
Spinner: Scalable Graph Partitioning in the Cloud

Claudio Martella∗, Dionysios Logothetis†, Andreas Loukas‡, Georgos Siganos§

∗VU University Amsterdam, †Facebook, ‡École Polytechnique Fédérale de Lausanne, §Qatar Computing Research Institute
Email: c.martella@vu.nl, dionysios@fb.com, andreas.loukas@epfl.ch, gsiganos@qf.org.qa

Abstract—In this paper, we present a graph partitioning algo-
rithm to partition graphs with trillions of edges. To achieve such
scale, our solution leverages the vertex-centric Pregel abstraction
provided by Giraph, a system for large-scale graph analytics. We
designed our algorithm to compute partitions with high locality
and fair balance, and focused on the characteristics necessary to
reach wide adoption by practitioners in production. Our solution
can (i) scale to massive graphs and thousands of compute cores,
(ii) efficiently adapt partitions to changes to graphs and compute
environments, and (iii) seamlessly integrate in existing systems
without additional infrastructure.

We evaluate our solution on the Facebook and Instagram
graphs, as well as on other large-scale, real-world graphs. We
show that it is scalable and computes partitionings with quality
comparable, and sometimes outperforming, existing solutions. By
integrating the computed partitionings in Giraph, we speedup
various real-world applications by up to a factor of 5.6 compared
to default hash-partitioning.

I. INTRODUCTION

Frameworks like Hadoop and Spark provide rich ecosys-
tems for managing the entire life-cycle of data and are widely
adopted at all scales. Practitioners typically deploy them across
shared-nothing clusters in private or public clouds. In recent
years, these ecosystems have been extended with solutions de-
signed specifically for graph-related workloads responding to
an increasing demand for tools to manage connected data [21],
[14], [25], [28]. Due to the size of graphs available today,
whether a social network, the Web, or a protein interaction
network [16], graph management solutions, such as graph
stores and graph processing engines, must distribute their
workloads across such clusters.

Within such distributed systems, efficient operation relies
on effective graph partitioning. Typically, the graph must be
cut across k partitions, known as k-way partitioning, such
that the number of edges spanning partitions is minimized,
while keeping the number of edges in the partitions bal-
anced. By assigning each of the k partitions to one of k
machines, network communication between machines is re-
duced and load is distributed evenly, resulting in lower latency
and increased throughput. For example, graph partitioning
has been used to speedup both low-latency friends-of-friends
lookup queries [31] and data-intensive graph analytics compu-
tations [29], [27].

A graph partitioning system is hence a key component of
graph management systems. However, in order to be practical
and simple to use in production, it cannot focus uniquely on
computing partitionings that optimize locality and balance, but
it also needs to have the following characteristics.

Scalable. Graphs may be massive, reaching billions of
vertices and trillions of edges. At this scale, it is hard to

provide good partitionings with locality and balance at the
same time. A graph partitioning system must be able to provide
an effective partitioning by exploiting parallelism, potentially
even at the cost of some partitioning quality.

Adaptive. Graphs are dynamic with vertices and edges
being constantly added and removed, and elastic compute
systems can grow and shrink according to needs. In the face of
these changes, a partitioning must be adapted without wasting
resources, e.g. by repartitioning from scratch. Moreover, rel-
evant particularly to graph stores, it must be stable, avoiding
the need to reshuffle the graph across the machines upon
adaptation.

Integrated. The system should exploit as much existing
storage and compute infrastructure in the practitioner’s com-
pute environment without the need for new, ad-hoc infrastruc-
ture or data conversion and filtering. Every new component
in a distributed environment introduces extensive development
and engineering, and requires additional operational resources.

For example, Facebook uses Giraph for a number of
production applications as it matches their requirements for
a system that (i) scales graph analytics to their massive social
graphs reaching one trillion edges, (ii) re-utilizes the Hadoop
compute infrastructure, and (iii) leverages the Hive-based data
warehouse for loading data and offloading results [12]. In other
words, their approach favors systems that integrate well with
their pipelines and re-use existing resources, avoiding new and
ad-hoc infrastructure. Introducing a graph partitioning system
within such framework and workflow requires the system to
match the same requirements. An analogous choice was made
by Google when designing a graph partitioning algorithm on
MapReduce [9].

We have found that existing solutions do not present all
the characteristics above. They either require to re-partitioning
the graph from scratch upon changes, assume the partitioning
to be performed on a single machine, introduce extensive
redundant infrastructure, or depend on centralized components
that hinder scalability. The fact that practitioners still use the
ineffective but practical hash-partitioning scheme regardless of
these solutions shows the importance of these characteristics
towards wide adoption.

A. Our approach

Our work is motivated by the popularity of systems, like
Pregel [21], that are designed for scalable graph mining. For
instance, Giraph [1] and GraphX [15] are two systems inspired
by Pregel, and are first citizens of the Hadoop and Spark
ecosystems respectively. This has resulted in porting several
graph algorithms on such systems [26], [24], [4]. However, no
work has explored so far how the problem of graph partitioning
can benefit from these architectures.

By implementing our solution as a Giraph application, we
inherit (i) a scalable compute infrastructure for our partitioning
system, and (ii) the ability to integrate the partitioning system
seamlessly in Hadoop infrastructures. Giraph executes trans-
parently as a Hadoop job and reads from and writes to most
data stores in the ecosystem. This allows practitioners to both
compute and use the partitionings with a range of data stores
and compute engines.

We base our solution on the Label Propagation Algorithm
(LPA) as it lends itself to a scalable implementation in the
vertex-centric model. Moreover, the incremental nature of LPA
allows us to tackle the challenges related to the adaptivity of
the system.

B. Contributions and organization

In this paper, we make the following contributions.

• We introduce Spinner, a scalable graph partitioning al-
gorithm based on LPA that computes k-way balanced
partitions with good locality. Spinner avoids expensive
centralizations of the partitioning algorithm that may
offer strict guarantees about partitioning at the cost of
scalability. To the best of our knowledge, this is the first
implementation of a graph partitioning algorithm on the
vertex-centric Pregel model.

• We extend Spinner to efficiently adapt a partitioning upon
changes to the graph or the compute environment. By
avoiding re-computations from scratch, Spinner reduces
the time to update the partitioning by about 80% even for
large changes (30%) to the graph, allowing for frequent
adaptation, and saving computation resources. Further,
the incremental adaptation prevents graph management
systems from shuffling the graph upon changes.

• We evaluate Spinner extensively, using synthetic and real
graphs. We show that Spinner scales near-linearly to
billion-vertex graphs and adapts efficiently to dynamic
changes. Further, we show that Spinner significantly
improves real-world applications performance when in-
tegrated into Giraph with a speedup up to a factor of 5.6
compared to standard hash-partitioning.

• We provide an open source implementation of the algo-
rithm on top of the Giraph graph processing system. It can
effectively run as a Hadoop job leveraging any existing
Hadoop infrastructure.

The remaining of this paper is organized as follows. In
Section II, we describe the Spinner algorithm. Section III
describes the implementation of Spinner in the Pregel model,
while in Section IV we present our evaluation. In Section V,
we discuss related work, and Section VI concludes our study.

II. SPINNER

We have designed Spinner based on LPA, a technique that
has been used traditionally for community detection [11]. We
choose LPA as it offers a generic and well understood frame-
work on top of which we can build our partitioning algorithm
as an optimization problem tailored to our objectives. In the
following, we describe how we extend the formulation of LPA
to achieve our goals.

Before going into the details of the algorithm, let us intro-
duce the necessary notation. We define a graph as G = 〈V,E〉,

where V is the set of vertices in the graph and E is the set of
edges such that an edge e ∈ E is a pair (u,v) with u,v ∈ V .
We denote by N(v) = {u : u ∈V,(u,v) ∈ E} the neighborhood
of a vertex v, and by deg(v) = |N(v)| the degree of v. In a k-
way partitioning, we define L as a set of labels L = {l1, . . . , lk}
that essentially correspond to the k partitions. α is the labeling
function α : V → L such that α(v) = l j if label l j is assigned
to vertex v.

