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Abstract. Probabilistic model checking extends traditional model check-
ing by incorporating quantitative information about the probability of
system transitions. However, probabilistic models that describe inter-
esting behavior are often too complex for straightforward analysis. Ab-
straction is one way to deal with this complexity: instead of analyzing
the (“concrete”) model, a simpler (“abstract”) model that preserves the
relevant properties is built and analyzed. This paper surveys various ab-
straction techniques proposed in the past decade. For each abstraction
technique we identify in what sense properties are preserved or provide
alternatively suitable boundaries.

1 Introduction

The advent of large-scale, distributed, dependable systems requires formal speci-
fication and verification methods which capture both qualitative and quantitative
properties of systems. Performance and dependability evaluation of distributed
systems therefore demands to use formal models and methods where both aspects
are represented. Labeled transition systems (LTS) allow to capture qualitative
(functional) aspects of software and hardware systems. To model the mentioned
quantitative phenomena, one uses a probabilistic formalism, typically some ex-
tension of Markov chains. For instance, exchanging messages between distributed
systems typically suffers from a failure probability. Hence, interesting properties
of real systems often express that some functional behavior can be guaranteed
to happen with at least some given probability or, dually, some bad behav-
ior appears with at most some given probability. Probabilistic models, such as
Markov chains and Markov decision processes, allow to model and reason over
both qualitative (functional) and quantitative (non-functional) aspects.

The properties of probabilistic systems are typically specified in temporal
logics such as the probabilistic computation tree logic (PCTL) [25, 6]. Model
checking is a method to verify those properties. However, it suffers from the
state space explosion problem, which means that the number of reachable states



of the model under investigation is too large. In models specified compositionally,
it is often exponential in the number of components of the model. Additionally,
probabilistic model checking relies on expensive numerical methods, making the
problem even more pressing. Consequently, it is generally of crucial importance
to simplify the model prior to verification. However, given the complexity of
typical models, this procedure needs to be both automated and efficient.

In this paper, we present selected abstraction techniques for probabilistic
systems. Intuitively, abstraction removes details from concrete models that are
not relevant to the property of interest. In many cases, only abstraction makes
the analysis of the model feasible or at least speeds up verification considerably.
Verification of realistic models requires the application of aggressive abstraction
techniques (c.f. [10]). We present the following abstraction techniques:

Multi-valued abstraction allows to partition the state space and to abstract
transition probabilities by intervals. Both positive and negative verification
results in the abstract model carry over to the concrete model. However,
in the abstract model some properties may evaluate to “unknown” if the
abstract model does not allow a conclusive evaluation of the property.

Counterexample-guided abstraction refinement (CEGAR) uses counter-
examples for the abstract model obtained from a model checker to refine the
abstraction. By (dis)proving realizability of the abstract counterexample in
the concrete model, this allows for an automatic abstraction-refinement tech-
nique that proves or refutes properties. We survey the probabilistic CEGAR
algorithm introduced by [27] and [45, Section 7].

Game-based abstraction provides the means to abstraction while maintain-
ing the separation between nondeterminism present in the concrete model
and nondeterminism introduced by the abstraction. We present probabilis-
tic game-based and menu-based abstraction, which employ two-player games
where opponent and defender take different roles in resolving the nondeter-
minism. The resulting game allows to give distinct upper and lower bounds
on reachability properties. This interval can also be understood as a measure
of the quality of the abstraction.

Organization of the paper. Section 2 provides a survey on the available literature
and the tools for the discussed subject. Section 3 introduces the formal frame-
work, i.e. probabilistic models, probabilistic temporal logics and probabilistic
games. Multi-valued abstraction is covered in Section 4. Probabilistic CEGAR
is surveyed in Section 5 and, finally, game-based abstraction techniques are pre-
sented in Section 6. We summarize and conclude in Section 7.

2 Related Work

2.1 Literature

Abstraction is of immense importance for the analysis of large probabilistic sys-
tems. Consequently, the field has been studied extensively. One of the most pop-
ular techniques is bisimulation minimization [4]. Here, the states of the abstract



system represent equivalence classes of an equivalence relation on the states, a
bisimulation, such that the abstract system is guaranteed to preserve certain
properties. [18] investigates several kinds of strong and weak bisimulations re-
garding the minimality of the quotient system with respect to the number of
states, the number of transitions and transition fan-out. In [32], the authors
show that (strong) bisimulation can, in practice, lead to significant savings in
memory and runtime of explicit state probabilistic model checking. Approaches
that compute the bisimulation quotients on a symbolic representation of the
abstract state space are proposed in both [47] and [14], where the former uses
multi-terminal binary decision diagrams and the latter focuses on a representa-
tion of the state space in terms of predicates. [37, 17] compute a bisimulation
based on symmetry in the models that is easier to compute than strong bisimu-
lation, but may produce larger quotients. [15] proposes an abstraction technique
for probabilistic automata based on may and must modalities inspired by modal
transition systems [41]. [12, 13] pioneered the use of an abstraction-refinement
approach for probabilistic systems that tries to prove a reachability property on
a very coarse abstraction of the system. If the verification fails, the system is suc-
cessively refined until a conclusive answer can be given. While probabilistic CE-
GAR [27, 8] uses counterexamples obtained from a (probabilistic) model checker
to refine the abstract system, the game-based techniques [35, 45] typically rely
on disagreeing strategies for the individual players to make the abstraction more
precise when required. Magnifying-lens abstraction [1] uses a similar scheme, but
rather considers the concrete states contained in an abstract state in each step
and thus “magnifies” the state.

In infinite state probabilistic models, typically almost the whole probability
mass is concentrated in a finite subset of the states. Sliding-window abstraction
[26] is a technique to abstract from an infinite state space by “hiding” irrelevant
states (in the sense that they possess a negligible amount of probability mass)
in a way similar to the view through a window. Over time, as different states
become relevant, the window slides to different areas of the state space.

Often, probabilistic models arise from the parallel composition of several
components. Assume-guarantee verification [36, 21, 39] aims at proving a prop-
erty of the composed model without actually building a representation of the
full model by verifying the components in isolation. As the interaction between
the components is typically essential to prove a given property, these techniques
try to create small assumptions that can be proven on one component and suf-
fice to establish the property on the other components. Note that some of the
aforementioned techniques, for example bisimulation minimization, are also com-
positional in the sense that they can be applied to the individual components
that are further subject to parallel composition.

Abstraction and refinement are closely related to simulation relations. A
simulation relation is a relation between two models that shows a form of weak
preservation: all properties expressible as positive formulas are preserved. In a
probabilistic context, one usually chooses a liveness view on simulation: a prob-
abilistic liveness property is a lower bound on the probability of some (good)



behavior. One wants the concrete model to be at least as good as the abstract
one, so every liveness property ensured by the abstract model should also hold
in the concrete one. A good simulation relation shows a form of weak preserva-
tion, i. e., all liveness properties in some suitable logic are preserved. Simulation
relations for probabilistic systems have been studied for systems without [5, 29]
and with nondeterminism [43, 50]. Work in this area also explores systems with
continuous state spaces and how such state spaces can be approximated by a
finite Markov model [16].

2.2 Tools

Tools implementing one or several of the aforementioned abstraction techniques
have been developed. Such tools not only served as prototypical implementations
for evaluations in the literature, but are still available and in use. Sigref [47]
is a tool implementing bisimulation minimization for systems represented as
(variants of) binary decision diagrams that is, for example, applied in perfor-
mance analysis of AADL models [7]. Another tool, Pass [23], employs a mixture
of probabilistic CEGAR and the game-based approaches to provide lower and
upper bounds for both minimal and maximal reachability probabilities. Finally,
Prism-games [9], extends the well-known probabilistic model checker Prism [38]
by an engine for probabilistic games.

3 Preliminaries

This section briefly introduces the basic notions and definitions. All material is
standard and the interested reader is pointed to the original literature [4] and
the referred material therein.

3.1 Markov models

Markov models are similar to transition systems in that they comprise states and
transitions between these states. In discrete-time Markov chains, each state is
associated with a discrete probability distribution over successor states according
to which the next state is chosen. Let Dist(S) be the set of discrete probability
distributions over a set S, i. e., the set of functions µ : S → [0, 1] such that∑
s∈S µ(s) = 1.

