Putting the Pieces Together: The Construction of a Reliable Virtualizing
Object-Based Storage Stack

David C. van Moolenbroek, Raja Appuswamy, Andrew S. Tanenbaum
Dept. of Computer Science, Vrije Universiteit Amsterdam
{david, raja, ast}@minix3.org

Abstract—The operating system storage stack is an impor-
tant software component, but it faces several reliability threats.
The research community has come up with many solutions to
address individual parts of this reliability problem. However,
when considering the bigger picture of constructing a highly
reliable storage stack out of these individual solutions, new
questions arise regarding the feasibility, complexity, reliability,
and performance of such a combination. In previous works, we
have designed a new storage stack called Loris, and developed
several individual reliability improvements for it. In this work,
we investigate the integration of these improvements with each
other and with new functionality, in two steps. First, we
add new virtualization extensions to Loris which challenge
assumptions we made in our previous work on reliability.
Second, we combine all our extensions to form a reliable,
virtualizing storage stack. We evaluate the resulting stack in
terms of performance and reliability.

Keywords-Operating systems, File systems, Platform virtual-
ization, Software reliability, Fault tolerance

I. INTRODUCTION

All computer systems are vulnerable to various faults,
originating from both software and hardware. Such faults
have the potential to completely subvert the operation of the
system. Given that prevention and hardware protection are
often infeasible or too costly, reliability can be improved
using software-based isolation, detection, and recovery tech-
niques. The storage component of the operating system is
of particular interest in this regard: it is relied upon by
all applications, it is highly complex, and it uses several
resources which may fail in various ways. Since applications
expect the storage stack to operate perfectly, unhandled
failures in this stack may result in loss of user data.

The storage stack faces several important reliability threats.
The most well-known threat is a whole-system failure, where
the entire system goes down unexpectedly. The underlying
storage hardware may experience a storage device failure,
which may range from fail-stop failures to various forms of
silent data corruption. Since the storage stack typically uses
a large amount of available RAM for caching purposes, it
is also vulnerable to memory corruption from sources such
as cosmic rays. Finally, the complexity of the storage stack
makes it susceptible to failures due to software bugs.

As a result, there has been much research on improving
the reliability of the storage stack in various ways (e.g., [1]-

[12]). Such research typically focuses on a single reliability
threat, limits itself to a single part of the storage stack, and
often makes various assumptions about the component being
protected. The result is extra reliability with low runtime
overhead but with a limited scope. As such, while these
efforts provide essential pieces towards making the storage
stack more reliable, a top-down look at constructing a highly
reliable storage stack raises new, important questions:

e Can a combination of individual techniques provide
significant reliability coverage of the entire stack?

« How do these techniques hold up in the light of new
functionality that may violate previous assumptions?

o What advantages, limitations, and complexity result
from integrating various pieces with each other?

e« What is the performance and reliability of such a
combination of individual low-overhead techniques?

We believe that we are in a good position to provide initial
answers to these questions. We have previously designed a
storage stack called Loris, which is layered in a more modular
way than the traditional storage stack [9]. In subsequent work,
we have looked at the aforementioned reliability threats by
considering individual layers of the stack in isolation [10]-
[12]. By exploiting the specifics of the design of these layers,
we were able to provide individual solutions that provide
strong reliability and add little overhead.

In this paper, we attempt to answer the above questions, in
two steps. In recent work, we have presented a new approach
to virtualization [13]; our first step in this paper consists of
implementing support for this form of virtualization to Loris.
In particular, we extend Loris with object virtualization, copy-
on-write, and deduplication functionality, thereby forming
vLoris. In addition to its intrinsic value, this first step serves
two purposes. First, it improves reliability by placing the
upper layers of the storage stack in their own failure domain.
Second, the new functionality provides a good test case for
the assumptions in our earlier work on reliability.

In the second step, we combine our earlier individual
works on reliability with each other and with the new
virtualization support, thus forming a virtualizing storage
stack which is at least as reliable as the sum of the individual
pieces. This new version of Loris, rvLoris, provides various
levels of robustness against the four mentioned reliability

threats across all its layers. However, given that we made
strong assumptions about the layers in previous work, this
integration effort required resolving several new issues. We
describe the resulting changes that we had to make. Finally,
we provide answers to the posed questions by evaluating the
design, complexity, performance, and reliability of rvLoris.
The rest of the paper is laid out as follows. Sec. II provides
a necessarily elaborate overview of our relevant previous
work on Loris, reliability, and virtualization. In Sec. III, we
describe the virtualization extensions that make up vLoris.
In Sec. IV, we describe our efforts to integrate all reliability
and virtualization features to form rvLoris. In Sec. V, we
evaluate the performance and reliability of all our changes.
Sec. VI describes related work, and Sec. VII concludes.

II. BACKGROUND

In this section, we describe the prior work on which this
paper builds: the Loris storage stack (Sec. II-A), our reliability
extensions to it (Sec. II-B to II-D), and the role of Loris in
our new approach to virtualization (Sec. II-E).

A. The Loris storage stack

The basis of all our work is a new object-based storage
stack called Loris [9]. This stack replaces the file system and
software RAID layers of the traditional storage stack (Fig. 1a)
with four new layers (Fig. 1b). These four layers communicate
among each other in terms of objects: storage containers
which are made up of a unique identifier, a variable amount
of byte data, and a set of associated attributes. Each of the
three lower layers exposes the following object operations
to the layer above it: create, delete, read, write,
truncate, getattr, setattr. In addition, a sync
operation flushes all dirty state. Loris offers advantages in
the areas of reliability, flexibility, and heterogeneity [9].

At the bottom, the physical layer manages the layout
of underlying storage devices, exposing a physical object
abstraction to the layers above. The physical layer consists of
one or more modules, each managing the layout of a single
underlying device using a layout suitable for that device
type. The physical modules are required to support parental

checksumming to detect all forms of disk corruption [9], [14].

