkpointed data,
in turn, is maintained in a separate per-shadow state tagmap. Each tag in the
tagmap refers to a predetermined memory region, providing information on
whether the corresponding data in the primary state has already been saved
in the shadow state. The tagmap is entirely maintained in software and fun-
damental to the internal operations of our store_hook.

2.3 Shadow State Organization

Our shadow state organization fulfills three key design goals: (i) deployability,
that is no changes to commodity operating systems, user programs, orwidely
deployed security mechanisms such as address space layout randomization;
(ii) portability, that is support for multiple architectures; (iii) efficiency, that
is fast shadow state and tagmap management with minimal run-time perfor-
mance overhead.

2.3.1 Memory Address Space Layout

LMC’s shadow state strategy dictates splitting the virtual memory address
space of a program into three independent memory areas accommodating
the primary state, the shadow state, and the tagmap. To support efficient
memory lookups across the different areas, LMC maintains predetermined
linear mappings for any given memory address from one area to another.
This approach ensures that, given an address in the primary state, LMC can
locate the corresponding address in the shadow state and the corresponding
tag in the tagmap in constant time—using preassigned offsets. In the simplest
shadow state organization possible, this strategy can be enforced by splitting
the memory address space into three equally-sized areas, with 1-byte tags in
the tagmap each referring to 1 byte in the primary (and shadow) state.

To increase the size of the primary state available to the program and im-
prove the memory locality of the checkpointing activity, however, LMC re-
lies on a more general tagmap implementation, with each tag referring to
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a generic primary/shadow memory region of ρ bytes—with ρ selected by
empirical measurements by default (see Section 2.4.1). This design choice
results in a more general shadow state organization, with the final sizing and
positioning of the different memory areas subject to the particular architec-
ture adopted. Figure 2.2 shows the final memory layout adopted by LMC
for both 32-bit and 64-bit Linux programs.

32-bit Address Space Layout

On 32-bit architectures, LMC resorts to a compact memory layout—using
the ADDR_COMPAT_LAYOUT personality on Linux—to locate the entire pri-
mary state in the lower half of the memory address space. In particular,
this strategy locates the text, data, and heap segments at the very bottom
of the memory address space and memory mapped segments—i.e., anony-
mous mappings, file-backed mappings, and shared library mappings—above,
in the first 1 GB of the address space. On Linux—and on typical Unix sys-
tems in general—this strategy leaves the stack as the only memory area resi-
dent in the upper half of the program’s usable address space. To implement
its shadow state organization, LMC relocates the stack (Section 2.3.2) dur-
ing early program initialization to the lower half of the address space, leaving
the upper half—starting from 1.5 GB—entirely allocated to the shadow state.
The tagmap, finally, is placed at the top of the lower half of the memory ad-
dress space, with a total size of 12 MB in the default ρ = 128 configuration
(Section 2.4.1). This strategy yields a program-usable primary state size of
less than 1.5 GB, a necessary compromise for any shadow memory organi-
zation on the limited 32-bit architecture, which, however, did not prevent
LMC from successfully running all the test programs considered in our ex-
perimental evaluation.

64-bit Address Space Layout

On64-bit architectures, LMC’s instrumentation generates position-indepen-
dent executable (PIE) binaries to freely relocate the primary state. Note
that, although position-independent code is known to introduce nontriv-
ial performance overhead on particular architectures [110], 64-bit architec-
tures have been designed to efficiently support PIE binaries. As a matter of
fact, increasingly many operating system distributions—e.g., Ubuntu—have
started to ship 64-bit software packages in PIE format, which also improves
the coverage of address space layout randomization and thus software secu-
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Figure 2.2: The address space layout used by LMC on Linux: (a) Unmodified 32-bit layout.
(b) Compact 32-bit layout. (c) Compact 32-bit layout with shadow state organization. (d) 64-bit
layout with shadow state organization.

rity. LMC follows the same strategy, which automatically ensures reloca-
tion of the entire primary state in the upper 64 GB of the memory address
space. The tagmap and the shadow state, in turn, are consecutively allocated
at the bottom of the memory address space. Under the default ρ = 128 con-
figuration (Section 2.4.1), this strategy yields a 512 MB tagmap. The up-
per half—starting from 128 TB—finally, is reserved at initialization time and
made inaccessible to the program, for simplicity. This strategy still leaves
nearly 128 TB of memory address space available to the running program.

2.3.2 Stack Relocation

To relocate the stack on 32-bit architectures, the LMC checkpointing library
instruments the program to intercept the application entry point and trans-
parently perform the relocation. On Linux, this is equivalent to overrid-
ing glibc’s _libc_start_main with a library function that allocates a new
stack, copies the arguments and environment variables to the new stack loca-
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tion, and finally returns control to libc. This strategy, however, is alone insuf-
ficient to relocate the stack, given that the operating system is not aware of the
change and, for example, can no longer export the program command-line ar-
guments through the proc filesystem—i.e., /proc/pid/cmdline. To address
this problem, LMC relies on kernel support introduced by recent user-level
checkpoint-restart solutions [13], which allows a user program owning the
necessary capability (i.e., CAP_SYS_RESOURCE) to inform the kernel of a new
relocated stack via a dedicated interface (i.e., prctl).

2.3.3 Tagmap

LMC maintains a tagmap using 1 byte tags and addressing memory regions
of a configurable size St. To reconfigure the tagmap layout, users can specify
a custom St (power of two) and recompile the checkpointing library. When
called by the instrumented code, our store_hook locates the tag associated
to the given store instruction by calculating (a >> log2(St)) + toff , where
toff is the offset between the base address of the primary state and the base
address of the tagmap and a is the destination address for the store instruc-
tion. If the tag is not set, our store_hook first copies the memory region
from the primary state into the shadow state and sets the tag in the tagmap
before issuing the given store instruction into the primary state. The tagmap
is reset to a pristine state at the next checkpoint/restore operation associ-
ated to a given shadow state. Store instructions based on memory intrinsics
are segmented into multiple memory writes according to the region size se-
lected.

2.4 Tagmap Management

This section details the key issues LMC addresses to manage the tagmap as
part of its checkpointing strategy.

2.4.1 Memory Region Size

The memory region size determines the size of the tagmap and also the gran-
ularity of the checkpointing strategy, i.e., a smaller region size results in a
larger tagmap and a finer level of granularity. Selecting a large region size has
two advantages. First, larger regions—and thus smaller tagmaps—yield more
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Figure 2.3: Throughput degradation on lighttpd, nginx and Apache httpd for different memory
region sizes.

program-usable address space. Second, larger regions increase the probabil-
ity of two given store instructions pointing into the same region. This leads to
fewer—albeit larger—copy operations and better program-perceived locality.
Large regions, however, can also lead to unnecessary copying to the shadow
state, since the entire region is always copied to the shadow state even when
a single byte within the region is modified in the entire checkpoint interval.
These observations highlight the different tradeoffs involved in selecting the
optimal memory region size.

To investigate the tradeoffs, we measured the LMC-induced throughput
degradation for the three most popular web servers according to the experi-
mental setup adopted in our evaluation (Section 2.7). We repeated the exper-
iment across several different memory region sizes and reported the results
in Figure 2.3. The figure shows that, in all cases, the throughput increases
with the region size for ρ ≤ 128 bytes and decreases for ρ > 128 bytes, due
to the excessive amount of unnecessary copying outweighing the benefits
derived from increased locality and degrading the overall run-time perfor-
mance. Based on this experiments, LMC currently assumes ρ=128 bytes in
its default configuration.
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2.4.2 Metatagmap

Memory checkpointing is often used in error recovery scenarios, where one
cannot safely assume that program-issued store instructions are free from er-
rors that could corrupt arbitrary memory address space areas, including the
shadow state and the tagmap itself. To protect the program against accidental
metadata corruption, LMC can be configured to use a separate metatagmap—
allocated within the tagmap and with a similar rationale—to map all the store
instructions that erroneously specify a destination address inside the shadow
state, tagmap, or metatagmap itself. Inhibiting access to the metatagmap us-
ing page protection mechanisms—a strategy inspired by prior work on taint
tracking techniques [147]—is sufficient to prevent arbitrarymetadata corrup-
tion on invalid store instructions and induce fail-stop behavior—i.e., segmen-
tation fault—that can be effectively handled by error recovery techniques in-
stead. LMC’s tagmap and metatagmap mapping strategy is depicted in Fig-
ure 2.4.
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2.4.3 Resetting the Tagmap

The most straightforward tagmap implementation is a bitmap with boolean
tag values. This strategy, however, requires zeroing out the entire bitmap ev-
ery time LMC needs to reset the tagmap at the end of a given checkpoint in-
terval. For this purpose, an option is to simply bzero the entire tagmap. An-
other option is to use the mmap system call to request the kernel to overmap
the tagmap with zero pages. The latter strategy is generally more efficient—
only the pages of the tagmap that are actually mapped in are zeroed—but
still introduces nontrivial performance costs associated to increased zeroing,
page faulting—demand paging dictates zero pages to be only mapped in at
first access—and setting up a new memory area in mmap. To eliminate the
latter cost, our current LMC implementation relies on the madvise system
call and the MADV_DONTNEED flag to efficiently repopulate a given memory
area with zero pages without recreating the area, a strategy commonly em-
ployed in modern memory allocators [21]. The other costs, however, are
much harder to eliminate without dedicated kernel support.

To avoid incurring such costs at every checkpoint interval, LMC opts for
a more sophisticated tagmap implementation based on epoch numbers. For
this purpose, the LMC checkpointing library keeps track of a 1-byte global
epoch number incremented at every checkpoint. Every tag in the tagmap is
set with the current epoch number when the corresponding memory region
is first modified in a given checkpoint interval. To check whether a particular
region has already been saved, LMC simply compares the corresponding tag
in the tagmap with the current epoch number. This scheme eliminates the
need to zero out the tagmap at every checkpoint interval, only forcing LMC
to repopulate the entire tagmap with zero pages when epoch numbers run
over, i.e., every 255 intervals assuming 8-bit epoch numbers.

2.4.4 Thread Safety

LMC can natively support thread safe behavior, but our current implemen-
tation disables thread safety by default. This is to eliminate extra tagmap
management complexity, which is often unnecessary in practice given that
memory checkpointing applications typically enforce thread safety on their
own to guarantee a sound checkpointing model in a multithreaded context.
For example, error recovery techniques rely on a well-defined thread model
to implement their recovery activities, assuming nonthreaded execution by
construction [53; 159], allowing only one thread to enter a new checkpoint



2.5 Optimizations | 23

interval and explicitly blocking all the other threads [115; 152; 68], or only al-
low checkpoint intervals that have been proven thread safe by static program
analysis [157].

Enforcing thread safety at the memory checkpointing level requires LMC
to synchronize accesses to LMC-maintained metadata, so that no race condi-
tions can result from multiple threads writing into the same memory region
at the same time. To address this problem, the obvious solution is to serial-
ize accesses to the tagmap, epoch numbers, and shadow state using dedicated
locks—e.g., mutexes. This strategy, however, may introduce nontrivial com-
plexity and lock contention overhead at runtime. For this reason, LMC opts
for a simpler solution which piggybacks on the synchronization mechanisms
already present in the original program. To this end, LMC lowers the mem-
ory region size to 1 byte—similar to prior memory shadowing techniques
for multithreaded programs [111]—a strategy which naturally yields thread
safety by construction as long as the original program did not contain race
conditions with two threads attempting to modify the same memory byte
at the same time. This assumption may be overly conservative in error re-
covery applications, but such applications generally deal with thread safety
explicitly, as mentioned earlier. Further, LMC needs to translate all the
atomic instructions—e.g., atomic increment—into fully synchronized store
operations.

2.5 Optimizations

This section details the optimizations adopted in our prototype to minimize
the LMC-induced performance overhead.

2.5.1 Reducing Instrumentation Costs

Instrumented store instructions introduce nontrivial performance costs even
if the target memory region has already been checkpointed. Such costs have
two main sources: (i) new call instructions to the store_hook function and
(ii) new load andbranch instructions to check the tagmap as part of the check-
pointing activity. As a result, the LMC optimization pass can minimize the
performance overhead by preventing instrumentation of store instructions
that static analysis can prove (i) redundant—i.e., operating on already check-
pointedmemory regions—or (ii) transient—i.e., operating on short-livedmem-
ory regions whose effects are never exposed outside the associated check-
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point interval and are thus not relevant for the checkpoint. Further, the LMC
optimization pass aggregates store instructions for which the pass can stati-
cally assess good spatial locality.

Redundant Stores

To avoid instrumenting redundant stores, the LMC optimization pass exam-
ines each instrumented store instruction I and its pointer operand p, and
creates a set S including all the other store instructions that store into the
memory location pointed to by p. The analysis establish this fact by check-
ing for equivalence of the pointer operands, i.e., stays conservative in the case
of pointer aliasing. In a second step, LMC tests for each instruction Icanditate

included in S, if Icanditate is dominated by I—i.e., I is proven to be always
executed before Icanditate—and if so, un-instruments Icanditate.

Transient Stores

To avoid instrumenting transient stores, the LMC optimization pass seeks to
identify both heap transient stores—i.e., store instructions referring to heap ob-
jects allocated and freed within a single checkpoint interval—and stack tran-
sient stores—i.e., store instructions referring to stack objects in short-lived
functions, whose lifetime never spans across multiple checkpoint intervals
by construction.

Heap transient stores are identified using checkpoint escape analysis, which
follows the same static analysis strategy used in standard thread escape anal-
ysis techniques [120]. To assess whether a memory object escapes a function
in the checkpoint interval, LMC relies on data structure analysis [81], an ef-
ficient context-sensitive and field-sensitive points-to analysis implemented
in LLVM [79]. In particular, LMC follows the approach adopted by poolal-
loc [80] to identify function-local memory pools. This strategy allows LMC
to identify store instructions that never escape a given checkpoint interval and
can thus be safely left uninstrumented in the final binary.

To prevent instrumenting stack transient stores, LMCeagerly checkpoints
the active call stack at checkpointing time and relies on the points-to infor-
mation provided by data structure analysis [81] to avoid instrumenting all
the store instructions that are statically proven to always refer to stack ob-
jects within the checkpoint interval. This strategy reflects the intuition that
checkpoint requests are usually issuedwhen the amount of state active on the
call stack—and thus the amount of data to checkpoint eagerly—is relatively
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Server Long-lived stack in kB
nginx 1224
lighttpd 712
httpd 784
prostgresql 3048
bind 352
proftpd 5784
pureftpd 4608
vsftpd 1088

Table 2.1: Long-lived call stack size for different server applications.

small. This is especially evident in common request-oriented checkpointing
models [53; 83] in long-running applications, which typically yield minimal
long-lived call stack state at memory checkpointing time.

Table 2.1 confirms our intuition, showing that the size of the long-lived
call stack for all the server applications considered in our evaluation is typi-
cally smaller than 1memory page, which introducesminimal copying costs—
and thus minimal performance degradation—at checkpointing time.

Aggregating Store Instrumenation

While not instrumenting redundant store instructions is effective for single
memory locations, it cannot account for stores to different, but spatially col-
located memory locations. Aggregating the instrumentation for these collo-
cated store instructions, however, has the advantage that stores to the same
underlying memory region are potentially only instrumented once.

LMC performs this optimization for store instructions into the same un-
derlying object by constructing dominator chains of store instructions for
each memory object (e.g., struct). The pass identifies the underlying mem-
ory object by stripping all constant offsets of LLVM’s getelementptr in-
struction, and stays conservative in the case of pointer aliasing. After es-
tablishing the modified range of the memory object for each chain, all the
store instruction in the chain are left uninstrumented and a call to LMC’s
store_hook covering the entire region is placed before the chain’s leading
instruction.
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2.5.2 Reducing Checkpointing Costs

In its current version, our LMC prototype naturally imposes an always-on
checkpointing strategy, given that all the relevant store instructions always
run instrumented throughout the execution. In other words, either an im-
plicit or explicit checkpoint interval is always active during the execution.
While the cost of copying is gradually amortized throughout the execution
when no explicit checkpoint request is issued—i.e., the same memory region
is never checkpointed more than once—or can even be eliminated altogether
by explicitly setting all the tags in the tagmap, the running program is still
exposed to nonmarginal tagmap management costs.

To eliminate such costs, an option is to rely on program instrumentation
to implement a simple basic block cloning strategy, a well-known technique
incurring a relatively small memory [65] and performance impact [146; 55].
Basic block cloning results in a final binary containing two versions of each
basic block and additional code to efficiently switch from one version to an-
other on demand. For our purposes, one version would reflect code from the
original uninstrumented program and the other version would reflect the
corresponding code with store instructions instrumented to perform mem-
ory checkpointing. We are planning to thoroughly investigate the impact of
such a basic block cloning strategy in our future work.

2.6 Alternative Techniques

This section provides a general overview of existing memory checkpointing
techniques and draws a high-level comparison with LMC. An experimental
comparison, in turn, is presented in Section 2.7. We focus here on user-level
memory checkpointing, and refer the reader to existing surveys [46; 123]
for more intrusive kernel-level [56; 85; 76; 151; 52; 2; 77; 106] and VMM-
level [26] checkpointing techniques.

2.6.1 Fork-based Checkpointing

The most common way to implement page-granular checkpointing at the
user level is to rely on the copy-on-write semantics supported by the fork
system call. For our purposes, memory checkpointing can be simply imple-
mented by spawning a new child process at the beginning of a checkpoint
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interval and programmatically terminate the process at the end of the in-
terval. For its simplicity and isolation properties, fork-based checkpointing
has been widely used in prior solutions [51; 128; 112; 117; 152]. This tech-
nique, however, can introduce substantial checkpoint-time overhead—fork
requires creating a new process context—and is not entirely transparent—a
new process instance is made “visible” to the running program.

2.6.2 Mprotect-based Checkpointing

Another popular page-granular checkpointing strategy is to use the mpro-
tect system call to write-protect all the user memory pages and intercept
the resulting write faults from a user-level SIGSEGV signal handler, a mech-
anism frequently used to implement generic user-level page fault handling.
This mechanism can be used to implement COW semantics similar to fork-
based checkpointing or, as an alternative, to implement dirty page tracking
entirely in user space—and incrementally copy dirty pages at the end of each
checkpoint interval, starting with an initial full memory checkpoint. After
copying (or tracking) the faulting page, the write protection can be removed
and reestablished only at the next checkpoint request. When compared to
fork-based checkpointing, this technique typically introduces amoremodest
checkpoint-time overhead, but, at the same time, substantially increases the
cost of page fault handling and lowers the isolation guarantees—the check-
pointed data resides in the same address space as the running program and ex-
tra protection mechanisms are necessary to prevent data corruption.Further,
this technique cannot be made application-transparent without additional
recovery mechanisms in place, given that kernel execution page faulting on
a write-protected page may result in a system call returning an error code to
the application—i.e., EFAULT, according to POSIX [112]. For all these rea-
sons, mprotect-based checkpointing has found relatively limited use in prior
checkpointing solutions [33; 112; 119].

