STABILITY IN HAMILTONIAN SYSTEMS:
Applications to the restricted three-body problem

Bob Rink Theo Tuwankotta*
e-mail: rink@math.uu.nl, tuwankotta@math.uu.nl
Mathematisch Instituut
Utrecht University
PO Box 80.010, 3508 TA Utrecht
The Netherlands
29th September 2003

Contents

1 Introduction 2
2 The restricted three-body problem 3
3 Relative equilibria 5
4 Linear Hamiltonian systems 6
5 Liapunov’s and Chetaev’s theorems 8
6 Applications to the restricted problem 10
7 Normal forms 12
8 The Poincaré section 14
9 The twist map and Arnold’s stability theorem 15
10 Acknowledgments 19

*On leave from Jurusan Matematika, FMIPA, Institut Teknologi Bandung, Ganesha no. 10, Bandung, Indonesia
1 Introduction

As participants in the MASIE-project, we attended the summer school *Mechanics and Symmetry* in Peyresq, France, during the first two weeks of September 2000. This article was inspired by the notes we took there from Prof. Meyer’s lecture series “N-Body Problems”.

The N-body problem is a famous classical problem. It consists of describing the motion of N planets that interact with a gravitational force. Already in 1772, Euler described the three-body problem in his effort to study the motion of the moon. In 1836 Jacobi brought forward an even more specific part of the three body problem, namely that in which one of the planets has a very small mass. This system is the topic of this paper and is nowadays called the *restricted three-body problem*. It is a conservative two degrees of freedom problem, which gained extensive study in mechanics.

The N-body problem has always been a major topic in mathematics and physics. In 1858, Dirichlet claimed to have found a general method to treat any problem in mechanics. In particular, he said to have proven the stability of the planetary system. This statement is still questionable because he passed away without leaving any proof. Nevertheless, it initiated Weierstrass and his students Kovalevski and Mittag-Leffler to try and rediscover the method mentioned by Dirichlet. Mittag-Leffler even managed to convince the King of Sweden and Norway to establish a prize for finding a series expansion for coordinates of the N-body problem valid for all time, as indicated by Dirichlet’s statement. In 1889, this prize was awarded to Poincaré, although he did not solve the problem. His essay, however, produced a lot of original ideas which later turned out to be very important for mechanics. Moreover, some of them even stimulated other branches of mathematics, for instance topology, to be born and later on gain extensive study. Despite of all this effort, the N-body problem is still unsolved for $N > 2$.\(^1\)

This paper focuses on the relatively simple restricted three-body problem. This describes the motion of a test particle in the combined gravitational field of two planets and it could serve for instance as a model for the motion of a satellite in the Earth-Moon system or a comet in the Sun-Jupiter system. The restricted three-body problem has a number of relative equilibria, which we compute. The remaining text will mainly be concerned with general Hamiltonian equilibria. Stability criteria for these equilibria will be derived, as well as detection methods for bifurcations of periodic solutions. Classical and more advanced mathematical techniques are used, such as spectral analysis, Liapunov functions, Birkhoff-Gustavson normal forms, Poincaré sections, and Kolmogorov twist stability. All help to study the motion of the test particle near the relative equilibria of the restricted problem.

\(^1\)Summarized from [10], [11] and [8]
2 The restricted three-body problem

Before introducing the restricted three-body problem, let us study the two-body problem, the motion of two planets interacting via gravitation. Denote by $X_1, X_2 \in \mathbb{R}^3$ the positions of the planets 1 and 2 respectively. Let us assume that planet 1 has mass $0 < \mu < 1$, planet 2 has mass $1 - \mu$ and the gravitational constant is equal to 1. These assumptions are not very restrictive, because they can always be arranged by a rescaling of time. The equations of motion for the two-body problem then read:

$$\frac{d^2 X_1}{dt^2} = -\frac{(1 - \mu)}{||X_1 - X_2||^3}(X_1 - X_2), \quad \frac{d^2 X_2}{dt^2} = -\frac{\mu}{||X_1 - X_2||^3}(X_2 - X_1).$$ \hspace{1cm} (2.1)

Let us denote the center of mass

$$Z := \mu X_1 + (1 - \mu)X_2.$$

Then we derive from (2.1) and (2.2) that $\frac{d^2 Z}{dt^2} = 0$, expressing that the center of mass moves with constant speed. Now we transform to co-moving coordinates

$$Y_i = X_i - Z \text{ for } i = 1, 2,$$

and we write down the equations of motions in these new variables:

$$\frac{d^2 Y_1}{dt^2} = -\frac{(1 - \mu)^3}{||Y_1||^3}Y_1, \quad \frac{d^2 Y_2}{dt^2} = -\frac{\mu^3}{||Y_2||^3}Y_2.$$

Let us analyze these equations a bit more. First of all, we see from the definitions (2.2) and (2.3) that $\mu Y_1 + (1 - \mu)Y_2 = 0$, so Y_1 and Y_2 lie on a line through the origin of \mathbb{R}^3, both at another side of the origin, and their length ratio $||Y_1||$ is fixed to the value $\frac{1 - \mu}{\mu}$. The line connecting Y_1, Y_2 and the origin is called the line of syzygy. Because $Y_2 = -\frac{\mu}{1 - \mu}Y_1$, we in fact only need to study the first equation of (2.4). The motion of the second planet then follows automatically.

Secondly, by differentiation one finds that the angular momentum $Y_1 \times \frac{dY_1}{dt}$ is independent of time. Indeed, $\frac{d}{dt}(Y_1 \times \frac{dY_1}{dt}) = \frac{dY_1}{dt} \times \frac{dY_1}{dt} + Y_1 \times \frac{d^2 Y_1}{dt^2} = 0$, because both terms are the cross-products of collinear vectors.

In the case that $Y_1 \times \frac{dY_1}{dt} = 0$, and assuming that $Y_1(0) \neq 0$, we have that $\frac{dY_1}{dt}$ has the same direction as Y_1, so the motion takes place in a one-dimensional subspace: $Y_1, \frac{dY_1}{dt}, Y_2, \frac{dY_2}{dt} \in Y_1(0)\mathbb{R} = Y_2(0)\mathbb{R}$. It is not difficult to derive the following scalar second order differential equation for the motion in this subspace: $\frac{d^2}{dt^2}||Y_1|| = -(1 - \mu)^3/||Y_1||^2$. It turns out that in this case Y_1 and Y_2 fall into the origin in a finite time.

In the case that $Y_1 \times \frac{dY_1}{dt} \neq 0$, the motion takes place in the plane perpendicular to $Y_1 \times \frac{dY_1}{dt}$, because both Y_1 and $\frac{dY_1}{dt}$ are perpendicular to the constant vector $Y_1 \times \frac{dY_1}{dt}$. By rotating our coordinate frame, we can arrange that $Y_1 \times \frac{dY_1}{dt}$ is some multiple of the third basis vector. Thus we can consider the equations (2.4) as two second order planar equations. It is well-known that the planar solutions of $\frac{d^2 Y_1}{dt^2} = -\frac{(1 - \mu)^3}{||Y_1||^3}Y_1$ with $Y_1 \times \frac{dY_1}{dt} \neq 0$
describe one of the conic sections: a circle, an ellipse, a parabola or a hyperbola. \(Y_2 \) clearly describes a similar conic section.