Our initial physical module, PhysFS, implements a layout
based on the traditional UNIX file system, using inodes to
store the objects with their attributes and data.

The logical layer adds support for RAID-like per-object
redundancy. It exposes a logical object abstraction to the
layers above. Each logical object has an individual RAID-like
policy and is made up of one or more objects on different
physical modules. For example, an object may be mirrored or
striped across some or all devices. The logical layer maintains
a mapping from each logical object to its policy and physical
objects. It stores the mapping in a metadata object: an object
which contains storage stack metadata and is mirrored across
all devices. When a physical module reports a checksumming

error, the logical layer uses the per-object redundancy to
restore a known-good copy of the object. In the absence of
redundancy, it still prevents propagation of corrupted data.

The cache layer uses available system memory to cache
pages of object data. It also caches object attributes, and de-
fers flushing dirty pages and object create and setattr
operations for improved performance. Due to its limited role,
the cache is by far the least complex layer of the stack.

Together, these lower three layers effectively implement
an object store. On top of these layers, the naming layer
constructs a POSIX file system hierarchy out of the loose
objects. It processes requests from the Virtual File System
layer (VFS) and implements support for file naming, direc-
tories, and POSIX attributes. It stores files and directories as
objects, and POSIX attributes as object attributes.

We have implemented the Loris storage stack in the
MINIX 3 microkernel operating system [15]. As a result, all
layers and modules of the storage stack are isolated user-mode
processes, limited in their interprocess communication (IPC)
in accordance with the principle of least authority. MINIX 3
has facilities to detect crashes in user-mode operating system
processes and to start a clean copy of a failing process,
although recovery of both state and ongoing requests is left
to the process itself. The infrastructure by itself is sufficient
to recover from failures in device drivers [16].

Summarizing, in terms of reliability, Loris can detect and
recover from storage device failures by design, and MINIX 3
provides the necessary (but not sufficient) infrastructure to
detect and recover from software failures (“‘crashes”). In
subsequent, separate projects, we have further improved the
robustness of Loris, and we describe these projects next.

B. Improved reliability in the physical and logical layers

In previous work [10], we argue that the storage stack
should provide a unified infrastructure to recover both from
whole-system failures and from crashes in the logical and
physical module processes. For both failure types, recovery

‘Application‘ ‘Application‘ ‘Application‘

[VFs | L_VFS E
File
system Cache |!
Software \M‘ LOgiC3| ~
RAID | Physical | z

‘Disk driver‘ ‘Disk driver‘

Disk driver| |

(a) (b) (c)

Figure 1. A schematic diagram of the layers of (a) the traditional storage
stack, (b) the Loris storage stack, and (c) the Loris stack with virtualization.

relies on the creation of consistent on-disk recovery points.

A recovery point is created with the sync operation, which
goes down the entire stack, during which all layers flush
their dirty state to the layers below. Finally, at the physical

layer, all modules create a recovery point on their devices.

As proof of concept, we developed a new physical module,
TwinFS, which supports such on-disk recovery points.

This infrastructure, when combined with cross-device data
synchronization, guarantees recovery to the last recovery
point after a whole-system failure. The same infrastructure
allows for recovery of a crash in the lower two layers, when
combined with an in-memory log in the cache layer.

The in-memory log records all modifying operations sent
down to the lower layers since the last recovery point was
created. It is cleared after a sync call. If one of the processes
in the logical or physical layer crashes, all modules in this
layer are restarted, and thus together restore to the last
recovery point. After that, the cache layer replays the log,

thereby bringing back the lower layers to the latest state.

This approach provides transparent recovery with strong
guarantees from transient crashes in the lower layers, and

automatically covers any new features in these layers as well.

We exploit two properties of object storage to reduce
logging complexity and overhead. First, since all objects are
independent from each other, the log need not keep track of
the order of operations between different objects. Second,
operations that are later obsoleted (e.g., a write followed
by a truncate) can be eliminated from the log, so that
the operations need not be replayed in chronological order.

Our evaluation shows that TwinFS adds a performance
overhead of around 5-8 %. The log adds little performance
overhead, but does require a large amount of extra memory,
mainly to log pages that have been flushed and then evicted
from the cache layer’s (separate) main memory pool.

C. Improved reliability in the cache layer

As indicated, the Loris physical layer generates and verifies
checksums of data and metadata blocks in order to detect
disk corruption. We argue that checksums for data blocks
should be propagated from and to the cache layer [11]. With
such a facility in place, the cache layer can then use the
checksums for two reliability purposes: detecting memory
corruption and recovering itself from a crash.

First, the cache layer uses a large amount of system
memory for data caching purposes. Therefore, there is a
substantial chance that if a random DRAM bit flip occurs,
it will affect a page in the cache. In order to detect such
memory corruption before it is propagated, we change the
cache layer to use the checksums for verification of pages
right before application read calls. Recovery is often possible
as well: corrupted clean pages can be restored from disk.

Second, crash recovery of the cache layer is difficult
because this layer typically contains a substantial amount
of state which cannot be recovered from elsewhere: delayed

page writes, and create and setattr operations. Thus, if
the cache process crashes, such dirty state must be recovered
from the memory of the crashed instance of the process.

In order to ensure that the dirty state in the cache has not
been corrupted as part of the crash, we change the cache layer
to checksum the necessary data structures during runtime
and verify them upon recovery. The state includes dirty
pages; thus, each page is now checksummed right after being
modified instead of when it is flushed to disk. All dirty state
is tracked using a set of self-checksumming data structures,
together called the Dirty State Store (DSS). During normal
cache operation, the DSS forms a fully checksummed tree of
all dirty state within the cache’s memory. If the cache crashes
and its recovery procedure detects a checksum mismatch in
the DSS tree, the cache is not recovered, thus minimizing
the risk that corrupted data reaches applications. An update
of a page and its DSS checksum is not atomic; thus, this
technique can recover from most but not all fail-stop failures.