2.6.3 Soft Dirty Bit-based Checkpointing

A popular dirty page tracking strategy suitable for page-granular memory
checkpointing is to rely on the dirty bit information maintained by the hard-
ware in individual page tables entries. Traditional Unix systems do not di-
rectly expose dirty bit information to user programs and typically require
nontrivial kernel extensions to implement reliable dirty page tracking for
checkpointing purposes [136], a strategy often explored in prior kernel-level
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solutions [136; 85; 52]. On recent Linux releases, however, kernel support
adopted for emerging checkpoint-restart frameworks [13] allow user pro-
grams to implement dirty page tracking by periodically reading and clear-
ing software-maintained dirty bits—or soft dirty bits. This scheme, however,
still requires extra protection mechanisms to prevent checkpoint data cor-
ruption and does not efficiently scale to large address spaces—reading soft
dirty bits requires scanning all the mapped memory regions in the address
space. Other user-level solutions have also suggested emulating soft dirty bit
tracking using block-level checksumming [50; 100], an approach which still
shares the same limitations of soft dirty bit-based tracking.

2.6.4 Undolog-based Checkpointing

Undolog-based checkpointing relies onprogram instrumentation techniques
to log all the store instructions—i.e., their data, size, and target addresses—
issued by the program within a checkpoint interval and revert the logged
changes at restore time. Both dynamic [115] and static instrumentation [159;
83] techniques can be used to instrument the store instructions—we imple-
mented the latter approach in our prototype implementation (similar to the
instrumentation strategy used in LMC) to ensure a fair experimental compar-
ison. Previous work on instrumentation-based undolog approaches [159] ap-
ply optimizations similar to LMC’s “uninstrumentation” optimizations, but
do not thoroughly evaluate their impact on runtime performance. To pre-
vent checkpoint data corruption, the instrumented code needs to perform
bounds checking at every store instruction to verify that the target address
is not in the range in use by the undolog itself.

2.7 Evaluation

We implemented LMC on Linux for Intel x86 and x64 architectures. We
evaluated the resulting solution on a Intel Core2 E6550 clocked at 2.4 GHz
and equipped with 4 GB of RAM (32-bit experiments) and a Intel Core i5-
3340M clocked at 2.4 GHz with 8 GB of RAM (64-bit experiments).

For our experimental evaluation, we selected the three most popular open-
source web servers—nginx (v0.8.54), lighttpd (v1.4.28), and Apache httpd
(v2.2.23)—the threemost popular open-source ftp servers—proftpd (v1.3.3),
pureftpd (v1.0.36), and vsftpd (v1.2.1)—the most popular open-source name
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Figure 2.5: Normalized throughput for our server programs across different memory
checkpointing techniques (64-bit results).

server—bind (v9.9.3)—and a mainstream open-source database server—post-
gresql (v9.0.10). We also considered all the C benchmarks in the SPEC
CPU2006 benchmark suite. We instrumented all our test programs across
different memory checkpointing techniques and enabled all the optimiza-
tions described in Section 2.5 for all the compiler-based checkpointing tech-
niques (undolog and LMC itself) unless otherwise stated.

To stress the web servers, we relied on the Apache benchmark (AB) [11]
part of the Apache httpd suite. To emulate a realistic workload, we config-
ured AB to issue a total number of 25,000 requests with 10 concurrent con-
nections and 10 requests per connection through the loopback device. To
benchmark the FTP servers, we relied on the pyftpbench benchmark [4],
configured to open 100 control connections and request 100 1 KB-sized files
per connection. Finally, we relied on the sysbench [5] and queryperf [10]
benchmarks to evaluate postgresql and the bind name server, respectively.
We ran all our experiments 11 times—while checking that the CPUs were
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Figure 2.6: Checkpointing-induced microbenchmark execution time for different redundancy
factors normalized against the baseline (64-bit results).

fully loaded throughout our tests—and reported the median.

2.7.1 Checkpointing Performance

To evaluate the checkpointing-induced performance overhead, we measured
the throughput degradation on our server programs while checkpointing at
every client request, following the common request-oriented checkpointing
model adopted in prior work [53; 83]. Figure 2.5 presents our results for
64-bit Linux—we omit 32-bit results exhibiting similar behavior.

As we can see in the figure, fork-based checkpointing induces the highest
checkpointing performance overhead compared to all the other techniques
(88.5% degradation, geometric mean). Further, mprotect-based checkpoint-
ing is the top-performing page-granular checkpointing technique in this sce-
nario (55.5% degradation, geometric mean). In particular, mprotect-based
checkpointing reported remarkable performance for programs that exhibit
good locality, e.g., Apache httpd, which memory profiling revealed modi-
fying the smallest number of memory pages in the selected checkpoint in-
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Figure 2.7: Checkpointing performance on SPEC for LMC and undolog (64-bit results).

terval. Finally, instrumentation-based techniques significantly outperform
page-granular techniques in most cases, as anticipated. In particular, our
results show that LMC performs comparably, and even better on average
(15.0% vs 20.0% degradation, geometric mean), than undo log-based check-
pointing. In detail, LMC consistently outperforms undolog-based check-
pointing for memory-intensive programs, e.g., bind, and programs that ex-
hibit significant write locality, e.g., Apache httpd. In both scenarios, a large
number of duplicate writes can cause the undolog to grow quickly, disrupt-
ing spatial locality and increasing cache trashing.

2.7.2 Effectiveness of the Optimizations

Figure 2.7 shows the checkpointing performance for the SPEC CPU2006
benchmark suite using our LMC and the undolog checkpointing technique.
To simulate an event-based recovery scenario, we identified an inner loop
inside the programs. During each iteration of the loop, a checkpoint is taken,
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resulting in checkpoint intervals ranging from 13 microseconds (perlbench)
to 391 seconds (milc). A special case is gcc, in which case only one check-
point is taken, since no inner loop could be identified. The results in the
figure are ordered by checkpoint frequency.

We limited the undolog to 4 GB leading to programs crashing, due to un-
dolog overflows in cases where the checkpoint interval is fairly large. Pro-
grams start to crash when checkpointed with a frequency of 0.39 seconds
(gobmk). This underlines the necessity of memory boundedness. Further,
the figure shows that in nearly all cases LMCoutperforms the undolog-based
technique. Only for perlbench, which is checkpointed with an extremely
high frequency, the undolog performs better than LMC. In this case, the
very low cost incurred by the undolog to start a new checkpoint—i.e., simply
resetting the index into the log—is the key to better performance.

To evaluate the effectiveness of the optimizations operated by LMC to re-
duce the instrumentation overhead, we measured (1) the number of store in-
structions that are uninstrumented by the different optimization stages and
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Figure 2.9: Throughput of server programs with LMC using different combinations of
optimizations.

Baseline PSS LMC Undolog mprotect

Requests: 1 10 100 1 10 100 1 10 100

nginx 1872 KB 20 % 19 % 20 % 9% 21% 136 % 12 % 12.6 % 12 %

lighttpd 851 KB 33 % 43 % 33 % 8% 32% 184 % 16 % 19 % 15 %

httpd 3257 KB 52 % 54 % 52 % 26 % 128 % 1193 % 16 % 16% 15 %

proftpd 71982 KB 94 % 94 % 93 % 420% 900 % 5900 % 8% 5% 5%

pureftpd 268 KB 41 % 39 % 39 % 14 % 33 % 208 % 111 % 121 % 195 %

vsftpd 89 KB 29 % 35 % 35 % 5% 9% 11% 5% 13% 11 %

bind 8897 KB 27 % 26 % 27 % 79 % 94% 218 % 2% 3% 1%

postgresql 20919 KB 11 % 29 % 13 % 412 % 470 % 1104 % 16 % 5% 1%

Table 2.2: Checkpointing-induced PSS increase for our server programs across different memory
checkpointing techniques and intervals.

(2) the resulting impact on the run-time performance of the server programs.
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store_hook.

Uninstrumented Store Instructions

Figure 2.8 shows the relative amount of store instructions that are uninstru-
mented by the different optimization stages. The results show that our opti-
mizations are generally effective, leading to a reduction of instrumented store
instructions of between 29 % (bind) and 72 % (pure-ftpd). In addition, the
effectiveness of the double store optimization (3.6–7.6 % of all store instruc-
tions uninstrumented) is outweighted by the effectiveness of the transient
store and aggregation optimizations.

Further, our results show that, in some cases, (proftpd, nginx, httpd, and
postgresql) the aggregation optimization is able to uninstrument the largest
fraction of store instructions. In the other cases (lighttpd, pureftpd, vsftpd,
andbind), the transient store optimization is able to uninstrument the largest
fraction of store instructions. We attribute this behavior to the latter pro-
grams’ heavier use of stack-allocated variables.
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Run-time Impact of the Optimizations

Figure 2.9 shows the normalized throughput of our unoptimized (None),
doubles store and transient store optimized (DS+Trans) and fully optimized
(DS+Trans+AGR) server programs. The general trend shows that uninstru-
menting store instructions is—as expected—reflected in better run-time per-
formance, leading to an average performance improvement of 1.8 % for the
DS+TRANScase and an additional 4.8%when also enabling the aggregation
optimization.

At the same time, our results also show that an increase in the number of
uninstrumented instructions induced by a certain optimization is not nec-
essarily reflected in an equally-sized performance gain, since the uninstru-
mented store instructions may happen to lie in cold (i.e., nonperformance
critical) code paths. This was, for example, the case for postgresql, where
the aggregation optimization uninstruments the largest fraction of store in-
structions but has a smaller impact on the overall performance. Finally, in
some cases (lighttpd, vsftpd, and proftpd), our results seem to suggest that
optimizations may occasionally have a slightly negative performance impact.
In practice, the reported slowdowns are well within the noise caused by
optimization-induced memory layout changes [99].

2.7.3 Impact of Duplicate Writes

To compare the previously noted impact of duplicate writes on instrumenta-
tion-based memory checkpointing techniques, we relied on a homegrown
microbenchmark, which runs through 5000 loop iterations, each of which
checkpoints the entire memory image and subsequently writes 1 KB of data
into a 128 KB memory range—sampled uniformly at each iteration. To sim-
ulate duplicate writes with a redundancy factor of R, we repeated each write
operation inside the loop R times. Figure 2.6 shows the time to complete the
checkpointing-enabled version of our (64-bit) microbenchmark normalized
against the baseline—for growing values of R. As we can see, undolog-based
checkpointing yields better performance only for R={0, 1} but it is increas-
ingly outperformed by LMC for greater values of R.

2.7.4 Instrumentation Performance

To evaluate the performance overhead induced by instrumentation-based
memory checkpointing techniques with no checkpoint operation issued dur-
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ing regular execution, we measured the time to complete an instrumented
version of theCprograms in the SPECCPU2006benchmark suite compared
to the baseline. As checkpointing-induced costs are not considered, we dis-
abled logging for undolog-based checkpointing and epoch number manage-
ment for LMC.

Figure 2.10 shows that the instrumentation-induced performance over-
head lies between 17 % and 206 %. Further, the overhead for LMC is slightly
higher than that for the undolog. This is especially the case for libquan-
tum and lbm, which introduce significant cache pressure [149]. The latter
is further increased by tagmap management operations operated by LMC’s
store_hook function. Finally, Figure 2.10 shows that the overall overhead
is slightly higher for 64-bit systems, which we attribute to the position-inde-
pendent code used by our prototype implementation on such systems. The
apparent speedup reported for hmmer, in turn, is likely caused by a higher
instruction per cycle ratio on 64-bit architectures [149].

2.7.5 Memory Usage

To evaluate the checkpointing-induced memory usage overhead, we mea-
sured the Proportional Set Size (PSS)—physical memory usage normalized to
account for shared memory pages in a multiprocess context—increase on our
servers programs while checkpointing at every R = {1, 10, 100} requests—
highlighting the memory usage growth for the different techniques.

Table 2.2 presents our findings—omitting fork-based checkpointing re-
sults, comparable to mprotect-based results but harder to stabilize with non-
atomic PSS measurements across multiple processes. As expected, LMC
generally consumes more memory than page-granular checkpointing tech-
niques (32% vs 12% increase with R = 1, geometric mean), but induces a
similarly limited and steady memory usage increase across different check-
point intervals. Undo log-based checkpointing, in contrast, introduces a sub-
stantial memory usage increase, which grows very quickly as we relax the
duration of the checkpoint interval. For example, with R = 10, undolog-
based checkpointing induces a PSS increase of 900 % in the worst case—i.e.,
proftpd—which quickly grows up to 6000 % with R=100.
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2.8 Conclusion

Existing high-frequency memory checkpointing techniques operating at the
user level force users to tradeoff performance and memory usage guaran-
tees, a painful compromise when systems reliability is at stake. To address
these concerns, this paper presented LMC, a new memory checkpointing
technique based on a compiler-assisted shadow state organization which effi-
ciently implements byte-granular copy-on-write semantics. To evaluate the
viability of our approach, we implemented LMC for generic 32- and 64-bit
Linux programs and evaluated it on eight popular open-source server appli-
cations using the common request-oriented checkpointing model. Our ex-
perimental results show that LMC matches the performance guarantees of
state-of-the-art instrumentation-based strategies—i.e., undolog—while also
providing much stronger memory usage guarantees.





CHAPTER 3

SPECULATIVE MEMORY
CHECKPOINTING

3.1 Introduction

Memory checkpointing—the ability to snapshot/restore the memory image
of a running process or set of processes—has recently gained momentum
in several application domains. In automatic error recovery applications,
memory checkpointing enables fast and safe recovery to known and stable
program states [152; 135; 53; 83; 54; 121; 117; 125; 51; 68; 115]. In de-
bugging applications, it enables users to efficiently navigate through several
program states observed during the execution, while empowering advanced
debugging techniques such as reverse/replay debugging [129; 128; 61; 72].
Memory checkpointing also serves as a key enabling technology for impor-
tant first-class programming abstractions like software transactional mem-
ory [83], application-level backtracking [159; 33], and periodic memory re-
juvenation [144].

Such application domains require very frequent checkpoints in real-world
scenarios. For instance, automatic error recovery techniques rely on fre-
quent checkpoints to mask failures to the clients [143]. This is typically ac-

39
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complished by checkpointing the program state at every client request [53;
83]—or at carefully selected rescue points [125; 115; 135; 69]. In advanced
debugging techniques, frequent checkpoints allow users to quickly navigate
through arbitrary points in the execution history [72; 69]. Finally, first-class
programming abstractions implemented on top of memory checkpointing,
such as application-level backtracking, typically yield a very high checkpoint-
ing frequency by construction [33].

Traditional memory checkpointing techniques rely on commodity hard-
ware—a strategy that provides superior deployability compared to instru-
mentation-based strategies [115; 152; 32; 84; 38; 159; 83; 139; 140]—to in-
crementally copy memory pages that were modified by the running pro-
gram [52; 136; 119; 77; 125; 72; 51; 128; 112; 33; 117]. While incremental
memory checkpointing is regarded as an efficient alternative to disk-based
or full memory checkpointing [113], it still incurs nontrivial memory trac-
ing costs for every taken checkpoint, resulting in relatively infrequent check-
points used in practice.

In this paper, we present Speculative Memory Checkpointing (SMC), a new
technique for high-frequency page-granular memory checkpointing. SMC
seeks to improve upon current techniques to allow for very high-frequency
checkpointing at a period that is below the one millisecond boundary, even
making it possible to checkpoint every request in a highly loaded server. To
fulfill this goal, SMC sets out to minimize the memory tracing costs of incre-
mental checkpointing by eagerly copying the hot (frequently changing) pages,
while lazily tracing and copying at first modification time only cold (infre-
quently changing) memory pages. Thus, SMC combines the advantages of
full memory checkpointing (efficient bulk copies) with that of incremen-
tal memory checkpointing (copy only when needed). The key challenge
is to find the optimal trade-off between eagerly copying too many memory
pages—i.e., unnecessary memory copying costs—and copying an insufficient
number of pages which may result in unnecessary memory tracing costs for
every checkpoint.

To address this challenge, SMC relies on a general writable working set
(WWS) model [40] to detect the memory pages that change most often—
the ideal candidates for our speculative copying strategy. To obtain fresh
and accurate estimates, our implemented SMC framework supports well-
established working set estimation (WSE) algorithms. In addition, we com-
plement our framework with GSpec, a novel writable WSE algorithm specif-
ically tailored to high-frequency memory checkpointing. GSpec follows a
blackbox optimization strategy inspired by genetic computing [96]. The lat-
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ter approach provides SMC with a self-tuning and self-adapting working set es-
timation strategy by design, which relies on no program-specific parameters
and ensures fresh and accurate estimates across several different real-world
workloads. This is in stark contrast to traditional WSE algorithms, which,
while well established in several application domains such as dynamic mem-
ory balancing [164; 66; 90; 142; 89; 37], garbage collection [148; 154; 58],
virtual machine restore [156; 155] and live migration [153], are generally
ill-suited to high-frequency memory checkpointing. In particular, these al-
gorithms impose a stringent performance-accuracy trade-off that typically
results in a nontrivial overestimation of the real writable working set [24].
This is perhaps acceptable in many traditional applications (e.g., dynamic
memory balancing with sporadic memory pressure), but leads to substan-
tial overcopying, and thus overhead, for SMC.

Contributions The contributions of this paper are fourfold. First, we pre-
sent an in-depth analysis of prior page-granular memory checkpointing tech-
niques, evidencing their direct and indirectmemory tracing costs. Our inves-
tigation uncovers important bottlenecks for prior solutions in high-frequency
checkpointing contexts and serves as a basis for our design. Second, we
present Speculative Memory Checkpointing (SMC), a new technique for high-
frequency memory checkpointing based on (several possible) writable work-
ing set algorithms. Third, we introduce GSpec, a novel WSE algorithm which
draws inspiration from genetic algorithms to speculatively copy memory pa-
ges that are most likely to change in the next checkpointing interval. Fi-
nally, we implemented and evaluated a kernel-module-based SMC frame-
work with support for GSpec and other WSE algorithms, demonstrating
its performance benefits in high-frequency checkpointing scenarios. Our re-
sults demonstrate that our WSE-based strategy is accurate, efficient, robust
toworkload variations, and effectively reduces the run-timeoverhead of high-
frequency memory checkpointing at the cost of modest memory overhead.

3.2 Background

A straightforward way to implement process checkpointing involves freez-
ing the execution and taking a snapshot of memory by copying it [2; 42; 56;
76; 106; 118]. Even though this approach suffices in certain domains, like
process migration, it is wasteful and slow in domains where frequent check-
points need to be made, as it requires the process to stop for a significant
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amount of time and copies potentially large amounts of data indiscriminately.
A more efficient strategy is to rely on incremental checkpointing. Incremen-

tal checkpointing builds a checkpoint gradually—minimizing the time that a
process is suspended, and reducing the amount of data to copy. We can gen-
erate incremental checkpoints in two ways. We can make a full snapshot in
the beginning, and then track and save all modifications, so we can add them
to the snapshot at the next checkpoint [52; 136; 13; 119; 112]. To roll back,
all memory is restored using the maintained snapshot. Alternatively, we can
do the inverse and copy only the data that are modified after a checkpoint,
right before they are overwritten [77; 125; 72; 51; 128; 112; 33; 117]. To roll
back we restore only the overwritten data using their copies. We will refer
to the former solution as “copy new data” (it copies the new data at check-
point time), and the latter as “copy old data” (it copies the old data prior to
overwriting them).

Traditional incremental checkpointing mechanisms are usually page-gra-
nular, that is, amemory page is the smallest data block copied (althoughmore
fine-grained techniques exist [159; 44; 115; 83; 152]). Below we discuss the
core mechanisms and techniques employed by these approaches.

