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Abstract

For biodiversity research, the field of study that is concerned with

the biological diversity of our planet, it is of utmost importance that

the location of an animal specimen find is known with high precision.

Due to specimens often having been collected over the course of many

years, their accompanying geographical data is often ambiguous or may

be very imprecise. In this contribution, we detail an approach that utilizes

reasoning and external sources to improve the geographical information of

animal finds. We show that adding external domain knowledge improves

the ability to georeference locations over traditional methods that focus

solely on analyzing geographical information. Additionally, our system is

able to output the confidence it has in its decisions through a confidence

measure based on the difficulty of the instance and the steps undertaken

to disambiguate it.
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1 Introduction

Natural history museums such as Netherlands Centre for Biodiversity Naturalis

(Naturalis)1, harbour vast collections of biodiversity specimens collected from

all around the world and their accompanying data. These collections encompass

an enormous amount of information about the biodiversity of our planet, but

institutions are still in the process of unlocking their potential through digitiza-

tion of their collection metadata. An important aspect of biodiversity data is the

location of the specimen find; without it, researchers cannot track species’ geo-

graphical distribution over time, model the effects of environmental changes on

species or try to predict how changes in the environment influence biodiversity

in certain regions. The lack of precise geographical information presents a major

problem in the efficient use of the collection metadata. Recently, Naturalis and

the Computer Science department at VU University Amsterdam have teamed

up to develop a solution to aid biologists in georeferencing their collections.

The majority of objects in the collection were collected a long time ago, often

in countries that were previously colonies of the Netherlands. These specimens

(or parts of them) are preserved in various ways. Invertebrates can be kept

dried or preserved in alcohol, vertebrates are often kept dried and mounted or

in drawers, and the entomology collection is often pinned or kept in bags. All

specimens are kept in a secure climatized storage facility. This specimens are

used by researchers from all over the world to investigate for example geographi-

cal spread and evolution of species and to classify and describe different species).

As the oldest parts of the Naturalis collection date back to the 18th century,

most geographical information in the collection records is captured in a textual

description indicating location(s) and offset(s) such as “Anti-Atlas, 10-20 km S.

Ait-Baha, Morocco” rather than precise geographical coordinates. The inves-

1http://www.naturalis.nl

3



tigated databases at Naturalis contain fields that describe the geographical in-

formation: country, province, town, location, coordinates and altitude. See [21]

for an overview of the database fields and statistics on how many of the fields

are filled. With semi-automatic approaches such as the MaPSteDI method [15],

georeferencing a record reportedly takes approximately 5 minutes per record.

As Naturalis harbours 37 million objects with each their own record, manually

georeferencing each record would be time-consuming and costly. Crowdsourcing

this task is not an option as most of the data is domain specific, delicate or can-

not be made public. However, there is a large amount of biodiversity knowledge

being made available online which, when integrated with geographical resources

can be put to use in a knowledge-driven georeferencing approach.

To address this challenge, we have developed an automatic georeferencing

approach that uses domain knowledge about species geographical distribution

from the online Global Biodiversity Information Facility2. This approach has

been realized in a prototype currently being tested at Naturalis. The contribu-

tions of our work are threefold:

1. The first knowledge driven approach for automated georeferencing in the

biology domain.

2. A novel automatic confidence measure for georeferenced records to help

curators pinpoint difficult records whilst handling, easier more certain

records automatically.

3. A systematic evaluation that shows how a knowledge driven approach

improves geographical information in a major biodiversity facility while

limiting the need for input by domain experts.

The remainder of this paper is organized as follows. In Section 2, we describe

the challenges in georeferencing biodiversity data, followed by previous work in

2http://www.gbif.org
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Section 3. In Section 4, we describe the datasets we used. Our georeferencing

approach is described in Section 5, followed by the results in Section 7. Our

confidence measure is described in Section 8. The prototype demonstrator is

described in Section 9. Conclusions and future work are discussed in Section 10.

2 Challenges

The problem of georeferencing natural history collections is not new: the differ-

ent types of challenges have been categorised and described by Beamann and

Conn [1]. In Table 1, we illustrate each of the challenges by an example from

the Naturalis collection. It is not possible to georeference all types of localities

with equal precision. Vague localities, such as “Southeast Michigan”, simply

contain too little information to pinpoint a spot within a small range (<5km)

of the actual finding location, but for localities containing for example linear

feature measurements such as “16 km N of Murtoa” this is feasible.

[Table 1 about here.]

3 Related Work

There is a fair body of research on georeferencing both outside and inside the

domain of natural history. Within the natural language processing community

georeferencing is treated as follow-up task to named entity recognition [11, 14],

or possibly as complementary to it [4]. There are also several open source

tools available such as OpenSextant3 and CLAVIN4. However, these approaches

assume full text, whereas the datasets in the natural history domain are part of

structured database records, making them suboptimal for this domain.