For application-transparent crash recovery, the system must
also deal with operations that were being processed by the
cache at the time of the crash (as per Sec. II-A). We require
that either the naming layer or the low-level IPC system
repeat pending operations after a restart of the cache. Since
all Loris operations are idempotent, their repetition ensures a
correct outcome even in the light of earlier partial processing.

The paper shows that the integration of the two tech-
niques further strengthens both, and that the combination of
hardware-implemented checksumming and simple techniques
can keep performance overhead down to around 1 % while
providing reasonable detection and recovery guarantees.

D. Improved reliability in the naming layer

While the naming layer may be highly complex, at its
core it simply translates each POSIX request from VFS into
a number of Loris object operations to the cache layer. We
exploit this fact to implement transparent recovery from
naming-layer crashes [12], by making the layer stateless.

We change the naming layer to group all modifying
operations spawned by a single VFS request into a transaction,
which is then sent to the cache layer at the end of the request.
The cache layer is responsible for processing each transaction
as an atomic unit. As a result, the lower layers always contain
a consistent state. If the naming process crashes, it will
therefore also reload a consistent state upon recovery.

That leaves any VFS requests that were previously in flight.
VES reissues all those requests after a naming-layer restart;
during runtime, the naming layer uses the transaction system
to write markers to special files in order to determine after
a crash which VFS requests were already processed before.

The cache layer places strict rules on the operations that
may be part of a single transaction. For example, a transaction
may contain only one delete operation: this operation can
not be rolled back and must therefore be processed last.
The cache further exploits the high-level nature of these

transactions to limit rollback records to a minimum. In
addition, the grouping of operations saves on low-level IPC;
the resulting performance overhead is between —1 and 2 %.

E. A new approach to virtualization

In our most recent work [13], we present a new virtual-
ization alternative which combines several good properties
of virtual machines and operating system containers. The
boundary between the virtualizing (host) and the virtualized
(domain) parts of the system is placed such that the host can
share and globally optimize resources across domains, while
each domain has the freedom to implement a system layer
which exposes any desired abstractions to its applications.
As a result, our alternative is more lightweight than virtual
machines and more flexible than operating system containers.

A key part of the design is a new form of storage
virtualization: the host exposes an object store to the domains,
and the system layer of each domain can use this object
store to construct any file system abstraction as it sees fit
for its applications. The central object store provides each
domain with a private namespace of object identifiers; storage
changes from one domain are never visible to another domain.
However, the object store is free to share resources between
domains, by mapping multiple domain-local objects to a
single underlying global object using copy-on-write (CoW)
semantics. Furthermore, if the object store implements a page
cache, such global objects can be shared not only on disk
but also in memory. Since many domains are expected to
use the same files in practice, this results in more efficient
storage and memory usage in the common case.

The structure of Loris makes it a suitable basis to construct
such a virtualizing object store. To this end, the storage stack
is split in two (Fig. 1c). The cache, logical, physical, and
driver layers become part of the host, together implementing
the centralized object store. The VFS and naming layers
become part of the system layer in the individual domains.
Thus, each domain is expected to have its own instance of
the naming layer, and all these naming modules make “host
calls” to the cache layer to perform operations. All the storage
stack modules remain separate processes, and the MINIX 3
microkernel implements domains by virtualizing IPC between
groups of processes. As a result, the cache layer now receives
a domain identifier along with each incoming operation. With
this as a given, the cache layer must implement support for
storage virtualization, which is the subject of the next section.

III. VLORIS: SUPPORT FOR VIRTUALIZATION

In this section, we describe the design and implementation
of our new storage virtualization extensions to Loris. We
call the result vLoris. We add object virtualization and copy-
on-write support to the cache layer (Sec. III-A). We reuse
our previous work on transactions to support whole-system
failure recovery (Sec. III-B). We show that effective copy-
on-write support requires attribute management to be moved

into the cache layer (Sec. III-C). Finally, we add object-level
deduplication to the cache layer (Sec. III-D).

A. Object virtualization and copy-on-write

We start by modifying the Loris cache layer to support
object virtualization and object-granular copy-on-write. To
this end, the cache layer maintains for each domain a domain
mapping object: a metadata object (Sec. II-A) which stores
the mapping from the domain’s local object identifiers to
global object identifiers. When the cache gets a call from
a naming module, it translates object identifiers in the call
using the mapping for the naming module’s owning domain.
Thus, each domain can access only the objects in its mapping.

In order to support copy-on-write, we change the cache
layer to keep a reference count for all global objects. These
reference counts are stored in an additional metadata object.
We use the domain mapping and reference count metadata
objects to implement well-known copy-on-write semantics
for the create and delete operations.

Whenever a domain modifies an object with a reference
count greater than one, the cache layer makes a copy of
the global object. In order to copy objects efficiently, we
introduce a new copy operation which is implemented in
the logical and physical layers and used by the cache layer.
Currently, the logical layer forwards the call to the appropriate
physical modules, which make a full copy of the underlying
object. A future implementation of this operation could
implement copy-on-write support at a subobject granularity.

B. Transactions

An important part of virtualization is defining the interface
between the host and the domains. In order to allow vLoris to
recover from whole-system failures, its host/domain interface
has to be changed, and thus, we consider this reliability
aspect to be a part of the virtualization changes.

As described in Sec. II-B, in order to establish a recovery
point, all the Loris layers have to flush down their dirty state
as part of a stack-wide sync call. This includes the naming
layer. However, the naming layer is part of the domains, and
the domains are untrusted from the point of view of the host
system. Thus, they cannot be relied upon to cooperate in
creating recovery points, since upcalls from the host system
into the domains would introduce a dependency on untrusted
components. Even though a naming module could only create
inconsistencies for itself, such upcalls would at least need a
timeout, and it would be very difficult to choose a reasonable
value for this timeout. Avoiding upcalls is thus preferable.