Hardware dirty bit Incremental checkpointing techniques rely on dirty
page tracking. Modern memory management units (MMUs) include a dirty bit
for each entry in the page tables maintained by the operating system (OS),
which is set by the hardwarewhen a page iswritten. Thebit is usedby theOS
to, for example, determine which pages need to be flushed to disk. Directly
using this dirty bit to detect modified pages is potentially fast, but requires
extensive changes to the OS kernel [136; 52; 76; 2] which is neither attractive,
nor likely to help deployability.

Soft dirty bit Linux also offers a soft dirty-bit mechanism, made available
to user space through the proc file system, which provides the same func-
tionality with HW dirty bits, albeit not as fast (see Section 3.3).

Write Bit Thewrite bit [136], also providedby theMMU, controlswhether
a virtual memory page can be written. It is often leveraged for checkpoint-
ing. For example, when the dirty bit is missing, it is used to emulate the
functionality. Briefly, write protecting a page will generate faults on writes.
By capturing the faults, we identify the dirty pages and maintain our own
soft dirty bit.
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Copy-on-write (COW) semantics “Copy old data” approaches that save
memory pages on-the-fly are in their majority utilizing the write bit and
COW semantics. The most well known use of COW is in the fork system
call in Linux. fork creates a new process, identical to the parent process
invoking it, but instead of duplicating all memory pages, the two processes
share the same pages which are now marked as read-only and COW. When
one of them writes to a page, a fault is generated, causing the kernel to create
a copy of the page. User-space checkpointing mechanisms are using fork to
copy pages on-demand, but COW semantics can be also used directly from
within the kernel, by setting the appropriate bits in the page table.

Page Checksums An alternative for determining dirty pages without rely-
ing on dirty bits involves periodically calculating the checksum of pages and
comparing them over time. The precision of this approach is subject to the
accuracy of the algorithm used for computing the checksums [100]. One
could also compare the contents of individual memory pages directly [89],
but this strategy is generally less space-efficient and more expensive due to
poor cache behavior.

3.3 SMC

Checkpointing based on the write bit, which primarily includes approaches
using COW, does not require changes within the kernel and can efficiently
roll back, but suffers increasing overhead as the number of pages in a check-
point grows. Besides the unavoidable cost of copying pages, handling page
faults also induces overhead. Given a way to establish which pages are going
to be modified after a checkpoint, we could avoid the page-faulting overhead
and copy only the pages that need to be saved. This is the key idea behind
Speculative Memory Checkpointing (SMC).

Knowing exactly which pages are going to be written after a checkpoint
is a difficult problem, which is addressed by SMC through approximation,
similar to working set estimation (WSE). Pages that are expected to receive
writes are considered to be hot and not write-protected but eagerly copied
when hitting a checkpoint. In “copy old data” approaches, they are copied
and discarded on the next checkpoint, while in “copy new data” approaches,
they are copied into the full memory snapshot. The speculative approach
followed by SMC can be examined based on accuracy and performance.
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# Test CPU cycles
COW tests

1 Write to a page after fork. 4016
2 Write to a page, but also fork and termi-

nate the child.
139576

Copying tests
3 Copy a page and write into it. 492
4 Same as the above but also checksum

page data.
1228

Soft dirty (SD) bit tests
5 Write to a page, read SD bits, and copy

page.
16136

6 Same as the above, but clear the SD bits
first.

33148

Table 3.1: Microbenchmarks that test the various operations performed by incremental
checkpointing. The table lists the average number of CPU cycles consumed after running each
test 1000 times.

Accuracy A speculative approach is accurate when it can continuously de-
termine the pages thatwill bewritten during a checkpoint. Missing hot pages
triggers page faults and degrades performance. We refer to such errors as un-
dercopying. Respectively, marking rarely written pages as hot leads to more
copying than needed, also degrading performance. We refer to these errors
as overcopying.

Performance Three key factors affect the performance: the overhead of
the algorithm that speculates the set of hot pages, the number of undercopy-
ing errors, and the number of overcopying errors. Obviously, a very accurate
prediction algorithm can reduce the number of errors, but if that comeswith
an elevated cost, then it overshadows the lack of errors. Similarly, a large
number of errors can make SMC more expensive than traditional incremen-
tal approaches (e.g., if none of the hot pages are actually written).

Design To guide the design of SMC, we carefully evaluated the impact
of common operations performed by traditional incremental checkpointing
techniques. Table 3.1 presents our results. An immediately evident result is
the substantial overhead introduced by checkpointing strategies using COW
pages from user space. This requires forking a new process, managing it, and
terminating it when taking a new checkpoint, while the kernel takes care
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of copying a page when it is written. The latter is quite fast taking only
4016 CPU cycles, while forking, etc. requires 139,576 cycles (see lines 1
and 2 in Table 3.1). Shedding this overhead is an important factor for high-
frequency checkpointing which involves more and potentially shorter (in du-
ration) checkpoints. For this reason, our SMC framework bases its opera-
tions in a kernel module that exports checkpointing primitives to user space.
A complete user-space solution would have otherwise incurred significantly
larger overhead at runtime, mainly due to the cost of managing memory and
the MMU bits [28].

To estimate the benefits from using SMC, we compare the time taken
to perform a single write when checkpointing with the different incremen-
tal checkpointing strategies we described above (see lines 1,3, and 6 in Ta-
ble 3.1). Under (accurate) SMC, the page would just be copied once cor-
rectly placed in the writable pages hot set, and the write would complete
normally. When using COW, the kernel would make a copy of the page, be-
fore the write completes. Finally, with soft dirty bits, the write completes
normally but we then need to read the dirty bits to identify the updated page
and save it. The process takes 492, 4016, and 16136 CPU cycles respectively.
Note that in practice there are other costs involved with these strategies as
well, like calculating the hot pages, marking all pages as COW in the begin-
ning, and clearing the dirty bits (Table 3.1, line 6).

We notice that managing soft dirty bits can be very expensive, and it is
preferable to use a page’s checksum to identify updated pages, when we are
examining a small number of pages. Most importantly, the direct cost of sav-
ing a page when checkpointing is only a small part of the whole process,
which involves many indirect costs, like fault handling, managing dirty bits,
etc. As a result, a perfectly accurate speculation algorithm incurs eight times
less overhead per-page, compared to COW ( line1

line3 of Table 3.1). We also es-
tablish that undercopying and overcopying errors do not cost the same, as
the first will result in a COW (approx. 4016 cycles), while the latter leads
to a wasted copy (approx. 492 cycles). Thus, on modern architectures, the
cost for 1 undercopying error is comparable to 8 overcopying errors.

Finally, a “copy old pages” approach is more favorable because it requires
less memory space for each checkpoint (no full snapshot). Other than guid-
ing the design and implementation of SMC, we later use these findings to
derive the cost factors for our genetically-inspired GSpec WSE strategy.
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3.4 Framework Overview

Figure 3.1 depicts the high-level architecture of our SMC framework. To
deploy SMC, users install a small kernel module (ksmc) and link their pro-
grams against a user-level library (libsmc). The library offers convenient
memory checkpoint/restore primitives to programs and forwards all their
invocations to ksmc through a fast and dedicated SMCall interface that re-
quires no recompilation or restart of the running operating system kernel.
Our kernel module can handle requests from a large number of programs in
parallel and be safely unloaded when no longer needed, which ensures a fast
and safe deployment of SMC. Also note that programs not using speculative
checkpointing functionalities are unaffected by the presence of ksmc.

When a user program issues a memory checkpoint request via libsmc, our
kernel module checkpoints the current memory image of the calling process
and returns control to user space. This event marks the beginning of a new
checkpointing interval, terminated only by the next checkpoint (or restore)
request. The data (and metadata) associated with every checkpoint is main-
tained in an in-kernel journal by the core checkpointing component (CKPT ) of
ksmc. The journal stores a maximum predetermined number of K check-
points on a per-process basis, following a FIFO replacement strategy—cur-
rently K =1 by default, a common assumption in traditional memory check-
pointing applications [144; 152; 53; 83; 117; 125; 51; 68; 115]. When nec-
essary, user programs can issue a memory restore request and allow ksmc to
automatically revert the currentmemory image to the last checkpoint k, with
k ∈ [1; K].

To speculatively copy frequently accessedmemory pages and reducemem-
ory tracing costs, the checkpointing component relies on the speculation com-
ponent (SPEC), which maintains fresh writable working set estimates to drive
SMC’s speculative copying strategy. In particular, at the beginning of every
checkpointing interval, the speculation component informs the checkpoint-
ing component of all the hot memory pages that should be eagerly copied
before returning control to user space. A copy of these pages is immediately
stored in the current checkpoint, eliminating the need for explicit memory
tracing mechanisms in the forthcoming checkpointing interval. All the other
(cold) memory pages, in turn, are explicitly tracked and their data copied
lazily at first modification.
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Figure 3.1: High-level architecture of SMC

3.4.1 Checkpointing Component

The checkpointing component implements the core memory checkpoint-
ing functionalities in the ksmc kernel module. Its operations and interface
are deliberately decoupled from the main kernel as much as possible. Its
internal structure is fully event-driven with a number of well-defined en-
try points. The main entry point provides user programs with access to a
simple control interface via the libsmc library. Each user process can reg-
ister itself with the checkpointing component—that is enter “SMC mode”—
and specify the desired SMC configuration, including the speculation strat-
egy to adopt and the memory regions to checkpoint. By default, the en-
tire memory image is considered for checkpointing, but user programs may
limit checkpointing operations to specific memory areas—for example, to
implement an SMC-managed heap for a specialized memory allocator that
supports application-level backtracking. The control interface also allows
primitives to checkpoint/restore the predeterminedmemory areas or reset/-
collect SMC statistics—for example, average number of pages copied eager-
ly/lazily per checkpointing interval.

For eachprocess in SMCmode, ksmcmaintains a process descriptor—with
process-specific configurations—a set ofmemory area descriptors, and a jour-
nal of checkpoint descriptors. Each checkpoint descriptor maintains a num-
ber of page entries with the address and a copy of the original page to restore
the savedmemory image starting from the next checkpoint in the journal—or
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the current memory image in case of the most recent checkpoint.

When a process enters SMC mode, ksmc creates new process and memory
area descriptors as well as an implicit first checkpoint using a full-coverage
memory tracing strategy akin to incremental checkpointing. This is done by
write-protecting the page table entries associated with all the memory pages
in the virtual address space of the calling process and intercepting all related
page faults to save a copy of the soon-to-be modified pages.

Page fault events represent the second important entry point in ksmc, al-
lowing SMC’s memory tracing strategy to create new page entries in the cur-
rent checkpoint descriptor, notify the speculation component of the event,
and allow the kernel to simply copy and unprotect the faulting page and re-
sume user execution. To avoid slowing down the normal execution of the
main kernel’s page fault handler, ksmc supports efficient lookups of process
and memory area descriptors to quickly return control to the main kernel if
the last faulting page is not currently being tracked by SMC. A similar strat-
egy is used when intercepting process termination events—the third entry
point in ksmc—which the checkpointing component tracks to automatically
garbage collect all the descriptors and page entries associated with each ter-
minating SMC process.

When a new checkpoint operation is requested, ksmc marks the current
checkpoint descriptor as completed—note that this is always possible even
at the first application-requested checkpoint by construction—and creates
a new checkpoint descriptor for the forthcoming checkpointing interval. It
subsequently iterates over the page entries in the last checkpoint descriptor
and requests the speculation component to determine the optimal copying
strategy for each page. For each memory page subject to an eager copying
strategy, ksmc immediately creates a new page entry in the new checkpoint
descriptor. For other pages, ksmc write-protects the page and delegates the
checkpointing operations to page fault time.

When a new restore operation is requested, ksmc walks the checkpoint de-
scriptors in reverse order—starting from the current one and endingwith the
one requested by the user—and incrementally restores all the contained page
entries. It subsequently evicts all the visited checkpoint descriptors (and as-
sociated entries) from the journal and notifies the speculation component of
the event.
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3.4.2 Speculation Component

The speculation component enhances the basic incremental checkpointing
strategy implemented by the standalone checkpointing part with a working
set estimation-driven speculative checkpointing technique at the beginning
of every checkpointing interval. While currently integrated inksmc, the spec-
ulation component is strictly decoupled from the checkpointing component
and provides a generic speculation framework suitable for both user-level
and kernel-level checkpointing solutions. The speculation component re-
quires the external checkpointing solution to provide a number of platform-
specific callbacks, including memory allocation, debugging, and configura-
tion primitives. In SMC, our kernel module implements all the relevant call-
backs suitable for kernel-level execution.

Internally, our speculation component shadows many of the data struc-
tures described in the previous subsection—descriptors and page entries—
but also supports writable working set contexts for the benefit of the indi-
vidual speculation strategies implemented in our framework. Each context
stores all page entries associatedwith the currentwritableworking set, which
our speculation component uses to determine the memory pages subject
to our eager copying strategy when initializing a new checkpoint descrip-
tor. The current working set context is established at the beginning of every
checkpointing interval based on user-defined policies.

Each speculation strategy has unrestricted read andwrite access to the cur-
rent writable working set context and can register hooks to manipulate the
context for all the events controlled by our checkpointingmodule: page fault,
checkpoint, restore, etc. The most conservative speculation strategy would
simply produce empty writable working sets never populated with any page
entries, an approach that would effectively degrade SMC to traditional in-
cremental checkpointing. More effective speculation strategies, including
our genetic speculation and other more traditional working set estimation
strategies, are discussed in the following sections.

3.5 Speculation Strategies

In the course of thiswork, we have considered a number of speculation strate-
gies for SMC, drawing from classic working set tracking techniques and black
box optimization algorithms. We now discuss these strategies in more detail.
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3.5.1 Classic WSE Strategies

Scanning-based techniques Scanning-based WSE strategies periodically
scan all the memory pages of a running process and determine the current
writable working set from the recently modified pages. These strategies
are generally too expensive for short scanning intervals—strategies involv-
ing lightweight dirty page sampling have suggested using intervals of around
30 seconds [142]—due to high costs associated with frequent reference bit
manipulation. The latter also suffers from the deployability limitations evi-
denced in Section 3.2. These shortcomings hinder the applicability of scan-
ning-based strategies to high-frequency SMC.

Active-list-based techniques Active-list-based techniques divide all mem-
ory pages into two lists: active and inactive. On first access, pages are put on
the active list, which are considered hot, that is eagerly copied at the begin-
ning of a new checkpoint interval. On the contrary, inactive pages are copied
on demand triggering a COW event. We implemented two active-list-based
techniques, Active-RND and Active-CKS, which mainly differ in their active
list eviction strategy.

Active-RND depends on dynamically determining the size of the WWS
through periodic sampling. Active-RND achieves this by write-protecting
the whole address space during the sampling runs, whereas the WWS size
is calculated as the running average of the number of pages accessed during
these runs. Whenever the active list has reached the estimated size and a new
page faults in, Active-RND randomly evicts a page from the list. We chose a
random page replacement strategy over other well known page replacement
algorithms, like FIFO or the LRU-like CLOCK algorithm [35] and its vari-
ations [25; 64], because the latter either performed significantly worse in
early experiments (FIFO), or require dirty page tracking or page-table entry
reference-bit manipulation.

Active-CKS relies on the observation that copying and calculating a check-
sum is still significantly cheaper than copying a page in COW fashion. While
pages also enter the active list when first accessed, Active-CKS will only evict
a page when its checksum did not change during the last N checkpoint inter-
vals, with N = 5 (the top performer in our experiments).

Oracle The Oracle strategy considers all the pages that will be accessed
during the next interval as hot. Since this strategy is directly based on knowl-
edge of the future (and due to the lack of a time machine), SMC implements
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only an optimistic approximation of this algorithm based on profiling data.
For each checkpoint c, it logs the number of modified pages Nc offline and
pre-copies Nc dummy pages online. While this strategy lacks correctness, it
gives a good estimate of what performance improvements can be expected
by SMC given an ideal speculation strategy.

3.5.2 Genetic Speculation

Our genetic speculation strategy—or GSpec—aims to estimate the current
writableworking set using amethodology inspiredby genetic algorithms [96].
Such algorithms provide a widely employed blackbox optimization method
for problems with a large set of possible solutions. Genetic algorithms are
inherently self-tuning and self-adapting, matching the stringent accuracy and
adaptivity requirements of high-frequency memory checkpointing. Inspired
bybiological evolution, such algorithms allowcandidate solutions, also called
individuals, to compete against each other. In our case an individual repre-
sents a set of hot pages, whereas the information of which pages are consid-
ered to be hot is encoded in the individuals’ chromosomes—typically repre-
sented by a bit string. All current individuals form a population. They are
periodically evaluated using a cost function, which measures their respective
fitness. After each evaluation period, a new generation of the population is
formed by selecting the most fit individuals (selection) and recombining their
chromosomes (crossover). Over time the population’s solutions are meant to
converge to a minimum of the cost function.

Chromosome representation and cost function GSpec maintains a global
list of all the memory pages currently known by the algorithm, ordered by
page appearance. Each individual’s chromosomes represent a set of candi-
date memory pages, stored in a WWS bitmap—a generic bit string. If a bit
in the WWS bitmap is set, the corresponding page is marked as hot, that
is, part of the writable working set—otherwise the page is considered cold.
Whenever a memory page is marked as cold by all the individuals, the page
is removed from the global page list, that is, the algorithm forgets about the
page.

GSpec models its cost function based on the memory copying costs caused
by a given individual. Each memory page copied during a checkpointing
interval contributes to the total cost associated with the current individual.
Memory pages copied lazily are weighted more to reflect the memory trac-
ing costs associatedwith theCOWsemantics. Althoughweighted less, pages
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copied eagerly are still assigned a nonzero cost, preventing GSpec from greed-
ily copying all the knownmemory pages. The cost values are directly derived
from our analysis in Table 3.1, with a value of 1 and 8 accounted for every
page copied eagerly and lazily, respectively.

Speculation phase The population has a predetermined size of N = 5
individuals, a standard value adopted in prior work on micro-genetic algo-
rithms to ensure an efficient and fast-converging implementation [75]. For
each checkpointing interval, GSpec selects one individual from the popula-
tion in a round-robin fashion and requests the checkpointing component to
copy all the hot pages eagerly. The costs for the eagerly copied pages (1) are
attributed to the current individual. For each page that faults in during the
current interval, the respective cost (8) is assigned to the current individual.
If a faulting page is currently not in GSpec’s global list, it is added to the WWS
bitmap of the current individual with unbiased probability p=0.5.

Forming a new generation After every individual had its turn, GSpec com-
putes a new generation of individuals to evolve the current population. Each
new individual thereby inherits the combined genetic information from se-
lected parent individuals of the current population. Common selection strate-
gies adopted by traditional genetic algorithms are tournament selection [94] and
roulette wheel selection [86].

Both strategies select two parent individuals P1 and P2 to generate each in-
dividual in the new generation. GSpec implements a roulette wheel selection
strategy, which yields a simpler implementation and is known to accurately
model many real-world problems [49]. This strategy stochastically selects
individuals with a higher probability for lower cost values. GSpec, achieves
that by keeping track of the lowest cost Cmin in the population and select-
ing a random individual IR with a cost CR as parent with a probability of
p = Cmin/CR. This process is repeated until two parents are assigned to
each individual of the new generation.

Once the parent individuals for the next generation have been selected,
GSpec mixes the writable working sets of each parent pair P1 and P2 to gener-
ate each new individual. This operation is commonly referred to as crossover,
with two dominant strategies used in the literature: n-point crossover and uni-
form crossover [96].