Let us now assume that a certain solution of the two-body problem is given to us. We want to study the motion of a test particle in the gravitational field of the two main bodies, which we call primaries. The test particle is assumed to have zero mass. Therefore it does not affect the primaries, but it does feel the gravitational force of the primaries acting on it. The resulting problem is called the restricted three-body problem. It could serve as a model for a satellite in the Earth-Moon system or a comet in the Sun-Jupiter system. Let \(X \in \mathbb{R}^3 \) denote the position of the test particle. Then the restricted three-body problem is given by

\[
\frac{d^2 X}{dt^2} = -\frac{\mu}{||X - X_1||^3}(X - X_1) - \frac{(1 - \mu)}{||X - X_2||^3}(X - X_2),
\]

in which \((X_1, X_2)\) is the given solution of the two-body problem. One can again transform to co-moving coordinates, setting \(Y = X - Z \), which results in the system

\[
\frac{d^2 Y}{dt^2} = -\frac{\mu}{||Y - Y_1||^3}(Y - Y_1) - \frac{(1 - \mu)}{||Y - Y_2||^3}(Y - Y_2).
\]

At this point we start making assumptions. Let us assume that the primaries move in a circular orbit around their center of mass with constant angular velocity \(\omega \). This is approximately true for the Earth-Moon system and the Sun-Jupiter system. We set the angular velocity equal to 1. Without loss of generality, we can assume that the motion of the primaries takes place in the plane perpendicular to the third basis-vector. Thus, after translating time if necessary,

\[
Y_1 = R(t) \begin{pmatrix} 1 - \mu \\ 0 \\ 0 \end{pmatrix}, \quad Y_2 = R(t) \begin{pmatrix} -\mu \\ 0 \\ 0 \end{pmatrix},
\]

in which \(R(t) \) is the rotation matrix:

\[
R(t) := \begin{pmatrix} \cos t & -\sin t & 0 \\ \sin t & \cos t & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]

Note that we have introduced a rotating coordinate frame in which the motion of the primaries has become stationary. At this point we put in our test particle and again we make an assumption, namely that it moves in the same plane as the primaries do. So we set

\[
Y = R(t) \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}.
\]
Let \((x,0)^T = (x_1, x_2, 0)^T\) be the coordinates of the test particle in the rotating coordinate frame. By inserting (2.7), (2.8) and (2.9) into (2.6), multiplying the resulting equation from the left by \(R(t)^{-1}\) and using two following identities
\[
\begin{pmatrix}
\cos t & -\sin t \\
\sin t & \cos t
\end{pmatrix}^{-1} \frac{d}{dt} \begin{pmatrix}
\cos t & -\sin t \\
\sin t & \cos t
\end{pmatrix} = \begin{pmatrix} 0 & -1 \\
1 & 0
\end{pmatrix},
\]
we deduce the planar equations of motion for \(x\):
\[
\frac{d^2}{dt^2} x + \begin{pmatrix} 0 & -2 \\
2 & 0
\end{pmatrix} \frac{dx}{dt} = \frac{\mu}{||x - (1_{x_1})||} (x - (1_{x_1})) - \frac{1 - \mu}{||x - (0_{x_1})||^2} (x - (0_{x_1})), \ x \in \mathbb{R}^2.
\]
Finally, setting \(y = \frac{dx}{dt} + \begin{pmatrix} 0 & -1 \\
1 & 0
\end{pmatrix} x\), we find that these are Hamiltonian equations of motion on \(\mathbb{R}^4\{x = (1_{x_1}), (0_{x_1})\}\) with Hamiltonian
\[
H = \frac{1}{2} (y_1^2 + y_2^2) - (x_1y_2 - x_2y_1) - \frac{\mu}{||x - (1_{x_1})||} - \frac{1 - \mu}{||x - (0_{x_1})||},
\]
where we have equipped \(\mathbb{R}^4\) with the canonical symplectic form \(dx_1 \wedge dy_1 + dx_2 \wedge dy_2\), i.e. the equations of motion are given by \(\frac{dx_i}{dt} = \frac{\partial H}{\partial y_i}, \frac{dy_i}{dt} = -\frac{\partial H}{\partial x_i}\).

3 Relative equilibria

Let us look for equilibrium solutions of the Hamiltonian vector field induced by (2.10). These correspond to stationary motion of the test particle relative to the rotating coordinate frame and are therefore called relative equilibria. In the original coordinates they correspond to the test particle rotating around the center of mass of the primaries with angular velocity 1.

First of all, to facilitate notation, we introduce the potential energy function
\[
V(x) := -\frac{\mu}{||x - (1_{x_1})||} - \frac{1 - \mu}{||x - (0_{x_1})||}.
\]
To find the equilibrium solutions of (2.10) we set all the partial derivatives of \(H\) equal to zero and find
\[
y_1 + x_2 = 0, \ y_2 - x_1 = 0, \ -y_2 + \frac{\partial V}{\partial x_1}(x) = 0, \ y_1 + \frac{\partial V}{\partial x_2}(x) = 0,
\]
or equivalently,
\[
\frac{\partial V}{\partial x_1}(x) = x_1, \ \frac{\partial V}{\partial x_2}(x) = x_2,
\]
where \(y \) at the equilibrium point can easily be found once we solved (3.1) for \(x \) at the equilibrium point. Note that \(x \) solves (3.1) if and only if \(x \) is a stationary point of the function

\[
U(x) := \frac{1}{2}(x_1^2 + x_2^2) - V(x),
\]

called the amended potential.

Let us first look for equilibrium points of the amended potential that lie on the line of syzygy, i.e. for which \(x_2 = 0 \). Note that \(\frac{\partial U}{\partial x_2}(x) = 0 \) is automatically satisfied in this case since \(\frac{\partial U}{\partial x_2}|_{x_2=0} \equiv 0 \). \(\frac{\partial U}{\partial x_1}(x) = 0 \) reduces to

\[
\frac{d}{dx_1} U(x_1, 0) = \frac{d}{dx_1} \left(\frac{1}{2} x_1^2 + \frac{\mu}{|x_1 + \mu - 1|} + \frac{1 - \mu}{|x_1 + \mu|} \right) = 0.
\]

Clearly, \(U(x_1, 0) \) goes to infinity if \(x_1 \) approaches \(-\infty, -\mu, 1 - \mu \) or \(\infty \), so \(U(x_1, 0) \) has at least one critical point on each of the intervals \((-\infty, -\mu), (-\mu, 1 - \mu) \) and \((1 - \mu, \infty) \). But we also calculate that \(\frac{d^2}{dx_1^2} U(x_1, 0) = 1 + 2\frac{\mu}{|x_1 + \mu|} + 2\frac{1 - \mu}{|x_1 + \mu|^2} > 0 \). So \(U(x_1, 0) \) is convex on each of these intervals and we conclude that there is exactly one critical point in each of the intervals. The three relative equilibria on the line of syzygy are called the Eulerian equilibria. They are denoted by \(L_1, L_2 \) and \(L_3 \), where \(L_1 \in (-\infty, -\mu) \times \{0\}, \ L_2 \in (-\mu, 1 - \mu) \times \{0\} \) and \(L_3 \in (1 - \mu, \infty) \times \{0\} \).