3http://opensextant.github.io
4http://clavin.bericotechnologies.com/
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Most approaches for structured data use some sort of gazetteers combined

with some form of reasoning to disambiguate and ground location names [10, 12,

13]. These assume that the location names have been identified, skipping the

step of recognizing the location name and possible extra locality information.

Other approaches disambiguate toponyms from combining the analysis of events

with gazetteer [17]. In our case study, we do not have event descriptions at our

disposal. However, the procedure of information extraction, gazetteer lookup

and geodisambiguation is very similar to the one described in [17].

Another emerging relevant research thread regards the use of crowdsourcing

to acquire useful information for georeferencing [3, 9]. This kind of approach

assumes the availability of a crowdsourcing platform and of a population of

information contributors which we do not have in our case. However, these

approaches are complementary to the procedure described in our contribution,

since the crowdsourced information might help in improving the disambiguation

heuristics. This is out of the scope of this contribution, but a very interesting

avenue of research for future work.

Within the natural history domain, several attempts have been undertaken

to automatically assign coordinates to textual descriptions of locations in spec-

imen datasets with BioGeoMancer as its most well-known application5 [1, 7].

BioGeoMancer provides an application for text processing, interpreting, gazet-

teer querying (using a variety of sources6), intersecting spatial descriptions and

as a result returning a standardized geographical reference including uncertainty

levels. The initial version of BioGeoMancer supported interpretation of locali-

ties in English, Spanish and Portuguese. However, the latest available version

of BioGeoMancer supports English queries only.

Also developed for georeferencing natural history data is GeoLocate7 [16].

5http://bg.berkeley.edu/ & http://sourceforge.net/projects/BioGeoMancer/
6http://www.biogeomancer.org/metadata.html
7http://www.museum.tulane.edu/geolocate/
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It uses similar gazetteer data as the BioGeoMancer project8. GeoLocate uses

different georeferencing heuristics as well as additional linear features to its

gazetteer such as rivers, road, legal land descriptions and river miles. These

additional information sources can lead to more accurate results, but are only

available for the United States, Canada, and Mexico. A comparison of auto-

mated georeferencing tools found that, at the time, GeoLocate was the best

software tool to efficiently georeference large datasets [15].

Although both focused on the biology domain, neither BioGeoMancer nor

GeoLocate makes use of domain-specific knowledge, such as species occurrence

data. Also neither can deal with non-English data.

4 Data

In this section, we describe our primary dataset as well as the resources used

for georeferencing and the development of the gold standard.

4.1 Reptiles and Amphibians Database

Several large datasets of animal specimen datasets are maintained at Naturalis.

The information in these datasets comes from the field logs and registers in

which biologists that made these finds recorded them manually, usually during

expeditions. Part of the information from these sources has been converted to

electronic datasets over the course of time by many different biologists working

with the specimens. Creating these databases was not a top-down organized

undertaking, but rather taken up by the researchers themselves to improve

access to the data for themselves. As such the structure of these databases

differs, and currently initiatives are underway to standardize the electronic data

8Since 2006, GeoLocate is part of the BioGeoMancer Workbench, but the current status
of the integration of the projects is unclear
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recording process.

For our case study, we used the reptiles and amphibians database containing

29,752 records, each referring to a specific animal’s find. Among the informa-

tion in these records, one typically finds locality information indicating where

these specimens were found, its species, the name of the collector, informa-

tion about when it was entered into the database and by whom it was entered

into the database. The location find information is divided over several differ-

ent database fields, namely “Town/City”, “Province/State”, “Country”, “Lo-

cation”9, “Altitude”, and “Coordinates” (only filled in 3.4% of the records). In

this contribution, we shall mostly focus on the information from the Town/City,

Province/State, Country and Location fields. The records also contain some ad-

ditional notes describing the circumstances under which the specimen was found

or any other unusual information about the specimen. The data is mostly in

Dutch and English, but also Spanish, Portuguese and German are present. For-

eign languages are found in particular in local abbreviations or terms. Some

examples of this are the use of “Municipio” (Spanish for municipality) instead

of municipality or “Est.” as abbreviation for “Estado” (Spanish for state). For

the work presented in this contribution we focus on Dutch data records as this

is the main language of the database.