The end goal of Spinner is to assign partitions, or labels, to
each vertex such that it maximizes edge locality and partitions
are balanced.

A. K-way Label Propagation

We first describe how to use basic LPA to maximize edge
locality and then extend the algorithm to achieve balanced
partitions. Initially, each vertex in the graph is assigned a
label li at random, with 0 < i≤ k. Subsequently, every vertex
iteratively propagates its label to its neighbors. During this
iterative process, a vertex acquires the label that is more
frequent among its neighbors. Specifically, every vertex v
assigns a different score for a particular label l which is equal
to the number of neighbors assigned to label l

score(v, l) = ∑
u∈N(v)

δ (α(u), l) (1)

where δ is the Kronecker delta. Vertices show preference to
labels with high score. More formally, a vertex updates its
label to the label lv that maximizes its score according to the
update function

lv = argmax
l

score(v, l) (2)

We call such an update a migration as it represents a logical
vertex migration between two partitions.

In the event that multiple labels satisfy the update function,
we break ties randomly, but prefer to keep the current label if
it is among them. This break-tie rule improves convergence
speed [11], and in our distributed implementation reduces
unnecessary network communication (see Section III). The
algorithm halts when no vertex updates its label.

Note that the original formulation of LPA assumes undi-
rected graphs. However, very often graphs are directed (e.g.
the Web). To use LPA as is, we would need to convert a
graph to undirected. The naive approach would be to create
an undirected edge between vertices u and v whenever at least
one directed edge exists between vertex u and v in the directed
graph.

This approach, though, is agnostic to the communication
patterns of the applications running on top. In fact, if we
placed two vertices that are connected in the data graph by
two edges (with inverted direction) in two different partitions
we would produce two edge cuts, and hence potentially two
worker-worker messages in a Pregel computation. This would
have higher impact than separating two vertices connected by
only one edge. Thus, we want to maintain this information
when we convert the graph to undirected.

Spinner considers the number of directed edges connecting
u,v in the original directed graph D by introducing a weighting

function w(u,v) such that

w(u,w) =
{

1, if (u,v) ∈ D⊕ (v,u) ∈ D
2, if (u,v) ∈ D∧ (v,u) ∈ D

(3)

where ⊕ is the logical XOR. We extend now the formulation
in (1) to include the weighting function

score′(v, l) = ∑
u∈N(v)

w(u,v)δ (α(u), l) (4)

In practice, the new update function effectively counts the
number of messages exchanged locally in the system.

Notice that, so far, the formulation of LPA does not dictate
in what order and when vertices propagate their labels or
how we should parallelize this process. For instance, the
propagation can occur in an asynchronous manner, with a
vertex propagating its label to its neighbors immediately after
an update. A synchronous propagation, instead, occurs in
distinct iterations with every vertex propagating its label at
the end of an iteration. In Section III, we will see how we
constraint the propagation to occur in a synchronous fashion
to retro-fit LPA to the Pregel model.

B. Balanced Label Propagation

Next, we extend LPA to produce balanced partitions. In
Spinner, we take a different path from previous work [31]
that balances partitions by enforcing strict constraints on the
partition sizes. Such an approach requires the addition to LPA
of a centralized component to ensure the satisfaction of the
balance constraints across the graph. Essentially, it calculates
which of the possible migration decisions will not violate the
constraints. This component is used after each LPA iteration,
potentially increasing the algorithm overhead and limiting
scalability.

Instead, as our aim is to provide a practical and scalable
solution, Spinner relaxes this constraint, only encouraging
a similar number of edges across the different partitions.
In particular, to maintain balance, we integrate a penalty
function into the vertex score in (4) that penalizes migrations
to partitions that are nearly full. Importantly, we define the
penalty function so that it is scalable to compute.

In the following, we consider the case of a homogeneous
system, where each machine has equal resources. This setup
is often preferred, for instance, in graph processing systems
like Pregel, to eliminate the problem of stragglers and improve
processing latency and overall resource utilization.

We define the capacity C of a partition as the maximum
number of edges it can have so that partitions are balanced,
which we set to

C = c · |E|
k

(5)

where c > 1 is a constant, and the load b(l) of a partition l as
the actual number of edges in the partition

b(l) = ∑
v∈G

deg(v)δ (α(v), l) (6)

The capacity C represents the constraint that Spinner puts on
the load of the partitions during an LPA iteration, and for
homogeneous systems it is the same for every partition. Notice

that in an ideally balanced partitioning, every partition would
contain |E|/k edges. However, Spinner uses parameter c to
let the load of a partition exceed this ideal value. This allows
for vertices to migrate among partitions, potentially improving
locality, even if this is going to reduce balance.

At the same time, to control the degree of unbalance,
we introduce the following penalty function that discourages
the assignment of vertices to nearly full partitions. Given a
partition l, we define the penalty function π(l) as

π(l) =
b(l)
C

(7)

The closer the current load of a partition to its capacity is,
the higher the penalty of a migration to this partition is, with
the penalty value ranging from 0 to 1. Next, we integrate the
penalty function into the score function. To do so, we first
normalize (4), and reformulate the score function as follows

score′′(v, l) = ∑
u∈N(v)

w(u,v)δ (α(u), l)
∑u∈N(v) w(u,v)

−π(l) (8)

This penalty function has the following desirable properties.
First, using parameter c we can control the tradeoff between
partition unbalance and convergence speed. A larger value of c
increases the number of migrations allowed to each partition at
each iteration. This possibly speeds up convergence, but may
increase unbalance as more edges are allowed to be assigned
to each partition over the ideal value |E|/k.

Second, it allows us to compute the score function in a
scalable way. Notice that the locality score depends on per-
vertex information. Further, computing the introduced penalty
function only requires to calculate b(l). This is an aggregate
across all vertices that are assigned label l. As we describe in
Section III, we can leverage the Giraph aggregation primitives
to compute b(l) for all possible labels in a scalable manner. As
we show later, the introduction of this simple penalty function
is enough to produce partitions with balance comparable to the
state-of-the-art.

C. Convergence and halting

Although proving the convergence properties of LPA is a
hard problem in the general case [11], our additional emphasis
on partition balance, namely that a vertex can migrate to
improve balance despite a decrease in locality, allow us to pro-
vide some analytical guarantees about Spinner’s convergence
and partitioning quality. One of the difficulties in proving
convergence is that approaches based on LPA sometimes reach
a limit cycle where the partitioning fluctuates between the same
states. Spinner converges in bounded time without guarantees
about the partition quality, however due to lack of space we
present the proof in the extended version of this paper [2].

From a practical perspective, even if limit cycles are
avoided often it is not worth spending compute cycles to
achieve full convergence. Typically, most of the improvement
in the partitioning quality occurs during the first iterations,
and the improvement per iteration drops quickly after that. We
validate this with real graphs in Section IV-A. For practical
purposes, in this section we also provide a heuristic for
deciding when to halt the execution of the algorithm.

In LPA, convergence is detected by the absence of ver-
tices changing label, referred to as the halting condition. A
number of strategies have been proposed to guarantee the
halting of LPA in synchronous systems, such as Pregel. These
strategies are either based on heuristics for tie breaking and
halting, or on the order in which vertices are updated [35]1.
However, the heuristics are tailored to LPA’s score function,
which maximizes only locality. Instead, our score function
does not maximize only locality, but also partition balance,
rendering these strategies unsuitable. Hence, in Spinner we use
a heuristic that tracks how the quality of partitioning improves
across the entire graph.