Definition 1 (Discrete-time Markov chain (DTMC)). A discrete-time
Markov chain is a tuple D = (S,P, sinit, AP, L) where

– S is a countable, non-empty set of states,
– P : S × S → [0, 1] is the transition probability function that assigns to each

pair (s, s′) of states the probability P(s, s′) of moving from state s to s′ in
one step such that P(s, ·) ∈ Dist(S),

– sinit ∈ S is the initial state,
– AP is a set of atomic propositions, and



– L : S → 2AP is the labeling function that assigns a (possibly empty) set of
atomic propositions L(s) ⊆ AP to a state s ∈ S.

Let P(s, S) =
∑
s′∈S P(s, s′) be the probability to move from state s to some

state s′ ∈ S. A path in a DTMC is an infinite sequence of states of the form
ω = s1s2 . . . such that P(si, si+1) > 0 for all i ≥ 1. Let PathD denote the set
of paths in the DTMC D and PathDfin denote the set of finite prefixes of all
paths. For ω ∈ PathDfin, by last(ω) we refer to the last state of the finite path. A
probability measure PrD on the set PathD can be defined as unique extension
of the measure on the respective cones [25].

As the behavior of a DTMC is purely probabilistic, it is not well suited to
model concurrent systems. Markov decision processes add nondeterministic be-
havior to DTMCs by allowing (external) nondeterministic choice over probability
distributions in each state.

Definition 2 (Markov decision process (MDP)). A Markov decision pro-
cess is a tuple M = (S,Act ,P, sinit, AP, L) where

– S, sinit, AP and L are as for DTMCs (see Definition 1),
– Act is a finite set of actions,
– P : S×Act×S → [0, 1] is the transition probability function that specifies the

probability to move from s to s′ with action α ∈ Act such that P(s, α, ·) ∈
Dist(S) or P(s, α, ·) is the constant zero function.

Let Act(s) denote the set of enabled actions in state s, i. e., the actions
α that satisfy

∑
s′∈S P(s, α, s′) = 1. For simplicity, we require that the MDP

has no deadlock states, i. e., Act(s) 6= ∅ for all states s ∈ S. We denote the
set of distributions available at state s by Steps(s) = {P(s, α, ·) ∈ Dist(S) |
α ∈ Act(s)}. In each state s, first some enabled action α ∈ Act(s) is chosen
nondeterministically. Then, the probabilistic choices given by P(s, α, ·) yield the
successor state s′. Thus, the set PathM is given by all sequences of the form
ω = s1α1s2α2 . . ., where si ∈ S and αi ∈ Act , such that P(si, αi, si+1) > 0 for
all i ≥ 1. Similarly to DTMCs, we define PathMfin as the set of finite prefixes,
ending with a state, of all paths and use last(·) accordingly.

Schedulers provide means to resolve the nondeterministic choices of MDPs.
The most general class of schedulers uses the complete trajectory up to the
current state and resolves the nondeterminism to a probabilistic choice (history-
dependent randomized schedulers). An important subclass are schedulers which
depend only on the current state (not on the history) and which resolve the non-
deterministic choice to a deterministic choice (memoryless deterministic sched-
ulers). Formally they are given by a function σ : S → Act such that σ(s) ∈
Act(s). They are powerful enough to reason over probabilistic reachability prop-
erties. The resolution of the nondeterministic choices in an MDP by a scheduler
σ leads to an (infinite) DTMC DMσ = (S+,P′, sinit, AP, L

′) where P′(ω, ωs′) =
P(last(ω), σ(ω), ωs′) and L′(ω) = L(last(ω)). Intuitively, the behavior of this
DTMC corresponds to the behavior of the MDP under the scheduler σ. Not sur-
prisingly, the probability measure over the infinite paths ofM under σ, denoted
PrMσ , is thus given by the measure over the DTMC DMσ .



In order to express properties over these models, probabilistic extensions of
common logics are used. While probabilistic computation tree logic (PCTL) [3]
is the most prominent one, a probabilistic interpretation of linear temporal logic
[44] that can enforce probability bounds on the set of paths satisfying a regular
LTL formula is also popular. We will, however, focus our attention to PCTL in
the further course of the paper. Formulae in this logic are given by the following
grammar.

Definition 3 (Probabilistic computation tree logic (PCTL)). The syntax
of PCTL state formulae over a set of atomic propositions AP is given by the
following rules:

Φ ::= true | a | Φ ∧ Φ | ¬Φ | P./p(ϕ)

where a ∈ AP , ϕ is a PCTL path formula, ./ ∈ {<,≤, >,≥} and p ∈ [0, 1].
PCTL path formulae are defined by the grammar:

ϕ ::= X Φ | Φ U Φ | Φ U≤k Φ

where Φ is a state formula and k ∈ N.

PCTL keeps the basic structure of CTL [19] and replaces the path quanti-
fiers by the single new operator P./p(ϕ). Intuitively, this formula holds, if the
probability mass of all paths in the model that satisfy ϕ conforms to ./ p. To
improve readability, we will use the abbreviations false for ¬true and Φ1∨Φ2 for
¬(¬Φ1 ∧¬Φ2). For DTMCs the interpretation of a PCTL formula is straightfor-
ward. However, for MDPs the probability mass of all paths that satisfy a given
path formula depends on the resolution of nondeterminism. A PCTL formula
holds in a state of an MDP if it holds for all possible schedulers. Fortunately,
there is no algorithmic need to optimize over all (infinitely many) schedulers,
because it can be proven that only finitely many schedulers have to be consid-
ered [6]. More specifically, memoryless schedulers attain minimal and maximal
probabilities for next-step and unbounded-until path formulae whereas k step-
bounded schedulers are sufficient for bounded-until formulae with time-bound k.
The minimal and maximal probabilities of an MDPM satisfying a given PCTL
path formula ϕ are denoted PrMmin(ϕ) and PrMmax(ϕ), respectively:

PrMmin(ϕ) = inf
σ
PrMσ (ϕ) PrMmax(ϕ) = sup

σ
PrMσ (ϕ).

Sometimes, we need to restrict ourselves to a fragment PCTLreach of PCTL that
only expresses probabilistic reachability properties. A probabilistic reachability
property P is a PCTL formula of the form Φ = P./ p(true U ΦF ), which we
abbreviate as P./ p(♦ΦF ), where p ∈ [0, 1], ./ ∈ {<,≤, >,≥} and ΦF is a propo-
sitional logic formula over atomic propositions. Note that the truth value of ΦF
can be determined for each state in isolation, which is why we will treat F like
an atomic proposition and assume that states are labeled accordingly.

Yet, sometimes it is necessary to further restrict this subset of PCTL to the
set PCTLsafe of probabilistic safety properties, which are PCTL formulae that



apply negation only to literals and only use comparison operators from {<,≤}.
While these restrictions seem very severe, many problems can be reduced to
reachability problems, and safety properties allow for expressing very interesting
properties of a system in practice, e. g., “the probability to reach a set of states
F is less than 0.5”.

3.2 Probabilistic two-player games

While MDPs extend DTMCs with nondeterministic choices, some abstractions
rely on the separation of the nondeterminism introduced in the abstraction and
the nondeterminism present in the original model. Probabilistic, or stochastic,
two-player games are a natural formalism for this.

Definition 4 (Probabilistic game). A probabilistic two-player game is a tu-
ple G = ((V,E), vinit, (V1, V2, Vp), δ) where

– (V,E) is a directed graph with edge set E ⊆ V1 × V2 ∪ V2 × Vp ∪ Vp × V1,
– vinit ∈ V1 is the initial vertex,
– (V1, V2, Vp) is a partition of V where V1 is the set of vertices of player 1, V2

is the set of vertices of player 2, and elements of Vp are probabilistic vertices,
– δ : Vp → Dist(V1) is a function that maps each probabilistic vertex to a prob-

ability distribution specifying its successor vertices such that δ(vp)(v1) > 0
implies (vp, v1) ∈ E.

A play in this game is an infinite sequence ω = v1,1v2,1vp,1v1,2v2,2vp,2 . . ., where
v1,i ∈ V1, v2,i ∈ V2 and vp,i ∈ Vp, such that (v1,i, v2,i), (v2,i, vp,i) ∈ E and
δ(vp,i)(v1,i+1) > 0 for all i ≥ 1. Let PlayG denote the set of all plays in G,
PlayGfin the finite prefixes thereof and last(ωfin) refers to the last vertex of the
finite prefix ωfin of a play. Furthermore, ω(i) denotes the ith vertex of ω.