GSpec opts for a uniform crossover strategy, which generally yields an un-
biased and more efficient exploration of the search space in practice [127].
This strategy selects each chromosome bit from P1 (instead of P2) with a
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predetermined probability p. GSpec selects the individual chromosome bits
with the standard probability p = 0.5 commonly adopted in prior work in
the area [127].

To avoid local minima, genetic algorithms occasionally mutate the recom-
bined chromosomes after the crossover phase. GSpec implements a simple
bit-flip mutation strategy, flipping the individual chromosome bits with a
predetermined probability p. In the current implementation, GSpec opts for
a bit-flip mutation probability p=0.01, again, a value commonly adopted in
the literature [96].

3.6 Implementation

We implemented SMC in an architecture-independent loadable kernel mod-
ule for the Linux kernel. Our implementation initially targeted Linux 3.2,
comprising a total of 2227 LOC 1 for the checkpointing component and 1466
LOC for the speculation component—implementing our genetic speculation
strategy and the alternatives (Active-RND, Active-CKS, and Oracle) consid-
ered in the paper. We subsequently tracked all the mainline Linux kernel
changes until the recent 3.19 kernel release and, despite the fast-paced evo-
lution of theLinux kernel interfaces, we added a total of only 20 extra LOC to
our original implementation. This acknowledges our efforts into decoupling
SMC from the mainline kernel, relying on a minimal and stable set of kernel
APIs—currently a total of 45 common kernel routines for memory allocation,
page table manipulation, interfacing, and synchronization.

Driven by the same principles, we implemented SMC’s page fault inter-
ception mechanism using kernel probes [18], the standard Linux kernel in-
strumentation facility which allows modules to dynamically break into any
kernel routine—handle_mm_fault, for our purposes—in a safe and nondis-
ruptive fashion. We adopted the same mechanism to intercept process termi-
nation events—the do_exit and do_execve kernel routines—and automati-
cally perform all the necessary process-specific cleanup operations. To im-
plement SMC’s dedicated SMCall interface, in turn, we allowed our kernel
module to export a new kernel parameter accessible via the sysctl system
call from user space. Our user-level libsmc library—implemented in one
header file of 114 LOC—hides the internals of the sysctl-based communi-
cation protocol with the kernel module to user programs.

1Source lines of code reported by David A. Wheeler’s SLOCCount.
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Figure 3.2: Throughput degradation induced by different SMC speculation strategies (program
only).

To support common request-oriented recovery models with minimal user
effort [53; 83], SMC is also equippedwith a profiler that automatically identi-
fies suitable checkpointing locations at the top of long-running request loops
and a transformation module that subsequently prepares the program for
speculative memory checkpointing using the identified locations. The pro-
filer and the transformationmodule rely on link-time instrumentation imple-
mented using the LLVM compiler framework [79], for a total of 728 LOC.
The profiling instrumentation tracks all the loops in the program for the ben-
efit of our profiler—coped with an interposition library to track all the pro-
cesses in the target program—implemented in 3,476 LOC. The latter allows
the user to instrument the target program, run it using a given test workload,
and receive a complete report on all the process classes identified in the pro-
gram and their long-running request loops—loops that never terminate dur-
ing the testworkload. The report is subsequently used by the transformation
module to produce the final SMC-ready binary.
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3.7 Evaluation

We evaluated our SMC framework implementation on a workstation running
Linux v3.12.36 (x64) and equipped with a dual-core Intel Pentium G6950
2.80 GHz processor and 16 GB RAM. To evaluate the real-world impact of
SMC, we selected five popular server programs—a common target for mem-
ory checkpointing applications in prior work in the area [152; 117; 125; 51;
115]—and allowed our deployed SMC framework to checkpoint the mem-
ory image of their worker processes at every client request, following the
common request-oriented checkpointing model [53; 83]. For our analysis,
we considered the three most popular open-source web servers—Apache
httpd (version 2.2.23), nginx (version 0.8.54), and lighttpd (version 1.4.28)—
a popular RDBMS server—PostgreSQL (v9.0.10)—and a widely used DNS
server—BIND (version 9.9.3). To evaluate the impact of SMC on our server
programs, we performed tests using the Apache benchmark (AB) [12] (web
server programs), the Sysbenchbenchmark [5] (PostgreSQL), and the query-
perf tool [10] (BIND). To investigate the SMC-induced performance impact
in memory-intensive application scenarios and its sensitivity to the check-
pointing frequency, we further evaluated our solution on hmmer, a popular
scientific benchmark. Finally, in order to directly compare SMC with recent
instrumentation-based memory checkpointing techniques [140] that natu-
rally do not cover uninstrumented shared libraries, we focus our evaluation
on a program-only analysis and briefly report on the performance impact
of shared libraries when extending the checkpointing surface to the entire
address space.

To prepare our test programs for request-oriented memory checkpoint-
ing, we allowed our dynamic profiler to automatically identify all the long-
running request loops in preliminary test runs and instrument the top of
each loop with a checkpoint call into the libsmc library. We configured all
of our test programs with their default settings and instructed the Apache
httpd web server to serve requests with the prefork module with 10 parallel
worker processes. We repeated all our experiments 11 times (with negligible
variations) for each of the speculation strategies presented in Section 3.5 and
report the median.

Our evaluation focuses on five key questions: (i) Performance: Does SMC
yield low run-time overhead in high-frequency memory checkpointing sce-
narios? (ii) Checkpointing frequency impact: How sensitive is SMCperformance
to the memory checkpointing frequency? (iii) Accuracy: What is the accu-
racy of our WSE-based speculation strategies? (iv) Memory usage: How much
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Strategy Throughput degradation

COW 59.8 %
GSpec 42.8 %
Active-RND 46.4 %
Active-CKS 48.6 %
Oracle 18.9 %

Table 3.2: Throughput degradation (geomean) induced by different SMC speculation strategies
(program and shared libraries).

Server Requests per second

Apache httpd 20,887
lighttpd 28,002
nginx 22,602
PostgreSQL 20,089
BIND 30,848

Table 3.3: Number of requests per second handled by our server programs (baseline, no
checkpointing).

memory does SMC use? (iv) Restore time: Does SMC yield low restore time
increase?

3.7.1 Performance

To evaluate the run-time performance overhead of SMC on real-world ap-
plications, we tested our server programs running in “SMC mode” and com-
pared the resulting throughput against the baseline. To benchmark our web
server programs, we configured the Apache benchmark to issue 25,000 re-
quests through the loopback device, using 10 parallel connections, 10 re-
quests per connection, and a 1KB file. To benchmark BIND, we configured
the queryperf tool to issue 500,000 requests for a local resource using 20
parallel threads. To benchmark PostgreSQL, we configured the Sysbench
benchmark to issue 10,000 OLTP requests using 10 parallel threads and a
read/write workload. In all our experiments, we verified that our programs
were fully saturated by the benchmarks.

Figure 3.2 shows the SMC-induced throughput degradation for our server
programs, as observed during the execution of our macrobenchmarks. The
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absolute number of requests handledby the individual serverswithout check-
pointing can be found in Table 3.3. As expected, our speculation strate-
gies generally yield a lower run-time performance overhead than traditional
COW-style incremental checkpointing (COW in Figure 3.2) implemented
by our checkpointing component in absence of any speculation strategy—
note that our COW-based implementation is already much faster than tradi-
tional fork-based implementations used in much prior work. Compared to
COW, our speculation strategies reported an average (geometric mean) over-
head reduction of 9.6-14.24 percentage points (p.p.). GSpec, in particular,
was consistently the top performer across all our server programs (14.24 p.p.
average overhead reduction compared to COW, geometric mean). In some
scenarios, the GSpec-reported improvements over traditional memory check-
pointing are more significant—for example, 18 p.p. overhead reduction for
nginx—due to higher checkpointing frequency and a more stable working
set.

Active-RND is the second best-performing strategy—with an average per-
formance overhead of 34.2% compared to GSpec’s 30.8% and COW ’s 44.9%
(geometric mean)—but we experienced its performance rapidly dropping as
we deviated from the best-performing RND-N value. We found that altering
GSpec’s core parameters from the values commonly adopted in the genetic
algorithms literature, in contrast, had only marginal (if any) performance im-
pact. Furthermore, Active-CKS reported the worst speculation performance,
with an average overhead of 35.02% across all our server programs. Finally,
the Oracle strategy reported, as expected, a consistently lower overhead com-
pared to all our speculation strategies (15.63% geometric mean), providing
a promising theoretical lower bound for the performance overhead of any
future SMC strategy. Encouragingly, GSpec consistently follows the Oracle
strategy across all our server programs and its overhead even comes relatively
close to the Oracle for programs with a fairly stable writable working set—for
example, 32.1% compared to 17.83% on BIND.

We now compare our results with recent compiler-based memory check-
pointing techniques (LMC) [140]. For servers with good speculation per-
formance, SMC performance is comparable or better than that of compiler-
based techniques (e.g., GSpec’s 12.9% vs. LMC’s 15.3% on Apache httpd).
When speculation is less effective, compiler-based techniques tend to out-
perform SMC (e.g., GSpec’s 56.9% vs. LMC’s 32.2% on PostgreSQL). On
average, SMC induces an extra performance impact of 10-15 p.p. across
programs. Nevertheless, we found our results very encouraging, given that
unlike compiler-based techniques, SMC’s checkpointing strategy is source
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Figure 3.3: Run-time overhead induced by the different SMC speculation strategies on hmmer.

code-agnostic and can thus operate on legacy binaries.
Finally, Table 3.2 shows that, when extending the checkpointing surface to

the entire address space, we observed an additional performance impact (due
to shared library checkpointing) in the range of 12-15 p.p. We also note that
the general trend is consistent and speculation equally effective, e.g., 17 p.p.
average performance improvement with GSpec.

3.7.2 Checkpointing Frequency Impact

In the previous subsection, we investigated the SMC-induced performance
impact on server request-oriented memory checkpointing, a scenario which,
in our experiments, yielded a checkpointing frequency of 9K-26K check-
points/sec across all our server programs.

To investigate the frequency impact, we evaluated our best-performing
(GSpec and Active-RND) speculation strategies on hmmer, amemory-intensive
scientific benchmark. For our purposes, we instrumented hmmer to invoke
the checkpoint call into the libsmc library at each task loop iteration, and
forced our library to forward the calls to ksmc only every F predetermined
invocations. This allowed us to emulate different checkpointing frequencies,
ranging from roughly 700 checkpoints/sec—when checkpointing at every
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GSpec Active-RND

OP UP MP WMP OP UP MP WMP

Apache httpd 7.9 1.5 9.4 19.7 6.1 2.9 9.0 29.5
nginx 10.1 0.6 10.8 6.8 2.5 0.8 3.3 8.7
lighttpd 22.7 3.2 25.9 48.3 10.5 6.1 16.6 59.6
PostgreSQL 30.0 4.7 34.8 68.0 19.2 6.3 25.6 70.4
BIND 2.4 0.9 3.3 9.8 3.3 0.6 3.9 7.8

geomean 10.5 1.6 12.5 21.2 6.3 2.2 8.7 24.3

Active-CKS

OP UP MP WMP

Apache httpd 9.4 0.4 9.9 26.9
nginx 2.1 0.3 2.4 7.8
lighttpd 19.1 2.1 21.2 64.5
PostgreSQL 29.7 0.9 30.6 81.6
BIND 2.9 0.4 3.3 10.2

geomean 8.0 0.6 8.7 25.7

Table 3.4: Accuracy of the different SMC speculation strategies, with the average numbers of
overcopied pages (OP), undercopied pages (UP), mispredicted pages (MP), and weighted
mispredicted pages (WMP).

iteration—to 40 checkpoints/sec—when checkpointing every 16 iterations.
Figure 3.3 depicts the SMC-induced run-time overhead on hmmer across

all the checkpoint frequencies considered. The results shown in the fig-
ure provide a number of interesting insights. First, checkpointing at every
loop iteration yields comparable results to our performance experiments on
servers program, with GSpec (2.6%) and Active-RND (2.4%) improving over
COW (5.8%). Finally, as expected, for lower memory checkpointing frequen-
cies, the memory tracing costs incurred by traditional COW become more
amortized throughout the execution and the performance benefits of SMC
become less evident—e.g., less than 1 p.p. overhead reduction when check-
pointing every 16 iterations.

3.7.3 Accuracy

To evaluate the accuracy of our speculation strategies, we implemented sup-
port for a “meta speculation” strategy in SMC. The meta speculation strat-
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egy relies only on standard COW-style incremental checkpointing, but also
transparently exposes each observed page-fault event only to the other spec-
ulation strategies that have assumed the faulting page not to be in the current
writable working set. This allows all strategies to operate normally, while the
meta speculation strategy gathers accuracy statistics based on the number of
memory pages dirtied by the running program.

Table 3.4 reports the accuracy statistics produced by the meta speculation
strategywhen analyzing our server programs. Statistics are gathered on a per-
checkpoint interval basis during the execution of our macrobenchmarks and
averaged using the mean. The number of mispredicted pages (MP), that is,
the sum of overcopied pages (OP) and undercopied pages (UP), represents
the total number of dirty memory pages that a given speculation strategy
failed to predict according to its internal writable working set estimates. The
weighted mispredicted pages (WMP), in turn, weigh undercopied pages—
inducingCOWevents—more than overcopiedpages, also taking into account
the additional costs for computing the checksums in Active-CKS. WMP is
computed as WMP = COC ∗ NOC + CUC ∗ NUC , with NOC/NUC and
COC/CUC being the number and cost factor of overcopied/undercopied
pages (respectively). Based on the numbers in Table 3.1, we assume COC =
1 for GSpec and Active-RND, and COC = 2.5 for Active-CKS. We also assume
CUC = 8 for all our strategies.

The number of unweighted mispredictions (MP) alone seems to suggest
that Active-CKS, with 8.7 mispredicted pages on average, is together with
Active-RND the best speculation strategy. However, its high accuracy is over-
shadowed by the checksumming costs (WMP = 25.7), especially as Active-
CKS tends to overcopy (OP = 8.0) nearly as much as GSpec (10.5).

GSpec, in turn, reported 21.2 weighted mispredicted pages on average, out-
performing the runner-up Active-RND—that is, 24.3 WMP on average—with
a similarly efficient working set estimation implementation. This result ac-
knowledges the effectiveness of GSpec’s cost-driven speculation strategy em-
powered by genetic algorithms compared to the random strategy provided
by Active-RND. This is also reflected in the lower WMP values reported by
GSpec across all our server programs.

Overall, we can observe that the WMP predicts the performance results
of the respective speculation mechanisms well and further shows the impor-
tance of carefully balancing accuracy and efficiency of the underlying work-
ing set estimation algorithm when designing a speculation strategy.
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3.7.4 Memory Usage

As checkpoints also include overcopied pages, the accuracy of a speculation
strategy has a direct impact on checkpoint size and overall memory usage.
In our experiments, we observed our speculation strategies introducing an
average checkpoint size increase compared to COW of 44%-66% across all
our server programs (geometric mean). Programs with a larger writable
working set—for example, PostgreSQL—or more diverse memory access pat-
terns across checkpointing intervals—for example, lighttpd—yield the high-
est checkpoint size compared to traditional incremental checkpointing across
all our speculation strategies, with a maximum increase of 133% and 107%
(respectively). Programs with more rigorous memory usage, in turn—that is,
Apache httpd and BIND—yield a more limited amount of overcopying, with
a maximum increase of only 19% and 12% across all our speculation strate-
gies. GSpec’s checkpoint size increases are comparable to the other specula-
tion strategies, only occasionally yielding higher increases that reflect a more
aggressive overcopying strategy—for example, for Apache httpd. Even non-
trivial increases in checkpoint sizes (e.g., 133% for PostgreSQL), however,
do not typically result in significant increases in physical memory usage over-
head compared to COW. To quantify the latter, we computed the average
overhead induced by memory checkpointing on the Resident Set Size (RSS).

Using COW, we reported a worst-case RSS overhead induced by mem-
ory checkpointing of only 3.6% (lighttpd). The same scenario resulted in
a maximum RSS overhead of 7.6% across all our speculation strategies. This,
thereby, translates to a maximum RSS increase of only 4 p.p. induced by
SMC.

3.7.5 Restore Time

Overcopying errors introduce an excessive number of pages in a checkpoint,
thus also increasing the restore time. For the program with the largest check-
point size increase (PostgreSQL with 30 pages for GSpec) and the second
largest average checkpoint size (28 pages), overcopying results in roughly
doubling the number of pages to be restored (58 pages). The worst-case rel-
ative increase across our server programs is, thus, small, with only 558 extra
CPU cycles required to restore 58 pages (2840 cycles) instead of 28 pages
(2282 cycles)—measured using a synthetic microbenchmark. As the total
time is still small and restore operations are generally much less frequent
than checkpoint operations (e.g., at error recovery time), we believe this ad-
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ditional cost to be negligible in practice.

3.8 Related Work

Incremental checkpointing techniques Several incremental checkpoint-
ing variations and applications are described in literature, with implementa-
tions at the user level [42; 118; 13; 119; 51; 128; 112; 117], kernel level [52;
125; 77; 56; 136; 76; 2; 106], or virtual machine monitor level [143; 72; 108;
33]. User-level techniques can be easier to deploy, but incur significant run-
time overhead because memory management at the application-level is more
costly than from within the kernel [28]. Other user-level approaches, rely
on compiler-based program instrumentation [32; 84; 38; 159; 83; 139; 140],
which require source-code and recompilation of the target programs and all
used libraries. Using dynamic instrumentation at the binary level [115; 152]
can provide checkpointing for unmodified binaries but incurs even higher
performance overheads. Finally, approaches that require hardware support
are not practical on commodity systems [44]. For this reason, SMC adopts
a kernel-only checkpointing strategy implemented in a small kernel module,
allowing for easier deployment compared to prior kernel-level work relying
on dedicated kernel patches [52; 76; 2] or complex modules implementing
fully-blown memory containers [106; 125]. Furthermore, in stark contrast
to SMC, these techniques make no attempt to eliminate direct and indirect
memory tracing costs in high-frequency memory checkpointing scenarios.

Checkpointing optimizations Acommon trend in priorwork is to explore
strategies to reduce the amount of checkpointed data. Some approaches
propose checkpoint compression [84; 62], others rely on block-level check-
summing [50; 100] to improve the granularity of incremental checkpoint-
ing techniques [136; 13; 119; 112; 50; 100], or, seek to discard redundant
memory pages from the checkpointed data [108; 57; 104]. These approaches
arewell-suited to space-efficient process checkpointing on persistent storage,
but are generally less useful to improve the memory checkpointing perfor-
mance. SMC demonstrates that, in high-frequency memory checkpointing
scenarios, memory overcopying can actually be beneficial to minimize the
impact of indirect costs on the run-time performance.

Researchers also have explored program analysis techniques to select op-
timal checkpointing locations [84] or checkpointed data [38; 68; 53]. While
complementary to our work, these techniques may help select checkpoint-
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ing intervals with minimal working set size or provide useful heuristics to
improve the accuracy of our working set estimation algorithms. We plan to
explore the impact and the synergies between program analysis techniques
and SMC in our future work.