At a given iteration, we define the score of the partitioning
for graph G as the sum of the current scores of each vertex

score(G) = ∑
v∈G

score′′(v,α(lv)) (9)

As vertices try to optimize their individual scores by making
local decisions, this aggregate score gradually improves as
well. We consider a partitioning to be in a steady state,
when the score of the graph is not improved more than a
given threshold ε for more than w consecutive iterations.
The algorithm halts when it reaches steady state. Through
ε we can control the trade-off between the running time of
the algorithm and the improvement in the partitioning as it
executes more iterations. At the same time, with w it is possible
to impose a stricter requirement on stability; with a larger w,
we require more iterations with no significant improvement
until we accept to halt.

Note that this condition, commonly used by iterative hill-
climbing optimization algorithms, does not guarantee halting
at the optimal solution. However, as we present in Section
II-D, Spinner periodically restarts the partitioning algorithm
to adapt to changes to the graph or the compute environment.
This natural need to adapt gives Spinner the opportunity to
jump out of local optima.

D. Incremental Label Propagation

As edges and vertices are added and removed over time, the
computed partitioning becomes outdated, degrading the global
score. Upon such changes, we want to update the partitioning
to reflect the new topology without repartitioning from scratch.
Ideally, since the graph changes affect local areas of the graph,
we want to update the latest stable partitioning only in the
affected portions of the graph.

Due to its local and iterative nature, LPA lends itself to
incremental computation. Intuitively, the effect of the graph
changes is to “push” the current steady state away from the
local optimum it converged to, towards a state with lower
global score. To handle this change, we restart the iterations,
letting the algorithm search for a new local optimum. In
the event we have new vertices in the graph, we initially
assign them to the least loaded partition, to ensure we do not
violate the balance constraint. Subsequently, vertices evaluate
their new local score, possibly deciding to migrate to another
partition. The algorithm continues as described previously.

1Note that a synchronous system like Pregel does not have a vertex-update
scheduler, and hence Spinner cannot leverage one either.

Note that the number of iterations required to converge to
a new steady state depends on the number of graph changes
and the last state. Sometimes, no iteration may be necessary,
as certain changes may not affect any vertex to the point
that the score of a different label is higher than the current
one. Other changes may cause more migrations due to the
disruption of certain weak local equaling. In this sense, the
algorithm behaves as a hill-climbing optimization algorithm.
As we will show in Section IV-C, even upon a large number
of changes, Spinner saves a large fraction of the time of a
re-partitioning from scratch.

E. Elastic Label Propagation

During the life-cycle of a graph, a system may need to re-
distribute the graph across the compute cluster. For instance,
physical machines may reach their maximum capacity, and
the system may need to scale up with the addition of more
machines, requiring to re-distribute the graph. Alternatively,
we may perform such re-distribution just to increase the degree
of parallelization and improve performance. Conversely, if the
graph shrinks or the number of available machines decreases,
we need to remove a number of partitions and, again, redis-
tribute the graph.

In these scenarios, we want the algorithm to adapt to
the new number of partitions without repartitioning the graph
from scratch. Spinner achieves this in the following way.
Upon a change in the number of partition, Spinner lets each
vertex decide independently whether it should migrate using
a probabilistic approach. In the case we want to add n new
partitions to the system, each vertex picks one of the new
partitions randomly and migrates to it with a probability p
such that

p =
n

k+n
(10)

In the case we want to remove n partitions, all the vertices
assigned to those partitions migrate to one of the remaining
ones (chosen uniformly at random).

In both cases, after the vertices have migrated, we restart
the algorithm to adapt the partitioning to the new assignments.
As in the case of incremental LPA, the number of iterations
required to converge to a new steady state depends on factors,
such as the graph size, and the number of partitions added or
removed.

By introducing these random migrations upon a change,
this strategy can disrupt the current partitioning, degrading
the global score. However, it has a number of interesting
characteristics. First, it remains a decentralized and lightweight
heuristic as each vertex makes a decision to migrate in-
dependently. Second, by choosing randomly, the partitions
remain fairly balanced even after a change in the number of
partitions. Third, this random change from the current state of
the optimization problem may allow the solution to jump out
of a local optimum.

Note that, if the number n of new partitions is large, the
time to adapt the partitioning may be quite high due to a
large number of random migrations. However, in practice, the
frequency with which partitions are added or removed is low
compared, for example, to the number of times a partitioning
is updated due to changes in the graph itself. Furthermore,

...

Conversion

Initialization

Iteration 1
Iteration 2

Iteration 3
Iteration 4

Iteration n

NeighborPropagation
NeighborDiscovery
Initializer (scratch, incremental, elastic)
ComputeScores

ComputeMigrations

Fig. 1. Organization of the algorithm in multiple phases, each implemented
by one or multiple steps (block). Each algorithm step is implemented as a
Pregel superstep.

although vertices are shuffled around, the locality of those ver-
tices that do not migrate is not completely destroyed, such as if
the partitioning was performed from scratch. The adaptation of
the partitioning to the new number of partitions will naturally
take advantage of the late state of the partitioning.

III. PREGEL IMPLEMENTATION

We implemented Spinner in Apache Giraph [1] and open
sourced the code2. Giraph is an open source project with a
Java implementation of the Pregel model. Giraph is a batch
graph processing system that runs on Hadoop [6], and can run
computations on graphs with hundreds of billions of edges
across clusters consisting of commodity machines.

In this section, we describe the implementation details of
Spinner. We show how we extend the LPA formulation to
leverage the synchronous vertex-centric programming model
of a system like Giraph.

A. Vertex-centric partitioning

At a high-level, the algorithm is organized in three phases,
depicted in Figure 1. In the first phase, since LPA assumes an
undirected graph, if directed, Spinner converts it to a weighted
undirected form as described in Section II-A. In the second
phase, Spinner initializes the partition of each vertex depending
on whether it partitions the graph from scratch or it is adapting
an existing partitioning.

Subsequently, the third phase that implements the main
LPA iterative migration process starts. In this phase, Spinner
iteratively executes two different steps. In the first step, each
vertex computes the label that maximizes its local score
function. In the second step, vertices decide whether to migrate
by changing label or defer migration. At the end of each
iteration, Spinner evaluates the halting condition to decide
whether to continue or stop computation.

We implement each of these phases as a series of Giraph
supersteps. In the following subsections, we describe each
phase in detail.

1) Graph conversion and initialization: We implement the
first phase, the graph conversion, as two Giraph supersteps.
Note that the Giraph data model is a distributed directed graph,
where every vertex is aware of its outgoing edges but not of

2http://grafos.ml

the incoming ones. For this reason, in the first superstep, each
vertex sends its ID as a message to its neighbors. We call this
step NeighborPropagation.

During the second superstep, a vertex receives a message
from every other vertex that has an edge to it. For each received
message, a vertex checks whether an outgoing edge towards
the other endpoint is already present. If this is the case, the
vertex sets the weight of the associated edge to 2. Otherwise,
it creates an edge pointing to the other vertex with a weight
of 1. We call this step NeighborDiscovery.

After this, Spinner executes the second phase, assigning
partitions to each vertex. We call this step Initialization,
and it corresponds to a single Giraph superstep. In the case
Spinner partitions the graph from scratch, each vertex chooses
a random partition. We will consider the case of adapting
a partitioning in following sections. At this point, the LPA
computation starts on the undirected graph.

2) Local computation of labels: The vertex-centric pro-
gramming model of Pregel lends itself to the implementation
of LPA. During an LPA iteration, each vertex computes the
label that maximizes its local score based on the load of each
partition and the labels of its neighbors. Each vertex stores the
label of a neighbor in the value of the edge that connects them.
When a vertex changes label, it informs its neighbors of the
new label through a message. Upon reception of the message,
neighboring vertices update the corresponding edge value with
the new label.

We implement a single LPA iteration as two successive
Giraph supersteps that we call ComputeScores and ComputeM-
igrations. In the first step, the ComputeScores, a vertex finds
the label that maximizes its score. In more detail, during
this step each vertex performs the following operations: (i) it
iterates over the messages, if any, and updates the edge values
with the new partitions of its neighbors, (ii) it iterates over
its edges and computes the frequency of each label across its
neighborhood, (iii) it computes the label that maximizes its
local score, (iv) if a label with a higher score than the current
one is found, the vertex is flagged as candidate to change label
in the next step.