Now we shall look for equilibrium points that do not lie on the line of syzygy. Let us use \(d_1 = ||x - (0_{-\mu})|| = \sqrt{(x_1 + \mu - 1)^2 + x_2^2} \) and \(d_2 = ||x - (0_{\mu})|| = \sqrt{(x_1 + \mu)^2 + x_2^2} \) as coordinates in each of the half-planes \(\{x_2 > 0\} \) and \(\{x_2 < 0\} \). Then \(U \) can be written as

\[
U = \frac{\mu}{2} d_1^2 + \frac{1-\mu}{2} d_2^2 - \frac{\mu(1-\mu)}{2} + \frac{\mu}{d_1} + \frac{1-\mu}{d_2}. \]

So the critical points of \(U \) are given by \(d_i = d_i^{-2} \) i.e. \(d_1 = d_2 = 1 \). This gives us the two Lagrangean equilibria which lie at the third vertex of the equilateral triangle with the primaries at its base-points: \(L_4 = (\frac{1}{2} - \mu, \frac{1}{2}\sqrt{3})^T \) and \(L_5 = (\frac{1}{2} - \mu, -\frac{1}{2}\sqrt{3})^T \).

This paper discusses some useful tools for the study of the flow of Hamiltonian vector fields near equilibrium points. We will for instance establish stability criteria for Hamiltonian equilibria and study bifurcations of periodic solutions near Hamiltonian equilibria. The Eulerian and Lagrangean equilibria of the restricted three-body problem will serve as an instructive and inspiring example.

4 Linear Hamiltonian systems

One of the techniques to prove stability for an equilibrium of a system of differential equations, is to analyze the linearized system around that equilibrium. Stability or instability then may follow from the eigenvalues of the matrix of the linearized system. In Hamiltonian systems, these eigenvalues have a special structure which implies that the linear theory can only be used to prove instability, not stability. We will start by giving a brief introduction to linear Hamiltonian systems. We then conclude this section with a lemma which shows why one cannot conclude stability from the linear analysis.
Consider a symplectic vector space \mathbb{R}^{2n} with coordinates $z = (x, y)^T$ and the symplectic form is $dx \wedge dy := \sum_{j=1}^{2n} dx_j \wedge dy_j$. Then every continuously differentiable function $H : \mathbb{R}^{2n} \to \mathbb{R}$ induces the Hamiltonian vector field X_H on \mathbb{R}^{2n} defined by $X_H(z) = J(\nabla H(z))^T$, in which the $2n \times 2n$ matrix

$$J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$$

is called the standard symplectic matrix. Note that the standard symplectic matrix J satisfies $J^{-1} = J^T = -J$. Now take any infinitesimally symplectic matrix S of the form $S = JQ$, with Q symmetric. Then the simple calculation

$$J^{-1}(-S^T)J = J^{-1}(-JQ)^TJ = -J^{-1}(QJ^T)J = -J^{-1}Q = JQ = S,$$

shows that S and $-S^T$ are similar. But similar matrices have equal eigenvalues. And because S has real coefficients, this observation leads to the following lemma:

Lemma 4.1 If $S \in \text{sp}(n)$ and λ is an eigenvalue of S, then also $-\lambda, \overline{\lambda}$ and $-\overline{\lambda}$ are eigenvalues of S.

Now let us consider the exponential of an infinitesimally symplectic matrix, $\exp(S) = \exp(JQ)$, which is the fundamental matrix for the time-1 flow of the linear Hamiltonian vector field $z \mapsto Sz = JQz$. It is a nice exercise to show that it satisfies $(\exp(S))^T J \exp(S) =
In general, a matrix $P \in \mathbb{R}^{2n \times 2n}$ satisfying $P^T JP = J$ is called symplectic. The set of symplectic matrices is denoted

$$\text{Sp}(n) := \{ P \in \mathbb{R}^{2n \times 2n} \mid P^T JP = J \}.$$

For a symplectic matrix P one easily derives that $J^{-1}P^{-T}J = P$, so P^{-T} and P are similar. This leads to:

Lemma 4.2 If $P \in \text{Sp}(n)$ and λ is an eigenvalue of P, then also $\frac{1}{\lambda}$, $\overline{\lambda}$ and $\frac{1}{\overline{\lambda}}$ are eigenvalues of P.

We remark here that $\text{Sp}(n)$ is a Lie-group with matrix multiplication. Its Lie-algebra is exactly $\text{sp}(n)$.

Remember that we studied linear Hamiltonian systems to determine stability or instability of an equilibrium from the spectrum of its linearized vector field. From lemma 4.1 we see if one eigenvalue has a nonzero real part, then there must be an eigenvalue with positive real part. In this case the equilibrium is unstable. The other possibility is that all eigenvalues are purely imaginary. In this case, adding nonlinear terms could destabilize the equilibrium. So lemma 4.1 states that for Hamiltonian systems, the linear theory can only be useful to prove instability of an equilibrium.

Lemma 4.2 states a similar thing for symplectic maps: if $\Psi : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a symplectic diffeomorphism with a fixed point, then the linearization of Ψ at that fixed point can only be used to prove instability of the fixed point, not stability.

The reader should be convinced now that we need more sophisticated mathematical techniques if we want to have stability results. Some of them will be explained in the following section.

5 Liapunov’s and Chetaev’s theorems

We will now describe a direct method to determine stability of an equilibrium. We will give references for the proofs and explain the interpretation of the theory instead. In section 6 we shall apply the obtained results to the relative equilibria of the restricted three-body problem.

Consider a general system of differential equations,

$$\dot{v} = f(v), \quad (5.1)$$

where f is a C^r vector field on \mathbb{R}^m and $f(0) = 0$. Let $V : U \to \mathbb{R}$ be a positive definite C^1 function on a neighborhood U of the origin, i.e. $V(0) = 0$ and $V(z) > 0$, $\forall z \in U \setminus \{0\}$. If u is a solution of (5.1), then the derivative of V along u is $\frac{d}{dt} V(u(t)) = \nabla V(u(t)) \cdot \dot{u}(t) = \nabla V(u(t)) \cdot f(u(t))$. So let us define the *orbital derivative* $\dot{V} : U \to \mathbb{R}$ of V as

$$\dot{V}(v) := \nabla V(v) \cdot f(v).$$
Theorem 5.1 Liapunov’s theorem Given such a function V for the system of equations (5.1), we have:

1. If $\dot{V}(v) \leq 0, \forall v \in U \setminus \{0\}$ then the origin is stable.
2. If $\dot{V}(v) < 0, \forall v \in U \setminus \{0\}$ then the origin is asymptotically stable.
3. If $\dot{V}(v) > 0, \forall v \in U \setminus \{0\}$ then the origin is unstable.

The function V is called a Liapunov function.

Let us see what this means for $m = 2$. Since V is a positive definite function, 0 is a local minimum of V. This implies that there exists a small neighborhood U' of 0 such that the level sets of V lying in U' are closed curves. Recall that $\nabla V(u_c)$ is a normal vector to the level set C of V at u_c pointing outward. If an orbit $u(t)$ crosses this level curve C at u_c, then the velocity vector of the orbit and the gradient $\nabla V(u_c)$ will form an angle θ for which

$$\cos(\theta) = \frac{\dot{V}(u_c)}{||\nabla V(u_c)||||f(u_c)||}.$$

\(\dot{V}(u) < 0\) implies that $\pi/2 < \theta < 3\pi/2$. It follows that the orbit is moving inwards the level curve C in this case. If $\dot{V}(u) = 0$, the orbit follows C. If $\dot{V}(u) > 0$ we see the orbit moving outwards of C, that is away from the origin. See [7] for proof of Liapunov’s theorem.