4.2 Gold Standard

To test our system, we created a gold standard consisting of 200 records. 50

records were used to develop and tune our system on, for example to check if

the offsets calculation performed as expected. 150 records were kept separate

for final testing. Records were selected randomly but with two aspects in mind:

common challenges and internal representativeness. The first aspect ensures

9This sometimes contains the town or city value, but more often it is used to describe
offsets or particularities of the find, such as that the specimen was found under a branch or
in a puddle.
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that the different types of locality information present in the database are rep-

resented in the gold standard. The second aspect balances for the fact that

some types of locality descriptions are more frequent than others.

Due to the limited resources for annotating the gold standard dataset, we

decided to focus on those categories from the initial nine categories in Table 1

(presented in Section 2) that contained vagueness or linear feature measure-

ments. We collapsed the categories that are closely related by means of chal-

lenges posed to our system, as indicated by the letters in Table 1. As there

are no high quality resources available currently that delineate political borders

over time, or provide accurate information about historical place names, we

discarded categories E1 and E2 for this contribution. In Table 2, we show our

categories, as well as an example, the distribution of records pertaining to this

category in the gold standard and in the entire database10.

[Table 2 about here.]

Manually adding geographical coordinates to the 200 records for our gold

standard was done by two annotators using pre-agreed on guidelines which

were based on the MaNIS/HerpNet/ORNIS Georeferencing Guidelines11. These

guidelines outline a cascaded approach in which annotators will first try to look

up place names in a gazetteer, after which they address offsets or other com-

plex features of the locality to be georeferenced. Furthermore, annotators were

asked to indicate records that were difficult to georeference with an extra tag

“PRECISION=LOW”. Both annotators georeferenced 120 records, of which 40

were compared to determine inter-annotator agreement. It took both annota-

tors about 2 afternoons to complete this task. Despite the guidelines, there was

a fairly large disagreement indicating the difficulty of the georeferencing task.

Of the 40 records that were annotated twice, 60% were an exact match or did

10Estimate based on an automated categorisation script
11http://manisnet.org/GeorefGuide.html
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not differ more than 1 km, 65% were correct within 10km, and 85% were correct

within 100km. Records differed due to differences in interpretation of the offset,

the use of different information sources (often resulting in minor differences) or

selecting different places from the gazetteers.

Common sources of disagreement were the distinction between administra-

tive areas (such as provinces and states) and actual populated places, and choos-

ing different paths when calculating offsets (such as “18 mls. E. of Kumasi”).

If there is more than one linear feature (linear features include roads, streams,

railways etc.) going east out of a town, it is up to the annotator to make an

educated guess which of these has to be followed.

4.3 Gazetteers and biodiversity resources

Two geographical gazetteers were used to look up place names: GeoNames12

and Google Maps13. GeoNames contains about 10 million place names and

information about those places, such as coordinates, alternative names, elevation

levels and population numbers. Its scope is global, although it contains more

information about highly populated areas. In the context of this research, this

may be an obstacle as much of the specimen finds are outside populated areas.

We prefer to use GeoNames because of its rich structured information about

its location, but in cases where we cannot find a location in the GeoNames

database, we fall back on Google Maps. Because of its built-in ranking mech-

anism, it will return more important places first which is information that can

be used to confirm or deny confidence in results retrieved from the GeoNames.

For biodiversity background data, we use The Global Biodiversity Infor-

mation Facility (GBIF)14. GBIF is the largest online portal for biodiversity

data. As of November 2011, the portal contains 312 million records, of which

12http://www.geonames.org
13http://maps.google.com
14http://www.gbif.org
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271 million also contain coordinates. These records come from the combination

of many individual datasets provided by institutions from around the world. A

study on the accuracy of geographical data in GBIF records [23] showed that

the majority of the records were annotated with correct coordinates (83%), but

the relatively large amount of incorrectly georeferenced records is something

that has to be taken into account when using this data. In our approach we

therefore do not use GBIF as a gold standard to derive exact coordinates from,

but we use it to filter out outliers (see subsection 6.3).

5 Knowledge-driven Georeferencing Approach

Our georeferencing approach consists of 5, rule-based modules that form the

pipeline through which each of the 150 evaluation records from the gold stan-

dard is processed. All modules are automatic. However, the final result of the

georeferencing approach is presented to a researcher who needs to check the

systems result before it is included in the database.

1. Record Retrieval This module filters the database record to include only

those database fields used by the system (“Town/City”, “Province/State”,

“Country”, “Location”, “Altitude”, “Collection Date”, “Genus”, and “Species”)

2. Text Parsing In the parsing module, sentences are split and tokenized.

Then tokens are matched against patterns and keywords to recognize in-

dicators for offsets (such as cardinal directions and units of measurement),

place names and common words in Dutch and English.

3. Gazetteer Lookup Identified location name candidates from the text pars-

ing module are looked up in GeoNames and Google Maps.