Intuitively, the behavior of a probabilistic game is as follows. Initially, starting
in v1,1 ∈ V1, player 1 nondeterministically chooses a successor vertex v2,1 ∈ V2

belonging to player 2. Player 2 reacts by choosing a successor state vp,1 ∈ Vp.
Then, the next vertex is chosen according to the probability distribution in vp
and it is again player 1’s turn. Thus, in order to resolve the nondeterminism,
a scheduler is needed for each of the players. In the context of games, these
are called strategies for player 1 and 2, respectively. Just like for MDPs, these
strategies are functions that map a finite prefix of a play to a possible choice. For-
mally, strategies for the players are given by functions σ1 : (V1V2Vp)

∗V1 → V2 and
σ2 : (V1V2Vp)

∗V1V2 → Vp, respectively, such that σ1(ωv1) = v2 and σ2(ωv1v2) =
vp implies (v1, v2) ∈ E and (v2, vp) ∈ E, respectively. If two strategies, σ1 for
player 1 and σ2 for player 2, are fixed, then, given a vertex v, the sets of fi-
nite and infinite plays starting in v which follow those strategies are denoted as
Playσ1,σ2

fin (v) and Playσ1,σ2(v) respectively. In such a play, all nondeterministic
choices are resolved by the strategies and the remaining behavior is purely prob-
abilistic. Hence, a probability measure, denoted Probσ1,σ2

v , can be defined over
the resulting model as in [11].



Given a set F ⊆ V1 of target vertices, let

pσ1,σ2
v (F ) = Probσ1,σ2

v ({ω ∈ Playσ1,σ2(v) | ∃i ∈ N, ω(i) ∈ F})

be the probability for reaching a vertex in F if the game is played according to
the strategies σ1 and σ2. For the case where the two players play adversarially,
we define the optimal reachability probabilities as

p+−
v (F ) = sup

σ1

inf
σ2

pσ1,σ2
v (F )

p−+
v (F ) = inf

σ1

sup
σ2

pσ1,σ2
v (F ).

Accordingly, for the opposite case in which the two players cooperate, we have
the optimal reachability probabilities

p−−v (F ) = inf
σ1,σ2

pσ1,σ2
v (F )

p++
v (F ) = sup

σ1,σ2

pσ1,σ2
v (F ).

These probabilities can be computed, e. g., using value iteration [11].

3.3 Probabilistic programs

The main motivation for abstracting models prior to verification is the hope that
this will reduce the time and memory needed for verification. As building the
full model is often the a time and memory consuming step in the verification
procedure, applying the abstraction after that step has little potential to improve
the overall performance. Hence, many successful abstraction techniques avoid
building the concrete model by employing a symbolic representation. A common
model for succinctly representing Markov models are probabilistic programs,
which are also able to finitely represent possibly infinite Markov models. Let
BExprVar denote the set of boolean expressions over a set of variables Var and
b ∈ BExprVar be an element of such a set. We denote by JbK the set of all
valuations of variables in Var under which b evaluates to true.

Definition 5 (Probabilistic program). A probabilistic program is a tuple
P = (Var, Σ, sinit, C) where

– Var = {v1, . . . , vn} is a finite set of variables,
– Σ = Σ(v1) × . . . × Σ(vn) is the state space of the program, where Σ(v)

denotes the (possibly infinite) domain of the variable v ∈ Var,
– sinit ∈ Σ is the initial state,
– C is a finite set of guarded commands of the form c = g → p1 : u1⊕. . .⊕pm :
um where
• g ∈ BExprVar is the guard of the command,
• probabilities pi ∈ [0, 1], such that

∑
1≤i≤m pi = 1,

• update functions ui : Σ → Σ such that ui 6= uj for i 6= j.



[a] x + y ≤ 1 −→ 0.5 : x′ = x + 1⊕ 0.5 : x′ = x + 1 ∧ y′ = y + 1;

[b] 1 ≤ x + y ≤ 2 −→ 0.8 : x′ = 2 ∧ y′ = x− 1⊕ 0.2 : x′ = 2;

[c] x = 2 −→ 1 : x′ = x ∧ y′ = y;

Figure 1: A probabilistic program P.

Additionally, without loss of generality, we assume that for every state s ∈ Σ
there is a command c ∈ C such that s ∈ JgK where g is the guard of c.

Intuitively, the state space of a probabilistic program is the set of all valuations
of its variables. The commands then define the probabilistic transitions between
these states. A guarded command is enabled in all states satisfying its guard
g, i. e., the states s ∈ JgK, which we write as s |= g. If a command is enabled
in some state, that state possesses an outgoing probability distribution that is
given by the probabilities and the update functions. Given a command c = g →
p1 : u1 ⊕ . . .⊕ pm : um and a variable valuation s ∈ Σ such that s |= g, s has a
transition with probability pi to the state si = ui(s) for all i ∈ {1, . . . ,m}.

The semantics of a probabilistic program is a DTMC or an MDP, depending
on whether there exists a state that satisfies multiple guards. If there is no such
state, each state has exactly one command that is enabled and the resulting
model is a DTMC. If a state satisfies multiple guards, this corresponds to a
nondeterministic choice between multiple commands in that particular state
and, hence, the model is an MDP.

Example 1. Consider the probabilistic program P depicted in Figure 1 with three
commands a, b and c over two integer variables x and y with range [0, 2]. The
semantics of this program is the MDP M shown in Figure 2 where we assume
that only state 〈2, 1〉 is of interest and thus labeled with the special atomic
proposition F indicated by the double circle around the state. �

Note that a set of predicates Π = {b1, . . . , bk} ⊆ BExprVar induces a (finite)
partitioning Q of the state space, where for q ∈ Q, si ∈ q and sj ∈ q if and
only if si |= p ⇔ sj |= p for all p ∈ Π. Stated differently, the partition is given
by the sets of states that satisfy exactly the same predicates of Π. Satisfiability
solvers that support richer theories, such as linear integer arithmetic, can be
used to reason over probabilistic programs and build abstractions w.r.t. a set of
predicates directly from such a representation [45]. That is, abstractions may be
built without building the full model first. In the further course of this paper,
we will only consider partitions that respect the labeling of states in the model.
That is, a partition Q is viable if for each a ∈ AP and q ∈ Q we have that
either all or no s ∈ q are labeled with a. For a given partition Q of a set S and
a probability distribution µ ∈ Dist(S), we denote by µ̄ the lifted distribution
µ̄ ∈ Dist(Q) defined by µ̄(q) =

∑
s∈q µ(s) for all q ∈ Q.



〈0, 0〉 ◦

〈1, 0〉

〈1, 1〉

◦

◦

〈2, 0〉

〈2, 1〉

◦

◦

◦

a
0.5

0.5

a

b

b

0.5

0.5

0.8

0.2

c
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c

1.0

0.2

1.0

0.8

Figure 2: The MDP M induced by the program P.

Example 2. Reconsider the probabilistic program from Figure 1 and let the set
of predicates Π be given as Π = {x < 2, x ≥ 2∧y ≥ 1}. Π induces the partition

Q = {{〈0, 0〉, 〈1, 0〉, 〈1, 1〉}︸ ︷︷ ︸
A

, {〈2, 0〉}︸ ︷︷ ︸
B

, {〈2, 1〉}︸ ︷︷ ︸
C

}

of the state space ofM, because, e. g., for all s ∈ A we have that s |= x < 2 and
s 6|= x ≥ 2 ∧ y ≥ 1. �

3.4 MDP quotienting

Given an MDPM = (S,Act ,P, sinit, AP, L) and a partition Q of its state space
S that respects its labeling, a first idea is to construct a simple abstract system
by merging the states of M according to Q. A state of the abstract system,
thus, corresponds to a block of Q. In order to still keep the behavior of the
original system, the transition probability function must over-approximate the
transition probability function of the concrete model. This can be achieved by
giving an abstract state q the joint behavior of all contained states s ∈ q. Put
differently, if there is a state s ∈ q and an action α ∈ Act such that α is enabled
in s and associated with the distribution µ ∈ Dist(S), then there must be an
action α′ that is enabled in q and associated with µ̄ ∈ Dist(Q). Note that this
possibly involves a renaming of the action name. This is necessary, because the
action α may be enabled in several states in q, but can only be associated with
a single probability distribution in the quotient system. Formally, the resulting
MDP is given by M/Q = (Q,Act ′,P/Q,AP,L/Q) where P/Q is such that
(P/Q)(q, α′, ·) = µ̄ if and only if there exists an s ∈ q such that P(s, α, ·) = µ
and (L/Q)(q) = L(s) for an s ∈ q. Note that the labeling is well-defined, because
of our requirement for partitions to only group states with the same labeling.