An immediate implication of Liapunov’s theorem is the following. Consider a Hamiltonian system

$$\dot{z} = J(\nabla H(z))^T.$$

(5.2)

A good candidate for the Liapunov function in this Hamiltonian system would be the Hamiltonian function itself, because the orbits of a Hamiltonian system lie in the level set of the Hamiltonian. So $\dot{V} = \dot{H} = 0$. Thus, if H is locally positive definite then Liapunov’s theorem applies. And if H is negative definite, one can choose $-H$ as a Liapunov function.

We have:

Theorem 5.2 Dirichlet’s Theorem The origin is a stable equilibrium of (5.2), if it is an isolated local maximum or local minimum of the Hamiltonian H.

The condition for instability in Liapunov’s theorem is very strong since it requires the orbital derivative to be positive everywhere in U. The following theorem is a way to conclude instability under somewhat weaker conditions.

Theorem 5.3 Chetaev’s theorem Let U be a small neighborhood of the origin where the C^1 Chetaev function $V : U \to \mathbb{R}$ is defined. Let Ω be an open subset of U such that

1. $0 \in \partial \Omega$,
2. $V(v) = 0, \forall v \in \partial \Omega \cap U$,

9
3. \(V(v) > 0 \) and \(\dot{V}(v) > 0, \forall v \in \Omega \cap U \).

Then the origin is an unstable equilibrium of (5.2).

The interpretation of this theorem is the following. An orbit \(u(t; u_0) \) starting in \(\Omega \cap U \), will never cross \(\partial \Omega \) due to the properties (2) and (3) of the Chetaev function. From the second part of property (3) it now follows that \(V(u(t; u_0)) \) is increasing whenever \(u(t; u_0) \) in \(\Omega \cap U \). This orbit can not stay in \(\partial \Omega \cap U \) due to the fact that \(U \) is open. Thus, \(u(t) \) moves away from the origin. Hence the origin is unstable.

6 Applications to the restricted problem

In this section we apply the theory of the previous sections to the relative equilibria of the restricted three-body problem.

Consider a Hamiltonian system with Hamiltonian

\[
H = \frac{1}{2} \omega (x_1^2 + y_1^2) + \lambda x_2 y_2 + \mathcal{O}(||z||^3),
\]

(6.1)

where \(\omega, \lambda \neq 0 \) are reals. One can calculate that the Hamiltonians of the restricted three-body problem at the Eulerian equilibria \(L_1, L_2 \) and \(L_3 \) can be written in this form for all values of the parameter \(\mu \). The eigenvalues of the linearized system are \(\pm i\omega \) and \(\pm \lambda \), so the origin is an unstable equilibrium for the system induced by (6.1). But we can say more about the flow near this equilibrium.

We will first make a little excursion to a theorem on the existence of periodic solutions, known as Liapunov’s center theorem.

Theorem 6.1 Liapunov’s center theorem Consider a Hamiltonian system of differential equations on \(\mathbb{R}^{2m} \), \(\dot{u} = f(u) \) with \(f(0) = 0 \). Suppose that the eigenvalues of the linearized system around 0 are nonzero and given as \(\pm i\omega, \lambda_3, \ldots, \lambda_{2m} \), where \(\omega \in \mathbb{R} \) and \(\lambda_j \in \mathbb{C} \). If \(\lambda_j/\omega \notin \mathbb{Z} \) for all \(j \), then there is a smooth 2-dimensional surface through the origin, tangent to the eigenspace corresponding to \(\pm i\omega \), filled with periodic solutions with period close to \(2\pi/\omega \) (as \(u \to 0 \)).

This surface of periodic solutions is called the Liapunov center. Consider now the Hamiltonian system (6.1), for which \(m = 4 \). The eigenvalues of the linearized system are \(\pm i\omega \), and \(\pm \lambda \) where \(\lambda \) is real. Therefore Liapunov’s Center Theorem holds: there exists such a Liapunov center through the origin of the system (6.1). In fact, we have the following result.

Proposition 6.2 The equilibrium at the origin for the Hamiltonian system with Hamiltonian (6.1) is unstable. There is a Liapunov Center through the origin. Furthermore, there is a neighborhood of the origin such that every solution which begins at an initial position away from the Liapunov center, leaves this neighborhood in either positive or negative time.
It remains to prove the last statement. First of all, let us write \(H = H_2 + H_r \), where \(H_r \) represents the higher order terms of \(H \) near 0. \(H_r \) starts with third order terms in \(z \). Secondly, to make life easier, let us assume that the Liapunov center is located at \(x_2 = 0, y_2 = 0 \). This implies that

\[
\frac{\partial H_r}{\partial x_2}(x_1, 0, y_1, 0) = \frac{\partial H_r}{\partial y_2}(x_1, 0, y_1, 0) = 0 .
\]

(6.2)

Define \(V(z) = (x_2^2 - y_2^2)/2 \). The orbital derivative of \(V \) is \(\dot{V} = \lambda (x_2^2 + y_2^2) + W(z) \) where

\[
W(z) := x_2 \frac{\partial H_r}{\partial y_2} - y_2 \frac{\partial H_r}{\partial x_2}.
\]

From (6.2) we have that \(W(z) \) is at least quadratic in \((x_2, y_2)\). As a consequence we can choose a neighborhood \(U \) of 0 such that \(|W(z)| \leq \lambda (x_2^2 + y_2^2)/2 \) on \(U \). Taking \(\Omega = \{ z \mid x_2^2 > y_2^2 \} \) and applying Chetaev’s theorem, we conclude that every solution starting in \((U \setminus \{ x_2 = y_2 = 0 \}) \cap \Omega \) will leave \(U \) in positive time. Reversing the time, we conclude that taking \(\Omega = \{ z \mid x_2^2 < y_2^2 \} \), every solution starting in \((U \setminus \{ x_2 = y_2 = 0 \}) \cap \Omega \) will leave \(U \) in negative time.

Modulo small modifications if the Liapunov center is not flat, this concludes the proof of proposition 6.2. Recall that proposition 6.2 also completely describes the flow of the restricted three-body problem near the Eulerian equilibria \(L_1, L_2 \) and \(L_3 \).

Secondly, consider the Hamiltonian

\[
H = \alpha (x_1 y_1 + x_2 y_2) + \beta (y_1 x_2 - x_1 y_2) + \mathcal{O}(||z||^3),
\]

(6.3)

where \(\alpha, \beta \neq 0 \) are real. The Hamiltonian of the restricted three-body problem at \(L_4 \) and \(L_5 \) is of this type for the parameter values \(\mu_1 < \mu < 1 - \mu_1 \). The eigenvalues of the linearized system are \(\pm \alpha \pm i\beta \), so the origin is unstable. Moreover, choosing \(V(z) = (x_1^2 + x_2^2 - y_1^2 - y_2^2)/2 \) as a Liapunov function we can verify the following result:

Proposition 6.3 The Lagrangean equilibria \(L_4 \) and \(L_5 \) of the restricted three-body problem are unstable for \(\mu_1 < \mu < 1 - \mu_1 \). Furthermore there is a neighborhood of these points with the property that every nonzero solution starting in this neighborhood, will eventually leave it in positive time.