4. Offset Calculation If an offset, such as “112 km S El Dorado” is encoun-

tered, coordinates retrieved from the gazetteer for the place of reference
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(“El Dorado”) need to be combined with the offset (“112 km South”) to

calculate the final coordinates. For the calculations of the coordinates we

use the Perl Geo::Calc15 module. An example is shown in Figure 1.

5. Disambiguation Heuristics As many place names share the same name

(“Amsterdam, Netherlands” vs. “Amsterdam, MO, US”) or similar names

(“York, UK” vs. “New York, US”) several disambiguation heuristics were

selected to disambiguate location names.

[Figure 1 about here.]

6 Disambiguation Heuristics

In this section, we will detail each of our disambiguation heuristics.

6.1 Spatial Minimality

The spatial minimality heuristic is a fairly standard statistic in georeferencing

and relies on co-occurrence of geographic entities within the same discourse.

This heuristic assumes that, in a text which mentions more than one location,

the cluster of physical locations in the world that are most closely related by dis-

tance are the most likely candidates to be actually referred to. For example, if

“Amsterdam” and “Utrecht” are mentioned in the same text it is assumed that

Amsterdam refers to “Amsterdam, NH, Netherlands” whereas if “Amsterdam”

is mentioned together with “Albany”, it is more likely to refer to “Amster-

dam, NY, United States”. Li et al. [13] use a maximum weight spanning tree

(MST) to determine the best candidate based on its closest mentioned neigh-

bours. Leidner et al.[12] use an approach based on finding the smallest polygon

that binds a set of candidates to achieve a similar result. We follow the more

15http://search.cpan.org/~asp/Geo-Calc-0.11/lib/Geo/Calc.pm
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common approach from Leidner et al. [12] and compute polygons that span each

combination of potential candidates for a location name, and select the small-

est polygon. We start with a list of potential candidates for each place name

and their corresponding coordinates and match each candidate to every possi-

ble combination of candidates from the other place names. For each of these

combinations the system creates a polygon that encloses these candidates. The

system selects the smallest polygon, and the set of candidates used to create

that polygon are seen as the most likely candidates.

6.2 Expedition Clusters

The spatial minimality heuristic uses only information from within individual

records. However, specimen database records are not independent. The Expe-

dition Clusters heuristic assumes that information from similar records can be

used to aid georeferencing. Work on this same dataset by Van Erp [20] shows

that it is possible to use information available in the dataset to rediscover expe-

ditions from a dataset. Information about which expedition a record belongs to

is only explicitly available in a small number of records, but it is “re-discovered”

by using data such as collection date and country. Enriching the data in such a

way enables comparison between records which would otherwise not be possible.

For example, it is very unlikely that two records from the same expedition are

in entirely different locations. An example expedition plot is shown in Figure 2.

Thus, if such an anomaly was to be detected it would be a clear signal that one

of the records is incorrectly georeferenced. Furthermore, the information can be

used for disambiguation of place names as also suggested in the work of Guo et

al. [6], and increase confidence in the outcome of the georeferencing process.

Van Erp [20] found that grouping records by collection dates alone was very

efficient already (.83 F-Measure). We also added country information to maxi-
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mize precision. Before implementation, the date field in the dataset was stan-

dardized to the format “YYYY-MM-DD” and the retrieved records were sub-

sequently ordered by date and country. Records with incorrect or incomplete

collection dates (e.g. “30-02-1960” and “1960”), as well as records without

country information were not processed in this heuristic. A candidate for a

place name that is close to the previous georeferenced location record (when

that record belongs to the same expedition) will be assigned a higher confidence

measure.

[Figure 2 about here.]

6.3 Species Occurrence Data

Occurrence data from existing specimen finds can be used to check if new data

fits the currently known locations for species. In the current implementation,

this data is retrieved solely from GBIF as, at the time of writing, this is the

only openly available resource containing such information. This information

is used to disambiguate location descriptions and validate results in much the

same way as the expedition heuristic. By querying GBIF data, coordinates

are retrieved for all currently known finds of the species in the record. Each

coordinate for a previously found specimen find is then compared to each place

candidate, and based on the closest specimen find to a candidate a confidence

measure is assigned to the candidate; the smaller the distance to a candidate

the higher the confidence. The confidence measure is detailed in Section 8. A

visual representation of the GBIF disambiguation heuristic is shown in Figure 3.

[Figure 3 about here.]
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7 Results and Discussion

[Table 3 about here.]

[Table 4 about here.]