We solve the problem by adopting the naming-layer
transaction support described in Sec. II-D. As a result, the
naming layers need no longer be involved in establishing a
recovery point at all: the transactions ensure that the cache
layer always has a consistent state, and thus, the host system
can create a new recovery point at any time and without the
involvement of the domains. As a side benefit, this merges in
most of the support for crash recovery of naming modules.

C. Attribute localization

In our work on naming-layer transactions, we disabled
updating file access times for performance reasons. For this
work, we added support for lazy access time updates in the
naming module implementation. The naming module gathers
access time updates for files, and periodically sends these
down to the cache layer. While the naming layer is thus no
longer stateless, deferring such updates does not introduce
consistency violations. At most, a whole-system or process
failure will cause some access time updates to get lost.

However, since each object is stored together with its
attributes in the physical layer, the cache layer must copy
any CoW-shared object whenever its attributes are changed.
Access time updates make this design untenable: any read
call on a file now causes sharing to be broken for that file.

This case makes clear that in general, effective storage
sharing at object granularity requires that such sharing apply
to the object’s contents only, and not its attributes. Thus, in
our stack, we can no longer let the physical layer manage
attributes. Instead, we “localize” attributes by storing them
in the local mapping entries of the domain mapping objects,
along with each global object identifier. The getattr and
setattr operations are thus handled by the cache layer,
and setattr no longer causes objects to be copied. The
physical layer no longer stores attributes in its inodes.

D. Object-level deduplication

So far, the only way to increase the reference count of
an existing object is to load a mapping for a new domain.
Thus, after creation, a domain’s storage resources will only
ever diverge from the shared pool. There are however many
scenarios in which multiple domains end up with the same
objects (long) after the domains’ creation, for example as a
result of a software update being installed in several domains.

Thus, storage resources can be saved with object-level
deduplication: a facility that finds and merges global objects
with the same content and establishes copy-on-write map-
pings to the merged objects. We believe that deduplication
at the object level is an acceptable tradeoff between yield
and overhead [17], although as before, our object store can
later be extended to implement subobject deduplication with
no interface changes exposed to domains.

We implement support for such deduplication in the cache
layer, since the object copy-on-write facility is implemented
there as well. As we will now show, we use a weak (non-
cryptographic) form of object content hashing to generate
deduplication candidates with good accuracy and little
overhead. We perform background content comparison on the
candidate objects to achieve eventually-perfect deduplication.

As described in Sec. II-A, Loris implements parental
checksumming of blocks in the physical layer. We reuse
these checksums to generate object hashes: the hash of an
object is the exclusive-OR (XOR) of all its block checksums.
The cache layer maintains an index which maps between

global objects and their hashes. This index is stored in a
metadata object, but also kept entirely in memory if possible.

Whenever the cache sends down an operation that changes
the hash of an existing object-that is, a write or a
truncate operation—the lower layers reply with a value
representing the XOR of all changes to the object’s block
checksums. Since the physical modules visit all involved
block pointers as part of the operation, getting the old block
checksums from there is cheap. The cache XORs the reply
value with the old object hash to obtain the new object hash,
and modifies the index accordingly. While inserting the new
hash value into the index, the cache checks whether any
other objects have the same hash value, and if so, it registers
the changed object as a candidate for deduplication.

At convenient times, the cache layer goes through the
candidates list and compares each candidate against its
potential matches, by doing a full comparison of the contents
of the objects. We implemented a simple approach of reading
and comparing potential matches at timed intervals. However,
many optimizations are possible here: comparing candidates
before their pages are evicted, comparing block checksums
before comparing actual contents, testing candidates only
during times of low I/O activity, etcetera.

The cache layer has no reverse mapping from global to
domain-local objects. Therefore, the candidates list contains
pairs of domain identifiers and domain-local object identifiers.
Upon actual deduplication, the candidate’s domain mapping is
changed to point to its match. The lack of a reverse mapping
also implies that deduplication of objects within a single
domain is automatic and cannot be prevented.

IV. RVLORIS: INTEGRATION OF RELIABILITY SUPPORT

In the previous section, we already merged in support
for naming-layer transactions. We now describe the changes
necessary to merge our other reliability extensions with the
new virtualization support as well as each other. Our goal
is to maintain the same reliability guarantees as provided
by the individual works. Since all the functionality comes
together in the cache layer, all the new changes involve
this layer in particular. We describe the changes that allow
lower-layer restarts to work with virtualization (Sec. IV-A),
and cache restarts to work with transactions (Sec. IV-B),
object virtualization (Sec. IV-C), and object deduplication
(Sec. IV-D). Finally, we discuss the results (Sec. IV-E).

A. Lower-layer restarts versus virtualization

In order to support lower-layer crash recovery for the
logical and physical layers (Sec. II-B) in the presence of the
new virtualization, we have to make two modifications to
the way the cache layer manages its in-memory log.

First, the logging facility was previously a separate submod-
ule within the cache implementation: it maintained its own
data structures and allocated its own memory to store logged
data. This strict separation helped us in gathering research

data about its implementation complexity and memory usage.

However, the separate memory allocation was also a necessity:
the only way to clear the log is to create a new recovery
point, and since the cache layer itself could not initiate the
creation of such points due to dirty state in the naming layer,
the log was never allowed to run out of memory.

However, a real-world storage stack does not have infinite
memory at its disposal; more realistically, such a log makes
use of the same memory as the main cache [6]. Since the
naming-layer transactions now allow the cache layer to create
recovery points at any time (as per Sec. III-B), there is no
longer a need to allocate separate memory. Thus, we change
our logging implementation to use the cache’s main memory
pool. This in fact simplifies our logging implementation:
by using the main object and page data structures, the
logging submodule no longer needs to manage duplicate data
structures. In the new situation, cached pages that are in use
by the log may not be evicted until the next sync, but they
may be freely read, modified (with new incoming write
operations), and discarded (with truncate or delete).

Second, the addition of the new copy operation to the
lower layers requires that the cache log include this operation
as well. However, the copy operation violates the two
assumptions that we previously relied on to keep the log
simple: full independence between objects, and the ability to

throw out any logged operations that have become obsolete.