By now we determined the stability of the equilibria of the restricted three-body problem except for the Lagrangean points at the parameter values \(0 < \mu \leq \mu_1 \) and \(1 - \mu_1 \leq \mu < 1 \). In the cases that \(0 < \mu < \mu_1 \) and \(1 - \mu_1 < \mu < 1 \), the Hamiltonian can be expanded around the Lagrangean points as

\[
H = \frac{1}{2} \omega_1 (x_1^2 + y_1^2) + \frac{1}{2} \omega_2 (x_2^2 + y_2^2) + \mathcal{O}(||z||^3) ,
\]

for certain nonzero reals \(\omega_1 \) and \(\omega_2 \). The eigenvalues of the linearized vector field are \(\pm i\omega_1, \pm i\omega_2 \), so we can not conclude stability or instability from the eigenvalues. An extra
problem arises because ω_1 and ω_2 turn out to have different signs, whatever the value of μ. So unfortunately, Dirichlet’s theorem is not applicable. More sophisticated tools are needed here.

The solution is to take into account also the nonlinear terms in the expansion of the system around its equilibrium. That is to take a closer look at the $O(|z|^3)$-terms of the Hamiltonian. A common way to do that is using the theory of normal forms.

7 Normal forms

The idea behind normal forms is to construct a transformation of phase-space that brings a given system of differential equations into the ‘simplest possible’ form up to a certain order of accuracy. This idea will be made more precise in this section.

Let P_k be the space of homogeneous polynomials of degree k in the canonical variables $(x_1, \ldots, x_n, y_1, \ldots, y_n)$, so $P_k := \text{span}_{\mathbb{R}}\{x_1^{k_1} \cdots x_n^{k_n} y_1^{k_{n+1}} \cdots y_n^{k_{2n}} | \sum_{j=1}^{2n} k_j = k\}$. The space of all convergent power series without linear part, $P \subset \bigoplus_{k \geq 2} P_k$, is a Lie-algebra with the Poisson bracket

$$\{\cdot, \cdot\} : P \times P \to P, \quad (f, g) \mapsto \{f, g\} := dx \wedge dy(X_f, X_g) = \sum_{j=1}^n \left(\frac{\partial f}{\partial x_j} \frac{\partial g}{\partial y_j} - \frac{\partial f}{\partial y_j} \frac{\partial g}{\partial x_j} \right).$$

For each $h \in P$, its adjoint $\text{ad}_h : P \to P$ is the linear operator defined by $\text{ad}_h(H) = \{h, H\}$. Note that whenever $h \in P_k$, then $\text{ad}_h : P_l \to P_{k+l-2}$.

Let us take an $h \in P$. It can be shown that for this h there is an open neighborhood U of the origin such that for every $|t| \leq 1$ each time-t flow $e^{tX_h} : U \to \mathbb{R}^{2n}$ of the Hamiltonian vector field X_h induced by h is a symplectic diffeomorphism on its image. These time-t flows define a family of mappings $(e^{tX_h})^* : P \to P$ by sending $H \in P$ to $(e^{tX_h})^* H := H \circ e^{tX_h}$. Differentiating the curve $t \mapsto (e^{tX_h})^* H$ with respect to t we find that it satisfies the linear differential equation $\frac{d}{dt}(e^{tX_h})^* H = dH \cdot X_h = -\text{ad}_h(H)$ with initial condition $(e^{0X_h})^* H = H$. The solution reads $(e^{tX_h})^* H = e^{-t\text{ad}_h} H$. In particular the symplectic transformation e^{-X_h} transforms H into

$$H' := (e^{-X_h})^* H = e^{\text{ad}_h} H = H + \{h, H\} + \frac{1}{2!}\{h, \{h, H\}\} + \ldots. \quad (7.1)$$

The diffeomorphism e^{-X_h} sends 0 to 0 (because $X_h(0) = 0$). If $h \in \bigoplus_{k \geq 3} P_k$, then $De^{-X_h}(0) = Id$. A diffeomorphism with these two properties is called a near-identity transformation.

An element $H \in P$ can be written as $H = \sum_{k=2}^{\infty} H_k$, where $H_k \in P_k$. Assume now, as will usually be the case for the problems we consider in this paper, that $\text{ad}_{H_k} : P_k \to P_k$ is semisimple (i.e. complex-diagonalizable) for every $k \geq 3$. Then $P_k = \ker \text{ad}_{H_2} \oplus \text{im} \text{ad}_{H_2}$, as is clear from the diagonalizability. In particular H_3 is uniquely decomposed as $H_3 = f_3 + g_3$, with $f_3 \in \ker \text{ad}_{H_2}$, $g_3 \in \text{im} \text{ad}_{H_2}$. Now choose an $h_3 \in P_3$ such that $\text{ad}_{H_2}(h_3) = g_3$. One
could for example choose \(h_3 = \tilde{g}_3 := (\text{ad}_{H_3})_\lim \text{ad}_{H_3}^{-1}(g_3) \). But clearly the choice \(h_3 = \tilde{g}_3 + p_3 \) suffices for any \(p_3 \in \ker \text{ad}_{H_3} \cap P_3 \). For the transformed Hamiltonian \(H' = (e^{-X_{h_3}})^* H \) we calculate from (7.1) that \(H' = H_2 \), \(H'_3 = f_3 \in \ker \text{ad}_{H_2} \), \(H'_4 = H_4 + \{h_3, H_3 - \frac{1}{2}g_3\} \), etc. The reader should verify this! But now we can again write \(H'_4 = f_4 + g_4 \) with \(f_4 \in \ker \text{ad}_{H_2} \), \(g_4 \in \text{im} \text{ad}_{H_2} \) and it is clear that by a suitable choice of \(h_4 \in P_4 \) the Lie-transformation \(e^{-X_{h_4}} \) transforms our \(H' \) into \(H'' \) for which \(H''_2 = H_2 \), \(H''_3 = f_3 \in \ker \text{ad}_{H_2} \) and \(H''_4 = f_4 \in \ker \text{ad}_{H_2} \). Continuing in this way, we can for any finite \(r \geq 3 \) find a sequence of symplectic near-identity transformations \(e^{-X_{h_3}}, \ldots, e^{-X_{h_r}} \) with the property that \(e^{-X_{h_k}} \) only changes the \(H_l \) with \(l \geq k \), whereas the composition \(e^{-X_{h_3}} \circ \cdots \circ e^{-X_{h_r}} \) transforms \(H \) into \(\overline{H} \) with the property that \(\overline{H}_k \) Poisson commutes with \(H_2 \) for every \(2 \leq k \leq r \). The previous analysis culminates in the following

Theorem 7.1 Birkhoff-Gustavson Let \(r > 2 \) be a given natural number. If \(H = \sum_{k=2}^{\infty} H_k \in P \) is such that \(\text{ad}_{H_k} : P_k \to P_k \) is semisimple for each \(k \geq 3 \), then there is an open neighborhood \(U \subset \mathbb{R}^{2n} \) of the origin and an analytic symplectic diffeomorphism \(\Psi : U \to \Psi(U) \subset \mathbb{R}^{2n} \) such that \(\Psi(0) = 0 \), \(D\Psi(0) = I d \) and \(\overline{H} := H \circ \Psi = \sum_{k=2}^{\infty} \overline{H}_k \in P \) has the properties that \(\overline{H}_2 = H_2 \) and \(\{\overline{H}_2, \overline{H}_k\} = 0 \) for all \(2 \leq k \leq r \).

The near-identity transformation \(\Psi \) is the composition of \(r - 2 \) time-1 flows of Hamiltonian vector fields, which can subsequently be determined. Note that it need not be unique.