Example 3. Consider the MDP M depicted in Figure 2 and the partition Q
from Example 2. The quotient MDP M/Q is shown in Figure 3. Note that



from block A of the partition we now have the union of all (lifted) distributions
available in the states contained in A and that we preserved the labeling of
the states contained in each block. Furthermore, we needed to rename the two
distributions labeled with a to a1 and a2, respectively.

A

◦ ◦

◦

B

C

◦

◦

◦

a1
1

a2

b

0.5

0.5

0.8

0.2

c

b

c

1.0

0.2

1.0

0.8

Figure 3: The MDP M/Q.

�

As can be seen from the example, this abstraction mixes the nondeterminism
present in the original model and the nondeterminism introduced by the abstrac-
tion. Consequently, the minimal probability for satisfying any given PCTL path
formula in the abstract MDPM/Q is a lower bound for the corresponding prob-
ability in M. A similar result holds for the maximal probability. Formally, we
have the following theorem.

Theorem 1. Let M be an MDP, Q be a partition of its state space and ϕ be a
PCTL path formula, then

Pr
M/Q
min (ϕ) ≤ PrMmin(ϕ) ≤ PrMmax(ϕ) ≤ PrM/Q

max (ϕ)

Stated differently, this means that the abstraction only guarantees that the ex-
tremal probabilities for satisfying ϕ are in between the extremal probabilities
obtained from the abstract MDP. This can lead to very coarse results as illus-
trated by the next example.

Example 4. For M/Q of Figure 3 and ϕ = ♦F , we have Pr
M/Q
min (ϕ) = 0 and

Pr
M/Q
max (ϕ) = 1, which gives no information about the real values of PrMmin(ϕ)

and PrMmax(ϕ) which can lie anywhere in between. In fact, the correct values are
0.2 and 1, respectively. �

4 Multi-valued abstraction

Multi-valued abstraction aims to partition the state space combined with an
abstraction of transition probabilities to sets of transition probabilities such that



both positive and negative verification results in the abstract model carry over
to the concrete model [20]. Only assertions that evaluate to other values than
true or false in the abstract model, typically called indefinite values, are non-
conclusive for the concrete model. Hence, it is a safe (also called conservative)
abstraction in the sense that if some property can be proven or disproven in the
abstract model, then it carries over to the concrete model. In contrast, for MDP
quotients (Section 3.4) only positive verification results carry over to the concrete
model while negative verification results may occur due to over-approximation
in the quotient abstraction and are not conclusive for the concrete model.

In this section we provide a survey of the three-valued abstraction technique
presented in [33]. We consider abstractions of DTMCs and properties expressed
by PCTL. Three-valued abstraction of models without probabilistic choice [28,
40] yields abstract models that over- and under-approximate transitions in the
concrete model by may and must transitions. This concept generalizes naturally
for DTMCs to transitions equipped with intervals in the abstract model where
upper and lower bounds of the intervals represent accordingly the over- and
under-approximation of the abstract probabilistic transitions in the concrete
model. We will show that abstract states simulate the concrete states by an
adapted notion of probabilistic simulation [31]. Furthermore, we demonstrate
that an appropriate three-valued semantics of PCTL provides that affirmative
and negative verification results on abstract DTMCs carry over to the concrete
model.

As running example we will consider the DTMC presented in Figure 4a. This
DTMC corresponds to the MDP of Figure 2 after abstracting from transition
labels. The colour of states represents the state labelling L.

4.1 Three-valued abstraction

We start by introducing abstract DTMCs. A state in the abstract DTMC repre-
sents a set of concrete states. Transitions between abstract states are equipped
with an interval of probabilities instead of a concrete probability. The lower and
upper bound of the intervals represent the lowest and highest probability in the
concrete model. Let B3 denote the three-valued domain with carrier {⊥, ?,>}
and order ⊥ < ? < >.

Definition 6 (Abstract DTMC (ADTMC)). An abstract DTMC is a tuple
M = (S,Pl,Pu, L, µ0) where

– S is a countable set of states,
– Pl,Pu : S × S → [0, 1] are probabilistic transition functions with
• Pl(s, s′) ≤ Pu(s, s′) for all s, s′ ∈ S and
• Pl(s, S) ≤ 1 ≤ Pu(s, S),

– L : S ×AP → B3 evaluates an atomic proposition for a given state and
– µ0 ∈ Dist(S) is the initial distribution.

We write s
[a,b]−−−→ s′ for Pl(s, s′) = a and Pu(s, s′) = b. This transition may

happen with any (nondeterministically chosen) probability in the interval [a, b].



Furthermore, the validity of atomic propositions, denoted by L, may now eval-
uate to the indefinite value ? ∈ B3. Thus, ADTMCs can be described by MDPs,
where the distributions reachable from s are given by {µ ∈ Dist(S) | µ(s′) ∈
[Pl(s, s′),Pu(s, s′)]}. It is clear that every DTMC is also an ADTMC if Pl(s, s′) =
Pu(s, s′) for all s, s′ ∈ S and L(s, p) ∈ {>,⊥} for all s ∈ S, p ∈ AP .

We proceed by defining the abstraction of an ADTMC based on some parti-
tioning of its state space. Because every DTMC is also an ADTMC this directly
gives us a notion to abstract a DTMC to an ADTMC.

Definition 7 (Abstraction of ADTMC). Let M = (S,Pl,Pu, L, µ0) be an
ADTMC and Q be a finite partitioning of S. The abstraction ofM with respect
to Q is an ADTMC (Q, P̃l, P̃u, L̃, µ0) such that for any q, q′ ∈ Q we have

– P̃l(q, q′) = infs∈q Pl(s, q′),

– P̃u(q, q′) = min(sups∈q Pu(s, q′), 1)

– L̃(q, a) =


> if L(s, a) = > for all s ∈ q
⊥ if L(s, a) = ⊥ for all s ∈ q
? otherwise

We denote by M/Q the ADTMC that arises from abstracting M by Q. The

definition of the upper bound P̃u(q, q′) of the probabilistic transition between
q and q′ needs to be bounded by 1 because Pu(s, q′) =

∑
s′∈q′ P

u(s, s′) may
exceed 1. Every abstraction leads again to an ADTMC [33, Lemma 1].

Example 5. Figure 4b represents the ADTMC after grouping states 〈1, 0〉 and
〈1, 1〉 of the DTMC in Figure 4a into a single abstract state. The probabilis-
tic transition between state (〈1, 0〉, 〈1, 1〉) and 〈2, 0〉 is equipped with the inter-
val [0.5, 0.8] which represents exactly the minimal and maximal probabilities of
reaching state 〈2, 0〉 from some of the states {〈1, 0〉, 〈1, 1〉}.

�

The notion of abstraction on ADTMCs is closely related to forward sim-
ulation [31]. In detail, for any ADTMC M and partition Q we have that M
is simulated by M/Q [33, Theorem 1]. The three-valued abstraction technique
can be adapted to CTMCs without technical difficulties when applying prior
uniformization (i. e. all states have equal residence time).

4.2 Reachability analysis and model checking

In the following section we investigate how logical properties, in detail reachabil-
ity analysis, can be verified on abstract models. The nondeterminism introduced
by intervals is resolved using schedulers which lead also to a natural notion of
induced DTMC from an ADTMC by a specific scheduler. Interestingly, extreme
schedulers, which are schedulers that resolve the probabilities in the intervals to
one of the boundaries, suffice to compute maximal/minimal reachability prop-
erties ([33, Theorem 2]).



〈0, 0〉

〈1, 0〉

〈1, 1〉

〈2, 0〉

〈2, 1〉

0.5

0.5

0.5

0.5

0.8

0.2

0.2

1.0

0.8

(a) Concrete DTMC Mc.