All presented results are measured by applying the heuristics in our knowledge-

driven georeferencing approach to the 150 evaluation records that were manually

georeferenced for the gold standard (see Subsection 4.2). We computed a base-

line score to compare our approach to a simple look-up approach by retrieving

the coordinates of the first location name found in the record, looking up this

name in the GeoNames gazetteer, filtering by country and province and return-

ing coordinates of the first candidate. Table 3 presents the accuracy results of

the different modules on the test set. Table 4 presents the precision (percentage

of correctly georeferenced records), recall (percentage of records for which the

system suggested coordinates) and F-measure (the harmonic mean of precision

and recall) of the best system at 25km. Application of the t-test shows that all

modules provide significant improvement over the baseline at p < 0.005

The spatial minimality heuristic improves results for records that contain

more than one place name (which is the case for around 50% of the records in

our gold standard), but with some caveats. The first implementation included

each location found in the record (Place, Location and Province/State). How-

ever, because the location field is a free text field, it contains long sentences

in a number of records, negatively affecting the rule-based system to recognise

location names. However, in many other cases, the location field does contain

useful information, so it was decided to not parse any location fields with a

length exceeding 60 characters. The spatial minimality heuristic performs bet-

ter if the Province/State field is not included in this heuristic. Provinces and

states generally cover larger areas but the gazetteer will return only one single

15



point that does not represent this fact. As such, these points do not add much

information on a smaller scale and pollute the created polygons. Since the coun-

try is almost always known, this already dramatically decreases the area that

has to be searched. As a result, the heuristic mainly improves results that were

not too far off to begin with.

As our data is in Dutch, we could not run our data in BioGeoMancer and

GeoLocate. For GeoLocate it is also the case that only georeferencing in the

US is supported. We could also not get hold of the data they tested their

systems with, therefore an exact comparison of our system to BioGeoMancer

and GeoLocate is not possible, but we have strived to set up our experiments in

similar fashion. We therefore assume that our results for the spatial heuristics

are in the same ballpark as those reported in the work of Murphey et al. [15].

Although the results in Tables 3 and 4 seem to indicate that the expedition

heuristic does not improve the results, manual inspection of the records showed

that the heuristic does add valuable information. For now this information

mostly affects the confidence score (see Section 8), and we attribute the lack of

improved scores to the configuration of our gold standard dataset. As our gold

standard contains a sample of random records from across the entire dataset, the

number of records belonging to the same expedition in this sample is small, and

as such these small clusters add little evidence to support the disambiguation

process.

The use of GBIF Species Occurrence Data is especially useful in situations

for disambiguation of location names in a large geographical area (notice that is

why the mean distance off improves more than the percentages of correctly geo-

referenced localities). If a specimen find is only annotated with the place name

“Sibil”, a list of 20 possible candidates would be retrieved from the GeoNames

gazetteer in different continents. By cross-referencing these candidates with
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existing finds of the species (“Sphenomorphus schultzei”), only two likely can-

didates remain: “Ok Sibil, Papua, ID” and “Sibil, Papua New Guinea”, greatly

decreasing the search space.

Care needs to be taken however that on a smaller scale, the heuristic should

not be used too rigorously since it will only favour locations that fit within

the existing data model and many species occurrences are spread out across an

area. Furthermore, a significant part (16%) of the geographical data in GBIF

records was found to contain errors, as demonstrated by Yesson et al. [23].

Species occurrence records for “Sphenomorphus schultzei” show that the species

was found on multiple locations across the island “New Guinea”, in an area of

almost 600,000 km. In this case, the occurrence data should not be used for

disambiguation of the two remaining candidates on this island.

[Table 5 about here.]

The results for different categories presented in Table 5 show that records

that are annotated with one single location name and an offset (category B) are

georeferenced with a much higher accuracy than other categories. Obviously, the

textual complexity of these records is limited but there are two other points of

interest. In each of these cases, there is no problem with the distinction between

administrative areas (provinces, states) and populated places (cities, villages)

since it is obvious that an offset will always be from a populated place and not

from a province. Secondly, the offsets usually appear to be from a well-known

(or important) place. A major difficulty in geo-referencing biological collections

is the use of place names that are only locally known. The location of place

names such as “Meyers’ farm” or “Base Bivouac” might be very well known

during expeditions and to local inhabitants. However, it is nearly impossible

to use this information on its own without the use of very specific information

sources such as the field logs and maps created for specific expeditions. In
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specific implementations, one could consider manually creating an additional

gazetteer for such places.

As can be seen in the third column, the other categories (A, C and D) have an

almost similar score for correct matches within 5 km. However, results for single

location names (category A) show that the number of additional places found

within 25 or 100 KM is limited, whereas records with more than one location

show improvements. Records that are annotated with more than one location

benefit the georeferencing process by adding contextual information. For exam-

ple, when encountering a description such as “Lake Jaroe, Kampong Gariau,

Indonesia”, “Lake Jaroe” does not occur in any generic gazetteer. However,

the record can still be georeferenced using the more generic location “Kampong

Gariau”. However, this means records are georeferenced to locations several

kilometres away from the correct location, decreasing accuracy.

