Exercise Class Protocol Validation	Clemens Grabmayer
Thursday, April 22, 2016	c.a.grabmayer@vu.nl

Exercise 90. Prove, as claimed in the verification of the synchronous version of TIP, that \mathcal{I}_4 is an invariant for Y.

The linearization of Implementation A of the Tree Identify Protocol TIP consists of the processes Y(p: Nodelistlist, s: Statelist) that are defined by the following LPE:

$$Y(p: \text{Nodelistlist}, s: \text{Statelist}) = \sum_{i,j:\text{Node}} \tau \cdot Y(p[i] := p[i] \setminus \{j\}, s[j] := 1) \\ \lhd j \in p[i] \land p[j] = \{i\} \land s[i] = s[j] = 0 \triangleright \delta \\ + \sum_{i:\text{Node}} leader \cdot Y(p, s[i] := 1) \lhd empty(p[i]) \land s[i] = 0 \triangleright \delta \end{cases}$$

$$(1)$$

The exercise refers to the following property for Nodelistlists p and Statelists s:

$$(\mathcal{I}_4(p,s)): \quad \forall i,j: \text{Node} \ (\ j \in p[i] \ \land \ s[i] = 0 \ \Rightarrow \ i \in p[j] \ \land \ s[j] = 0 \)$$

Solution (using reasoning by contradiction, as done so in class). We assume that \mathcal{I}_4 is not an invariant for the process family Y(p, s), and we will show that that leads to a contradiction. If we succeed in doing so, then we can conclude, by using reasoning in classical logic, that \mathcal{I}_4 actually is an invariant.

So let us assume that $Y(p,s) \xrightarrow{x} Y(p',s')$ with $x \in \{leader, \tau\}$ is a step in which \mathcal{I}_4 is not preserved. That is, it holds that $\mathcal{I}_4(p,s) = \mathsf{T}$ and $\mathcal{I}_4(p',s') = \mathsf{F}$. From $\mathcal{I}_4(d') = \mathsf{F}$ we conclude that there exist nodes i_0 and j_0 such that:

$$j_0 \in p'[i_0] \land s'[i_0] = 0 \land (i_0 \notin p'[j_0] \lor s'[j_0] = 1).$$
 (2)

So we fix nodes i_0 and j_0 with this property. Since in steps of the LPE for Y, states are never set back from 1 to 0, and parent node lists are never enlarged, it follows from (2) that:

$$j_0 \in p[i_0] \land s[i_0] = 0.$$
 (3)

As a consequence of this and of $\mathcal{I}_4(p,s) = T$ we obtain:

$$j_0 \in p[i_0] \land s[i_0] = 0 \land i \in p[j_0] \land s[j_0] = 0.$$
(4)

By exploring the two possibilities of why (2) holds we will show now that the situation in which (4) holds before the step $Y(p, s) \xrightarrow{x} Y(p', s')$, and (2) after it, cannot occur.

Case 1: $i_0 \notin p'[j_0]$.

Then since $i_0 \in p[j_0]$ holds due to (4), it follows that i_0 must have been removed from $p[j_0]$ in the step. According to the LPE (1) this step must have been a τ -step, in which also $s[i_0]$ has been set to 1. So $s'[i_0] = 1$. But this contradicts $s'[i_0] = 0$ that holds according to (2). Case 2: $s'[j_0] = 1$.

Since $s[j_0] = 0$ holds by (4), this means that $s[j_0]$ has been changed from 0 to 1 in the step.

We distinguish the two possible cases in which either x = leader or $x = \tau$ is the action label of the step $Y(p, s) \xrightarrow{x} Y(p', s')$.

 $\textit{Case a: } Y(p,s) \stackrel{\textit{leader}}{\longrightarrow} Y(p',s').$

As $s[j_0]$ has been switched by this step, it can only have taken place if $p[j_0] = []$. But this contradicts $i_0 \in p[j_0]$, which holds by (4).

Case b: $Y(p,s) \xrightarrow{\tau} Y(p',s')$.

As $s[j_0]$ has been changed from 0 to 1 in this step, also $p[j_0] = \{i\}$ must hold for some node i, and s'[i] = 1. Since $i_0 \in p[j_0]$ due to (4), it follows that $p[j_0] = \{i_0\}$, and hence also $s'[i_0] = 1$. But that contradicts $s[i_0] = 0$ in (2).

So we have succeeded in showing that the situation in which (4) holds before the step $Y(p,s) \xrightarrow{x} Y(p',s')$, and (2) after it, cannot occur.

As this was a consequence of our assumption that \mathcal{I}_4 is not an invariant, we have shown that this assumption leads to a contradiction. It follows (on the basis of classical logic) that \mathcal{I}_4 is indeed an invariant.