3) Decentralized migration decisions: Implementing our
algorithm in a synchronous model introduces additional com-
plexity. If we let every candidate vertex change label to
maximize its local score during the ComputeScores step, we
could obtain a partition that is unbalanced and violates the
maximum capacities restriction. Intuitively, imagine that at a
given time a partition was less loaded than the others. This
partition could be potentially attractive to many vertices as
the penalty function would favor that partition. As each vertex
computes its score independently based on the partition loads
computed at the beginning of the iteration, many vertices could
choose independently that same partition label. To avoid this
condition, we introduce an additional step that we call Com-
puteMigrations, and that serves the purpose of maintaining
balance.

To avoid exceeding partition capacities, vertices need to
coordinate after they have decided the label that maximizes
their score during the ComputeScores step. To keep the solution
decentralized, we opt for a probabilistic approach: a candidate
vertex changes to a label with a probability that depends (i)

on the remaining capacity of the corresponding partition and
(ii) the total number of vertices that are candidates to change
to the specific label.

More specifically, suppose that at iteration i partition l has
a remaining capacity r(l) such that

r(l) =C−b(l) (11)

Suppose that M(l) is the set of candidate vertices that want
to change to label l, which is determined during the Com-
puteScores step of the iteration. We define the load of M(l)
as

m(l) = ∑
v∈M(l)

deg(v) (12)

This is the total load in edges that vertices in M(l) would carry
to partition l if they all migrated. Since m(l) might be higher
than the remaining capacity, in the second step of the iteration,
we execute each candidate, and we only let it change with a
probability p such that

p =
r(l)
m(l)

(13)

Upon change, each vertex updates the capacities of the current
partition and the new partition, and it updates the global score
through the associated counter. It also sends a message to all
its neighbors, with its new label. At this point, after all vertices
have changed label, the halting condition can be evaluated
based on the global score.

This strategy has the advantage of requiring neither cen-
tralized nor direct coordination between vertices. Vertices can
independently decide to change label or retry in the next
iteration. Moreover, it is lightweight, as probabilities can be
computed on each worker at the beginning of the step. Because
this is a probabilistic approach, it is possible that the load of
a partition exceeds the remaining capacity. Nevertheless, the
probability is bounded and decreases exponentially with the
number of migrating vertices and super-exponentially with the
inverse of the maximum degree.

Proposition 1. The probability that at iteration i+1 the load
bi+1(l) exceeds the capacity by a factor of ε ri(l) is

Pr(bi+1(l)≥C+ ε ri(l))≤ e−2 |M(l)|Φ(ε), (14)

where Φ(ε) =
(

ε ri(l)
∆−δ

)2
and δ , ∆ is the minimum and maximum

degree of the vertices in M(l), respectively.

Proof: Let Xv be a random variable which becomes 0
when vertex v does not migrate and deg(v) otherwise. The
expected value of Xv is

E(Xv) = 0 · (1− p)+deg(v) p = deg(v) p.

The total load carried by the vertices that migrate is described
by the random variable X = ∑v∈M(l) Xv and has expected value

E(X) = E

(
∑

v∈M(l)
Xv

)
= ∑

v∈M(l)
E(Xv) = p ∑

v∈M(l)
deg(v) = r(l).

We want to bound the probability that X is larger than r(l), that
is, the number of edges that migrate to l exceeds the remaining

capacity of l. Using Hoeffding’s method, we have that for any
t > 0,

Pr(X−E(X)≥ t)≤ exp

− 2|M(l)|2t2

∑
v∈M(l)

(∆−δ)2

= exp
(
−2|M(l)|t2

(∆−δ)2

)
,

where δ and ∆ are the minimum and maximum degree of the
vertices in M(l), respectively. Setting t = ε E(X), we obtain
the desired upper bound:

Pr(X ≥ (1+ ε)E(X)) = Pr(X +b(l)≥C+ εr(l))

≤ exp

(
−2 |M(l)|

(
ε r(l)
∆−δ

)2
)

We can conclude that with high probability at each iteration
Spinner does not violate the partition capacity. To give an
example, consider that |M(l)| = 200 vertices with minimum
and maximum degree δ = 1 and ∆ = 500, respectively, want
to migrate to partition l. The probability that, after the migra-
tion, the load bi+1(l) exceeds 1.2ri(l)+ bi(l) = C + 0.2ri(l)
is smaller than 0.2, where the probability that it exceeds
C+0.4ri(l) is smaller than 0.0016. Note that, being an upper
bound, this is a pessimistic estimate. In Section IV-A1, we
show experimentally that unbalance is much lower.

4) Asynchronous per-worker computation: Although the
introduction of the ComputeMigrations step helps maintain
balance by preventing excessive vertices from acquiring the
same label, it depends on synchronous updates of the partition
loads. The probabilistic migration decision described in III-A3
is based on the partition loads calculated during the previous
superstep, and ignores any migrations decision performed dur-
ing the current superstep. Consequently, a less loaded partition
will be attractive to many vertices, but only a few of them will
be allowed to migrate to it, delaying the migration decision of
the remaining ones until the next supersteps.

In general, the order in which vertices update their label
impacts convergence speed. While asynchronous graph pro-
cessing systems allow more flexibility in scheduling of vertex
updates, the synchronous nature of the Pregel model does not
allow any control on the order of vertex computation.

However, Spinner leverages features of the Giraph API
to emulate an asynchronous computation without the need
of a purely asynchronous model. Specifically, Spinner treats
each iteration within the same physical machine worker of a
cluster as an asynchronous computation. During an iteration,
each worker maintains local values for the partition loads that
are shared across all vertices in the same worker. When a
vertex is evaluated in the ComputeScores step and it becomes
a candidate to change to a label, it updates the local values of
the load of the corresponding partition asynchronously. As an
effect, subsequent vertex computations in the same iteration
and on the same worker use more up-to-date partition load
information. Note that every vertex still has to be evaluated in
the ComputeMigrations step for consistency among workers.

This approach overall speeds up convergence, and does
not hurt the scalability properties of the Pregel model. In fact,
the Spinner implementation leverages a feature supported by

the Giraph programming interface that allows data sharing
and computations on a per-worker basis. The information
shared within the same worker is a set of counters for each
partition and therefore does not add to the memory overhead.
Furthermore, it still does not require any coordination across
workers.

5) Management of partition loads and counters: Spinner
relies on a number of counters to execute the partitioning:
the global score, the partition loads b(l), and the migration
counters m(l). The Pregel model supports global computation
of commutative and associative operations through aggrega-
tors. During each superstep, vertices can aggregate values into
named aggregators, and they can access the value aggregated
during the previous superstep. In Pregel, each aggregator is
computed in parallel by each worker for the aggregations
performed by the assigned vertices, and a master worker
aggregates these values at the end of the superstep. Giraph
implements sharded aggregators, where the duty of the master
worker for each aggregator is delegated to a different worker.
This architecture allows for scalability through a fair distri-
bution of load and parallel communication of partial aggrega-
tions. To exploit this feature, Spinner implements each counter
through a different aggregator, making the management of
counters scalable.

IV. EVALUATION

In this section, we assess Spinner’s ability to produce
good partitions on large graphs. Specifically, we evaluate
the partitioning quality in terms of locality and balance and
use Spinner to partition billion-vertex graphs. Furthermore,
we evaluate Spinner’s ability to support frequent adaptation
in dynamic environments. Finally, we utilize the partitioning
computed by Spinner with the Giraph graph processing engine
and measure the impact on the performance of real analytical
applications. For our experiments, we use the Facebook and
Instagram social graphs, and a variety of other large-scale
real-world graphs for comparison and repeatability. Table II
summarizes the real datasets we used.