After all, the result of the copy depends on the state of the
source object, and thus, a post-crash replay of this operation
requires that the source object be restored in the same state
first. The log must take this into account; e.g., an object
truncate may not discard pages logged for an earlier

write if the object was subject to a copy in the meantime.

The simplest solution is to establish a new on-disk
recovery point after every copy call, thereby clearing the
log. However, a system that hosts many domains can expect
frequent copying, making this an expensive solution. Instead,
we expand the cache logging facility with a partial ordering
system, using hidden object and page data structures to log
the precopy object state needed for replay. Basic dependency
tracking allows log replay in a correct order: when a copy
operation is logged, new data structures are created for the
source object, and the old source object data structures are
hidden and marked as dependency for the new ones.

B. Cache restarts versus transactions

As we have shown, the transactions system is used for
both naming-layer reliability (Sec. II-D) and, indirectly, for

whole-system failure recovery for virtualization (Sec. III-B).

However, the addition of transaction processing to the cache
layer has implications for the cache layer’s crash recovery.

In our earlier work (Sec. II-C), we required that pending
operations be repeated after a cache-layer restart, and relied
on idempotence to correct earlier partial completion of those
operations. This no longer works with transactions. A single

transaction may spawn multiple modifying operations to
the lower layers, each of which may fail, in which case
the entire transaction must be aborted. If some of these
operations are issued successfully and then the cache crashes,
and the transaction ends up being aborted upon repetition,
the subsequent rollback will revert to an inconsistent state.

We solve this issue by adding rollback records for active
transactions to the Dirty State Store (DSS). When the cache
processes a transaction, it first creates a rollback record in a
known (per-thread) location, along with a checksum gener-
ated of its contents. When the cache completes processing
the transaction, it discards the record using a (checksummed)
special value. After a crash in the cache, the cache’s recovery
procedure first verifies the checksums of all rollback records
in the old memory image, and proceeds with recovery only
if all are valid. It then issues a rollback for all those records,
thus restoring the cache to a consistent state.

C. Cache restarts versus object virtualization

The cache layer’s object virtualization adds a number of
extra, risky steps for operation processing. Object creation,
copying, and deletion actions all require changes to multiple
objects: a domain mapping, the global reference counting
metadata object, and often the global target object itself.
With these extra steps, partial completion of even a single
operation is no longer recoverable by repetition, as nonatomic
metadata updates likely result in fatal inconsistency.

In order to ensure that the cache layer can still either
recover correctly or detect internal corruption, we integrate
the object virtualization steps into our transaction system. We
split each of the creation, copying, and deletion actions into
a prepare routine and a commit routine. We create a rollback
routine for each action, which restores the old state regardless
of any changes made in the meantime. We add new checks
to ensure isolation between transactions, for example with
respect to allocation of global IDs. Also, since it is common
that two operations modify the same object within the same
transaction, the prepare phase has to consider any actions
already scheduled within the same transaction.

However, the cache cannot roll back delete operations
already sent to lower layers. Thus, after a crash of the
cache, a rollback of a delete action is not always possible.
Therefore, we have to make one exception in the cache’s
internal consistency model: a domain-local object ID may
temporarily point to a global object which has a nonzero
reference count but does not exist in the lower layers. Since
pending requests must be repeated after a cache restart
(Sec. II-C), such inconsistencies are always corrected quickly.

D. Cache restarts versus object deduplication

The addition of object deduplication to the cache layer
requires three more extensions to its crash recovery system.
First, when the deduplication facility finds that two objects
are identical, they are merged. Like the create, copy, and

delete actions, such a merge action requires an atomic set of
changes, and thus needs to be wrapped in a (purely cache-
local) transaction. The action includes a delete on one of
the two objects, making it similar to a delete action. However,
a cache crash must not introduce a similar inconsistency for
a merge action: the action was not started by a call from the
naming layer, and thus may not be temporary. We therefore
opt to let the merge rollback routine perform a roll-forward
on the merge action. Thus, upon crash recovery, the merge
will always be finished, thereby preventing inconsistency.
Second, the cache updates the deduplication index with a
new checksum based on the reply to a write or truncate
call down to the lower layers. A crash may cause that reply
to get lost, in which case the deduplication index becomes
desynchronized. We solve this by adding an index invalidation
bitmap to the DSS. Each set bit invalidates a chunk of the
index; a bit is set while any index entry (i.e., object) in that
chunk has a pending downcall. Upon recovery, the cache
must reconstruct all entries in the marked chunks. It does
so by explicitly requesting the XOR’ed checksum from the
lower layers for each affected object, using getattr calls.
Third, in order to ensure eventually-perfect deduplication
even in the presence of cache crashes, the duplication
candidates list must be preserved across restarts. Thus, it
would have to be tracked by the DSS, which would be simple
but costly. We have not yet added such recovery support.

E. Discussion

We now turn to the questions posed in the introduction.
First of all, we have shown that it is indeed feasible to
construct a storage stack with advanced functionality and
a strong focus on reliability, by combining several partial
solutions. Even though the integration forced us to depart
from several simplifying assumptions made in earlier work,
the subsequent changes have not compromised any of the
original techniques. In addition, this study further strengthens
our notion that when considering the bigger picture, individ-
ual building blocks such as checksums, recovery points, and
transactions can be exploited for multiple reliability purposes.

Our resulting stack has several limitations. For example,
we currently assume that software crashes of the individual
layers are independent. Therefore, we deliberately choose
not to protect the logging data structures with the DSS in the
cache, since this would introduce more complexity for the
unlikely event of crashes of multiple layers at once. However,
since failures may propagate to other layers, the assumption
may not hold in practice. Thus, the stack may benefit from
more thorough checks at the layer boundaries (along the
lines of Recon [8]). As another example, the only software
bug protection we provide for the VFS layer is the isolation
inherent to virtualization: instead of taking down the entire
system, a VFS crash will now take down only its containing
domain. VFS maintains large amounts of application state,
making it an interesting target for future research.