Finally, other researchers have considered prediction-based strategies to
improvememory checkpointing techniques. Nicolae et. al [105] propose pre-
dicting the order of memory pages modified within the next checkpointing
interval to prioritize data to save on persistent storage in an asynchronous
fashion. Also their prediction strategy is tailored to reducing the number
of copy-on-write events—each memory page is write-protected until asyn-
chronously flushed to persistent storage. Unlike SMC, however, their focus
is on reducing copy-on-write events to minimize memory usage and their
prediction strategy is only effective in asynchronous checkpointing scenar-
ios. Other researchers have proposed combining copy-on-write semantics
with dirty page tracking—using dirty bits [143] or memory diffing [89]—to
predict (and precopy) the pages modified at the next checkpointing interval.
Their prediction strategy, however, is limited to consecutive checkpointing
intervals—which reduces the overall prediction accuracy—and relies on ex-
pensive tracking mechanisms in high-frequency checkpointing scenarios—
which reduces the overall performance. SMC, in contrast, generalizes these
simple prediction strategies to the writable working set model, with a larger
window of observation and stronger performance-accuracy guarantees.

Working set estimation Researchers have investigated working set esti-
mation algorithms for a broad range of application domains, ranging from
garbage collection [148; 154; 58], dynamic memory balancing [37; 164; 66;
90; 142; 89], and efficient memory management in general [165], to fast pro-
gram startup [67], VM migration [153], and page coloring problems [158].
To our knowledge, however, SMC represents the first application of working
set estimation algorithms to the memory checkpointing domain. Prior work
on working set-driven restore of checkpointed virtual machines [156; 155]
comes conceptually close, but, in such context, the working set estimation
is performed relatively infrequently and offline—at checkpointing time—and
the information gathered only later used to efficiently prefetch data from per-
sistent storage—at restore time. SMC, in contrast, relies on online WSE algo-
rithms that assist and exploit synergies with high-frequency memory check-
pointing techniques in real time.

Working set size estimation techniques rely either on dirty page samp-
ling [142; 158], monitoring memory statistics exported by the operating sys-
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tem [90; 154; 58; 37], or incrementally constructing LRU-based miss ratio
curves (MRC) [148; 89; 164; 165; 66; 153; 163]. The latter generally pro-
vide the most accurate working set estimation method, but their most natu-
ral implementation requires expensive memory tracing mechanisms. More
efficient implementations adopt an intermittent MRC tracking strategy that
closely follows the phase behavior of common real-world programs [163] or
rely on working set tracking to avoid tracing frequently accessed pages [148;
164; 165], typically at the cost of reduced accuracy [24].

However, traditional working set tracking techniques impose important
performance and deployability limitations when applied to high-frequency
memory checkpointing. Our genetically-inspired blackbox optimization al-
gorithm, in turn, seeks to minimize the ad-hoc tuning effort generally re-
quired by prior techniques, automatically adapting the estimates to different
workloads and matching the high accuracy and responsiveness required in
high-frequency memory checkpointing scenarios.

3.9 Conclusion

Traditional incremental memory checkpointing is generally perceived as suf-
ficiently fast for several typical real-world programs. In this paper, we chal-
lenged this common perception in the context of high-frequency memory
checkpointing, by demonstrating that “hidden” costs generally deemed marg-
inal in periodic checkpointing solutions significantly increase the run-time
overhead when checkpoints are frequent. To substantiate our claims, we
presented an in-depth analysis of the direct and indirect memory tracing
costs associated with incremental checkpointing and uncovered limitations
of prior frameworks in high-frequency checkpointing scenarios.

To address such limitations, we presented SMC, a new low-overhead tech-
nique suitable for high-frequency memory checkpointing. To minimize the
direct costs associated with the checkpointing activity, our SMC framework
relies on non-intrusive kernel-level specialization implemented in a loadable
kernel module. In order to minimize the indirect costs associated with the
checkpointing activity, our framework relies on algorithms for estimating the
writable working set to copy speculatively those memory pages that are most
likely to change in the next checkpointing interval, and in so doing reduce the
memory tracing surface required by traditional incremental checkpointing.

We also demonstrated that our genetically-inspired blackbox optimization
algorithm (GSpec) provides an effective working set estimation strategy for
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SMC, continuously adapting the working set to the workload driven by only
program-agnostic cost factors. This strategy provides better accuracy, per-
formance, and self-tuning guarantees than traditional working set estimation
techniques. Overall, our experimental results show that SMC is both time-
and space-efficient in the practical cases of interest, demonstrating that low-
overhead high-frequency memory checkpointing is a practical option and
opening up opportunities for new programming abstractions empowered by
fast checkpointing techniques.





CHAPTER 4

PEEKING INTO THE PAST:
EFFICIENT

CHECKPOINT-ASSISTED
TIME-TRAVELING DEBUGGING

4.1 Introduction

Debugging sessions can be time-consuming, frustrating and expensive, espe-
cially for long-lived latent software bugs that require a long time to manifest
themselves. Such latent bugs often result from particular events in the input.
For example, consider a server receiving hundreds of thousands of requests,
for which a single bad request corrupts its state. Unless the corruption leads
to an immediate crash, rather than a failure or a misbehavior at a later time,
it becomes hard to track down the exact request that caused it. We present a
new solution that lets programmers efficiently create high-frequency check-
points, store millions of them in memory, and efficiently search through them
to look for the root cause of such event-driven latent bugs.

Our work fits under the general umbrella of targeted debugging solutions

67
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for “hard” bugs that also includes recent work on reproducing rare concur-
rency bugs [71; 150]. In fact, from the wide range of approaches based on
record/replay [59; 72; 109; 22; 27; 137] and execution synthesis [150], to the
recently proposed failure sketches [71], most existing solutions focus solely
on buggy data races. In contrast, we aim for the other major category of hard
bugs: latent corruption that only manifests itself millions of events later.

Unfortunately, even themost advanced record/replay debuggers [128; 137;
78; 15] are a poor match for such bugs. In theory, it is simply a matter of re-
playing a recorded trace, using either forward or backward execution, with
additional breakpoints and watchpoints, until we find the target condition,
but in practice this is inefficient and cumbersome.

First, despite the progress in recent years in reducing the overhead [78;
137], record/replay systems are still impractical. This is true not just for the
recording side (a popular optimization target for these systems), but espe-
cially for the replay side which is equally important in reducing the time to
track down elusive bugs. Second, pure record/replay systems are linear by
nature. Finding a bug typically requires at least one linear execution of a
trace. In contrast, for many classes of bugs, we can examine a collection of
snapshots much more efficiently, e.g., using binary search. Third, record/re-
play systems are mostly useful for understanding the problem once the trig-
ger event is known, but offer limited help in identifying the trigger (e.g., by
querying the history for specific events). Finally, and very pragmatically, the
fastest record/replay systems today require extensive kernel modifications, mak-
ing them hard to deploy (compared to, say, a self-contained kernel module).

In contrast, we believe that high-frequency memory checkpointing [41;
88; 143; 140; 139] offers an alternative and complementary solution that cou-
ples low run-time overhead with a searchable trail of snapshots of the pro-
gram state. Of course, this is only possible if we can make both the recording
and the querying of the history sufficiently lightweight.

Memory checkpointing has already proven useful in the domains of error
recovery [51; 53; 54; 68; 83; 115; 116; 119; 125; 135; 152; 143], record/re-
play debugging [61; 128; 72; 137; 78], application-level backtracking [33;
159], and periodic memory rejuvenation [144], but these solutions are all
too heavyweight for the high-frequency checkpoints we need for debugging
latent software bugs. We require checkpointing at high speed and fine gran-
ularity, say for every incoming request of a loaded server program (to record
all the potential inputs of interest). Moreover, to address very long-lived la-
tent bugs, the checkpoint history should be as long as possible, which poses
the challenge of storing memory checkpoints efficiently. Finally, as the num-
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ber of checkpoints can be high (potentiallymillions), this vast amount of data
has to be processed by the user in a manageable manner.

Based on these observations, we propose DeLorean, a new end-to-end so-
lution for time-travelling debugging of event-driven latent bugs by means of
high-frequency checkpointing. The idea consists in taking frequent check-
points for all the events of interest and then quickly query the collected data
for a given condition (e.g., using binary search). To implement both phases
efficiently, DeLorean does not support full record/replay functionalities but
instead focuses on automating and speeding up the process of diagnosing and
determining the root-cause of event-driven latent software bugs. Tomaintain
a sufficiently long checkpoint history, DeLorean employs memory deduplica-
tion and/or compression, increasing the history size up to 10 times compared
to plain checkpointing. Moreover, DeLorean is fully integrated into gdb of-
fering effective ways to introspect the entire checkpoint history efficiently.
Finally, DeLorean is easy to deploy, since we implemented its core function-
alities in a self-contained Linux kernel module.

Althoughwepresent fast checkpointingmainly as a stand-alone debugging
solution, we emphasize that our work is complementary to many existing
debugging approaches. For instance, existing record/replay solutions often
also use checkpointing to implement reverse debugging. However, as the
checkpointing in these systems is expensive, they can take snapshots only
very infrequently—up to once per 10-25 seconds in some cases [72]. Our
high-frequency checkpointing strategy brings this number down to millisec-
onds.

Contribution. Our contribution is threefold.

(a) We present DeLorean, a debugging solution prototype based on high-
frequency memory checkpointing. DeLorean targets event-driven la-
tent bugs and combines excellent run-time performance with an effi-
cient memory footprint (allowing for millions of checkpoints).

(b) We propose a new mechanism to perform fast queries on the collected
checkpoints called time-travelling introspection. With such mechanism
in place, we show that checkpoint-assisted debugging is a viable option
to diagnose event-driven latent software bugs.

(c) We evaluate DeLorean effectiveness, performance, and memory usage
guarantees and compare our results to state-of-the-art debugging solu-
tions.
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Figure 4.1: Architecture overview of DeLorean, with both its user- and kernel-level components
and their interactions.

4.2 Architecture Overview

Figure 4.1 depicts the high-level system architecture of DeLorean. DeLorean
consists of KDL, the kernel module, LibDL, the shared library, and dl, the gdb
plugin. This simple architecture makes DeLorean easy to deploy, without the
need to recompile the kernel or the target application.

The KDL kernel module enables DeLorean checkpointing features and of-
fers them to the userland through the KDLCall interface. KDL can handle
multiple checkpointedprocesses and keeps all the checkpointeddata inmem-
ory. Further, it offers several configuration parameters, e.g., the maximum
number M ofmost recent checkpoints in its history, and incorporates several
mechanisms to reduce the amount of checkpointed data. While KDL is part
of the DeLorean debugging framework, the exported checkpointing features
are generally applicable to other use cases that require support for time- and
space-efficient memory checkpointing.

The LibDL user library unburdens debugged applications to directly inter-
act with the KDLCall interface, our API to the kernel module. This library
can be preloaded in the target application, as done by dl, but can also be di-
rectly linked to applications so they can use KDL checkpointing facilities for
other use cases, such as backtracking [33; 155] and error recovery [51; 53;
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54; 68; 83; 119].
We implemented the dl debugger as a generic gdb plugin that comple-

ments all the standarddebugging functionalities already available in gdb with
support for checkpoint-assisted debugging. This is possible by exporting cus-
tom commands in gdb, as detailed later in Section 4.3.

To register an application with DeLorean, users simply start a gdb session
with our dl plugin, which automatically sets up all the other DeLorean com-
ponents. Note that running processes not being debugged by DeLorean are
unaffected by the operation. By default, DeLorean monitors the entire ad-
dress space of the targeted process. However, DeLorean allows users to limit
the checkpoint surface to specific portions of the address space during the
initialization (and configuration) phase. Each process in the application will
be registered with DeLorean until it exits or is explicitly unregistered by the
user.

Once an application is registered with DeLorean, the system provides users
with a number of features:

(a) take a new checkpoint,

(b) rollback to a previous checkpoint,

(c) restore the current checkpoint to continue execution,

(d) and query the checkpointed history.

While the first three operations also feature in traditional checkpointing
systems, querying the checkpointed history is a new feature offered by De-
Lorean. It allows the user to specify complex search queries and efficiently
evaluate the given conditions through the checkpoint history. This is similar,
in spirit, to temporal queries supported in modern databases with version-
ing support. Moreover, DeLorean may perform condition evaluation through
the checkpointed history either linearly (i.e., through a linear search) or us-
ing a more efficient bisect approach (i.e., using a binary search, not unlike git
bisect [17])—provided that the continuity of the condition throughout the
collected history allows for it. This is typically the case for the long-lived ef-
fects caused by the event-driven latent bugs targeted by DeLorean (e.g., mem-
ory corruption).

Moreover, while memory checkpointing is fast, it generally incurs mem-
ory overhead which can grow significantly with the number of checkpoints
in the history [139; 140; 143]. For this reason, we have implemented var-
ious modes of operation in KDL that allow users to tune the checkpoiting
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feature. Specifically, users can enable memory deduplication and/or compres-
sion features in KDL to allow for the storage of a large checkpoint history but
trading off run-time performance. In the following sections, we detail the
design and the features of DeLorean debugger.

4.3 User-space Debugger

While DeLorean checkpointing functionalities reside in KDL, users do not
have to interact with the kernel module directly. They only have to make
sure that the kernelmodule is loaded, as our systemexposes all the debugging
functionalities through dl, our checkpoint-assisted time-traveling debugging
tool. dl is implemented as a gdb plugin and allows to frequently checkpoint
the target process while preserving checkpointed data for millions of check-
points.

An extract of some of the commands exported by dl is shown in Table 4.1.
The Table also contains the references for each command used throughout
this section.

4.3.1 Initialization

A debugging session is initiated in the same way a user would normally start
a standard gdb session but additionally specifying dl as a gdb plugin from the
command line. The user needs to load the kernel module before starting the
session. After that, dl preloads the LibDL shared library. As soon as the appli-
cation starts running, dl puts the corresponding process into DeLorean mode
transparently to the user. This ensures the entire process address space is
by default registered with KDL, except for the memory regions reserved for
LibDL. Furthermore, to rollback the stack area of the process safely, dl starts
a dedicated worker thread owned by the target process. The worker thread
owns a private memory area used for its stack and metadata, which is also ex-
cluded from the checkpointing surface. The initialization starts an implicit
initial checkpoint interval (i.e., the execution interval between two consecutive
checkpoints) by write-protecting all registered memory pages. This is neces-
sary to checkpoint the target pages efficiently and incrementally, as detailed
later in Section 4.4.
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ref. checkpointing
[a] dl cp take [LOCATION [if <CONDITION>]]

Starts a new checkpointing interval. When a location is
specified, a breakpoint is set that triggers the new interval.
If a condition is given, the interval starts onlywhen the con-
dition is satisfied.

[b] dl rb <CP ID>
Rolls back the memory state of the process to the check-
point with the specified ID.

[c] dl restore
Restores the memory state to the “present” state.

time-travelling introspection
[d] dl for <CP SPEC> if <CONDITION> [do <CMD>]

For all the specified checkpoints, dl rolls back and evalu-
ates the provided condition. If a do-statement is spec-
ified, the list of commands are executed when the condi-
tion is satisfied.

[e] dl for <CP SPEC> do <CMD>
Forall the specifiedcheckpoints,dl rolls backandexecutes
the provided commands.

[f] dl search <CONDITION>
Searches for the furthest checkpoint in time which satis-
fies the condition. The command uses either a linear or a
binary search. If such a checkpoint exists, the state is ulti-
mately rolled back to the selected checkpoint.

Table 4.1: Subset of dl commands. CP ID represents the numeric identifier of a checkpoint
interval. CP SPEC indicates a set of checkpoints specified as arrays of IDs and/or intervals.

4.3.2 Checkpoint

The main features of dl are the capability to take checkpoints, rollback the
memory to an older state and restore for further execution (Table 4.1 show
an extract of the commands).

While the user can take new checkpoints explicitly (starting new check-
point intervals) by issuing [a] without arguments, this is of limited use by
itself, as it requires the user to interrupt the process. A more interesting op-
tion for our target domain is to checkpoint the memory image of the target
process automatically when particular events occur during execution (e.g., a
new request received by a server program). The user can associate checkpoint
requests to the program events of interest by additionally supplying a location
and, possibly, a condition to be evaluated. This is very similar to setting a new
breakpoint in gdb.

We initially implemented our checkpoint request functionality on top of
the gdb breakpoint mechanism. However, we observed that piggybacking
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on gdb breakpoints was relatively expensive. Whenever the program hits a
breakpoint associated to the checkpoint request, it first transfers CPU to gdb
which, in turn, hands over control to LibDL to perform the checkpoint oper-
ation, and later resumes the execution. Unfortunately, the transfer is costly.
Static instrumentation, i.e., instrumenting the points of interest with direct
calls into LibDL, was one option we considered to reduce the overhead. Effi-
cient static instrumentation, however, would typically require recompiling
the target application. For this reason, we opted instead for a design based
on hardware breakpoints. We extended KDL adding an interface to set hard-
ware breakpoints and automatically take checkpoints whenever a breakpoint
is hit. We ran a microbenchmark to analyze the overhead of using break-
points to issue checkpoint requests. We estimated CPU cycles by averaging
1,000 executions of each test. While a checkpoint request directly issued by
a process (static instrumentation) costs approximately 14K cycles, a software
breakpoint is more than two orders of magnitude slower (ca. 2.7M cycles).
Checkpoints issued by DeLorean hardware breakpoint handler, while being
somewhat more expensive (ca. 19k cycles), are still in the same ballpark as
instrumentation-based checkpointing.

Our debugger allows the use of hardware breakpoints via a configuration
option that is enabled by default. When this option is set, DeLorean will al-
ways try to convert a soft-checkpoint request into a hard-checkpoint request. This
will only fail if the system runs out of available hardware breakpoints. Fur-
ther, hardware breakpoints do not support conditional checkpoint requests
other than equality checking.

4.3.3 Time-traveling Introspection

DeLorean provides rollback [b] and restore [c] commands to navigate the
memory history. Travelling to a specific checkpoint is certainly useful when
the number of checkpoints is relatively low. However, it is much harder to
find the right target for millions of checkpoints.

To deal with a large checkpoint history, DeLorean provides two commands
to query the set of previously taken checkpoints: for [d][e] and search [f].
Commands [d] and [e] linearly iterate over all the specified checkpoints and
for each of them evaluate conditionals, and execute commands (either condi-
tionally or unconditionally). The user specifies the set of checkpoints as an
interval (e.g., (0,1000) for the last 1000 checkpoints) a list of IDs, a mix of
lists and intervals, or the keyword all, to include all the taken checkpoints.

The search [f] command, in turn, locates the first checkpoint satisfying
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a provided condition and rolls back to that state. The condition can be any-
thing ranging from a simple comparison to the result of a function call. The
command can be configured to either search strategies forward, backward
and bisect. The forward and backward strategies perform a linear scan
over the given checkpoint in opposite direction. Differently, the bisect
strategy locates a checkpoint using binary search, similar togit bisect [17].
This strategy can dramatically reduce the duration of the search operation,
although it is only applicable when the condition is met continuously from a
particular point onward (e.g., from the point when sanity_test() returns
false).

4.4 Kernel Support

KDL, the DeLorean kernel module, is the core of our debugging system, pro-
viding all the necessary features to checkpoint a user process, roll it back to in-
spect past memory states, and restore the “present” memory state to resume
execution. An overview of the module components and their interactions is
depicted in Figure 4.2.

4.4.1 Taking Checkpoints

There are three entry points in KDL that cause a new checkpoint interval to
begin. First, whenever a process registers with KDL, the initialization implic-
itly starts a checkpoint interval, as mentioned earlier. Second, it is possible
to explicitly request a checkpoint via the KDLCall interface. This method is
used by dl to implement targeted checkpoints on top of the gdb breakpoint
mechanism. Finally, the kernel module triggers checkpoints directly using
hardware breakpoints.