8 Measuring Confidence

There is a large number of potential uncertainties in the georeferencing process.

These stem from the data itself, external data-sources used, and the process

of linking data to these external sources. It is important that these sources of

uncertainty are identified and recorded to be able to calculate a confidence score

(CS) for the resulting georeferenced locality. Although Graham et al. [5] found

that “species distribution modeling approaches in general are fairly robust to

locational error”, not having information about the uncertainty of georeferenced

localities makes it impossible to know if this geospatial data is suitable for a

specific purpose and it may thus be of little use as also suggested in the work

of Wieczorek et al. [22] and of Guo et al. [6].

Inspired by a basic manual confidence value system used in the MaPSteDI

method [15], a scale from -12 to 12 is used to automatically indicate the confi-
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dence in a georeferenced locality (12 indicating the highest degree of confidence,

-12 lowest). This automatic measure represents the confidence that the returned

coordinates for a georeferenced location are accurate. The confidence measure

is based on several different indicators presented in Table 6. Each indicator con-

tributes to the final confidence score with a different weight. These weights have

been determined from manual adjustment based on the development dataset.

We will investigate this issue in depth in the future.

The most important component of the confidence score is the amount of in-

formation available in a record. A single place name with structured additional

information about the province and country such as “Santa Bárbara, Ama-

zonas, Brazil” can usually be retrieved with a higher confidence than a single

description such as “Forest between 20-10 km from Ambohaobe”. Therefore

the latter record receives a lower CS based on absence of country and province

information. Secondly, it is based on the consistency and type of input data

from gazetteers and biodiversity resource. For example, if no direct match in a

gazetteer is found but a result is found using fuzzy matching, that result will still

used but it decreases the confidence. If a georeferenced location is consistent

with existing occurrence data from GBIF, this will increase the confidence.

Each heuristic can increase or decrease the confidence. For example, based on

the spatial minimality heuristic, the confidence will be increased if the polygon

describing the area of co-occurring place names is very small or decreased if very

large. If a record belonging to the same expedition is georeferenced to a location

that is close to other specimen finds from that same expedition, the confidence

is also increased. For instance, in our dataset we have a record for which: the

country is known (+2), the province is unknown (0), the location description

contains unknown words (-1), the place description is found in GBIF (+1), but

a fuzzy search in the gazzetteers does not return a positive result (-3) and the
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place description is found only in Google Maps (-3), gets a confidence score of

-4. The fact that the distance of the georeferenced location of this entry from

its actual location is approximatively 1,204.72 meters, confirms the indication

given by the low confidence score.

The extent to which certain variables influence the accuracy cannot always

be determined and as such make the method not infallible. In some cases,

there is simply not enough information to determine an indicative confidence

measure. To estimate the reliability of our confidence measure, we treat it as an

estimated observation about the correctness of the corresponding georeferenced

entry. Similarly to the works of Jøsang [8] and Ceolin et al. [2], this estimated

evidence is used to build a Beta probability distribution that describes the

probability of each confidence score in the interval [0 . . . 1] to represent the

trustworthiness of the entry.

More in detail, each heuristic is utilized as evidence for the correctness of

the estimate: when the heuristic provides a positive value (e.g. the country of a

record is known), this counts as positive evidence; when the heuristic provides

a negative score (e.g. in case of unknown parts in the record), this counts as

negative evidence. In fact, each heuristic can be seen as an indication of the

possibility to correctly georeference the record. The more heuristics positively

indicate the possibility to correctly geolocate, the more confident we will be

about the geolocation. We aggregate all heuristics (per record) by building a

Beta probability distribution. This distribution is shaped by two parameters,

corresponding to the amount of positive and negative evidence (each plus one).

For a comprehensive list of positive and negative values of the heuristics, we

refer the reader to Table 6. The weights contributed by each heuristic are

aggregated in positive and negative evidence counts as follows: if an heuristic

ranges between -2 and 2 and the value of that heuristic is -1, we count 1 positive
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piece of evidence and 3 negative ones. So, if max is the upper bound of an

heuristic (e.g. 2) and min its lower bound (e.g. -2), given the value h of the

heuristic, we compute the corresponding positive and negative evidence p and

n as follows:

p = h−min

n = max− h

. We aggregate all the evidence for all the heuristics, and then we compute the

expected value of the resulting Beta distribution. The Beta distribution is a

probability distribution that ranges between 0 and 1 and we use it to estimate

the probability of each value in the [0,1] interval to represent the probability

for the georeferencing to be correct. If the heuristics provided a lot of negative

evidence, the expected value of the Beta distribution will be close to zero, and

vice-versa. Also, the variance of the distribution measures the uncertainty in

this estimate, and it is therefore smaller when we are more certain about our

estimate, i.e. when more heuristics are available.