The transformed Hamiltonian \(\overline{H} \) is called a normal form of \(H \) of order \(r \). It can explicitly be determined following the procedure of the paragraph that precedes theorem 7.1 and using formula (7.1). The study of \(\overline{H} \) can give us useful information on solutions of the original Hamiltonian \(H \) near its equilibrium point 0. It helps for instance to detect bifurcations and to construct approximations of solutions. More on normalization by Lie-transformations can be found in [3].

It is very common to study the truncated Hamiltonian system induced by \(H_2 + \overline{H}_3 + \ldots \overline{H}_r \). Its solutions approximate the solutions of the original system induced by \(\overline{H} \). But the truncated system has an advantage: it admits at least two integrals. Not only the truncated Hamiltonian itself, but also \(H_2 \) is an integral of motion. Therefore the truncated normal form has an \(S^1 \)-symmetry which allows us to make a reduction to a lower-dimensional Hamiltonian system. We will not treat these techniques.

Remark 7.2 Near-identity transformations \(\Psi \) with the properties of theorem 7.1 can be found in various ways. Lie-transformations, i.e. compositions of time-1 flows of Hamiltonian vector fields, are just one method. Other methods use power series expansions or averaging techniques. The method of Lie-transformations has the big advantage that the formula for the transformed Hamiltonian, (7.1), is fairly simple.

Normal form techniques also exist for critical points of non-Hamiltonian vector fields. Nothing changes dramatically, except that the near-identity transformations are of course no longer symplectic.

Remark 7.3 Let \(S : \mathbb{R}^{2n} \to \mathbb{R}^{2n} \) be a linear symmetry of the Hamiltonian \(H \in P \), that is \(S \) is a linear symplectic transformation keeping \(H \) invariant: \(S^*(d\mathbf{x} \wedge d\mathbf{y}) = d\mathbf{x} \wedge d\mathbf{y} \) and
\[S^*H = H \circ S = H. \] It is not hard to show that this implies that the Hamiltonian vector field \(X_H \) induced by \(H \) is equivariant under \(S \): \(S \cdot X_H = X_H \circ S \). In other words: if \(\gamma : \mathbb{R} \to \mathbb{R}^{2n} \) is an integral curve of \(X_H \), then \(S \circ \gamma : \mathbb{R} \to \mathbb{R}^{2n} \) is also an integral curve of \(X_H \). This explains the name symmetry.

Similarly, let \(R : \mathbb{R}^{2n} \to \mathbb{R}^{2n} \) be a linear reversing symmetry of the Hamiltonian \(H \), i.e. \(R \) is a linear anti-symplectic transformation that keeps \(H \) invariant: \(R^*(dx \wedge dy) = -dx \wedge dy \) and \(R^*H = H \circ R = H \). One now shows that \(X_H \) is anti-equivariant under \(R : R \cdot X_H = -X_H \circ R \). Thus, if \(\gamma : \mathbb{R} \to \mathbb{R}^{2n} \) is an integral curve of \(X_H \), then \(R \circ \gamma \circ -Id : \mathbb{R} \to \mathbb{R}^{2n} \) is also an integral curve of \(X_H \). This explains the name reversing symmetry.

The group generated by the linear symmetries and linear reversing symmetries of the Hamiltonian \(H \in P \), is called the reversing symmetry group of \(H \). It can be shown (cf. [3]) that the near-identity transformation \(\Psi \) in theorem 7.1 can always be chosen in such a way that \(\overline{H} = H \circ \Psi \) is again invariant under the elements of the reversing symmetry group of \(H \). Alternatively stated: one can construct normal forms \(\overline{H} \) of \(H \) which have the same linear symmetries and linear reversing symmetries as \(H \).

8 The Poincaré section

In this section we summarize the most important properties of the so-called Poincaré map. Although the Poincaré map is a very useful tool for the study of any ordinary differential equation, we will introduce it here for Hamiltonian systems only. More extensive information can be found in [1], ch. 7-8.

Theorem 8.1 Let \(H \) be a Hamiltonian on a 2n-dimensional symplectic manifold \(M \) with symplectic form \(\omega \). Suppose that \(\gamma : \mathbb{R} \to M \) is a periodic solution of the Hamiltonian vector field \(X_H \) induced by \(H \) and that \(\gamma \) lies in a regular energy-surface of \(H \), i.e. \(H^{-1}(\{\gamma(0)\}) \) is a manifold. Then there is a codimension 1 submanifold \(S \subset H^{-1}(\{\gamma(0)\}) \) and open submanifolds \(S_1 \) and \(S_2 \) of \(S \) with the following properties:

- \(X_H(m) \notin T_mS \) for all \(m \in S \).
- \(\gamma(0) \in S_1 \cap S_2 \)
- \(S_1 \) and \(S_2 \) are codimension 2 symplectic submanifolds of \(M \). If \(\iota_i : S_i \to M \) are the inclusions, then the symplectic forms \(\omega_i \) of \(S_i \) are given by \(\omega_i = \iota_i^*\omega \).
- For every \(m \in S_1 \) there is a time \(t(m) > 0 \) such that \(m \) is mapped to \(S_2 \) by the time-\(t(m) \) flow of \(X_H \), i.e. \(e^{t(m)X_H}(m) \in S_2 \). There exists a unique smallest positive number \(d(m) \) with this property. \(d \) is a smooth function on \(S_1 \).
- The flow of \(X_H \) defines a unique symplectic diffeomorphism \(\mathcal{P} : S_1 \to S_2 \). \(\mathcal{P} \) is given by sending \(m \in S_1 \) to \(e^{d(m)X_H}(m) \in S_2 \).
The proof is highly based on the implicit function theorem, cf. [1]. The property $X_H(m) \notin T_mS$ implies that $T_m(H^{-1}({\{m}\}})) = X_H(m) \oplus T_mS$. This explains why S is sometimes called a local transversal section to the flow of X_H at γ. But usually we call S a Poincaré section at γ. The mapping P is called a Poincaré map or first return map. We remark that any two Poincaré maps $P^1 : S_1^1 \rightarrow S_2^1$ and $P^2 : S_1^2 \rightarrow S_2^2$ at γ are locally conjugate, i.e. there is an open neighborhood U of $\gamma(0)$ in S_1^1 and a symplectic diffeomorphism $\Phi : U \rightarrow S_2^1$ such that $\Phi \circ P^1 = P^2 \circ \Phi$. For Φ one could take the mapping that takes $m \in U$ and let it follow X_H until it hits S_2^1 at $\Phi(m)$.

It is clear that a study of the Poincaré map could provide us with very useful information on the flow of X_H in a neighborhood of the periodic solution γ, like stability and instability. First of all, let us study the derivative of the Poincaré map, $T_{\gamma(0)}P : T_{\gamma(0)}S \rightarrow T_{\gamma(0)}S$. Note that, since any two Poincaré maps are locally conjugate, their derivatives are similar linear mappings. Hence they have the same eigenvalues. This allows us to make the following definition:

Definition 8.2 Let $\gamma : \mathbb{R} \rightarrow M$ be a periodic solution of a Hamiltonian vector field on a symplectic manifold. The characteristic multipliers of γ are the eigenvalues of $T_{\gamma(0)}P$, where P is any Poincaré map at γ.