To efficiently satisfy checkpoint requests, KDL employs an incremental
memory checkpointing strategy, shown as the best approach for high fre-
quency memory checkpointing [141]. At the beginning of a new checkpoint
interval, KDL write-protects all the memory pages to checkpoint. This strat-
egy allows KDL to get notified whenever any of these pages is modified dur-
ing a checkpoint interval to add a copy of the checkpointed page to the check-
point list (i.e., using a copy-on-write strategy on a write page fault). This list is
stored in the process context, a per-process data structure initialized whenever
a process registers with KDL. As depicted in Figure 4.2, each process context
also contains a journal of past checkpoints. Whenever the current checkpoint
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Figure 4.2: Overview of the core KDL kernel module components.

interval terminates (and a new interval starts), KDL re-protects all the dirty
memory pages, i.e., pages with a copy in the current checkpoint list. Next,
the current checkpoint list becomes an entry in the journal and is replaced by
a new empty list. When the configurable journal size K is exhausted, De-
Lorean evicts the last checkpoint list from the journal to make room for new
ones. Currently, our eviction strategy effectively deletes the oldest check-
pointed pages, limiting the observable history.

h

4.4.2 Reducing Memory Overhead

As long-lived latent software bugs may trigger even hours after their root
cause, they require a large checkpoint history to allow the user to locate
the root cause of the bug. For this reason, our design seeks to retain as
many checkpoints in the history as possible, trading off some run-time per-
formance for a more space-efficient checkpoint list representation. Specif-
ically, KDL supports optional page deduplication and page compression for all
the checkpointed pages to reduce the memory footprint and scale to a larger
number of checkpoints in the history.
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Page Deduplication Given that programs, and in particular server pro-
cesses, tend to frequently re-initialize long lived data structures with similar
data, we can expect many checkpointed pages to be filled with the same con-
tent. Building on this intuition, KDL supports a page deduplication strategy
that keeps the checkpoints in the history as compact as possible. Figure 4.2
shows that the deduplication module (and its tracking data structures) has
global (rather than per-process) scope. This enables deduplication of pages
shared across processes concurrently registered with KDL.

To support page deduplication, KDL relies on a red-black binary tree to
keep the set of globally unique checkpointed pages ordered. To determine
the order between any two given pages, KDL supports two possible strate-
gies: (i) directly comparing the content of the pages using memcmp 1 or (ii)
compute and compare a checksum based on the content of the pages. The first
approach requires a memcmp operation between a given page and O(log(n))
other pages (where n is the number of pages stored in the deduplication tree).
The second approach requires only O(log(n)) checksum comparisons and,
in the best case, only a single additional memcmp operation, but this number
increases with the number of colliding pages, for which the checksum is the
same while the content is not.

Furthermore, we explored two possibilities to select the moment to dedu-
plicate a page (i.e., merge two checkpointed pages with the same content),
based on either a greedy or a lazy approach. The greedy approach dedupli-
cates each page at copy-on-write time, which eliminates unnecessary copying
of duplicated pages. The lazy approach, in turn, deduplicates all the check-
pointed pages at the end of every checkpoint interval. This approach does
not eliminate unnecessary copying of checkpointed pages, but has the advan-
tage of batching deduplication operations and removing expensive dedupli-
cation tree lookups in the page fault handler at copy-on-write time.

The effectiveness of page deduplication is heavily subject to the memory
usage patterns of the debugged application. A very unstableworking setwith
random memory write patterns is unlikely to benefit from page deduplica-
tion. Luckily, real-world applications normally exhibit fairly stable working
setswhichbenefit fromcheckpointedpage deduplication, as the encouraging
results in our evaluation demonstrate. In fact, Section 4.6 shows that greedy
checksum-based approach deduplication is the best candidate for the appli-
cations we target.

1https://www.kernel.org/doc/htmldocs/kernel-api/API-memcmp.html

https://www.kernel.org/doc/htmldocs/kernel-api/API-memcmp.html
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Page Compression To improve space-efficiency guaranteeswith programs
exhibiting poor temporal working set similarity, KDL also supports a page
compression strategy. While page compression is more robust than dedupli-
cation against random memory write patterns and consequently more effec-
tive in reducing the memory footprint of the checkpoint history, the com-
pression algorithm imposes a higher run-time overhead during checkpoint
and roll-back operations. Furthermore, page compression requires KDL to
store the compressed data in memory efficiently, or fragmentation would
eliminate most of the savings gained. To address this problem, KDL stores
the compressed pages using the zsmalloc allocator [9], designed for optimal
storage of compressed memory.

Another key challenge concerns the selection of the compression algo-
rithm to guarantee a good tradeoff between data compression and run-time
performance. Inspired by zram [91], KDL relies on the LZO algorithm and
deals with special-cases (such as zero-filled pages and pages whose compres-
sed content is larger than the original content) so to implement an effective
and efficient compression strategy.

Similar to deduplication, our page compression strategy can, in principle,
operate using either a greedy or a lazy approach. Our current KDL implemen-
tation, however, only supports a lazy approach, given that, due to a caveat in
the implementation of zsmalloc, it is not possible to integrate compression
support in our page-fault handling code path.

Finally, while page compression and deduplication are conceptually inde-
pendent (and competing) alternatives, KDL can support both deduplication
and compression at the same time. We evaluate all the possible deduplica-
tion/compression configurations of KDL in Section 4.6.

4.4.3 Rolling Back to a Checkpoint

The KDL rollback component is responsible for rolling back the memory
state of the target process to a given checkpoint. As depicted in Figure 4.2,
this component operates directly in the target process context. To imple-
ment the required functionalities, the rollback component identifies all the
pages that have to be restored in order to rollback to a given checkpoint and
stores them in a binary search tree—the roll-back tree. Furthermore, it re-
places all the page mappings of that target process managed memory regions
with the ones that are part of the specified checkpoint (by looking them up
in the rollback tree created earlier). To protect the checkpointed pages, the
new mappings are initially all read-only. Should the target process want to
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write into an initially writeable page after rollback, DeLorean lazily creates a
scratch copy of the page in question using a copy-on-write strategy. When
the “current” process state is restored, KDL discards all the scratch pages
created by any user operations while rolled-back.

For efficiency reasons, the rollback tree usually only contains entries for
one specific checkpoint. KDL creates the tree by looking up the checkpoint
list for the target checkpoint and adding all its pages to the rollback tree.
Furthermore, KDL iterates through the younger journal entries to add all
the pages referring to memory locations not already included in the tree but
mapped at the time the checkpoint was taken.

Given that generating the rollback tree is expensive, KDL also supports
the generation of a permanent and global version of the rollback tree, which
includes data for all the checkpoints. The initial cost to create a permanent
tree is higher, but the cost is amortized when a large number of rollback
operations are requested, e.g., when the user performs a search over a large
number of checkpoints.

The rollback approach described thus far is the most transparent and gen-
eral possible: KDL reverts the entire memory state to a given checkpoint and
the user may freely inspect the old state and implement arbitrarily complex
operations over it. However, this approach may not be the most efficient
if user operations over the checkpointed state are localized (e.g., a simple
search over a given global variable), given that an excessive number of pages
may need to bemapped (and remapped back). To address this problem, KDL
supports an alternative. Whenever the userland is aware of the variables that
need to be accessed beforehand, KDL supports an on-demand rollback mech-
anism. This approach only rolls back the pages that are actually required to
access the target data structures. To implement this mechanism, KDL ex-
ports a user-level API which requires a list of memory addresses and the cor-
responding sizes (the targeted memory pages are identified automatically by
KDL).

4.5 Implementation

We implemented our DeLorean prototype on Linux. KDL is implemented as
a standard Linux loadable kernel module supporting recent kernel versions (3.2
until 3.19), allowing for easy deployability. The module is compatible with
x86 and x86_64 architectures and supports applications already targeted by
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gdb. The total module size is 5, 493 LOC2, including all the modes of oper-
ation described in the paper.

To keep KDL as portable as possible, we relied on Kernel Probes [18] (the
standard Linux instrumentation framework to non-disruptively hook into
kernel routines) to implement two key features: (i) page fault handling (and
copy-on-write) interposition by hooking into handle_mm_fault before a
write page fault is handled; (ii) process exit interposition to clean up each
process context by hooking into do_exit and do_execve. The KDLCall sys-
tem call interface, in turn, is implemented using the Linux sysctl [6]mecha-
nism, the standard Linux interface to configure kernel parameters at runtime.
This interface is used by the userland to issue checkpoint/roll-back/restore
requests, retrieve module statistics, and access configuration options.

The dl debugging component is implemented as a combination of a Python-
based gdb plugin [16] and a gdb command file [1], accounting for a total of
1, 075 LOC. Other than implementing dl-specific options and commands,
the scripts add hooks to allow for proper cleanup when the target process
exits and to force a restore if the user resumes execution while the process is
in rolled-back state. The LibDL shared library, finally, implemented in 417
lines of C code, is injected into the target process via the usual LD_PRELOAD
interface.

4.6 Evaluation

We evaluated our DeLorean prototype, on an Ubuntu 14.04 workstation run-
ning the stock kernel Linux v3.16 (x86_64). The workstation mounts a dual-
core Intel Pentium G6950 2.80GHz processor and 16GB of RAM. To eval-
uate the impact of our system on real-world applications, we selected five
popular server programs, similarly to prior work in memory checkpointing
and record/replay debugging [125; 78; 137; 128; 51; 152; 115; 116; 140].
In particular, we focused our evaluation on three popular open-source web
servers, Apache httpd [12] (version 2.2.23), nginx [132] (version 0.8.54)
and lighttpd [74] (version 1.4.28), a widely used database server, Postgre-
SQL [3] (version 9.0.10), and the vastly deployed bind DNS server [10] (ver-
sion 9.9.3).

We evaluated the impact of DeLorean on our server programs using well-
known benchmark suites: Apache benchmark (ab) [11] for our web servers,

2Source lines of code as reported by the CLOC tool.
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SysBench [20] for PostgreSQL, and queryperf [7] for bind. To evaluate the
worst-case performance with intensive CPU pressure, we have run our per-
formance tests issuing requests through the loopback device (also a common
latent bug debugging scenario), which fully saturated our test programs. In
addition, we evaluated additional aspects of our system using dedicated mi-
crobenchmarks.

We configured our programs and benchmarks suites with their default op-
tions. We instrumented our programs with our LibDL shared library and
allowed them to take a checkpoint for each request (the finest granularity
to debug latent event-driven bugs). We repeated our experiments 11 times
(with negligible variations) and report the median values.

Before continuing, data resulting for the pure usage of checkpoint without
any memory footprint reduction method is interpolated due to the lack of
RAM in our experimental settings. However, based on the linearity shown
by our evaluation, we can safely compute the expected runtime and space
measures in such situations.

Our evaluation answers the following questions:

(a) Deduplication and compression performance: How efficient are the various
deduplication and compression strategies supported by DeLorean?

(b) Deduplication and compression effectiveness: How effective are the various
deduplication and compression strategies supported by DeLorean in re-
ducing the memory footprint and scaling to a large checkpoint history?

(c) Time-travelling introspection performance: How efficiently can we query
the checkpointed memory pages through the history?

(d) Comparison with existing solutions: How do our results compare to exist-
ing debugging solutions?

(e) Case studies: How can we use DeLorean to debug real-world software
bugs?

4.6.1 Deduplication Performance

Deduplicating a page at record time can be done by directly comparing any
two given pages, or by first computing (and comparing) a checksum of the two
pages. Both solutions incur two costs: (i) maintaining a data structure to
store the unique instance of each page and (ii) actually checking for dupli-
cate pages. The distribution of such costs depends on whether we opt of a
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Figure 4.3: Server throughput for our dedup. strategies (1M checkpoints). cp-only results are
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Figure 4.5: Memory footprint with compression and/or dedup. (1M checkpoints). cp-only
results are interpolated.

greedy (page fault handling-time) deduplication strategy or lazy (checkpoint
finalization-time) deduplication strategy.

Figure 4.3 shows the throughput of the baseline (program running without
checkpointing), plain checkpointing (cp-only), the comparison-based dedu-
plication strategies (page-greedy and page-lazy), and the checksum-baseddedu-
plication strategies (crc-greedy and crc-lazy). We can see in the figure that
the throughput degradation imposed by comparison-based deduplication
is higher than that of checksumming across all the servers. We further ob-
served 78.24 % and 77.76 % throughput degradation for page-greedy and page-
lazy, compared to 65.83 % and 63.96 % for crc-greedy and crc-lazy (geometric
mean).

This demonstrates that page comparison costs are significantly higher than
checksumming costs. Furthermore, on average, the greedy approach per-
forms slightly better than the lazy approach independently of the compari-
son strategy. This result is in line with page deduplication significantly re-
ducing the number of checkpointed pages and the cost of greedily copying
pages being thus amortized by the benefits of maintaining less unique page
instances on tracking data structures.

This trend is reversed for the comparison-based strategy on nginx, which
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causes page-greedy to produce a higher throughput degradation compared to
page-lazy. A closer inspection revealed that, while both comparison-based
strategies are less effective in deduplicating pages compared to the checksum-
based strategies, page-greedy deduplicates even less than page-lazy on nginx.
We attribute this behavior to the run-time overhead imposed by page dedu-
plication, which slows down the server and causes it to behave less deter-
ministically with additional data accounting. This, in turn, results in re-
duced deduplication effectiveness. This effect is further amplified by the
page-greedy strategy, which introduces extra page fault-time latency through-
out the execution.

While crc-greedy performs sliglhtly better than crc-lazy, we will focus on
crc-lazy deduplication (or simply dedup, hereafter). Due to implementation
limitations, crc-greedy can only be combined with compression by uncom-
pressing all the checkpointed pages to determine duplicates, while crc-lazy
can deduplicate based on compressed data.
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Figure 4.6: Impact of orphan cleanupmechanisms vs. number of checkpoints (lighttpd).

4.6.2 Orphans Cleanup Impact

Deduplication requires maintaining a dedicated tracking data structure (the
deduplication tree) and relinquishing pages that are no longer needed. In
particular, when all the references to a given deduplicated page are dropped
(e.g., when a particular checkpoint list is deleted), the corresponding now
orphaned page remains in the deduplication tree. Without further interven-
tion, the number of orphan pages would grow over time, resulting in increas-
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ing performance overhead (i.e., the cost to walk the deduplication tree in-
creases) and memory overhead (i.e., the number of tracked pages increases).
To address this problem, we implemented orphan cleanup mechanisms that
triggered at various points during the checkpointing process.

Figure 4.6 shows the effect on the benchmark run time and memory usage
incurred by suchmechanisms on lighttpd (for clarity, we omit the very sim-
ilar results on the other servers). For this experiment, we set the journal size
to 1, 000 checkpoints and linearly increased the number of checkpoints taken.
As shown in the figure, the naive no-op (cp-only)mechanism rapidly increases
the increases the memory footprint of the system. Cleaning up orphans
every time a checkpoint is deleted (exit-window mechanism), in turn, does
not impose additional memory overhead, but imposes a higher performance
overhead. Performing orphan cleanup operations after taking a certain num-
ber of checkpoints (count, i.e., every 1, 000 checkpoints in our case) or at
deduplication time (in-line) reduces the impact of orphans cleanup, while
retaining reasonable memory usage guarantees. To isolate the effect of or-
phan deletion, the rest of our analysis assumes that the journal size coincides
with the observation window.

4.6.3 Deduplication vs. Compression

While deduplication is an effective solution to reducememory usage at record
time in the commoncase, compression represents amore general (but slower)
alternative. DeLorean can also support both deduplication and compression
to minimize the overall memory footprint. Figure 4.7 illustrates the impact
of different deduplication/compression configurations for an increasing num-
ber of checkpoints on lighttpd. As expected, both the benchmark run time
(Figure 4.7a) andmemory usage (Figure 4.7b) increase linearlywith the num-
ber of checkpoints taken. We provide a detailed comparison in the following.

Memory Overhead To measure the effectiveness of deduplication (dedup)
and compression (compress), we measured the amount of memory (the page
data and the metadata required for accounting) used by each approach and
compared the results with plain checkpointing (cp-only).

Figure 4.5 shows that most of our server programs’ write patterns allow
for effective deduplication of the checkpoint history, reducing the memory
footprint up to 82.33% (lighttpd). For bind’s less stable working set, dedu-
plication is less effective, resulting in only 38.40% footprint reduction. Com-
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Figure 4.7: Impact of deduplication and compression vs. number of checkpoints (lighttpd).

pression, on the other hand, was highly effective in reducing bind’s mem-
ory footprint. Without this exception, compression and deduplication re-
ported similar reduction across our server programs. The combination of
both strategies (dedup+compress is, as expected, even more effective, as it al-
lows for memory footprint reductions of up to 95.23% (postgresql).

Run-time Overhead While reducing thememory footprint, enabling dedu-
plication and/or compression also increases the run-time overhead. Fig-
ure 4.4 shows the throughput (requests per second) reported by our server
programs when enabling deduplication, compression, or both.

As shown in thefigure, the throughput degradation inducedbyplain check-
pointing on the server programs ranges between 16 % for httpd and 70 %
for postgresql with an average of 33.44 % (geometric mean). Server pro-
grams with shorter request-processing loops yield a higher checkpointing
frequency, naturally increasing the performance impact.

Weobserved that compression anddeduplication impose a similar through-
put degradation on the server programs (63.19 % vs. 63.96 %, geometric
mean). Furthermore the cost of deduplication and compression are not addi-
tive when combining the two approaches, but instead tend to get amortized,
resulting in an average overall degradation of 68.44 %. Since the combination
of both approaches incurs only acceptably higher overhead (+4.5 % com-
pared to deduplication or compression, geometric mean) while enabling the
most space-efficient (and scalable) checkpointing strategy, DeLorean enables
both memory saving techniques by default. However, considering the signif-
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Test Linear [sec] Binary [sec]
10k 100k 1M 10k 100k 1M

Full (compression) 0.960 9.851 99.065 0.061 0.724 8.544
Full 0.155 1.728 18.655 0.061 0.724 8.605
On-demand 0.088 0.999 11.414 0.061 0.739 8.592

Table 4.2: Search tests with 13 pages working sets.

icant differencewith plain checkpoint (+35 %), the user is able to disable the
space-efficent methods to allow for better runtime-efficient checkpointing.

4.6.4 Time-travelling Introspection Performance

In this section, we evaluate the performance of DeLorean’s time travelling in-
trospection strategy, which relies on efficient queries over the checkpoint his-
tory accumulated during execution. Table 4.2 reports the time to complete
a query through the full checkpoint history with an average of 13 pages per
checkpoint—corresponding to the highest average checkpoint size observed
across our server programs during the execution of our benchmarks. For
this experiment, we selected a simple query condition comparing the con-
tent of a known integer global variable against an expected value. Moreover,
we filled the checkpoint history with a constant number of pages (13) per
checkpoint. We employed deduplication do make sure that the pages would
fit the memory for 1M checkpoints. However, this does not impact the roll-
back performance, hence the results of the experiment proposed. We ran
this microbenchmark 11 times (with negligible variations) and report the
median.

To thoroughly evaluate the query run time, we have analysed the impact
of different factors:

(a) the rollback mechanisms, namely the full mechanism (rolling back all
the pages), and the on-demand mechanism (rolling back only the target
page);

(b) the query strategy, either linear or bisect,

(c) and whether compression is used.