A. Partitioning quality

In our first set of experiments, we measure the quality of
the partitions that Spinner can compute in terms of locality
and balance. We measure locality with the ratio of local edges
φ and balance with the maximum normalized load ρ , defined
as

φ =
local edges

|E|
, ρ =

maximum load
|E|
k

(15)

where k is the number of partitions, # local edges represents
the number of edges that connect two vertices assigned to the
same partition, and maximum load represents the number of
edges assigned to the most loaded partition. The maximum
normalized load metric is typically used to measure unbalance
and represents the percentage-wise difference of the most
loaded partition from a perfectly balanced partition.

We chose these metrics for two reasons. First, they map
naturally to the Pregel paradigm, as (i) the amount of data
sent over the network is proportional to the number of edges
spanning different partitions, in turn assigned to different

2 4 8 16 32 64 128 256 512
number of partitions

0.0

0.15

0.3

0.45

0.6

0.75

0.9

φ

LJ

G+

TU

TW

FR

IG

Y!

FB

2 4 8 16 32 64 128 256 512
number of partitions

0

50

100

150

200

250

300

φ
 i
m

p
ro

v
e
m

e
n
t

LJ

G+

TU

TW

FR

IG

Y!

FB

Fig. 2. (Top) Partitioning locality for varying number of partitions. X-axis is
in log scale. (Bottom) Improvement in locality compared to hash partitioning.
X-axis is in log scale.

machines, and (ii) the maximum load defines the amount work
that the most loaded machines will have to manage (the load
of a Pregel worker is often proportional to the number of edges
assigned to it), which is particularly relevant in a synchronous
system as we discuss in Section IV-F. Second, these are the
metrics used by the techniques from the literature we compare
to.

First, we study how partitioning quality depends on the
number of partitions. We vary the number of partitions and
measure locality and balance for different graphs. For this and
the remaining experiments, we set the algorithm parameters as
follows: additional capacity c = 1.05, and halting thresholds
ε = 0.001 and w = 5.

In Figure 2(a), we show that Spinner is able to produce
partitions with high locality for all the graphs also for large
numbers of partitions. With respect to balance, Spinner cal-
culates fairly balanced partitions. Table III shows the average
value of the maximum normalized load for each graph. For
example, a ρ value of 1.059 for the Twitter graph means that
no partition exceeds the ideal size by more than 5.9% edges.

To give perspective on the quality of the partitions that
Spinner computes, Figure 2(b) shows the improvement in the
percentage of local edges compared to hash partitioning. We
perform this comparison for the same set of graphs. Notice
that for 512 partitions Spinner increases locality up to over
300 times.

In Table I, we compare Spinner with state-of-the-art ap-
proaches. Recall that our primary goal for Spinner is to design
a scalable algorithm for the Pregel model that is practical in
maintaining the resulting partitioning, and that is comparable
to the state-of-the-art in terms of locality and balance. Indeed,
Spinner computes partitions with locality that is within 2-12%
of the best approach, typically Metis, and balance that is within
1-3% of the best approach. In cases Spinner performs slightly
worse than Fennel with respect to φ , it performs better with
respect to ρ . These two metrics are connected as the most
loaded partition will be the result of migrations to increase

Twitter k=2 Twitter k=4 Twitter k=8 Twitter k=16 Twitter k=32

Approach φ ρ φ ρ φ ρ φ ρ φ ρ

Wang et al. [33] 0.61 1.30 0.36 1.63 0.23 2.19 0.15 2.63 0.11 1.87
Stanton et al. [29] 0.66 1.04 0.45 1.07 0.34 1.10 0.24 1.13 0.20 1.15
Fennel [30] 0.93 1.10 0.71 1.10 0.52 1.10 0.41 1.10 0.33 1.10
Metis [18] 0.88 1.02 0.76 1.03 0.64 1.03 0.46 1.03 0.37 1.03
Spinner 0.85 1.05 0.69 1.02 0.51 1.05 0.39 1.04 0.31 1.04

TABLE I. COMPARISON WITH STATE-OF-THE-ART APPROACHES. SPINNER OUTPERFORMS OR COMPARES TO THE STREAM-BASED APPROACHES, AND
IS ONLY SLIGHTLY OUTPERFORMED BY SEQUENTIAL METIS. NOTICE THAT BECAUSE WANG ET AL. BALANCES ON THE NUMBER OF VERTICES, NOT

EDGES, IT PRODUCES PARTITIONINGS WITH HIGH VALUES OF ρ .

Name —V— —E— Directed Source
Facebook (FB) 1.4B 400B No [3]
Instagram (IG) - - Yes [5]
Yahoo! (Y!) 1.4B 6.6B Yes [8]
Friendster (FR) 66M 1.8B No [35]
Twitter (TW) 40M 1.5B Yes [20]
Tuenti (TU) 12M 685M No [7]
Google+ (G+) 29M 462M Yes [13]
LiveJournal (LJ) 4.8M 69M Yes [10]

TABLE II. DATASETS USED FOR THE EVALUATION. GRAPHS ARE
PRESENTED ORDERED BY NUMBER OF EDGES. WE OMIT THE INSTAGRAM

GRAPH SIZE FOR CONFIDENTIALITY REASONS.

LJ G+ TU TW FR IG Y! FB
1.053 1.042 1.052 1.059 1.047 1.034 1.067 1.043
TABLE III. PARTITIONING BALANCE. THE TABLE SHOWS THE

AVERAGE ρ FOR THE DIFFERENT GRAPHS.

locality.

In Figure 3 we present the evolution of the partitioning of
the Yahoo! graph across 115 partitions. The initial partitioning
presents high unbalance (ρ = 1.41), but after few iterations
Spinner is able to reach fair balancing (ρ = 1.05). Note that
the Twitter graph, known for the presence of high-degree
hubs [14], produced even higher initial unbalance (ρ = 1.67).
Looking at the shape of the score(G) curve, notice that initially
the global score is boosted precisely by the increased balance,
while after balance is reached around iteration 10, it increases
following the trend of φ .

In Table IV, we present the runtime of the first 10 iterations
of Spinner on the three largest graphs. We fixed the number
of iterations to simplify comparison, as Spinner requires a dif-
ferent number of iterations for each combination of graph and
number of partitions. We found experimentally that the first
10 iterations tend to operate the bulk of the partitioning work,
with the remaining iterations accounting for the tail of the
computation. The results were obtained with an experimental
Hadoop cluster of 200 machines.

Graph (k = 64) Y! IG FB
First 10 iterations runtime (s.) 373 967 1562

TABLE IV. RUNTIME TO COMPUTE THE FIRST 10 ITERATIONS OF
SPINNER. EVERY ITERATION INCLUDES TWO SUPERSTEPS.

1) Impact of additional capacity: Here, we investigate the
effect of parameter c on balance and convergence speed. Recall
that Spinner uses parameter c to control the maximum un-
balance. Additionally, parameter c affects convergence speed;
larger values of c should increase convergence speed as more
migrations are allowed during each iteration.

1.0

1.2

1.4

1.6

1.8

2.0

ρ

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

sc
o
re

(G
)

(x
1

0
^

8
)

0.0

0.2

0.4

0.6

0.8

1.0

φ

0 5 10 15 20 25 30 35 40
iteration

φ

ρ

score(G)

Fig. 3. Partitioning of the Yahoo! web graph across 115 partitions. The figure
shows the evolution of metrics φ , ρ , and score(G) across iterations.

1.02 1.05 1.10 1.20
c

1.02

1.05

1.10

1.20
ρ

ρ(c)

ρ=c

(a) Balance

1.02 1.05 1.10 1.20
c

20

30

40

50

60

70

80

90

100

it
e
ra

ti
o
n
s

k=8

k=16

k=32

k=64

(b) Convergence speed

Fig. 4. Impact of parameter c (a) on balance ρ , and (b) on convergence
speed.