〈0, 0〉
〈1, 0〉

〈1, 1〉

〈2, 0〉

〈2, 1〉

[1.0, 1.0]

[0.5, 0, 8]

[0.2, 0.5]

0.2

1.0

0.8

(b) Abstract DTMC Ma

Figure 4: Example for three-valued abstraction

The classical interpretation of PCTL is over a two-valued truth domain
{⊥,>} . ADTMCs group states together such that some PCTL properties are
no longer strictly true or false. For instance, consider the reachability property
Φ = P≥0.7(♦ ) which evaluates to true if the probability to reach a state with
label is at least 0.7. Let us consider the state (〈1, 0〉, 〈1, 1〉) of the ADTMCMa.
The interval of probabilities [0.5, 0.8] to reach state 〈2, 0〉 allows for probabilities
that are greater than 0.7 but also for probabilities that are less than 0.7. Hence,
the property Φ evaluates to the indefinite value ? in state (〈1, 0〉, 〈1, 1〉). On the
other hand, P≥0.9(♦ ) evaluates to ⊥ in (〈1, 0〉, 〈1, 1〉) because for none of the
realizable probabilities the property can become true. Similarly, P≥0.3(♦ ) eval-
uates in (〈1, 0〉, 〈1, 1〉) to > because for all realizable probabilities the property
becomes true.

To summarize, PCTL properties evaluate in the abstract states of ADTMCs
to B3. The semantics differs from the two-valued semantics mainly by the fact
that the evaluation of P./p(♦ϕ) is split up in the case P<p(♦ϕ), P≤p(♦ϕ) and
case P>p(♦ϕ), P≥p(♦ϕ). For the first case, P<p(♦ϕ) (resp. P≤p(♦ϕ)) evaluates
to > if in all realizable probabilistic choices ϕ is reachable by strictly less than
p (resp. at most p). P<p(♦ϕ) (resp. P≤p(♦ϕ)) evaluates to ⊥ if in all realizable
probabilistic choices ϕ is reachable by at least p (resp. strictly more than p).
The reasoning for the second case is analogous. In all other cases the property
evaluates to ?. It was shown that abstraction preserves validity of PCTL formulae
[33, Thm. 3,5 & Cor. 1]. This paves the way for three-valued abstraction-based
model checking.

5 Counterexample-guided abstraction refinement

Proposed in 2000 [10], counterexample-guided abstraction refinement (CEGAR)
quickly became a very successful technique for qualitative verification of safety



properties that proceeds in an iterative manner: starting with an initially coarse
overapproximation of the concrete model, it tries to add precision to the parts
of the model where required. It does so by analyzing information obtained from
the model checking process on the abstract model. The key idea is the following:
if the abstract model violates the safety property Φ, it must be possible for
a model checker to extract a reason for this, a so-called counterexample. This
is then analyzed with respect to its realizability in the original model. If it is
in fact realizable, we can conclude that the original model also violates Φ. On
the other hand, if the counterexample is not realizable, the verification result
on the abstract model does not carry over to the concrete model. In this case,
the abstraction introduced the spurious behavior and the abstract models needs
to be refined. As it is known that the counterexample was indeed spurious, it
also carries information about the reason why the abstraction introduced this
behavior, which can be exploited to refine the current partition. The overall
approach is sketched in Figure 5. It is easy to see that for finite models the

model property

Abstract MDP Predicates

Model
Checking

Realizability
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satisfied violated

spurious
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counterexample

Figure 5: A schema of the CEGAR loop.

CEGAR loop will only be traversed a finite number of times until a decision
can be made, assuming that the predicate synthesis always splits at least one
abstract state. For infinite models, however, the procedure may not terminate.

We start by introducing the notion of a counterexample for safety properties.
Then, we present the core procedure of the CEGAR loop [27]; in particular we
discuss the counterexample analysis using satisfiability solvers, and the synthesis
of predicates. Note that while [27] also treats systems with arbitrary (even in-
finitely) many initial states, we restrict our attention to systems with one initial
state for the sake of simplicity.



5.1 Counterexamples for safety properties in MDPs

In the traditional qualitative model checking setting, safety properties express
that a certain set of “bad” states F must not be reachable. A probabilistic
safety property PEp(♦F ) with E ∈ {<,≤} establishes an upper bound p on the
probability to reach the bad states F .

Example 6. Consider for example the MDP in Figure 2 and the probabilistic
safety property Φ = P<1(♦F ). Obviously, there are schedulers that violate Φ,
namely all schedulers σ that pick action b in 〈2, 0〉 and some available action in
the other states. �

Given a (deterministic memoryless) scheduler σ that violates the safety property
Φ, σ can be called a counterexample for Φ. Likewise, the DTMC Mσ resulting
from the application of σ on M can be called a counterexample. A lot of work
has been conducted on finding more succinct representations of counterexamples
to make them effectively useful in the context of debugging the system. Several
approaches [48, 2, 30] revolve around the identification of a small subsystem
of the concrete model that already violates the property. Recently, [49] showed
how to characterize and compute counterexamples in terms of the commands
of a probabilistic program. Despite this progress, it is yet unclear how to use
these sophisticated counterexample representations for the purpose of CEGAR.
Hence, we stick to the presentation in [27] and consider deterministic memoryless
schedulers σM/Q and the corresponding DTMC (M/Q)σM/Q as counterexam-
ples. As we will see in the next section, in order to avoid building a possibly huge
concrete model for checking realizability of a counterexample, the authors of [27]
resort to the notion of realizability of an abstract path and view the abstract
DTMC (M/Q)σM/Q as a set of paths. In general, however, (M/Q)σM/Q is cyclic
and thus possesses infinitely many paths contributing to the probability mass
reaching the set of “bad” states. Unfortunately, sometimes infinitely many paths
are in fact needed to prove violation of a safety property.

Example 7. Reconsider the setting of Example 6. It is easy to verify that no finite
number of paths suffices to prove that the maximal reachability probability is
1. In this example all paths, i. e., infinitely many, are needed to witness the
violation of the safety property. �

Luckily, it can be shown that this phenomenon only occurs when the comparison
operator is strict [24]. In order words, if a property that uses only smaller-or-
equal comparisons is violated, then there is always a finite set of paths whose
probability mass exceeds the bound. In this case, following the ideas of Han and
Katoen [24], a minimal set of paths that exceeds the probability bound p can
be efficiently obtained by a reduction to a graph problem. Hence, from now on
we assume that we can obtain, one by one, a finite set of paths in decreasing
probability order whose accumulated probability mass exceeds the given bound.

5.2 Realizability of a counterexample

Figure 5 illustrates that counterexample analysis is at the heart of the CEGAR
approach. It must be possible to determine whether a counterexample in the



abstract system carries over to the concrete model without building it. In order
to do this, we first need to define what it means for a counterexample to be
realizable. For the remainder of this section, we will assume that the concrete
MDPM = (S,Act ,P, sinit, AP, L) is given as a probabilistic program such that
no two commands have the same label. Furthermore, for the current partition Q
of the state space the abstract MDP M# := M/Q = (Q,Act ′,P/Q,AP,L/Q)
has been built and proven to violate a reachability property Φ = P≤p(♦F ) by
a model checker. In addition, a counterexample σ# is provided as a witness for
the violation by the model checker.

For checking realizability of the abstract scheduler σ#, the idea is to check
whether a similarly behaving scheduler σ on M will exhibit the same violating
behavior. Formally, the concretization of a counterexample is defined as follows.

Definition 8 (Concretization and realizability of a counterexample).

(i) The concretization γ(σ#) of a counterexample σ# is defined as the sched-
uler σ for M such that for all s ∈ S

σ(s) =

{
σ#(q) s ∈ q ∧ s |= g

⊥ otherwise

where q ∈ Q and g is the guard of the command associated with the com-
mand σ#(q), which is given by the probabilistic program for M.

(ii) A counterexample σ# is called realizable if the probability of reaching a
state in F in Mγ(σ#) exceeds the given bound, i. e., ProbMγ(σ#)(♦F ) > p

and spurious otherwise.

Intuitively, the concretisation γ(σ#) of a scheduler σ# is a scheduler for the
concrete MDPM that chooses an action a in a concrete state s iff σ# chooses a
in the abstract state q ∈ Q containing s and a is available in s. If a is not available
in s, because s fails to satisfy the guard of the command, the concretization will
just stop in s, which is indicated by ⊥. Now, a counterexample is realizable if the
concretization induces enough probability mass on the concrete model to violate
the bound p of the probabilistic safety property under the concrete scheduler.