It is clear that our integration adds more complexity, mainly
to retain crash recovery support for the cache layer. Thus,
alternative approaches should be considered for that aspect. It
would be possible to place the virtualization and deduplication
functionality in a new layer above the cache. However, this
would not simplify the problem: in order to support recovery
from a crash, the new layer would have to be stateless,
modifying the transactions it forwards on the fly. That is
effectively what our changes to the cache layer do. Thus,
aside from the performance overhead of an extra layer in
the critical path, such a new layer would serve to make our
implementation cleaner, not less complex. Instead, we believe
that we could reduce the added complexity by using generic
post-crash rollback functionality, for example based on work
by Vogt et al [18]. In order to keep runtime overhead low,
this technique would require integration with our high-level
transaction optimizations; that is part of future work.

V. EVALUATION

In this section, we provide further answers to our questions
by evaluating our work. We first evaluate the performance of
vLoris (Sec. V-A). We then continue with rvLoris, measuring
its performance (Sec. V-B) and reliability (Sec. V-C).

A. vLoris performance

We use storage macrobenchmarks to evaluate the perfor-
mance impact of our virtualization changes to the storage
stack. In all performance experiments, we use an Intel Core 2
Duo E8600 PC with 4 GB of RAM and a 500 GB 7,200 RPM
Western Digital Caviar Blue SATA test disk, and a version
of MINIX 3 that implements our new virtualization support.
The benchmarks are run from a single domain. We configure
the Loris naming layer to enable access time updates, limit
the Loris cache layer to 1 GB of memory, and use PhysFS in
the Loris physical layer, operating on the first 32 GB of the
disk. The system performs a sync once every five seconds
and whenever 10 % of the page cache has become dirty.

We use the following benchmarks and configurations: an
OpenSSH unpack-and-build test which unpacks, configures,
and compiles OpenSSH in a chroot environment; a
source compilation of MINIX 3 in a chroot environment;
PostMark, with 800K transactions on 40K files across
10 directories, using 4 to 28 KB file sizes and 512-byte
unbuffered I/O operations; FileBench File Server, single-
threaded, run for 30 minutes at once; and, FileBench Web
Server, single-threaded, changed to access files according to
a Zipf distribution (o = 0.98), run for 30 minutes as well.
Most of the benchmarks run (almost) entirely in memory,
which is the worst case for most of our changes.

We run the benchmarks on several Loris versions along
its transition into vLoris, in the order as described in Sec. III.
With physical-layer checksumming turned off, we first run the
original Loris (Baseline), to which we incrementally add ob-
ject virtualization and copy-on-write support (Virtualization),

Table 1
Macrobenchmark performance of vLoris. The OpenSSH and MINIX 3 build results are in seconds (lower is better). The PostMark results
are in transactions per second (higher is better). The File Server and Web Server results are in operations per second (higher is better).

Benchmark Baseline Virtualization = Transactions Attributes Checksums Index Compare Merge

OpenSSH build 597 (1.00) 600 (1.01) 616 (1.03) 622 (1.04) 617 (1.03) 614 (1.03) 623 (1.04) 629 (1.05)
MINIX 3 build 824 (1.00) 833 (1.01) 842 (1.02) 847 (1.03) 843 (1.02) 842 (1.02) 851 (1.03) 843 (1.02)
PostMark 258 (1.00) 255 (0.99) 245 (0.95) 243 (0.94) 243 (0.94) 243 (0.94) 244 (0.95) 183 (0.71)
File Server 2423 (1.00) 2421 (1.00) 2541 (1.05) 2499 (1.03) 2489 (1.03) 2463 (1.02) 450 (0.19) 324 (0.13)
Web Server 17731 (1.00) 17537 (0.99) 17479 (0.99) 17493 (0.99) 17474 (0.99) 17534 (0.99) 17520 (0.99) 17631 (0.99)

support for naming-layer transactions (Zransactions), and
attribute localization (Attributes). On top of these changes, we
turn on checksumming with Fletcher’s checksum algorithm
(Checksums), and add deduplication support in three steps: the
maintenance of the in-memory deduplication index and the
candidates list (Index), comparison of candidates (Compare),
and actual deduplication (Merge).

We run each combination of benchmark and Loris config-
uration at least five times and report the average. The results
are shown in Table I. The numbers in parentheses represent
performance relative to the baseline. For the OpenSSH and
MINIX 3 build benchmarks, lower is better. For PostMark
and the two FileBench benchmarks, higher is better.

Since the benchmarks are run from a single domain, the
small overhead of object virtualization and copy-on-write
support (Virtualization) is due entirely to record keeping of
the domain mappings and reference counts.

The addition of the transactions support (Transactions) has
mixed effects. In particular, PostMark takes a hit while File
Server speeds up. Compared to our earlier evaluation [12], our
new PostMark configuration performs subpage writes, thereby
exposing an implementation-specific overhead of such writes:
when wrapped in transactions, these writes require an extra
kernel call. We are working on resolving this issue.

The File Server speedup is a result of the change in how
access times are updated in the naming layer, which in turn
affects object caching behavior in the cache layer. This result
is specific to the combination of File Server’s access patterns
and our cache size, and does not extend to other benchmarks.

The localization of attributes (Attributes) has a small effect
on performance. In the physical layer, the attributes are now
stored as data and no longer part of inodes, which could
have a negative effect on locality. However, the cache layer
colocates the attributes with their corresponding domain
mapping entries, thus achieving another form of locality.

The Checksums column shows that enabling Fletcher
checksumming—as needed for deduplication—adds practically
no overhead, although this can be expected with benchmark
configurations that mainly stress the cache. The Index column
shows that maintaining the index and generating candidates
has no further impact on performance, thus confirming that
the inline part of our deduplication system has little overhead.