As expected, Table 4.2 shows that the query run time linearly increases
with the number of checkpoints independently of the particular factors con-
sidered. We now examine the impact of each factor in more detail.
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Rollback mechanism The full rollback mechanism seeks to support arbi-
trary search queries, but it also requires building the permanent rollback tree
first and issuing a full rollback operation for each condition evaluation. Ta-
ble 4.2 depicts the impact of these costs on the query run time. For example,
for 1M checkpoints, the query takes approximately 99 seconds to inspect all
the 13 million pages in the checkpoint history (linear query strategy). While
this is relatively efficient, the other rollback mechanisms provide better per-
formance. Finally, the on-demand rollback mechanism, applicable to our ex-
ample test case since the location and the size of the inspected variables are
known (e.g., no pointers are used), reduces the time to process all the check-
points by around 88%.

Query strategy We now compare the linear-based results examined thus
far with the results reported by our bisect query strategy. The latter strat-
egy improves the query performance, since bisecting searches only through
O(log(n)) checkpoints (where n is the size of the checkpoint history). Ta-
ble 4.2 details the improvements, showing that, for most rollback mecha-
nisms, the much faster bisect performance is still bottlenecked by the con-
stant cost of building the permanent rollback tree (around 8 seconds for 1M
checkpoints).

Compression Unlike deduplication, the use of compression has a negative
impact on query performance, given that every checkpoint examined during
the search operations needs to be decompressed at rollback time. Table 4.2
depicts this cost when using the full rollback mechanism (providing worst-
case results). As shown in the table, in this scenario, a query becomes ap-
proximately 5.5 times slower than without compression. When bisecting is
possible, however, the same cost is essentially not noticeable.

4.6.5 Comparison with Existing Solutions

We compared our checkpointing and introspection overhead to two other
systems that offer comparable (and state-of-the-art) functionality: the gdb
general-purpose debugger and the rr record-and replay debugger [19].

We implemented checkpointing-based introspection, including linear and
bisect search on top of gdb’s own fork-based checkpointing as a gdb exten-
sion. We configured rr’s replay strategy to re-execute the recorded trace
and perform search using a conditional breakpoint set at the point where
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DeLorean would take a checkpoint. DeLorean itself is configured to use com-
pression and deduplication.

We report the results of a synthetic experiment on lighttpd (but we ob-
served similar results on the other server programs), which we exercised
with theApacheBenchmark (ab) issuing 10,000 requests. We used this num-
ber of requests since gdb could not scale to a much larger checkpoint history,
butwe remark that our results can linearly extend to evenmillions of requests.
Table 4.3 shows that DeLorean has clearly the smallest recording overhead (3
seconds). The runner-up is rr, whose recording time is roughly 3.5 times
slower then DeLorean (11 seconds). gdb recording time reported the worst
recording performance (464 seconds), which corresponds to a 422x slow-
down compared to the 1.1 seconds execution time without recording. Not
surprisingly, gdb-based checkpointing also consumed the largest amount of
memory (over 2GB), followedby DeLorean andrr, which reported the small-
est (3.6 MB) memory footprint.

Moreover, when searching linearly through the checkpoints in the worst
case scenario—search for an expression that is never satisfied—gdb also takes
the longest time (590 seconds). When operating bisect searchwith DeLorean,
in contrast, the search time is drastically reduced to under 1 second. rr
and DeLorean are in the same ballpark in terms of linear search performance
(30 and 28 seconds, respectively). rr’s design cannot, however, support the
more efficient bisect search, which would thus allow DeLorean to complete
the example query introduced earlier with a ∼30x speedup compared to rr’s
linear search strategy. In summary, DeLorean has better recording perfor-
mance (as a result of trading off on memory usage), comparable search per-
formancewhen not bisecting, and better search performancewhen bisecting.

We also comparedour resultswith Scribe [78], a transparent low-overhead
record-and-replay system. For practicality reasons, we used the virtual ma-
chine image offered for download by its authors (thus reporting even opti-
mistic overheads for Scribe, given the generally slower baseline). The vir-
tual machine was equipped with Ubuntu 12.04 and the custom Scribe Linux
kernel v2.6.35. Due to kernel failures, we were only able to test two of our
servers, namelylighttpd andApachehttpd. While thememory used to log
the events of the two servers was relatively small (83MB and 90MB, respec-
tively), we reported significant run-time overhead. We measured 682.74%
run-time overhead for lighttpd and 255.31% forApache httpd. DeLorean in
a similar configuration—same virtualization techniques, but newer kernel—
only reported roughly half the of the overhead when run in a virtual machine
on the same physical machine.
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Recording Introspection
time [sec] space [MB] linear [sec] binary [sec]

DeLorean 3.2 42.4 30.2 0.2
GDB 464.1 2,298.0 590.1 0.9
RR 11.1 3.6 28.1 —

Table 4.3: Comparison of DeLorean, RR, and GDB on lighttpd for 10k server requests.

4.6.6 Case Studies

To demonstrate the effectiveness of DeLorean, we present two case studies,
which show that DeLorean can prove useful in debugging arbitrary memory
corruption and memory leaks.

Arbitrary Memory Corruption

an infamous bug in the FFmpeg library [14], which drives popular servers
such as FFserver, causes erroneous handling of 4X videos under particular in-
puts and results in wild writes to random memory locations [8]. Servers that
use the buggy FFmpeg library are susceptible to arbitrary state corruption
when receiving particular requests. For example, a request-triggered wild
memory write in FFserver can corrupt one of the FFServerStreams con-
tained in FFserverConfig used to handle client feeds information. Since
such streams are stored as a linked list, the next pointer referencing the next
entry in the list may be overwritten with, say, 0xDEADBEEF. The program
may only crash several requests later, when the corrupted pointer is used
while processing a completely unrelated event. Reproducing the crash alone
does not necessarily help the user to identify the root cause, since the crash
and trigger event are temporally distant, making difficult to relate the pointer
corruption to the crash.

With DeLorean, the user can configure the debugger to take a checkpoint
for each server request. This is possible by issuing the command dl check-
point take and specifying the end of the server request loop as a target
location. The user then allows the program to continue the execution and
activate the test workload. Once the server crashes, DeLorean allows the user
to efficiently query all the checkpoints taken during the execution in search
of the trigger event.

In this example, we search for the first checkpoint containing the pointer
with the corrupted value. This query can be performed by means of bisec-
tion. For instance, if the corrupted pointer contains the value 0xDEADBEEF),
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the developer can issue dl search stream->next == 0xDEADBEEF search
command.

If successful, the search command automatically rolls the program state
back to the first checkpoint that satisfies the given condition, or the present
state otherwise. After restoration, the user can check for irregularities in the
trigger request and the program state to identify the root cause quickly.

Memory Leak

some applications (for example PostgreSQL) implement their own memory
garbage collection strategy by employing approaches like reference count-
ing or context management. In the case of PostgreSQL, most of the back-
end operations rely on a context which keeps track of allocated memory and,
each time a context is freed, so is all the referenced memory in that context.
As a result, mismanagement of contexts can cause memory leaks. A typical
bug is for memory allocated for each request to be incorrectly assigned to a
long-lived context which is not freed until the server is reloaded. In such a
situation, the server will slowly go out of memory (after a certain number of
requests), making it difficult for users to determine the root cause of the bug.

With DeLorean, a user can inspect the context and, using either dl search
or dl for, can determine the number of referenced objects as well as their
location and content in memory. Using this strategy, the cause of a memory
leak becomes very quickly apparent. Similarly, in the case of other systems
employing reference counting, DeLorean can allow users to determine where
and when a reference cycle was introduced by analyzing counter manage-
ment data structures for a target object.

4.7 Discussion

Firstly, DeLorean is mainly aimed at aiding debugging for applications that
have a medium-sized impact in terms of memory footprint (i.e., server appli-
cations). However, applications with bigger memory footprint can also be
debugged while inevitably increasing the memory requirements for storing
a high number of checkpoints.

Additionally, since DeLorean makes a significant use of the features and the
environment provided by gdb, we share the same limitations that already
affect gdb. This is also the case for the applicability of the tool.
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While our efforts have focused on improving the memory footprint of our
checkpoint-based system, we also aim at trading as little run-time perfor-
mance as possible. For this reason, we explored the possibility to improve
performance by extending DeLorean with working set estimation (WSE) strate-
gies. WSE [155; 156] can help predict pages that are part of the writable
working set in the next checkpoint interval, hence applying a WSE-driven
precopying strategy rather than a fully copy-on-write strategy may reduce
page fault handling costs [141]. However, when applying WSE to our De-
Lorean prototype we have observed little improvement. We attribute this
outcome to the significant overhead imposed by the deduplication, which,
when enabled, overshadows the benefits introduced by WSE. To improve
the effectiveness of WSE and the overall system performance, an option is
to consider an asynchronous deduplication and compression strategy. How-
ever, asynchronously processing the checkpointed data also introduces other
concerns. In particular, if the speed with which new pages are copied is
higher than that of asynchronous page processing operations, the memory
reduction may become insufficient to support a large checkpoint history.

Another aspect that we did not explore in DeLorean is the effect of swap-
ping excessive checkpoint data to the disk, rather than simply evicting them
from memory. This strategy can allow users to maintain even larger check-
point histories, but the impact on query performance may be significant.

Finally, while we consider DeLorean on its own a powerful debugging tool,
we do not necessarily perceive checkpoint-assisted time-travelling introspec-
tion as an alternative to record-replay-based systems. We instead see poten-
tial in combining other debugging systems with DeLorean introspection ca-
pabilities, for example to assist the user in identifying the root cause of a
bug after a record-and-replay system has helped her reproduce the bug on a
lengthy test workload.

4.8 Related Work

Record/Replay systems Research in record/replay techniques has led to
a broad range of software-based [122; 72; 39; 137; 78; 134] and hardware-
based [97; 98; 59; 27] solutions, which improve debuggability for both oper-
ating systems [72; 39] and user applications [137; 78; 134; 59]. Nonetheless,
the capabilities and focus of these systems vary considerably, as some focus
on replay speed [72; 59; 30], others on live execution after replay [78], and yet
others on supporting replay sessions on modified versions of the debugged
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applications [137]. While hardware-based solutions are appealing, dedicated
hardware is not usually available on commodity systems. Software-based so-
lutions are more convenient, but incur much higher overheads on recording
and replaying. As a trade-off, OS-level solutions [137; 78; 134] and VMM-
level solutions [39; 72] yield better performance, although they still incur
significant record-time overheads. DeLorean does not offer replay capabili-
ties but focuses on better debugging instead, by explicitly supporting queries
over the execution history for root-cause analysis purpose, and explores high-
speed checkpointing as a convenient and efficientway to search through such
history. Moreover, our approach is orthogonal to record/replay systems and
it is trivial to employ checkpointing during a replay phase and add search
functionalities during off-line debugging sessions.

Checkpointing Over the past 15 years, the research community has pro-
posed many checkpointing solutions. User-level implementations [13; 42;
51; 112; 116; 118; 119; 128] are generally easier to deploy, but they also typ-
ically incur significant run-time overhead, making them ill-suited for high-
frequencymemory checkpointing. Compiler-based solutions [140] aremore
efficient, but they also require recompilation, reducing deployability. Other
approaches improve performance by adding checkpointing support at the vir-
tual machine monitor level [72; 33; 108; 143]. A disadvantage of such meth-
ods is the necessity to checkpoint the whole virtual machine rather specific
applications of interest. Approaches using dedicated hardware [44; 126] are
more efficient but impractical for commodity systems. Finally, kernel-level
checkpointing solutions have been explored before [2; 52; 56; 76; 77; 106;
125; 136]. Unlike DeLorean, however, they either rely on kernel patches [2;
52; 76] compromising their general applicability, or operate as kernel mod-
ules that implement full-blown memory containers [106; 125]. The recent
SMC [141] implements a more deployable checkpointing solution in a self-
contained kernel module. However, SMC speculative checkpointing strat-
egy tends to generate duplicates—trading memory usage for better perform-
ance—resulting in a nonscalable solution when maintaining a large check-
point history. DeLorean, in contrast, relies on page deduplication and com-
pression to keep a large history and provide even better scalability than reg-
ular checkpointing solutions.

Deduplication Deduplication is a common strategy to reduce memory us-
age in virtualized environments [23]. Prior work on disk-based checkpoint-
ing also used deduplication to reduce the size of on-disk checkpoints [57;
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104; 108]. DeLorean follows a similar intuition to reduce the footprint of
in-memory checkpoints for debugging. Beside deduplicating across applica-
tions, DeLorean also deduplicates pages across checkpoints for a given pro-
cess, exploiting the intuition that programs often exhibit recurring steady
states and thus yield a growing number of duplicated pages in the checkpoint
history.

Compression Page compression is another common technique to reduce
memory usage [47; 91; 45]. Prior work in the area, however, is mostly con-
cerned with reducing the impact of I/O operations and improving system,
rather than debugging, performance. Similar to deduplication, compression
has also been used in prior disk-based checkpointing solutions to improve
disk space utilization [63; 62; 114]. DeLorean, in contrast, draws inspiration
from memory compression solutions such as zram [91], to aggressively com-
press checkpointed data in memory and support a very large checkpoint his-
tory despite deduplication low effectiveness. Finally, in contrast to previ-
ous work in the general area of disk-based checkpointing, DeLorean combines
compression and deduplication to further reduce its memory footprint.

4.9 Conclusion

Debugging is hard and time-consuming and effort has been put in improving
this task. Recent research has paid attention to record/replay debugging sys-
tems to aid cyclic debugging of nondeterministic applications and operating
systems. However, such systems result in slower applications runtime due to
the overhead imposed by the recording phase. Further, replay still requires
lengthy debugging iterations over the collected traces.

In this paper, we have proposed DeLorean, a checkpoint-based time-travel-
ling debugging system which trades replay capabilities for more efficient de-
bugging and root-cause analysis. Our high-frequency checkpointing strat-
egy reduces the run-time overhead of the recording phase, while minimizing
the footprint of checkpointed memory by means of page deduplication and
compression. We have further proposed a new time-travelling introspection
mechanism that quickly iterates over the checkpointed memory to pinpoint
the root cause of long-lived event-driven software bugs.

Our analysis on real-world server applications demonstrates that DeLorean
imposes a reasonable run time overhead in recording phase and achieves
up to 94.25% memory footprint reduction compared to incremental check-
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pointing. Moreover, our results demonstrate that checkpoint-assisted time-
travelling introspection is efficient in quickly searching over the checkpoint
history for a large window of observation, requiring, in the best case, less
than few seconds to complete a search.





CHAPTER 5

GENERAL CONCLUSION

Checkpointing is an important technique that has many applications inside
the reliability domain, such as automated error recovery [152; 135; 53; 83; 54;
121; 117; 125; 51; 68; 115] and debugging [129; 128; 61; 72; 48]. An integral
part of checkpointing is taking a snapshot of a process’ memory, also known
as memory checkpointing. For applications that require a high checkpoint-
ing frequency, the costs for memory checkpointing have a significant effect
on their run-time performance overhead. Further, applications that require
high checkpointing frequencies and a long checkpoint history additionally
face the challenge of storing checkpoints efficiently lest they lose precious
application memory. As we showed in Chapter 2 and Chapter 3, current
checkpointing solutions are not well suited for high checkpointing frequen-
cies, as they (1) incur high run time overhead, have high deployment costs
and fail to offer memory guarantees and, (2) do not deal with the problem of
storing the large number of checkpoints produced by high checkpointing fre-
quencies. This thesis provides contributions towards making checkpointing
viable for high checkpoint frequencies.

InChapter 2we investigated pure user-level high frequency checkpointing.
Limiting our investigation to a pure userland implementation addresses the
issue that, whendeploying checkpointing solutions in the realworld, changes
to the kernel are often not possible. We evaluated three page granular check-
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pointing mechanisms, as well as one instrumentation-based checkpointing
technique on a set of server applications. To achieve a high checkpoint fre-
quency, we took a checkpoint for each request, a common use-case, for ex-
ample, in request oriented recovery. Our experiments confirmed that with
higher checkpointing frequency, the page granular user-level techniques suf-
fer from a high performance overhead. The instrumentation-based undolog,
while offering better performance for high frequency applications, suffers
from unbounded memory usage. We then presented LMC, a system for effi-
cient memory-bound high frequency user-level checkpointing. Instead of re-
lying on inefficient kernel primitives that offer page granular copy-on-write
semantics, LMC utilizes compiler instrumentation to implement copy-on-
write on byte-granularity. In contrast to the undolog approach, LMC stores
checkpoint data in a shadow-state organization, thereby limiting memory us-
age.

In Chapter 3, we revisited page granular checkpointing, however, this time
relaxing our requirement of not allowing kernel modifications. We started
our investigation with an analysis of the costs of page granular checkpoint-
ing, showing that saving a page using Linux CoW mechanism—by forking—
is circa eight times as expensive as just copying the page, ignoring the costs
for the fork system call itself, which are substantial. The results of this in-
vestigation motivated the design of SMC. While SMC allows applications
to efficiently access the kernel’s CoW mechanism, it also features a specula-
tion component, which by speculatively copying hot pages aims to avoid the
eight times higher cost of kernel CoW over plain copying. As the speculation
essentially consists of writable working set estimation, we evaluated two es-
tablished WWSE techniques—Active-RND and Active-CKS—and our novel
GSpec WWSE algorithm. In contrast to the traditional WWSE techniques,
GSpec’s approach can automatically tune to different workloads.

Our experiments showed a hypothetically perfect and overhead-free spec-
ulation can reduce the overhead of CoW checkpointing by 29.3 percentage
points from 44.9% to 15.6% in the tested scenario. This confirms that specu-
lation is a useful tool to reduce COW induced checkpointing overhead. Fur-
ther, we observed that all tested speculation strategies lead to an improve-
ment in terms of performance overhead while leading to a modest increase of
memory consumption and recovery time. GSpec showed the highest specu-
lation accuracy across the tested server applications and reduced checkpoint-
ing overhead by 14.1 percentage points from 44.9% to 30.8%, compared to
plain COW.

InChapter 4, wepresentedDeLorean, a debugging system leveraging check-
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point-assisted time-traveling introspection, as a real-world use case of high
frequency checkpointing. DeLorean ephamsizes the importance of efficient
checkpoint storage and exploration, two important problems that arisewhen
many checkpoints are taken with high frequency. DeLorean uses the check-
pointing component presented in Chapter 3 to achieve efficient high fre-
quency checkpointing in order to reduce the run-time overhead during the
recording phase. By compressing and deduplicating checkpointed pages, De-
Lorean is capable of reducing the memory footprint of the checkpointing
storage by 95%, making it possible to store millions of checkpoints. Fur-
ther, we explored efficient ways to inspect the checkpoint history. Knowing
memory locations of interest partial on-demand rollback can save up to 88%
of search time in our experiments. This can be further improved if certain
properties of the search criteria are known, which in some cases allows us
to use use a bisect search strategy effectively enabling us to search 1 million
checkpoints in around 8.5 seconds.

5.1 Direction for Future Work

As we point out in Chapter 2, the required instrumentation causes run-time
performance overhead when checkpointing is disabled. We propose using
basic block cloning to run application without instrumentation when check-
pointing is disabled to mitigate this cost. Adding this capability and explor-
ing its trade-offs is an obvious first extension of the work presented in Chap-
ter 2.