In Section III-A3 we showed that with high probability
Spinner respects partition capacities, that is, maximum load ≤
C. From the definitions of ρ = maximum load

|E|
k

and C = c · |E|k ,

we derive that with high probability ρ ≤ c. Therefore, we can
use parameter c to bound the unbalance of partitioning. For
instance, if we allow partitions to store 20% more edges than
the ideal value, Spinner should produce a partitioning with a
maximum normalized load of up to 1.2.

To investigate these hypotheses experimentally, we vary
the value of c and measure the number of iterations needed
to converge as well as the final value of ρ . We partition the
LiveJournal graph into 8, 16, 32, and 64 partitions, setting
c to 1.02, 1.05, 1.10, and 1.20. We repeat each experiment
10 times and present the average and standard deviation for
each value of c. As expected, Figure 4(a) shows that indeed
on average ρ ≤ c. Moreover, the error bars show the minimum
and maximum value of ρ across the runs. We can notice that in
some cases ρ is much smaller than c, and when it is exceeded,
it is exceeded only by a small degree.

Figure 4(b) shows the relationship between c and the
number of iterations needed to converge. Indeed, a larger
value of c speeds up convergence. These results show how
c can be used to control the maximum normalized load of the

100 101 102 103

millions of vertices

104

105

ru
n
ti

m
e
 (

m
se

c.
)

(a) Runtime vs. graph size

20 40 60 80 100
multi-core workers

0

20

40

60

80

100

ru
n
ti

m
e
 (

se
c.

)

(b) Runtime vs. cluster size

101 102

partitions

104ru
n
ti

m
e
 (

m
se

c.
)

(c) Runtime vs. k

Fig. 5. Scalability of Spinner. (a) Runtime as a function of the number of vertices, (b) runtime as a function of the number of workers, (c) runtime as a
function of the number of partitions.

partitioning. It is up to the user to decide the trade-off between
balance and speed of convergence.

B. Scalability

In these experiments we show that the algorithm affords
a scalable implementation on modern large-scale graph pro-
cessing frameworks such as Giraph. To this end, we apply
our algorithm on synthetic graphs constructed with the Watts-
Strogatz model [34]. In all these experiments, we set the pa-
rameters of the algorithm as described in Section IV-A. Using
synthetic graphs here allows us to carefully control the number
of vertices and edges, still working with a graph that resembles
a real-world social network or web-graph characterized by
“small-world” properties. On such a graph, the number of
iterations required to partition the graph does not depend only
on the number of vertices, edges and partitions, but also on its
topology, and in particular on properties such as the clustering
coefficient and the diameter.

For this reason, to validate the scalability of the algorithm
we focus on the runtime of the first iteration, notably the
iteration where all vertices receive notifications from all their
neighbors, making it the most resource intensive iteration.
In specific, we compute the runtime of an iteration as the
sum of the time needed to compute the ComputeScores and
the following ComputeMigrations supersteps. This approach
allows us to factor out the runtime of algorithm as a function
the number of vertices and edges.

Figure 5 presents the results of the experiments, executed
on an AWS Hadoop cluster with 116 m2.4xlarge machines.
In the first experiment, presented in Figure 5(a), we focus on
the scalability of the algorithm as a function of the number of
vertices and edges in the graph. For this, we fix the number
of outgoing edges per vertex to 40. We connect the vertices
following a ring lattice topology, and re-wire 30% of the edges
randomly, setting the beta parameter of the Watts-Strogatz
model to 0.3. We execute each experiment with 115 workers,
for an exponentially increasing number of vertices, from 2 to
1024 million vertices (or one billion vertices) and we divide
each graph in 64 partitions. The results, presented in a loglog
plot, show a linear trend with respect to the size of the graph.
Note that for the first data points the size of the graph is too
small for such a large cluster, and we are actually measuring
the overhead of Giraph.

In the second experiment, presented in Figure 5(b), we
focus on the scalability of the algorithm as a function of the

0 5 10 15 20 25 30
% new edges

0

20

40

60

80

100

%
 s

a
v
in

g
s

Messages

Time

(a) Resource savings

0 5 10 15 20 25 30
% new edges

0

20

40

60

80

100

%
 v

e
rt

ic
e
s

m
o
v
e
d

From scratch

Adaptive

(b) Partitioning stability

Fig. 6. Adapting to graph changes. We vary the percentage of new edges in
the graph and compare our adaptive approach to re-partitioning from scratch.
We measure (a) savings in processing time and messages exchanged, and (b)
the fraction of vertices that have to move upon re-partitioning.

number of workers. Here, we fix the number of vertices to 1
billion, still constructed as described above, but we vary the
number of workers linearly from 15 to 115 with steps of 15
workers (except for the last step where we add 10 workers).
The drop from 111 to 15 seconds with 7.6 times more workers
represents a speedup of 7.6.

In the third experiment, presented in Figure 5(c), we focus
on the scalability of the algorithm as a function of the number
of partitions. Again, we use 115 workers and we fix the number
of vertices to 1 billion and construct the graph as described
above. This time, we increase the number of partitions expo-
nentially from 2 to 512. Also here, the loglog plot shows a
near-linear trend, as the complexity of the heuristic executed
by each vertex is proportional to the number of partitions k,
and so is the cost of maintaining partition loads and counters
through the sharded aggregators provided by Giraph.

C. Partitioning dynamic graphs

Due to the dynamic nature of graphs, the quality of an
initial partitioning degrades over time. Re-partitioning from
scratch can be a computationally expensive task if performed
frequently and with potentially limited resources. In this sec-
tion, we show that our algorithm minimizes the time to adapt
the partitioning to the changes, making the maintenance of
a well-partitioned graph a manageable task in terms of time
and compute resources required. Specifically, we measure the
savings in processing time and number of messages exchanged
(i.e. load imposed on the network) relative to the approach
of re-partitioning the graph from scratch. We track how these
metrics vary as a function of the degree of change in the graph.
Intuitively, larger graph changes require more time to adapt to
an optimal partitioning.

0 1 2 3 4 5 6 7 8
of new partitions

0

20

40

60

80

100
%

 s
a
v
in

g
s

Messages

Time

(a) Resource savings

0 1 2 3 4 5 6 7 8
new partitions

0

20

40

60

80

100

%
 v

e
rt

ic
e
s

m
o
v
e
d

From scratch

Adaptive

(b) Partitioning stability

Fig. 7. Adapting to resource changes. We vary the number of new partitions
and compare our adaptive approach to re-partitioning from scratch. We
measure (a) savings in processing time and messages exchanged, and (b) the
fraction of vertices that have to move upon re-partitioning.

For this experiment, we take a snapshot of the Tuenti [7]
social graph that consists of approximately 10 million vertices
and 530 million edges, and perform an initial partitioning.
Subsequently, we add a varying number of edges that cor-
respond to actual new friendships and measure the above
metrics. Figure 6(a) shows that for changes up to 0.5%,
our approach saves up to 86% of the processing time and,
by reducing vertex migrations, up to 92% of the network
traffic. Even for large graph changes, the algorithm still saves
up to 80% of the processing time. Note that in every case
our approach converges to a balanced partitioning, with a
maximum normalized load of approximately 1.047, with 67%-
69% local edges, similar to a re-partitioning from scratch.

D. Partitioning stability

Adapting the partitioning helps maintain good locality as
the graph changes, but may also require the graph management
system (e.g. a graph DB) to move vertices and their associated
state (e.g. user profiles in a social network) across partitions,
potentially impacting performance. Aside from efficiency, the
value of an adaptive algorithm lies also in maintaining stable
partitions, that is, requiring only few vertices to move to
new partitions upon graph changes. Here, we show that our
approach achieves this goal.

We quantify the stability of the algorithm with a metric
we call partitioning difference. The partitioning difference
between two partitions is the percentage of vertices that belong
to different partitions across two partitionings. This number
represents the fraction of vertices that have to move to new
partitions. Note that this metric is not the same as the total
number of migrations that occur during the execution of the
algorithm which only regards the performance of the algorithm
per se.