In local Darboux coordinates, $T_{\gamma(0)}P$ can be represented by a symplectic matrix. Thus, the characteristic multipliers of γ come in quadruples: if λ is a multiplier, then so are $\frac{1}{\lambda}, \bar{\lambda}$ and $\frac{1}{\bar{\lambda}}$. Whenever one of the multipliers does not lie on the unit circle in \mathbb{C}, there must be a multiplier outside the unit circle. It is not very surprising that this can be used to prove that γ is an unstable periodic orbit. So γ can only be stable if all its multipliers have complex modulus 1. As usual, this is not sufficient to prove the stability of γ. Stability can sometimes be proved using variants of Liapunov’s theorem. We will not go into this idea here.

Instead, we will focus on two-degrees of freedom Hamiltonian systems. In local Darboux coordinates, a Poincaré map near a periodic orbit γ in this case is an area-preserving planar map leaving the origin fixed. There are only two multipliers. γ is unstable if one of them does not lie on the unit circle. Suppose one of the multipliers are of the form $e^{\pm i\omega}$, with $\omega \in \mathbb{R}$. This expresses that the Poincaré map is, up to linear approximation, simply a rotation around 0 over an angle ω. This doesn’t say anything yet about the stability of γ. But we shall see that under certain assumptions on the higher order approximations of P around 0, one can indeed prove that γ is stable. It turns out that P has to be a so-called twist map. The resulting type of stability goes under the name Moser twist stability.

9 The twist map and Arnold’s stability theorem

Let $F : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a diffeomorphism of \mathbb{R}^2. Note that it defines a discrete dynamical system. As an example, we have seen the Poincaré map of a two-degrees of freedom system. In this section we will be concerned with a special type of diffeomorphism, so called twist
For $\alpha, \omega \in \mathbb{R}$ with $\alpha \neq 0$, consider the 2-dimensional diffeomorphism given by

$$
\begin{pmatrix}
I \\
\theta
\end{pmatrix} \mapsto \begin{pmatrix}
I \\
\theta + \omega + \alpha I
\end{pmatrix}
$$

(9.1)

where we have used the polar coordinates notation $x = \sqrt{2I} \cos(\theta), y = \sqrt{2I} \sin(\theta)$, so $I \in \mathbb{R}_{\geq 0}, \theta \in \mathbb{R}/2\pi \mathbb{Z}$. It is easy to see that (9.1) rotates every circle $x^2 + y^2 = 2I_0$ over an angle $\delta := (\omega + \alpha I_0)$ that depends on the radius of the circle. Such a map is called a twist map. Note that if $\delta/2\pi$ is rational, then the motion on this circle is periodic. If $\delta/2\pi \notin \mathbb{Q}$, then the orbit of any point on the circle $x^2 + y^2 = 2I_0$ is dense in the circle. The latter type of dynamics is called quasi-periodic. So we see that \mathbb{R}^2 is densely filled with periodic and quasiperiodic orbits of the twist map.

Let us now look at perturbations of twist maps. Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$
\begin{pmatrix}
I \\
\theta
\end{pmatrix} \mapsto \begin{pmatrix}
I + \varepsilon^{r+s} f_1(I, \theta, \varepsilon) \\
\theta + \omega + \varepsilon^s g(I) + \varepsilon^{s+r} f_2(I, \theta, \varepsilon)
\end{pmatrix}
$$

(9.2)

where $I \in \mathbb{R}_{\geq 0}, \theta \in \mathbb{R}/2\pi \mathbb{Z}, \omega \in \mathbb{R}$. We require the following properties:

1. f_1 and f_2 are smooth functions for $0 \leq a \leq I < b < \infty, 0 \leq \varepsilon \leq \varepsilon_0$, and $\theta \in \mathbb{R}/2\pi \mathbb{Z}$.
2. $r \geq 1$ and $s \geq 0$ are two integers.
3. g is a smooth function on $0 \leq a \leq I < b < \infty$.
4. $dg(I)/dI \neq 0$ for $0 \leq a \leq I < b < \infty$.

Theorem 9.1 Moser Twist Stability Given such a map F with the following additional property. If Ξ is any closed curve of the form $\Xi = \{(I, \theta) \mid I = \Theta(\theta), \Theta : \mathbb{R}/2\pi \mathbb{Z} \to [a, b] \text{ continuous}\}$ then $\Xi \cap F(\Xi) = \emptyset$. Then, for sufficiently small ε, there is a continuous F-invariant curve Γ of the form $\Gamma = \{(I, \theta) \mid I = \Phi(\theta), \Phi : \mathbb{R}/2\pi \mathbb{Z} \to [a, b] \text{ continuous}\}$.

This theorem was proposed by Kolmogorov and proved by Moser [9]. Note that the unperturbed map is just a rotation, its eigenvalues are $e^{\pm i\omega}$. Up to order ε^s, we have a pure twist map, according to assumption 4. So we are looking here at a perturbation of a twist map restricted to an annulus. Another important remark is about the additional condition in the theorem. This condition excludes the situation where a closed curve of the prescribed form is mapped completely inside or outside itself. This is an important restriction and it prevents the perturbation from being arbitrary. The condition is satisfied for area-preserving maps.

We may now ask the question of stability of the fixed point 0 of the perturbed map F. Theorem 9.1 states now that if the restriction of F to any small annulus of the form $a \leq I < b$ satisfies the conditions of theorem 9.1, then there is an invariant curve in that annulus. In particular, we can choose this annulus as small as we like, so 0 is a stable fixed point of F.

16
We want to apply this to Poincaré maps in order to prove the stability of periodic solutions of two-degrees of freedom Hamiltonian systems. As was explained in the previous section, one can construct such a Poincaré map around a periodic solution and it is represented by an area-preserving map in \mathbb{R}^2 with a fixed point. If the two multipliers of γ lie on the unit circle, then γ could be stable. Once we can show that the Poincaré map is in fact a perturbed twist map (in the sense of the previous theorem), this stability is indeed proved.

We will use normal form theory to view the Poincaré map as a perturbed twist map. Let us assume that around 0 our Hamiltonian can be expanded as

$$H = \frac{1}{2}\alpha_1(x_1^2 + y_1^2) - \frac{1}{2}\alpha_2(x_2^2 + y_2^2) + H_3 + H_4 + \ldots,$$

with $\omega_j \neq 0$ real numbers. The following result is pure ‘algebra of normal forms’:

Theorem 9.2 Birkhoff Let H be of the above form and suppose that $\frac{\omega_1}{\omega_2} = \frac{p}{q}$ where p and q are relatively prime. Then any normal form of H of order smaller then or equal to $p+q-1$ is of the following simple form:

$$\overline{H}(x, y) = H_2(x, y) + \overline{H}_4(x_1^2 + y_1^2, x_2^2 + y_2^2) + \ldots + \overline{H}_{2m}(x_1^2 + y_1^2, x_2^2 + y_2^2) + O(||z||^{2m+1}), \quad (9.3)$$

with $m < (p+q)/2$.