When comparing candidates against potential matches
(Compare), File Server shows significant overhead. During

runtime, PostMark and File Server both generate new files
that have all-zeroes contents. Thus, for both benchmarks,
all same-sized files end up being flagged as candidates for
deduplication. For PostMark, the entire workload fits in the
page cache, and thus, the contents comparison operates on
cached pages only. For File Server however, the candidate
comparison thrashes the cache by reading the matches from
disk. Sec. III-D described several possible improvements.

The last column (Merge) shows that the same two
benchmarks suffer even more from actual deduplication.
Merging objects is cheap, but a large number of merged
objects end up being appended to later, forcing the storage
stack to copy the underlying object again.

In general, it can be expected that making copies of entire
objects is expensive. As we mentioned before, vLoris could
be extended with subobject (block-level) copy-on-write and
deduplication support. In this work, we have presented the
necessary infrastructure to support object-level virtualization
in Loris, and if we discount the deduplication comparison
and merging, our changes impose between -2 and 6 %
performance overhead for the workloads in our tests.

B. rvLoris performance

For rvLoris, we start with the vLoris Checksums version,
but we switch from PhysFS to TwinFS, with a 16-block twin
offset (TwinFS). In terms of reliability, this configuration
includes support for disk corruption detection and whole-
system failure recovery. On top of the TwinFS configuration,
we measure the individual performance of the following
extensions: crash recovery of the naming layer (CR-Naming),
the cache layer (CR-Cache), and the lower layers (CR-Lower);
detection of memory corruption in the cache layer (MD-
Cache); and, again, maintenance of the deduplication index
and candidates list (Index”). Finally, we enable all extensions
at once (rvLoris). The results are shown in Table II, including
numbers relative to the original Baseline from Table 1.

When compared to the earlier Checksums results, the
TwinF'S results show a 1-7 % overhead. While no worse than
our original results (Sec. II-B), this is substantial. Other on-
disk consistency formats may be able to reduce the overhead.

Since vLoris already includes transaction support, crash
recovery of the naming layer (CR-Naming) only adds writing
markers to avoid repeating requests after recovery (Sec. II-D).
Since these write operations can always be combined with
an existing transaction, this feature adds very little overhead.

Table II
Macrobenchmark performance of rvLoris.

Benchmark TwinFS CR-Naming CR-Cache CR-Lower MD-Cache Index’ rvLoris

OpenSSH build 657 (1.10) 650 (1.09) 657 (1.10) 656 (1.10) 659 (1.10) 656 (1.10) 663 (1.11)
MINIX 3 build 890 (1.08) 887 (1.08) 888 (1.08) 892 (1.08) 913 (1.11) 900 (1.09) 917 (1.11)
PostMark 235 (0.91) 235 (0.91) 229 (0.89) 236 (0.92) 230 (0.89) 235 (0.91) 226 (0.88)
File Server 2332 (0.96) 2335 (0.96) 2299 (0.95) 2322 (0.96) 2299 (0.95) 2295 (0.95) 2269 (0.94)
Web Server 17297 (0.98) 17325 (0.98) 17313 (0.98) 17441 (0.98) 16979 (0.96) 17431 (0.98) 16867 (0.95)

The new cache crash recovery (CR-Cache) initially had
high overheads, caused by extra checksumming: every small
change to a metadata object page (e.g., changing a reference
count) requires immediate full-page rechecksumming for the
DSS. We implemented subpage checksum update support
for Fletcher, which reduced the overheads by a large margin.
The remaining overhead is still due to the cost of Fletcher
checksumming in software; in our previous experiments
(Sec. II-C), we used checksumming support in hardware.

The cache-layer logging for lower-layer restarts (CR-
Lower) has little overhead. The sync policy which keeps
the system responsive by not allowing the cache to build up
too many dirty pages, also prevents that flushed dirty pages
kept around for the log put a strain on the cache.

The memory corruption detection (MD-Cache) overheads
are due entirely to checksumming, like with CR-Cache.
Deduplication indexing and candidate generation (Index’)
yields overheads similar to those of the earlier runs (Index).

Given that rvLoris combines all extensions, it is not surpris-
ing that it performs slightly worse than the worst-performing
extension. Compared to the TivinF'S results, rvLoris has an
overhead of 1-3 %. Thus, even after our integration efforts,
the overheads of the reliability improvements remain low.

Overall, the transition of the original Loris, with no virtual-
ization or reliability features, into rvLoris, which incorporates
virtualization, deduplication indexing, and resilience against
all four reliability threats, adds an overhead in the 6-12 %
range. We believe these numbers are quite reasonable.

C. rvLoris reliability

Finally, we evaluate the reliability of rvLoris. Due to
space constraints, we report on the area affected most by this
work: resilience against software bugs. As a side effect, we
test recovery points and thus whole-system failure recovery.
Additional experiments have confirmed that our protection
against memory and disk corruption has not been affected
by the new changes. We do not include those results here.

We perform fault injection experiments on each of the
four rvLoris layers, while running either an OpenSSH build
or a version of PostMark which verifies all file data and call
results. Using the framework from previous work [12], we
inject two types of faults: fail-stop faults which merely crash
the process (1,000 injections per configuration), and random
faults which simulate the effects of common software bugs
(250 injections per configuration). Once per minute, we inject
100 faults at once. Thus, in total, we inject one million faults.

We measure the number of resulting crashes in the target
layer, successful recoveries, permanent failures, timeouts,
crashes in other layers, and failures propagated to applications.
In theory, the fail-stop faults should always lead to successful
recovery, except in the cache layer, which may flag permanent
failure due to a checksum error in the DSS; after all, DSS
updates are not atomic (Sec. II-C). The random faults may
however cause silent failures, thereby violating assumptions
we made in all our works; in particular, that corrupted results
are never propagated across layers. Because of the resulting
risks, we perform these experiments in a virtual machine.