A Shapiro-Wilk normality test at 95% confidence level shows that both the

error in the georeferencing process and the expected values of the Beta distri-

butions computed using the heuristics are not normally distributed, hence we

use a Spearman’s rank correlation test [18] at 95% confidence level to check the

existence of a linear correlation between the two series of values. In particular,

since the Spearman’s test compares the rank between variables (without taking

into account their differences), we standardize the distances and we round them

(to 7 decimal digits) because we do not expect our confidence scores to be ex-

tremely precise, rather they should help us to distinguish between good and bad

georeferences. The test results in a weak negative correlation (-0.22), as shown

in 4. This suggests that the procedure is often able to compute a confidence
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score that resembles the real trustworthiness of the result of the georeferencing

process, although there is still big room for improvement. Also, another Spear-

man correlation test at 95% confidence level shows a weak positive correlation

(0.21) between the variance of the Beta distribution based on the heuristics and

the error of the georeferencing process, indicating that the more certain the

score is, the lower the error.

[Table 6 about here.]

[Figure 4 about here.]

9 GeoImp Demonstrator

As a proof of concept for biologists who need to georeference their datasets,

we built an online demo GeoImp16. This front-end can be used to georeference

a single instance, or batch-reference multiple records using the CSV mode. A

user can enter query terms in one or more fields in the interface after which

the system will try to return a georeferenced location visualised on a map along

with the confidence it has in its decision. Entering more information into the

system decreases the ambiguity in the process. The results are shown on a map,

and as coordinates together with the calculated confidence score. Currently,

only Dutch and English are supported and only a limited number of records can

be parsed at once, additional input methods and integration with the Naturalis

collection registration system will be provided in the future. A screenshot can

be found in Figure 5.

[Figure 5 about here.]

16http://semanticweb.cs.vu.nl/geoimp, GeoImp stands for Georeference Improver
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10 Conclusions and Future Work

We have presented a method to automate georeferencing of records in animal

specimen datasets that utilizes the spirit semantic web technology by integrating

different types of information to form a richer knowledge base. Several heuris-

tics for the disambiguation of location names that use domain knowledge from

external resources and reasoning were implemented and tested. In addition, the

method produces a confidence score to indicate how certain the system is of its

decisions to help curators select records to inspect manually. Using our proto-

type, experiments using a manually created gold standard were carried out to

test the impact of the heuristics on the georeferencing process. We have shown

that domain-specific knowledge such as occurrence data from a biodiversity re-

source contributes to more accurate results.

The complexity of the georeferencing task is high. A substantial amount

of specimen finds are not annotated with enough information to return accu-

rate coordinates, and generic gazetteers are only partially suited for the natural

history domain as they often lack information on location names mentioned in

locality descriptions. However, our confidence measure proves useful in these

cases, pointing experts at Naturalis to these records so they can focus their

attention on those cases that require input from a human expert. The effec-

tiveness of our confidence measure in correctly representing the precision of the

georeferencing process with respect to each entry has been demonstrated by

means of a statistical test.

We are of the opinion that our approach will translate well to domains other

than the biology domain. As more and more structured data becomes available,

for example through the Linked Open Data cloud, integration of data becomes

more feasible. Furthermore, many institutions struggle with a lack of resources

to manually georeference their data, for which an approach that can resolve
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simpler cases automatically and pinpoints the cases where human knowledge is

required would be useful. We have shown in previous work that such a semi-

automatic system works well for other tasks too such as data cleaning [19].

In future research, we will investigate incorporating additional resources to

cope with location names described in different languages such as “Midden Java”

(Dutch for “Central Java”) and places that would not occur in generic gazetteers

(such as historic names or base camps for expeditions which are recorded at the

institution). We will also look into incorporating linear feature types such as

rivers and roads in our offset calculations. The geographical resources that we

used did not specifically record such features, but other resources such as Open

Street Map17 could help resolve this. When we have access to linear features,

the text parsing module can also be expanded as currently the system cannot

accurately interpret “On the road between place X and Y”. Furthermore, the

expedition heuristic shows interesting possibilities for new research, as it uti-

lizes the fact that individual records in a database are dependent on each other.

To further test this feature, we intend to use a slightly different experimental

setup with a less random data sample, to make sure we have enough instances

belonging to an expedition to test our assumption that the interdependence of

records may aid the disambiguation process. Also when the system is integrated

in the workflow researchers will continuously update the database with georef-

erenced records which will grow the gold standard dataset, enabling expanding

to different subdomains within biology and further finetuning of the system.