Example 8. Reconsider the MDP from Figure 2 and let the safety property be
given as Φ = P≤0.6(♦F ). Obviously, M# (Figure 3) does not satisfy Φ, because
the scheduler σ# that picks a2 in A, b in B and c in C achieves a probability of
1. The concretization γ(σ#), thus, has also to choose a in all states of A and so
on. However, 〈1, 1〉 fails to satisfy the guard of b, so γ(σ#)(〈1, 1〉) = ⊥. �

However, given the definition of realizability of a counterexample, it remains to
show how to actually perform the realizability check without having the concrete
model at hand. As previously mentioned, the authors of [27] resort to viewing
the abstract DTMC induced by the abstract counterexample as a set of paths
reaching a state in F . This enables to check the realizability of paths in isolation
rather than a “full” counterexample at once.



Realizability of a Path. Intuitively, a path in the abstract counterexample DTMC
M#

σ# is realizable, if there exists a path in M that (i) starts in the initial state
and ends in F , (ii) does not visit F before the last state (iii) chooses the same
actions and updates as the abstract path and (iv) is in a concrete state si ∈ qi
whenever the abstract path is in qi ∈ Q. Note that this implies that all states
along the path satisfy the appropriate guards. The following definition captures
this formally:

Definition 9 (Concretization of a path).

Let ω# = q0α1q1α2 . . . qn ∈ Path
M#

σ#

fin be a finite path prefix.

(i) The concretization γ(ω#) of ω# is given by

{ω ∈ Path
M

γ(σ#)

fin | ω = s0α1s1α2 . . . sn with si ∈ qi for 0 ≤ i ≤ n}

(ii) ω# is called realizable if γ(ω#) 6= ∅.

Example 9. Let the setting be the same as the one in Example 8. Furthermore,
consider the path prefix ω# = Aa2C in M#

σ# . By inspection, we can see that

γ(ω#) = ∅, because it is impossible to reach a state in F from the initial state of

M within one step. In fact, no finite path prefix inM#
σ# possesses a non-empty

concretization. �

The existence of an element in the concretization of the abstract path is formu-
lated as a query to an Smt solver. The actual formula ϕγ(ω#) for the path ω#

can be constructed using repeated applications of the weakest precondition op-
erator and additional information obtainable from the path. This formula may
then be dispatched to a standard SMT solver supporting linear integer arith-
metic, as, for example, Z3 or MathSat. For details, we refer to [27].

Algorithmically checking realizability of a counterexample. Now that we have
presented a method for determining whether a path is realizable, we can check
the realizability of the counterexample as follows. GivenM#

σ# , we start extract-

ing finite paths ω# = q0α1q1α2 . . . qn with qi 6∈ F for 0 ≤ i < n and qn ∈ F
in decreasing probability order. Each of these paths is individually checked for
realizability. All realizable paths are added to a set Ω+ whereas unrealizable
paths are added to Ω− and we denote by pΩ+ and pΩ− , respectively, the sum of
the probabilities of the paths in these sets. If we get to a point where pΩ+ > p,
we know that enough probability mass of the abstract counterexample is also
present in the concrete model to exceed the bound p. This directly implies that
the counterexample is in fact realizable and we can conclude thatM violates the
given safety property as well. Conversely, we need a criterion to stop looking for
new paths inM#

σ# if there is no hope of ever exceeding p. As the model checker
that provided the abstract counterexample computed the probability pσ#(♦F )
of reaching F in the abstract model, we can at any point determine whether
there is enough probability mass left in the abstract counterexample that is po-
tentially realizable and suffices to exceed p. If pΩ+ + (pσ#(♦F ) − pΩ−) ≤ p,



we can conclude that even if all remaining paths in M#
σ# were realizable, they

could still not exceed the bound p and thus, the abstract counterexample was
determined to be spurious. Formally, we get the following result:

Lemma 1 (Termination criterion). Let ε = pσ#(♦F ) − pΩ− be the proba-
bility of paths reaching F in the abstract model that were not yet proven to be
(un)realizable.

(i) pΩ+ > p implies that σ# is realizable.
(ii) pΩ+ + ε ≤ p implies that σ# is spurious.

Stated differently, the result is only inconclusive if pΩ+ ∈ (p − ε, p]. In this
case, the next most likely abstract path is considered until the result is in fact
conclusive.

Example 10. Reconsider Example 8. The model checker initially returns the
counterexample σ# along with the reachability probability pσ#(♦F ) = 1. Let

the first path prefix that is found in M#
σ# by the procedure be ω# = Aa2C.

As shown in Example 9, this path prefix is found to be unrealizable. It is then
added to Ω− and its probability is added to pΩ− , which then becomes 0.5. Now,
however, ε becomes 0.5, which means that there is at most a probability mass of
0.5 left in M#

σ# that might be realizable. As this does not suffice to exceed the
bound p = 0.6 of Φ, the counterexample is known to be spurious. If this was not
directly the case, the procedure would check the next path prefix for realizability
and carry on. �

5.3 Predicate synthesis

Suppose the decision procedure previously described determines that a given
counterexample in the abstract model is spurious. This means that the abstrac-
tion falsely introduced behavior that was not present in the original model. In
other words, we need to refine the abstract model to rule out this spurious behav-
ior. As the abstract model is built using predicate abstraction, this corresponds
to introducing additional predicates. Since the formulae ϕγ(ω#) do not involve
quantitative aspects, but are similar to the non-probabilistic case, standard tech-
niques, such as predicate interpolation [42, 45], may be used to obtain predicates
to rule out the source of spuriousness.

Example 11. After the counterexample from Example 10 was found to be spu-
rious, the predicate x = 0 ∧ y = 0 could be added to rule out the possibility to
reach F within one step in the quotient model M#. �

6 Game-based abstraction

The success of counterexample-guided abstraction refinement inspired another
abstraction-refinement framework for MDPs. First, observe that probabilistic



CEGAR (as presented in Section 5) can only (dis)prove probabilistic safety prop-
erties. Intuitively, this is because the concrete MDP is again abstracted to an
MDP. Doing so, however, merges the nondeterminism of the concrete model with
the nondeterminism introduced by the abstraction. Effectively this means that
the minimal and maximal reachability probabilities in the abstract MDP are
lower and upper bounds, respectively, for the corresponding reachability prob-
abilities in the concrete model (see Theorem 1). Rather than merging the two
sources of nondeterminism, the two abstraction techniques presented in this sec-
tion keep them separated by using probabilistic games [11] as their underlying
abstract model. This way, they are able to provide lower and upper bounds on
both minimal and maximal reachability probabilities. Hence, they are applicable
to the broader class of probabilistic reachability properties.

6.1 Idea

Reconsider Example 4. In the abstract MDP, the minimal and maximal proba-
bility to a reach a state in F are 0 and 1, respectively. This, however, means that
the reachability probilities in the concrete model may lie anywhere in between
those values providing no information at all. This phenomenon stems from the
fact that, in the abstract state A, both the nondeterministic choices of state
〈0, 1〉 and the transitions emanating from 〈0, 0〉 are enabled.

The key idea of game-based abstraction [34] is the follwing. Instead of using
an MDP as the “target” of the abstraction, the concrete MDP is mapped to an
abstract probabilistic game. This way, the two sources of nondeterminism can
be assigned to the different players and, thus, kept separate. In other words,
one player is responsible for resolving the nondeterminism of the abstraction
while the other governs the nondeterminism of the original model. Depending
on whether the two players both try to maximize or minimize the probability
to reach the target states or they take an adversarial role, the resulting value
of the game is a lower or upper bound on the minimal or maximal reachabil-
ity probability, respectively. If these bounds are precise enough for proving or
refuting a given property, a conclusive answer for satisfaction of the property
on the concrete model can be given. In the other case, at least one block of the
abstraction can be refined based on the strategies of the players. The resulting
game then yields more precise results and, similarly to CEGAR, the procedure
may be iterated until the obtained bounds are precise enough. The approach is
sketched in Figure 6. Note that in practice this approach can be implemented
in a fully symbolic way (just like CEGAR) by using Smt solvers that avoids
building the concrete model M altogether. However, for the sake of simplicity,
our presentation will abstract from this.

6.2 Simple game-based abstraction

We will now present how to obtain an appropriate (abstract) probabilistic game
from an MDP. Just like for MDP quotienting, a set of predicates is used to
partition the state space S of the concrete MDP into blocks of states Q =
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Figure 6: A schema of refinement loop of game-based abstraction.