Another limitation of the checkpointing technique presented in Chapter 2
is due to its compile time instrumentation approach. This approach requires
the targeted application and shared libraries to be available in source code.
It is conceivable to apply the checkpointing instrumentation using static or
dynamic binary instrumentation, although instrumentation on binary level
usually involves a larger run-time performance overhead. Further, such a so-
lution limits the use of some optimizations presented in Chapter 2 as these
optimizations rely on information available in LLVM IR code. One possible
workaround is to rely on binary instrumentation for the parts of the appli-
cation that are not available as source, for example shared libraries, and use
LMC’s compile time instrumentation for the rest of the application. Another
approach could be to manuallay annotate shared library functions, compara-
ble to LLVM DataFlowsanitizer’s ABI list [133], and use this information to
add instrumentation that copies the modified state of these functions to the
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checkpoint.

Also, in Chapter 2 we implicitly assume that the rate in which checkpoints
are taken is constant throughout the whole execution time. In such cases the
decision if a specific use qualifies as high-frequency checkpointing is straight
forward. However, it is conceivable that the executed instructions per check-
point ratio changes significantly throughout the execution of the application.
An example for this are computationally-expensive requests that lead to long-
lasting checkpointing intervals. This motivates extending LMC with the pos-
sibility to switch to page granular checkpointing for such long-lasting check-
pointing periods and switch back to instrumentation-based checkpointing
for short checkpointing intervals. To achieve this, one first would have to
establish the break even point of the different checkpointing costs to define
a the duration of long-lasting checkpointing intervals. Further, one needs
to identify the code paths that lead to long-lasting checkpointing intervals.
Ideally, these code-paths can be identified statically at compile time by an
extension of LMC’s instrumentation component. In case the checkpointing
interval is heavily payload dependent, it might be more beneficial to switch
checkpointing methods based on data gathered during the execution of the
checkpointed application.

One possible extension of the work presented in Chapter 3 is to explore
ways to improve SMC’s speculation accuracy. A possible approach is to al-
low speculation mechanisms access to contextual data, such as the request
type or client ID to maintain multiple speculation contexts. The motivation
of this approach is that it is likely that different requests lead to different
memory access patterns. For example, for two request types that lead to
two distinct but constant writable working sets, a global speculation context
will always lead to miss-speculation. If, on the other hand, one maintains
a separate speculation context for each request type, even a simple greedy
speculation algorithm can exhibit perfect speculation results. One of the key
challenges would be finding out what kind of data is an efficient identifier for
speculation contexts and if this approach would be generalizable.

Further it would be interesting to reevaluate pure user-level checkpointing
with speculation. As we have shown in Chapter 2, mprotect-based check-
pointing, for example, exhibits a significant run-time overhead due to the
high signal handling costs. Through speculation, however, we expect to re-
duce this overhead by avoiding expensive CoW, ideally—with perfect specu-
lation—up to match the performance results of the oracle speculation mech-
anism in Chapter 3.
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5.2 Conclusion

In summary, this thesis shows the need for specialized high frequency mem-
ory checkpointing techniques and proposes enhancements to current check-
pointing techniques to make them fit for use cases that require checkpoints
to be taken with a high frequency. We explored the deployability trade-off
of different checkpointing techniques and showed that if the target applica-
tion can be recompiled, pure userland techniques relying on compiler in-
strumented techniques can offer a significantly better run-time performance
than their page-granular counterparts. LMC’s shadow state inspired check-
point organization shows that it is not necessary to give up memory guaran-
tees to achieve this. Further, we showed that speculation and exporting copy-
on-write functionality as a first level kernel primitive to the userland lowers
the overhead of page granular checkpointing significantly. In turn, the tech-
niques presented in this thesis allow for efficiently storing and searching a
large number of checkpointed data resulting from the high checkpoint fre-
quency.

We hope that these techniques combined open up a whole new range of
possible scenarios for high frequency memory checkpointing, such as the
time traveling debugging system DeLorean presented in this thesis.
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SUMMARY

Computers and their software play an ever increasing role in our daily life—
software runs on our computers, phones, TVs and around our arms in the
form of smart watches. While one can argue that software has improved our
quality of life in many ways, it is plagued by a problem, which is as old as
software itself: Reliable software is hard to build. “Have you tried turning it
off and on again”, has become our pop-culture’s iconic manifestation of this
problem. So it does not come as a surprise that the research of methodolo-
gies and technologies to make software reliable originated at the same time in
which digital computers first hit the industry and universities.

Checkpointing is one important technique that originating from this research
and has many applications inside the reliability domain, such as automated
error recovery and debugging. An integral part of checkpointing is taking a
snapshot of a process’ memory, also known as memory checkpointing, which is
the main subject of this thesis.

In particular this thesis concentrates on scenarios that require high check-
pointing frequencies. Examples of such use cases are automatic error recovery
techniques that require checkpoints on every client request or on carefully se-
lected rescue points. Further, in debugging scenarios the ability take check-
points with very high frequency allows the inspection of arbitrary memory
states throughout the execution.

For these high-frequency checkpointing scenarios memory checkpointing
is an important cost factor, which makes it an interesting and worthwhile tar-
get for optimization. Applications that require high checkpointing frequen-
cies and a long checkpoint history also face the challenge of storing check-
points efficiently lest they lose precious application memory.

In Chapter 2, we investigate pure user-level high frequency checkpointing.
Limiting our investigation to a pure userland implementation addresses the
issue that, whendeploying checkpointing solutions in the realworld, changes
to the kernel are often not possible. We examine three page granular check-
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pointing mechanisms, as well as one instrumentation-based checkpointing
technique on a set of server applications. To achieve a high checkpoint fre-
quency, we take a checkpoint for each request, a common use-case, for exam-
ple, in request oriented recovery. Our experiments show that with higher
checkpointing frequency, the page granular user-level techniques suffer from
a high performance overhead. The instrumentation-based undolog, while
offering better performance for high frequency applications, suffers from un-
bounded memory usage. We then present Lightweight Memory Checkpoint-
ing (LMC), a system for efficient memory-bound high frequency user-level
checkpointing. Instead of relying on inefficient kernel primitives that offer
page granular copy-on-write semantics, LMC utilizes compiler instrumen-
tation to implement copy-on-write on byte-granularity. In contrast to the
undolog approach, LMC stores checkpoint data in a shadow-state organiza-
tion, thereby limiting memory usage.

In Chapter 3, we revisit page granular checkpointing, however, this time
relaxing our requirement of not allowing kernel modifications. We start our
investigation with an analysis of the costs of page granular checkpointing,
showing that saving a page using Linux CoW mechanism—by forking—is
circa eight times as expensive as just copying the page, ignoring the costs
for the fork system call itself, which are substantial. The results of this in-
vestigation motivate the design of the second memory checkpointing tech-
nique that we present in this thesis, Speculative Memory Checkointing (SMC).
While SMC allows applications to efficiently access the kernel’s CoW mech-
anism, it also features a speculation component, which by speculatively copy-
ing hot pages aims to avoid the eight times higher cost of kernel CoW over
plain copying. As the speculation essentially consists of Writable Working
Set Estimation (WWSE), we evaluated two established WWSE techniques—
Active-RND and Active-CKS—and our novel GSpec WWSE algorithm. In
contrast to the traditional WWSE techniques, GSpec’s approach can auto-
matically tune to different workloads.

Our experiments show that a hypothetically perfect and overhead-free
speculation can reduce the overhead of CoW checkpointing by 29.3 percent-
age points from 44.9% to 15.6% in the tested scenario. This confirms the
usefulness of speculation to reduce COW induced checkpointing overhead.
Further, we show that all tested speculation strategies improve the perfor-
mance overhead while leading to a modest increase of memory consumption
and recovery time. GSpec exhibits the highest speculation accuracy across
the tested applications and reduced checkpointing overhead by 14.1 percent-
age points from 44.9% to 30.8%, compared to plain COW.
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InChapter 4, we presented DeLorean, a debugging system leveraging check-
point-assisted time-traveling introspection, as a real-world use case of high
frequency checkpointing. DeLorean emphasizes the importance of efficient
checkpoint storage and exploration, two important problems that arisewhen
many checkpoints are taken with high frequency. DeLorean uses the check-
pointing component presented in Chapter 3 to achieve efficient high fre-
quency checkpointing to reduce the run-time overhead during the recording
phase. By compressing and deduplicating checkpointed pages, DeLorean is
capable of reducing the memory footprint of the checkpointing storage by
95%, making it possible to store millions of checkpoints. Further, we ex-
plore different ways to inspect the checkpoint history. We show that when
knowing memory locations of interest, partial on-demand rollback can save
up to 88% of search time in our experiments. This can be further improved
if certain properties of the search criteria are known, which in some cases
allows us to use use a bisect search strategy, effectively enabling us to search
one million checkpoints in around 8.5 seconds.

In summary, this thesis shows the need for specialized high frequency
memory checkpointing techniques and proposes enhancements to current
checkpointing techniques to make them fit for use cases that require check-
points to be taken with a high frequency. We explored the deployability
trade-off of different checkpointing techniques and showed that if the target
application can be recompiled, pure userland techniques relying on compiler
instrumentation can offer a significantly better run-time performance than
their page-granular counterparts. LMC’s shadow state inspired checkpoint
organization shows that it is not necessary to give up memory guarantees to
achieve this. Further, we showed that speculation and exporting copy-on-
write functionality as a first level kernel primitive to the userland lowers the
overhead of page granular checkpointing significantly. Finally, we explore
techniques that allow for efficiently storing and searching a the large number
of checkpointed data resulting from the high checkpoint frequency.

We hope that these techniques combined open up a whole new range of
possible scenarios for high frequency memory checkpointing, such as the
time traveling debugging system DeLorean presented in this thesis.





SAMENVATTING

Efficiënte Hoogfrequente Momentopnames ten bate van Foutherstel en
Foutanalyse

Computers en de programmatuur die er op draait spelen in ons dagelijkse
leven een immer toenemende rol. Deze programmatuur, ook software ge-
naamd, wordt continue uitgevoerd op computers, telefoons, TV’s, en zelfs
om onze polsen in slimme horloges. Deze software heeft weliswaar onze le-
vensstandaard op meerdere manieren verhoogd, maar wordt ook al sinds het
eerste uur geplaagd door een probleem: betrouwbare software is moeilijk te
schrijven. Dit blijktmede uit de gevleugelde uitdrukking “Have you tried turn-
ing it off and on again”, oftewel, heb je hem al uit- en aangezet?, de zogenaamd
universele oplossing voor allerlei computerproblemen, die dus allemaal aan
de software moeten liggen.

Het is dus niet verrassend dat onderzoek naar methodes en technieken om
software betrouwbaar te maken in dezelfde periode een vlucht nam dat com-
puters voor het eerst werden toegepast in het bedrijfsleven en in universitei-
ten.

Checkpointing, is een algemene systeem momentopname, is een belangrijke
techniek die uit dit onderzoek is voortgekomen, en veel toepassingen heeft
t.b.v. betrouwbaarheid, zoals het automatisch herstellen van fouten die opge-
treden hebben, en het vinden van fouten in de software. Een belangrijk on-
derdeel van deze momentopname is een momentopname van het geheugen
van een programma maken. Dat is het hoofdonderwerp van dit proefschrift.

Dit proefschrift legt zich met name toe op scenarios waarbij frequente mo-
mentopnames nodig zijn. Voorbeelden van toepassingen zijn automatische her-
stel technieken die momentopnames voor elke cliënt verzoek vereisen, of op
precies uitgekiende herstel-tijdstippen. Verder maken frequente opnames
het ook mogelijk om, bij het opsporen van fouten, de toestand van een pro-
gramma op elk gewenst moment tijdens het verloop van het programma op
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te vragen.
Voor het hoogfrequente uitvoeren van deze opnames is het vastleggen van

de toestand van het geheugen een belangrijke factor in de kosten. Daarom is
het aantrekkelijk dit te optimaliseren. Toepassingen die zowel hoogfrequente
opnames nodig hebben als een lange opname geschiedenis krijgen ook te ma-
ken met het efficiënt opslaan van al die opnames zonder dat waardevolle ap-
plicatie geheugen kwijt te raken.

In Hoofdstuk 2 onderzoeken we pure applicatieniveau hoogfrequente op-
names. Omdatweons tot het applicatieniveaubeperken, omzeilenwehet feit
dat bij het in gebruik nemen van een dergelijke oplossing in de echte wereld,
een verandering aan het onderliggende besturingssysteem vaak niet mogelijk
is. We onderzoeken drie momentopname-systemen die op pagina-resolutie
werken, en verder een systeem waar instrumentatie voor nodig is, toegepast
op een verzameling server applicaties. Om een hoogfrequente opname aan
te tonen, nemen we voor elk verzoek een opname. Dit is een veel voorko-
mende modus wanneer we verzoek-gebaseerd foutherstel willen doen. Onze
experimenten tonen aan dat wanneer een hogere opnamefrequentie wordt
toegepast, de opnamesystemen die een paginaresolutie gebruiken een hoger
snelheidsverlies laten zien. De instrumentatie-gebaseerde undolog, die welis-
waar efficiënter is in gebruik, heeft als nadeel dat het geheugengebruik on-
begrensd is. We presenteren Lightweight Memory Checkpointing (LMC), een
systeem dat op efficiënte wijze hoogfrequente, applicatieniveau momentop-
names met wél begrensd geheugengebruik mogelijk maakt. LMC maakt ge-
bruik van instrumentatie die bij het bouwen (compileren) van de applicatie
automatisch door de compiler wordt aangebracht, in plaats van afhankelijk
te zijn van relatief inefficiënte systeemniveau primitieven die met paginare-
solutie werkt, en met copy-on-write semantiek werkt. In tegenstelling tot de
undolog aanpak slaat LMC opname gegevens op in een schaduwbestand, waar-
door geheugengebruik begrensd wordt.

InHoofdstuk 3 komenwe terug oppaginaresolutiemomentopnames. Maar
deze keer staan we er niet op dat systeemwijzigingen niet kunnen. Eerst ana-
lyseren we wat de kosten zijn voor deze momentopnames met pagina resolu-
tie. We tonen aan dat als we gebruik maken van het Kopiëer-met-Schrijven
(copy-on-write, oftewel CoW) mechanisme in Linux, dat met fork automa-
tisch wordt ingezet, het maar liefst acht maal zoveel tijd kost ten opzichte
van simpelweg de pagina kopiëren. En daarmee negeren we nog de kosten
van fork zelf, die ook aanmerkelijk zijn. De resultaten van deze analyse mo-
tiveren het ontwerp van de tweede techniek om momentopnames mee te
maken die in dit proefschrift wordt gepresenteerd, Speculatieve Geheugen-



Samenvatting | 125

opnames, in het Engels genaamd Speculative Memory Checkpointing (SMC).
SMC maakt een combinatie van CoW en simpelweg direct kopiëren moge-
lijk. SMC kan ook er notie van nemen welke pagina’s vaak veranderen, of-
tewel ‘heet’ zijn, en deze speculatief kopiëren, om een veel duurdere CoW
gebeurtenis te snel af te zijn. De speculatie bestaat uit het inschatten van wat
telkens de set pagina’s is waarmee gewerkt wordt, en ook nog eens naartoe
geschreven wordt. Dit noemen we Writable Working Set Estimation, oftewel
WWSE. We hebben zowel twee gevestigde WWSE technieken geëvalueerd,
namelijk Active-RNDenActive-CKS, als ons eigenWWSE algoritme, name-
lijk GSPec WWSE. In tegenstelling tot traditionele WWSE technieken, kan
GSpec zich automatisch op verschillende soorten taken instellen. Onze ex-
perimenten tonen aan dat een (hypothetische) ideale en kosteloze speculatie
de kosten van CoW momentopnames met 29,3 procentpunten kan vermin-
deren - van 44,9% tot 15,6%, in het geteste scenario. Dit bevestigt het nut
van speculatie om de kosten van het gebruik van CoW bij momentopnames
te verminderen. Verder laten we zien dat alle geteste speculatie strategieën
de kosten drukken, en ook een beperkte toename in het geheugengebruik en
hersteltijd met zich mee brengen. GSPec laat de grootste speculatie nauw-
keurigheid zien bij de geteste toepassingen, en vermindert de opname kosten
met 14,1 procentpunten, van 44,9% naar 30,8%, in vergelijking tot standaard
CoW.

In Hoofdstuk 4 presenteren we DeLorean, en systeem om fouten in soft-
ware te helpen opsporen (debugging). Dit systeem maakt gebruik van mo-
mentopnames waardoor ‘tijdreizen’ mogelijk wordt. Hiermee demonstre-
ren we een toepassing in de echte wereld voor hoogfrequente momentopna-
mes. DeLorean benadrukt het belang van efficiënt onderzoek en opslag van
momentopnames, twee belangrijke vraagstukken die zich voordoen wanneer
veel momentopnames genomen worden. DeLorean gebruikt het systeem dat
in Hoofdstuk 3 is gepresenteerd om efficiënte, hoogfrequente momentopna-
mes te realiseren, en zo de vertraging tijdens de opnamefase te verminderen.
Door het comprimeren en ontdubbelen van de pagina’s in de momentopna-
mes, is DeLorean in staat om het geheugengebruik van de opslag van de mo-
mentopnamesmet 95% te verminderen. Hierdoor is de opslag vanmiljoenen
momentopnames mogelijk. Verder onderzoeken we verschillende manieren
om de inhoud te onderzoeken. We laten zien dat, in onze experimenten, als
interessante geheugenlocaties bekend zijn, gedeeltelijke terugrol tot 88% van
de zoektijd kan schelen. Dit kan verder verbeterd worden als bepaalde eigen-
schappen van de zoekcriteria bekend zijn. In sommige gevallen kunnen we
daardoor een zoekstrategie gebruiken door telkens middendoor te delen –
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hierdoor kunnen we miljoenen opnames in rond de 8,4 seconden doorzoe-
ken.

Samengevat laat dit proefschrift de noodzaak zien voor hoogfrequente ge-
heugen momentopnames, en worden er verbeteringen voorgesteld aan ge-
vestigde opname technieken. Hierdoor worden ze bruikbaar voor hoogfre-
quente toepassingen. We hebben het praktische inzetbaarheids spannings-
veld onderzocht van verschillende opnametechnieken, en hebben laten zien
dat als de doel-applicatie opnieuw gecompileerd kan worden, technieken die
puur op applicatieniveau werken een veel betere doorvoersnelheid van de
applicatie mogelijk maken dan varianten die van paginaresolutie technieken
afhankelijk zijn. Het schaduwbestand van LMC laat zien dat het niet nood-
zakelijk is om geheugen garanties te laten varen om dit te realiseren. Verder
meer laten we zien dat speculatie en het ontsluiten van de CoW functiona-
liteit als een systeem functie aan de applicatie de extra kosten van hoogfre-
quente opnames aanzienlijk verkleint. De technieken die in dit proefschrift
worden gepresenteerd maken het efficiënte opslaan en doorzoeken van het
grote aantal opnames dat van een hoogfrequente opname afkomt mogelijk.

We hopen dat deze technieken gezamenlijk een heel nieuw scala aan mo-
gelijke toepassingsscenario’s mogelijk maakt voor hoogfrequente geheugen
moment opnames, zoals het ‘tijd-reizende’ DeLorean systeem dat ook in dit
proefschrift gepresenteerd wordt.
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