Proof: We want to investigate the eigenvalues of ad_{H_2}. For this purpose we diagonalize it by transforming to complex coordinates: $z_j = x_j + iy_j$, $j = 1, 2$. The symplectic form in these coordinates reads $\frac{i}{2}(dz_1 \wedge d\overline{z}_1 + dz_2 \wedge d\overline{z}_2)$ and the corresponding Poisson bracket is

$$\{f, g\} = 4 \sum_{j=1}^{2} \left(\frac{\partial f}{\partial z_j} \frac{\partial g}{\partial \overline{z}_j} - \frac{\partial f}{\partial \overline{z}_j} \frac{\partial g}{\partial z_j} \right),$$

It is easy to check that $H_2 = \frac{\omega_1}{2}z_1\overline{z}_1 - \frac{\omega_2}{2}z_2\overline{z}_2$ and thus ad_{H_2} acts diagonally on monomials as follows:

$$\text{ad}_{H_2} : z_1^{\alpha_1}z_2^{\alpha_2}\overline{z}_1^{\beta_1}\overline{z}_2^{\beta_2} \mapsto 2((\alpha_1 - \beta_1)\omega_1 - (\alpha_2 - \beta_2)\omega_2)z_1^{\alpha_1}z_2^{\alpha_2}\overline{z}_1^{\beta_1}\overline{z}_2^{\beta_2}.$$

Thus, a monomial $z_1^{\alpha_1}z_2^{\alpha_2}\overline{z}_1^{\beta_1}\overline{z}_2^{\beta_2}$ can only appear in $\overline{H}_{\alpha_1+\alpha_2+\beta_1+\beta_2}$ if $(\alpha_1 - \beta_1)\omega_1 - (\alpha_2 - \beta_2)\omega_2 = 0$. There are two possibilities. First of all it can happen that $\alpha_1 = \beta_1$, $\alpha_2 = \beta_2$. In this case, $z_1^{\alpha_1}z_2^{\alpha_2}\overline{z}_1^{\beta_1}\overline{z}_2^{\beta_2} = (z_1\overline{z}_1)^{\alpha_1}(z_2\overline{z}_2)^{\alpha_2} = (x_1^2 + y_1^2)^{\alpha_1}(x_2^2 + y_2^2)^{\alpha_2}$, so $\overline{H}_{\alpha_1+\alpha_2+\beta_1+\beta_2}$ is of the form prescribed in the theorem. The second possibility is that $\frac{p}{q} = \frac{\alpha_1}{\alpha_2} = \frac{\beta_1}{\beta_2}$. But p and q are relatively prime, so this is impossible if $|\alpha_2 - \beta_2| < p$ or $|\alpha_1 - \beta_1| < q$. In particular. this is impossible if $\alpha_1 + \alpha_2 + \beta_1 + \beta_2 < p + q$. \hfill \Box

A Hamiltonian of the form in Birkhoff’s theorem is said to be in *Birkhoff normal form*. Birkhoff’s theorem has the following consequence: if ω_1/ω_2 is irrational, then H can be
brought into Birkhoff normal form up to any desired order. Birkhoff wanted to use this observation to construct a coordinate transformation that brought H into an integrable form, the $x_j^2 + y_j^2$ being the integrals. Unfortunately, one can not expect that the involved infinite sequence of normalization transformations is convergent. So in general, if $\omega_1/\omega_2 \notin \mathbb{Q}$, H still need not be integrable.

Now let us describe how the Birkhoff normal form helps us constructing a Poincaré map. First of all, we introduce the so-called symplectic polar coordinates by transforming

$$x_j = \sqrt{2I_j} \cos(\varphi_j) \quad \text{and} \quad y_j = \sqrt{2I_j} \sin(\varphi_j).$$

For $I_j > 0, \varphi_j \in \mathbb{R}/2\pi \mathbb{Z}$ this is a symplectic transformation, i.e. $dx \wedge dy = d\varphi \wedge dI$. Note that $2I_j = x_j^2 + y_j^2$ so up to high order, Hamiltonians in Birkhoff normal form depend only on I, that is they are integrable up to this order. By an appropriate rescaling of the variables, one can also introduce a small parameter ε in the system. The resulting Hamiltonian system (9.3) then reads:

$$\dot{I}_j = O(\varepsilon^{2m-1}) \quad \text{and} \quad \dot{\varphi}_j = \omega_j + \varepsilon^2 \frac{\partial H_4(I)}{\partial I_j} + \ldots + \varepsilon^{2m-2} \frac{\partial H_{2m}(I)}{\partial I_j} + O(\varepsilon^{2m-1}). \quad (9.4)$$

From these simple equations, an approximation for the Poincaré map is easily constructed. Briefly, this runs as follows. First of all one restricts to a level set of H, which is approximately defined by $H_2(I) + \ldots \varepsilon^{2m-2} H_{2m}(I) = h$. In this surface one chooses the set $\{\varphi_1 = 0\}$ as a transversal section to the flow. It is possible to use (I_2, φ_2) as coordinates for this section. With the help of equations (9.4) one can now approximate the return time to the section and finally also the Poincaré map.

So a combination of normal form theory and Moser’s stability theorem can be used to prove stability of periodic solutions in a neighborhood of an equilibrium point. The surprise is now, that the theory can be extended in order to actually prove the stability of the equilibrium itself:

Theorem 9.3 Arnold’s Stability Theorem Consider the Hamiltonian system with Hamiltonian (9.3). If there exists a $2 \leq k \leq m$ such that $D_{2k} := H_{2k}(\omega_2, \omega_1) \neq 0$ then the origin is stable. Moreover, arbitrarily close to the origin in \mathbb{R}^4 there are invariant tori filled with quasi-periodic solutions.

The proof is based on normal form theory and the idea of Poincaré maps. It is rather hard though and we refer to [2] or [7] for it.

For the restricted three-body problem with parameter values $0 < \mu < \mu_1$ (with $\mu \neq \mu_2 := 0.0242938\ldots, \mu_3 := 0.0135116\ldots$) Deprit and Deprit-Bartholomé in 1967 calculated the normal form of the Hamiltonian at L_4 and L_5. They found that $D_4 \neq 0$ except for $\mu \approx 0.010$. Nowadays we know that $D_6 \neq 0$ at this parameter value. Thus, by Arnold’s theorem we have the following result.

2 μ_2 and μ_3 are real numbers which produce the relations $\omega_1 : \omega_2 = 1 : 2$ and $\omega_1 : \omega_2 = 1 : 3$, respectively. This causes the theorems 9.2 and 9.3 not to be applicable.
Proposition 9.4 In the restricted three-body problem, the Lagrangean equilibria L_4 and L_5 are stable for $0 < \mu < \mu_1$ and $1 - \mu_1 < \mu < 1$ with $\mu \neq \mu_2, \mu_3, 1 - \mu_2, 1 - \mu_3$.

Thus, the stability of the equilibria of the restricted three-body problem has been established except for L_4 and L_5 if $\mu \in \{\mu_1, \mu_2, \mu_3, 1 - \mu_1, 1 - \mu_2, 1 - \mu_3\}$. We refer to [6] for the analysis of these cases.

In the Sun-Jupiter system, the result of proposition 9.4 can really be observed: if we draw the equilateral triangles with the sun and Jupiter at its base points, then we find two groups of asteroids at the third vertex. They are called the Trojans and the Greeks.

10 Acknowledgments

We wish to thank Ken Meyer for his inspiring lecture and for sending us the many articles that helped us writing these lecture notes.

With pleasure we think back of our time in Peyresq, the friends we met there, the Génépi and the beautiful mountains. We are especially indebted to James Montaldi, for being so helpful all the time, and the Fondation Peiresc for having hosted the summer school.

We also acknowledge our colleagues at the Mathematisch Instituut, Universiteit Utrecht, for supporting us. Especially Ferdinand Verhulst who read the manuscript. Part of this article has been presented in the Ph.D.-student colloquium of the Universiteit Utrecht by Bob Rink. Theo Tuwankotta thanks CICAT TU Delft for the financial support that made it possible for him to come to Peyresq. He also thanks Santi Goenarso for her contributions in many ways.

References