{S1, . . . , Sn}. Recall that µ̄ ∈ Dist(Q) denotes the lifting of µ ∈ Dist(S) to
Dist(Q).

Definition 10 (Simple probabilistic game-based abstraction). Given an
MDP M = (S,Act,P, sinit, AP, L) and a partition Q of S, the simple proba-
bilistic game-based abstraction of M over Q is the probabilistic game

GQM = ((V = V1 ∪̇V2 ∪̇Vp, E), vinit, (V1, V2, Vp), δ)

where

– V1 = Q are player 1’s vertices,
– V2 = {v2 ⊆ Dist(Q) | v2 = {µ | µ ∈ Steps(s)} for some s ∈ S} are player

2’s vertices,
– Vp = {vp ∈ Dist(Q) | vp ∈ {µ | µ ∈ Steps(s)} for some s ∈ S} are the

probabilistic vertices,
– vinit = q ∈ Q such that sinit ∈ q is the initial vertex,
– δ : Vp → Dist(V ) is the identity function,

and the set of edged E is given by

E = {(v1, v2) | v1 ∈ V1 and v2 = {µ | µ ∈ Steps(s) for some s ∈ v1}
∪ {(v2, vp) | v2 ∈ V2 and vp ∈ v2}
∪ {(vp, v1) | vp = µ̄ with µ̄(v1) > 0}.

Intuitively, the game proceeds as follows. In each v1 ∈ V1, player 1 picks a
concrete state s ∈ v1 and moves to the corresponding player 2 vertex. Then,
player 2 chooses a (lifted) probability distribution µ̄ available in s. Finally, the



next player 1 vertex is selected according to µ̄. Hence, player 1 resolves the
nondeterminism introduced by the abstraction by picking on particular state in
an abstract block and player 2 resolves the nondeterminism in the chosen state
that was already present in the concrete model.

Example 12. Let us reconsider the MDP in Figure 2 and the partitioning Q =
{A,B,C} with A = {〈0, 0〉, 〈1, 0〉, 〈1, 1〉}, B = {〈2, 0〉} and C = {〈2, 1〉} from
Example 4. Figure 7 shows the game-based abstraction over Q where player
2 vertices are represented as squares and the probabilistic vertices are small
circles. In block A, player 1 has the choice between any of the states contained
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Figure 7: Game-based abstraction GQM.

in A. Say he chooses to pick state 〈1, 0〉 and, hence, moves to the topmost
successor vertex of A. Then, player 2 can choose between the two distributions
available in 〈1, 0〉 and move to the probabilistic vertex corresponding to the
lifted distribution. After the successor state was determined according to the
probability distribution, it is again player 1’s turn. �

By solving the game GQM using numerical methods, such as value iteration [11],
bounds for both minimal and maximal reachability probability in the concrete
model are defined as follows. Suppose both players try to minimize the proba-
bility to reach a target state in F . Then, the reachability probability p−−vinit(F )
is the minimal reachability probability for F in the MDP quotient M/Q and
is thus, by Theorem 1, a lower bound for the minimal reachability probability
in M. Suppose, on the other hand, that the player controlling the abstraction
(player 1) tries to maximize while player 2 still minimizes over the nondetermin-
istic choices available in the state selected by player 1. The probability p+−

vinit(F )
is an upper bound for the minimal reachability probability in M. Formally, we
have the following result.

Theorem 2 (Correctness of game-based abstraction [34]). Let GQM be the
game-based abstraction for an MDP M with state space S and Q a partition of



S. Then for all v ∈ V1 and s ∈ v

p−−v (F ) ≤ p−s (F ) ≤ p+−
v (F ), (1)

p−+
v (F ) ≤ p+

s (F ) ≤ p++
v (F ). (2)

Example 13. For the abstraction in Example 12 we obtain p−−vinit({C}) = 0. Un-
like the MDP abstraction M/Q, we can, however, obtain a better upper bound
on the minimal reachability probability than 1. Observe that, if only player 1
tries to maximize the probability value, he does not choose the state 〈0, 0〉 (the
bottommost choice emanating from A) but any of the other states. Then, player
2 can not completely avoid reaching C any more, but has to go to C with a
probability of at least 0.2. Indeed, solving the game yields p+−

vinit({C}) = 0.2.
Hence, the minimal reachability probabilty in M is determined to lie in the in-
terval [0, 0.2] providing more precise information than the MDP quotient over
the same partition Q. �

As indicated in Figure 6, after obtaining bounds by solving a game, the partition
Q may need to be refined in order to obtain more precise results. We will show
how the refinement may be done in a way that guarantees termination of the
procedure for finite models M.

Refinement. Recall that, given the goals of players 1 and 2, solving a game
not only comprises computing the extremal reachability probability for the game,
but also produces memoryless deterministic strategies for the two players that
together achieve the computed probability. Suppose we obtained the bounds
[l, u] for the minimal reachability probability by solving the game GQM (twice).
Further assume that the bounds were imprecise, i.e., l < u. Then, two pairs
of memoryless deterministic strategies (σl1, σ

l
2) and (σu1 , σ

u
2 ) are generated such

that:
p
σl1σ

l
2

vinit(F ) = l and p
σu1 σ

u
2

vinit (F ) = u.

Since l 6= u, there is at least one v1 ∈ V1 where the two player 1 strategies dis-
agree, i.e., σl1(v1) 6= σu1 (v1). Intuitively, this means that player 1 chose different
concrete states contained in v1 depending on whether he wanted to minimize or
maximize the reachability probability. Consequently, v1 can be split to narrow
down the choices of player 1 in the resulting vertices. A possible way to achieve
this, is to split v1 into blocks vl1, v

u
1 and vr1 where

vl1 = {s ∈ v1 | σl1(v1) = {µ | µ ∈ Steps(s)}}
vu1 = {s ∈ v1 | σu1 (v1) = {µ | µ ∈ Steps(s)}}
vr1 = v1 \ (vl1 ∪ vu1 ).

Of course, there may be several vertices that can be split according to this crite-
rion and it is not clear which or how many blocks should be refined in order to
get more precise bounds that are able to prove or disprove the property at hand.
This refinement method is called strategy-based. There exist other refinement
techniques, for example value-based refinement, which are not covered here. For
details, we refer to [34].



Example 14. As pointed out in Example 13, player 1 chooses state 〈0, 0〉 ∈ A
or either of the states 〈1, 0〉, 〈1, 1〉 ∈ A if he wants to minimize or maximize,

respectively, the reachability probability in GQM. Consequently, A is split into
blocks A1 = {〈0, 0〉} and A2 = {〈1, 0〉, 〈1, 1〉}. The resulting game over the
partiton Q′ = (Q\A)∪{A1, A2} is depicted in Figure 8. Solving the refined game
determines the minimal reachability probability to be in the interval [0.2, 0.2].

�
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Figure 8: Game-based abstraction after the refinement of block A.

6.3 Menu-based abstraction

While game-based abstraction yields good results for many examples, the con-
structed game can become very large. The reason is that the game representation
may need one player 2 vertex for each combination of (lifted) probability distri-
butions available in some block q ∈ Q. The worst-case appears if all the states
contained in a particular block happen to have different (combinations of) lifted
probability distributions. Roughly speaking, in the context of MDPs given by
a probabilistic program, the game may become large if there exist many states
in which different combinations of guarded commands are enabled. In this case,
constructing and solving the game might be very expensive.

Example 15. The game GQM in Example 12 has three player 2 vertices reachable
in one step from player 1 vertex A, even though block A contained only three
states of the concrete model. �

Menu-based abstraction [46, 45] aims to overcome this by considering commands
of the probabilistic program in isolation. That is, it builds a possibly smaller
game than game-based abstraction that might produce coarser probability ap-
proximations in the hope that it can be constructed and solved more easily.
Instead of letting player 1 pick a concrete state out of a given block and move
to the vertex representing the enabled commands at this particular state, it lets
player 1 choose a command. This means that the choice of a concrete state is still



open (among all states that have the chosen command enabled). Consequently,
in the successor vertex, player 2 has the choice between all possible realizations
of the chosen command in all states of the block.