In Figure 6(b), we measure the resulting partitioning dif-
ference when adapting and when re-partitioning from scratch
as a function of the percentage of new edges. As expected, the
percentage of vertices that have to move increases as we make
more changes to the graph. However, our adaptive approach
requires only 8%-11% of the vertices to move compared to a
95%-98% when re-partitioning, minimizing the impact.

E. Adapting to resource changes

Here, we show that Spinner efficiently adapts the parti-
tioning when resource changes force a change in the number
of partitions. Initially, we partition the Tuenti graph snapshot

Approach Mean Max. Min.
Random 5.8s±2.3s 8.4s±2.1s 3.4s±1.9s
Spinner 4.7s±1.5s 5.8s±1.3s 3.1s±1.1s

TABLE V. IMPACT OF PARTITIONING BALANCE ON WORKER LOAD.
WE SHOW THE TIME SPENT BY WORKERS TO FINISH A SUPERSTEP.

described in Section IV-C into 32 partitions. Subsequently we
add a varying number of partitions and either re-partition the
graph from scratch or adapt the partitioning with Spinner.
Figure 7(a) shows the savings in processing time and number
of messages exchanged as a function of the number of new
partitions. As expected, a larger number of new partitions
requires more work to converge to a good partitioning. When
increasing the capacity of the system by only 1 partition,
Spinner adapts the partitions 74% faster relative to a re-
partitioning.

Similarly to graph changes, a change in the capacity of
the compute system may result in shuffling the graph. In
Figure 7(b), we see that a change in the number of partitions
can impact partitioning stability more than a large change
in the input graph (Figure 6(b)). Still, when adding only
1 partition Spinner forces less than 17% of the vertices to
shuffle compared to a 96% when re-partitioning from scratch.
The high percentage when re-partitioning from scratch is
expected due to the randomized nature of our algorithm. Note,
though, that even a deterministic algorithm, like modulo hash
partitioning, may suffer from the same problem when the
number of partitions changes.

F. Impact on application performance

The partitioning computed by Spinner can be used by
different graph management systems, to improve their per-
formance. In this section, we use Spinner to optimize the
execution of the Giraph graph processing system itself. After
partitioning the input graph with Spinner, we instruct Giraph
to use the computed partitioning and run real analytical appli-
cations on top. We then measure the impact on performance
compared to using standard hash partitioning.

First, we assess the impact of partitioning balance on the
actual load balance of the Giraph workers. In a synchronous
processing engine like Giraph, an unbalanced partitioning
results in the less loaded workers idling at the synchronization
barrier. To validate this hypothesis, we partition the Twitter
graph across 256 partitions and run 20 iterations of the PageR-
ank algorithm on a cluster with 256 workers using (i) standard
hash partitioning (random), and (ii) the partitioning computed
by Spinner. For each run, we measure the time to compute a
superstep by all the workers (Mean), the fastest (Min) and the
slowest (Max), and compute the standard deviation across the
20 iterations. Table V shows the results.

The results indicate that with hash partitioning the workers
are idling on average for 31% of the superstep, while with
Spinner for only 19%. While the shorter time needed to
compute a superstep can be imputed to the diminished number
of cut edges, the decreased idling time is an effect of a more
even load spread across the workers.

Second, we measure the impact of partitioning on process-
ing time. We partitioned five graphs with Spinner and hash
partitioning, and compared the time to run a variety of graph

SP PR CC SP PR CC SP PR CC FoF1 FoF2
0

10
20
30
40
50
60
70
80
90

%
 i
m

p
ro

v
e
m

e
n
t LJ TU TW IG FB

Fig. 8. Application runtime improvement over hash partitioning for Shortest
Paths (SP), PageRank (PR), Connected Components (CC), and two Friend-of-
Friend recommendation applications (FoF1, FoF2).

algorithms commonly used in analytical pipelines. Shortest
Paths is used to study graph connectivity, PageRank is used at
the core of ranking algorithms, and Connected Components is
a general approach to finding communities. We also run two
production Friend-of-Friend type of applications for follower
and friend recommendation on Instagram and Facebook. We
present these experimental results in Figure 8.

Using the partitionings computed by Spinner we signifi-
cantly improve the performance across all graphs and appli-
cations. In the case of the Twitter graph, which is denser and
harder to partition, the improvement ranges from 25% for SP
to 35% for PR. In the case of LiveJournal and Tuenti, the
running time decreases by up to 50%.

Friends-of-Friends workloads produce messages with total
size in the order of O(|E|2), adding significant communication
overhead. Due to the message size, they also require more
memory resources, resulting in high garbage collection over-
head. Using Spinner on Instagram, we decreased application
runtime by 37%. We also noticed that the average memory
used by worker machines during a superstep decreased by up
to 35%, while the maximum memory used decreased by up to
47%. Effectively, this allows to scale to larger datasets with
the same amount of resources, with no need for application-
specific optimizations. On the Facebook graph, where com-
munication overhead dominates computation due to the graph
size, running time decreases by 82.2%. In practice, this allowed
us to run an analytical task, which would otherwise take over
a day, within 4-5 hours. Notice also that the running time of
Spinner (Table IV) is small compared to the performance gain,
amortizing its overhead almost immediately.

V. RELATED WORK

In this section, we discuss the related work on large-scale
k-way balanced graph partitioning.

(Par)Metis. Metis [18] is an offline partitioning algorithm,
considered the golden standard against new approaches. How-
ever it has been shown [22] to scale poorly beyond few
tens of million vertices due to the high computational and
space complexity of its coarsening phase, including the parallel
version ParMetis [19]. Moreover, it requires to transfer data
out of the system, convert it to an appropriate format for
partitioning, and then convert and transfer data back. This
complicates processing pipelines, requires a separate compute
cluster, and adds significant overheads. To summarize, it is
not suitable for either the massive scale nor the computing
infrastructures targeted by Spinner.

(Re-)streaming techniques. Spinner shares with streaming
techniques [29], [30] the local greedy approach of positioning
a vertex in the partition that maximizes locality and minimizes
unbalance. While simple and effective, a scalable distributed
implementation of one-shot streaming techniques is not obvi-
ous [23]. To achieve parallelism, restreaming techniques [23]
partition the data stream across a number of workers that
perform multiple passes of streaming partitioning on their
portion of the stream. Because the operations of each worker
are isolated, at the end of each pass workers exchange the
new vertex assignments, which are used for updates during
the following (re-)streaming pass. This sequence of passes
is necessary to keep the local views of each worker consis-
tent towards convergence. Note that restreaming passes are
globally synchronized across workers. Other approaches, like
Leopard [17], build on streaming approaches and augment
them with vertex replication as a way to reduce the effective
edge cut. However, such approaches are mainly targeted for
read-only workloads. The replication overhead renders them
unsuitable for graph processing systems, such as Pregel, or
update-intensive graph database workloads.

We argue that restreaming techniques implement LPA,
as vertex assignments are updated iteratively based on the
(updated) assignments of their neighbors. Moreover, their
parallel implementation is in practice a BSP computation,
where workers compute their local state, exchange updates in
a communication phase, and synchronize at a barrier. Hence,
deploying such techniques requires implementing both an
LPA-like algorithm and the underlying BSP machine. In other
words, it requires implementing both Spinner and its compute
environment. Instead, we implemented our approach as a
Giraph application with less than 700 lines of code and without
any additional parallel and distributed infrastructure. Moreover,
the convergence speed of Spinner does not depend on the
number of workers computing the partitioning. Restreaming
techniques, on the other hand, require a larger number of
iterations when more workers are involved. It is unclear how
parallel restreaming techniques impact runtime performance,
as no runtime statistics were reported. Finally, both streaming
and re-streaming techniques require the graph to be stored
and visited in a Breadth-First Search fashion to perform at
their best, hence also not conducive to a general-purpose graph
infrastructure.