Our results presented here show that there is still much to be gained by

combining domain specific knowledge for georeferencing.

17http://www.openstreetmap.org/
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Figure 1: Visualization of an offset from a named place
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Figure 2: Automatically georeferenced cluster of locations belonging to an ex-
pedition on the right
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Figure 3: Visualization of the GBIF disambiguation heuristic. Figure a shows
the GeoNames gazetteer candidates, Figure b shows the GBIF occurrence data.
Figure c shows the search space (red box) after combining the GeoNames can-
didates with the GBIF occurrence data.
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Occurrences

Figure 4: Distribution of confidence scores for georeferenced locations of the gold
standard. The black line displays the number of occurrences in each category
(right axis scale)

33



Figure 5: Screenshot of the GeoImp Demonstrator
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Challenge posed Example textual locality

A1. Two or more locations that
share the same name

Amsterdam

A2. Vague localities
Southeast Michigan

B1. Linear feature measurement
16 km (by road) N of Murtoa

C1. Two or more location descrip-
tors

Wakarusa, 24 mi WSW of Lawrence

C2. Topological nesting
Moccasin Creek on Hog Island

C3. Linear ambiguity
On the road between Sydney and Bathurst

D1. Complex interpretative de-
scription

Bupo [?Buso] River, 15 miles [24 km] E of Lae

E1. Political borders change over
time

Yugoslavia

E2. Historical place names
British North Borneo

Table 1: Georeferencing challenges and examples from the Naturalis collection
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Category Example #in gold standard # in full set

A. Single Place “Maastricht” 90 (45%) 10,750 (42,7%)
B. Single Place with offset “18 mls. E. of Kumasi” 20 (10%) 2,363 (9.4%)
C. Two or more places “Sibil, Sterrengebergte” 62 (31%) 9,150 (36.4%)
D. Two or more places
with offset

“Alachua Co., 10 mi S.
Gainesville on Wacha-
hoota rd.”

28 (14%) 2,856 (11.3%)

Total - 200 25,119

Table 2: Categories for different types of textual descriptions
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Correct
@5km

Correct
@25km

Correct
@100km

Mean distance
off

Not Found

Baseline 38.9 47.0 58.4 251.1km 26.2

+ Google Maps &
Fuzzy match

53.0 65.1 74.5 244.1km 8.7

+ Spatial Heuristics 59.1 71.8 77.2 171.1km 7.4
+ Expeditions 59.1 71.8 77.2 171.1km 7.4
+GBIF 61.7 74.5 79.9 114.5km 7.4

Table 3: Accuracy of the georeferencing heuristics within 5km, 25km and 100km
of the gold standard coordinates, compared to baseline in percentages. The
table also shows the mean distance the different heuristics were off, as well as
the percentage of cases for which no coordinates were found by the system
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Precision Recall F1

baseline 0.64 0.47 0.54

+ Google Maps & Fuzzy match 0.71 0.65 0.68
+ Spatial Heuristics 0.78 0.72 0.75
+Expeditions 0.78 0.72 0.75
+GBIF 0.80 0.74 0.77

Table 4: Precision, recall and F-measure of the different heuristics at 25km from
the coordinates in the gold standard.

39



Category 5km 25km 100km Mean distance Off No Result

A: Single Location (67) 58.2 64.7 68.7 140.1 16.4
B: Single Location + offset (15) 86.7 100 100 1.7 0
C: Multiple Locations (46) 60.9 73.9 82.6 146.4 0
D: Multiple Locations + offset(s) (21) 57.1 85.7 95.2 54.9 0

Table 5: Results split out per category based on best results from Table 3
(GeoNames + Google Maps + fuzzy search + spatial heuristics + expeditions
+ GBIF). The numbers behind the categories indicate the number of records in
that category.
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Level Indicator Points

Record Country known +2
Record Province known +1
Record Unknown parts in description -1
GeoNames Result Place not part of province -1
GeoNames Result Fuzzy string search -3
Candidate (SM) Close together +x,x ∈ [0...2]
Candidate (OD) Close to GBIF +x,x ∈ [−1...2]
Candidate (EXP) Close to previous find +x,x ∈ [−2...2]
Candidate GeoNames Candidate very close to Google Maps +x,x ∈ [0...2]
Candidate Only found on Google Maps -3
Candidate GeoNames first candidate +1
Candidate Administrative area -1

Table 6: Calculation of the Confidence Score. SM denotes the spatial minimality
heuristic, EXP denotes the expedition heuristic, and OD indicates the use of
species occurrence data. In some cases, a range of values can be deducted or
added.
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