Definition 11 (Menu game). Given an MDP M = (S,Act,P, sinit, AP, L)
and a partition Q of S, the menu-based abstraction of M over Q is the proba-
bilistic game

ĜQM = ((V = V1 ∪̇V2 ∪̇Vp, E), vinit, (V1, V2, Vp), δ)

where

– V1 = Q ∪ {⊥} are player 1’s vertices,

– V2 = {(v1, a) | v1 ∈ V1, a ∈ Act(v1)} are player 2’s vertices,

– Vp = {P(s, a, ·) | s ∈ S, a ∈ Act(s)} ∪ {v⊥p } are the probabilistic vertices,

– vinit = B ∈ P such that sinit ∈ B is the initial vertex, and

– δ : Vp → Dist(V ) is the identity function,

and the set of edges E is given by

E = {(v1, v2) | v1 ∈ V1, v2 = (v1, a) ∈ V2, a ∈ Act(v1)}
∪ {(v2, vp) | v2 = (v1, a) ∈ V2,∃s ∈ v1 : vp = P(s, a, ·)}
∪ {(v2, v

⊥
p ), (v⊥p ,⊥) | v2 = (v1, a) ∈ V2,∃s ∈ V1 : a 6∈ Act(s)}

∪ {(vp, v′) | vp ∈ Vp, v′ ∈ V1 : vp(v
′) > 0}

where v⊥p ∈ Dist(S ∪ {⊥}) is defined by v⊥p (v) = 1 iff v = ⊥.

To distinguish the probabilities obtained in the game-based abstraction GQM from

the ones obtained in the menu-based abstraction ĜQM, we will denote the latter
by p̂◦1◦2v (F ) with ◦1, ◦2 ∈ {−,+} and p̂σ1σ2

v (F ).

Starting in the initial vertex, player 1 chooses one of the commands that
are enabled in at least one state in the current block. Then, player 2 implicitly
chooses a state from the current block by choosing a probability distribution
that is (i) created by the chosen command and (ii) is available at some state in
the block. Finally, the successor vertices are given by that distribution and the
play is once again in a vertex owned by player 1.

Example 16. Reconsider the MDP M in Figure 2 and the partition Q from
Example 2. The resulting menu game is shown in Figure 9. Note that the labeling
of player 1’s choices with commands is added to illustrate the correspondence,
but is not actually part of the game itself. �

As for game-based abstraction, we can state the correctness of the abstraction
in the sense that the reachability probabilities obtained from the game are lower
and upper bounds for the reachability probabilities in the original MDP.
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Figure 9: The menu game ĜQM.

Theorem 3 (Correctness of menu-based abstraction [45]). Let ĜQM be
the menu game for an MDP M with state space S and Q a partition of S. Then
for all v ∈ V1 and s ∈ v

p̂−−v (F ∪ {⊥}) ≤ p−s (F ) ≤ p̂−+
v (F ∪ {⊥}), (3)

p̂+−
v (F ) ≤ p+

s (F ) ≤ p̂++
v (F ). (4)

For minimal reachability objectives, ⊥ becomes a target vertex in addition to the
given set F . Intuitively, this is because it corresponds to the case where player 2
selects a concrete state in the abstract vertex in which the command previously
selected by player 1 is not enabled. This would, however, result in a lower bound
of 0 for the minimum reachability probability in all vertices that contain some
state in which at least one action is not enabled. Instead, it should be implicitly
forbidden for player 2 to choose ⊥ in this case, which is done by assigning the
worst (with respect to the goal of player 2) possible value to it. Conversely, if
player 2 tries to maximize its value, the construction would be incorrect if ⊥ was
not considered a target vertex as well, which is illustrated by the next example.

Example 17. Reconsider the probabilistic program from Figure 1 with the dif-
ference that the guard of command b is strengthened to 1 < x+y ≤ 2. Note that
the menu game ĜQM′ for the resulting modified MDP M′ is equal to ĜQM from
Example 16 even though b is now disabled in 〈1, 0〉 in M′ and the minimum
reachability probability of reaching F from 〈1, 0〉 is 0.5 then. Now, suppose ⊥
was not considered a target state in the menu game. If player 1 chooses the com-
mand b in A, the best player 2 can do to maximize the probability to eventually
reach F is to choose the state that has b enabled and achieve a probability of 0.2.
This is, however, not an upper bound for the minimal reachability probability
for all states in block A, as 〈1, 0〉 ∈ A has a minimal reachability probability of
0.5 in M′. Intuitively, it is not legal for player 1 to pick a command that is not
enabled in all states. �

The menu game can be solved in the same fashion that the previous games
were solved, e g., using value iteration. As stated by the correctness theorem, this



will result in lower and upper bounds for both the minimal and the maximal
reachability probability with respect to the given set of target states.

Compared to game-based abstraction, it should be noted that it is no longer
the case that player 1 resolves the nondeterminism introduced by the abstrac-
tion and player 2 the nondeterminism of the original model, but that the two
have swapped roles. In the game-based abstraction setting, player 1 determined
whether the resulting probability was a lower or upper bound while player 2
could control whether the result was an approximation of the minimal or maxi-
mal reachability probability in the original MDP. This is exactly reversed in the
context of menu games, which is reflected in the previous correctness theorem
by swapping the goals of the two players (compared to game-based abstraction).

Also, there are examples for which game-based abstraction produces tighter
bounds than menu-based abstraction if the same partition Q of the state space
is used for building the games. Technically, this happens because game-based
abstraction constructs a game representation of the best transformer on the
partition induced by the predicates whereas menu-based abstraction represents
an abstract transformer that does not necessarily coincide with the best trans-
former [45].

Example 18. Reconsider the menu game ĜQM from Example 16. For the menu-
based abstraction, the lower bounds for minimum and maximum reachability
are both 0 and, likewise, the upper bounds are both 1, effectively yielding no
information. As shown in Example 13, this is coarser than the bounds obtained
via game-based abstraction (using the same partition Q). �

This immediately raises the issue of termination if menu-based abstraction
is to be used in a refinement loop. Fortunately, the following result can be es-
tablished.

Theorem 4 (Refinability). Any finite partition Q can be refined to a finite
partition Q′ on which the reachability probabilities in the menu game approximate
the reachability properties in the original MDP at least as precisely as the game-
based abstraction over Q. Formally, for every s ∈ S, let v ∈ Q, v′ ∈ Q′ such that
s ∈ v and s ∈ v′, then:

p−−v,Q(F ) ≤ p̂−−v′,Q′(F ∪ {⊥}) ≤ p
−
s (F ) ≤ p̂−+

v′,Q′(F ∪ {⊥}) ≤ p
+−
v,Q(F ) (5)

p−+
v,Q(F ) ≤ p̂+−

v′,Q′(F ) ≤ p+
s (F ) ≤ p̂++

v′,Q′(F ) ≤ p++
v,Q(F ). (6)

Note that the players swapped roles, so the order of the superscripts of the
reachability probabilities is important.

Extensions. For models that involve parametric transition probabilities de-
pending on state variables, the usual game construction possibly produces games
of infinite size, because infinitely many probability distributions might be avail-
able in a block. Recently, [22] proposed to solve this problem by constructing
constraint Markov games, an extension of probabilistic games that is able to deal



with variable probabilities, instead. Intuitively, the idea is to avoid introducing
a game vertex for every available distribution by shifting the selection of the
distribution into a different level of non-determinism in the game.

7 Conclusion

We have described three successful techniques for the abstraction of probabilistic
systems. Which one is most useful in a concrete situation? Multi-valued abstrac-
tion seems to be the simplest method: one stays within the model of MDPs,
so analysis of the abstract model can use mainstream model checkers. However,
the disadvantage is that some questions cannot be answered. In those cases the
abstraction-refinement frameworks demonstrate their strengths. CEGAR over-
comes a part of the weakness of multi-valued abstraction, by providing a direction
in which to refine a model if model checking on the abstract model has led to a
spurious counterexample. Game-based techniques do not rely on MDPs as their
underlying abstract model but rather use probabilistic games. This way, they can
provide lower bounds on both minimal and maximal reachability probabilities.
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High-level counterexamples for probabilistic automata. In: Joshi, K. R., Siegle,
M., Stoelinga, M., D’Argenio, P. R. (eds.) QEST. LNCS, vol. 8054, pp. 39–54.
Springer (2013)

[50] Zhang, L.: Decision algorithms for probabilistic simulations. Ph.D. thesis, Univer-
sität des Saarlandes, Saarbrücken (2009)


	On Abstraction of Probabilistic Systems