LPA with centralized component. Two approaches are
particularly relevant to Spinner [31], [33]. The former applies
LPA to the MapReduce model, by attempting to improve
locality through iterative vertex migrations across partitions.
However, to guarantee balanced partitions, it executes a cen-
tralized linear solver between any two iterations. The com-
plexity of the linear system is quadratic to the number of
partitions and proportional to the size of the graph, making it
impractical for large graphs. Moreover, MapReduce is known
to be inefficient for iterative computations. The latter approach
computes a k-way vertex-based balanced partitioning. It uses
LPA to coarsen the input graph and then applies Metis to the
coarsened graph. At the end, it projects the Metis partitioning
back to the original graph. While the algorithm is scalable,
we have found that for large number of partitions and skewed
graphs the locality it produces is lower than Spinner. We also
found it is very sensitive to its two parameters for which no
intuition is available, differently from Spinner that requires

only one parameter, for which we provide guidelines. Further,
the approach is designed to run on the Trinity engine and
is not suitable for implementation on a synchronous model
such as Pregel. None of the two solutions investigates how
to adapt a partitioning upon changes in the graph or the
compute environment. On the other hand, xDGP [32] is a
system designed for continuous Pregel-like computations that
partitions the graph with LPA and migrates vertices during
the computation. However, xDGP does not tackle balancing
explicitly and often results in skewed partitions.

Finally, a similar approach to ours is proposed by Google
in [9]. Their algorithm first embeds nodes of the graph onto
a line, and then processes nodes in a distributed manner
guided by the linear embedding order. Like Spinner, the
approach leverages an off-the-shelf commodity platform, that
is, MapReduce to run the algorithm at scale on existing
infrastructure, minimizing the need for extra components. The
system performs comparably and sometimes beats state-of-the-
art techniques with respect to edge-cuts and balance. However,
by requiring repartitioning from scratch it does not meet the
adaptive property we set as a requirement in this work. Further,
as they report no information on runtime (due to corporate
restrictions), it is not clear how the choice of computing
platform, i.e. MapReduce versus Pregel, impacts partitioning
speed.

VI. CONCLUSIONS

We presented Spinner, a scalable and adaptive graph parti-
tioning algorithm built on the Pregel abstraction. By sacrificing
strict guarantees on balance, Spinner is practical for large-scale
graph management systems. Through an extensive evaluation
on a variety of graphs, we showed that Spinner computes
partitions with locality and balance comparable to the state-of-
the-art, but can do so at a scale of at least billion-vertex graphs.
At the same time, its support for dynamic changes makes it
more suitable for integrating into real graph systems. These
properties make Spinner suitable as a generic replacement
of the de-facto standard, hash partitioning, in cloud systems.
Toward this, our scalable, open source implementation on
Giraph makes Spinner easy to use on any commodity cluster.

ACKNOWLEDGMENTS

The authors would like to thank SURFsara and, in particu-
lar, Jeroen Schot for supporting this work by providing one of
the Hadoop clusters used in our experiments and helping with
the required cluster setup, necessary for this kind of large-scale
system research.

REFERENCES

[1] Apache Giraph Project. http://giraph.apache.org/.
[2] Extended version of this work. http://arxiv.org/pdf/1404.3861v1.pdf.
[3] Facebook social network. http://www.facebook.com.
[4] GraphLab Open Source project. http://graphlab.org.
[5] Instagram social network. http://instagram.com.
[6] The Hadoop project. http://hadoop.apache.org.
[7] The Tuenti Social Network. http://www.tuenti.com.
[8] Yahoo Webscope Program. http://webscope.sandbox.yahoo.com.
[9] K. Aydin, et al. Distributed balanced partitioning via linear embedding.

In Proceedings of the Ninth ACM International Conference on Web
Search and Data Mining, pages 387–396. ACM, 2016.

[10] L. Backstrom, et al. Group formation in large social networks:
membership, growth, and evolution. In ACM SIGKDD, Aug. 2006.

[11] M. Barber et al. Detecting network communities by propagating labels
under constraints. Physical Review E, 80(2):026129, Aug. 2009.

[12] A. Ching, et al. One trillion edges: graph processing at facebook-scale.
Proceedings of the VLDB Endowment, 8(12):1804–1815, 2015.

[13] N. Z. Gong, et al. Evolution of social-attribute networks: measure-
ments, modeling, and implications using Google+. In ACM Internet
Measurement Conference, Nov. 2012.

[14] J. E. Gonzalez, et al. PowerGraph: Distributed Graph-Parallel Compu-
tation on Natural Graphs. In USENIX OSDI, Oct. 2012.

[15] J. E. Gonzalez, et al. Graphx: Graph processing in a distributed
dataflow framework. In Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2014.

[16] H. He et al. Graphs-at-a-time: Query Language and Access Methods
for Graph Databases. In ACM SIGMOD, Vancouver, BC, Canada, June
2008.

[17] J. Huang et al. Leopard: Lightweight edge-oriented partitioning and
replication for dynamic graphs. In Very Large Data Bases, volume 9,
2016.

[18] G. Karypis et al. METIS: Unstructured Graph Partitioning and Sparse
Matrix Ordering System. Technical report, University of Minnesota,
Minneapolis, MN, 1995.

[19] G. Karypis et al. Parallel Multilevel k-way Partitioning Scheme for
Irregular Graphs. SIAM Review, 41, 1999.

[20] H. Kwak, et al. What is Twitter, a social network or a news media? In
WWW, 2010.

[21] G. Malewicz, et al. Pregel: a system for large-scale graph processing.
In ACM SIGMOD, 2010.

[22] H. Meyerhenke, et al. Parallel graph partitioning for complex networks.
arXiv preprint arXiv:1404.4797, 2014.

[23] J. Nishimura et al. Restreaming Graph Partitioning: Simple Versatile
Algorithms for Advanced Balancing. In ACM SIGKDD, August 2013.

[24] B. Perozzi, et al. Scalable Graph Clustering with Pregel. In G. Ghoshal,
et al., editors, Workshop on Complex Networks, volume 476 of Studies in
Computational Intelligence, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[25] J. M. Pujol, et al. The little engine(s) that could: scaling online social
networks. ACM SIGCOMM Computer Communication Review, Oct.
2011.

[26] L. Quick, et al. Using Pregel-like Large Scale Graph Processing
Frameworks for Social Network Analysis. IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, 2012.

[27] M. Redekopp, et al. Optimizations and analysis of bsp graph processing
models on public clouds. In Parallel & Distributed Processing (IPDPS),
2013 IEEE 27th International Symposium on, pages 203–214. IEEE,
2013.

[28] B. Shao, et al. Trinity: A distributed graph engine on a memory cloud.
In ACM SIGMOD International Conference on Management of Data,
pages 505–516, 2013.

[29] I. Stanton et al. Streaming Graph Partitioning for Large Distributed
Graphs. In ACM SIGKDD, 2012.

[30] C. E. Tsourakakis, et al. FENNEL: Streaming Graph Partitioning for
Massive Scale Graphs. ACM International Conference on Web Search
and Data Mining, 2014.

[31] J. Ugander et al. Balanced label propagation for partitioning massive
graphs. ACM International Conference on Web Search and Data
Mining, 2013.

[32] L. M. Vaquero, et al. Adaptive partitioning for large-scale dynamic
graphs. In Distributed Computing Systems (ICDCS), 2014 IEEE 34th
International Conference on, pages 144–153. IEEE, 2014.

[33] L. Wang, et al. How to Partition a Billion-Node Graph. In ICDE’14,
2014.

[34] D. Watts et al. Collective dynamics of ’small-world’ networks. Nature,
1998.

[35] J. Yang et al. Defining and Evaluating Network Communities based on
Ground-truth. In IEEE International Conference on Data Mining, May

2012.