The results are shown in Table III. For fail-stop fault injec-
tion, all injections in the naming, logical, and physical layers
indeed resulted in a crash and then successful, application-
transparent recovery. As expected, in a small number of cases,
cache-layer recovery failed on a DSS checksum mismatch.
In addition, some of the cache-layer crashes caused a cross-
layer memory copy failure, resulting in a crash of the logical
layer due to inadequate error handling. In all other cases
(98 %), the cache layer recovered successfully.

As expected, the random fault injections resulted in more
diverse failures, including cases where no effects were
observed at all. In several cases, the faults caused operations
to start returning errors, thus resulting in propagation of
corrupt results to other layers and often also to the application.
Again, such failures are beyond the scope of our work. In
many other cases, the faults caused a request or reply to be
dropped, resulting in no progress (timeout); call timeouts
could fix this. In the majority of cases (86 %) however, our
crash recovery techniques caused the random fault injection
to result in application-transparent recovery.

VI. RELATED WORK

Our previous papers already provide overviews of work
related to their respective topics. Here we discuss work related
to combinations of reliability in the storage stack.

Membrane [6] implements support for checkpointing and
logging for Linux file systems. Membrane can make use of
file system support for recovery points, although this requires
small changes to such file systems for fully correct recovery.

EnvyFS [5] uses N-version programming to protect ap-
plications from certain classes of software bugs and disk
corruption, by employing multiple different file systems to
perform the same actions. EnvyFS has substantial perfor-
mance overheads and complicates system crash recovery.

Table III
Fault injection results, showing per layer, benchmark, and fault injection type: the number of times fault injection was performed (I), and the resulting
number of target layer crashes (C), successful recoveries (R), permanent failures (P), timeouts (T), other-layer crashes (L), and application failures (A).

Layer Benchmark Fail-stop fault injection Random fault injection
1 C R P T L A I C R P T L A
Naming OpenSSH 1000 1000 1000 0O 0 0 O 250 223 216 O 9 1 6
PostMark 1000 1000 1000 0o 0 0 O 250 228 226 O 22 O 2
Cache OpenSSH 1000 1000 989 9 0 2 0 250 222 201 4 28 1 16
PostMark 1000 1000 980 13 0 7 O 250 226 214 6 24 O 6
Logical OpenSSH 1000 1000 1000 0o 0 0 O 250 212 212 O 38 O 0
PostMark 1000 1000 1000 o 0 0 O 250 219 210 O 31 1 8
Physical ~ OpenSSH 1000 1000 1000 0O 0 0 O 250 222 221 O 28 1 0
PostMark 1000 1000 1000 0o 0 0 O 250 230 228 0 19 O 2

Z°FS [19] is a variant of ZFS that can switch between
checksum types to detect both memory and disk corruption
at low cost, although also with lower detection guarantees.

Various generic techniques based on in-memory transaction
[20] or checkpoints [18] offer the potential to recover from
software bugs across the entire storage stack at once, with
guarantees similar to those we provide for the cache. However,
given that such techniques inherently make rollback copies
for every page written to in the cache, they have exorbitant
overheads when applied to the storage stack [20]. As stated
in Sec. IV-E, we believe a hybrid approach could help here.

VII. CONCLUSION

In this paper, we have have attempted to provide a first set
of answers to questions regarding the integration of several
reliability techniques and other functionality in the storage
stack. In the process, we have added support for virtualization
to our stack. The case study has yielded mostly positive
answers, as well as new areas warranting more research.

We believe that several of our findings are applicable
beyond this case study. For example, our storage architecture
and reliability improvements could be implemented in a
monolithic environment—the latter by building on existing
recovery techniques (e.g., [21]). More generally, any storage
stack faces similar reliability threats, and we expect that
our findings regarding the feasibility, advantages, limitations,
and complexity of adding comprehensive reliability support
largely apply to other storage stacks as well.

REFERENCES

[1] R. Hagmann, “Reimplementing the Cedar file system using
logging and group commit,” in SOSP, 1987.

J. Ousterhout and F. Douglis, “Beating the I/O bottleneck: a
case for log-structured file systems,” SIGOPS Oper. Syst. Rev.,
vol. 23, pp. 11-28, 1989.

P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani,
and D. Lowell, “The Rio file cache: surviving operating system
crashes,” in ASPLOS, 1996.

F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell,
“CuriOS: Improving Reliability through Operating System
Structure,” in OSDI, 2008.

L. N. Bairavasundaram, S. Sundararaman, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Tolerating file-system
mistakes with EnvyFS,” in USENIX ATC, 2009.

(2]

(3]

(4]

(3]

[6] S.Sundararaman, S. Subramanian, A. Rajimwale, A. C. Arpaci-
Dusseau, R. H. Arpaci-Dusseau, and M. M. Swift, “Membrane:
operating system support for restartable file systems,” in FAST,
2010.

[71 S. Sundararaman, L. Visampalli, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Refuse to Crash with Re-FUSE,” in
EuroSys, 2011.

[8] D. Fryer, K. Sun, R. Mahmood, T. Cheng, S. Benjamin,
A. Goel, and A. D. Brown, “Recon: verifying file system
consistency at runtime,” in FAST, 2012.

[9] R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum,
“Loris - A Dependable, Modular File-Based Storage Stack,”
in PRDC, 2010.

[10] D. C. van Moolenbroek, R. Appuswamy, and A. S. Tanenbaum,
“Integrated System and Process Crash Recovery in the Loris
Storage Stack,” in NAS, 2012.

[11] D.C. van Moolenbroek, R. Appuswamy, and A. S. Tanenbaum,
“Battling Bad Bits with Checksums in the Loris Page Cache,”
in LADC, 2013.

[12] D. C. van Moolenbroek, R. Appuswamy, and A. S. Tanenbaum,
“Transaction-based process crash recovery of file system
namespace modules,” in PRDC, 2013.

[13] D. C. van Moolenbroek, R. Appuswamy, and A. S. Tanenbaum,

“Towards a flexible, lightweight virtualization alternative,” in

SYSTOR, 2014.

A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srini-

vasan, R. Thelen, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau, “Parity lost and parity regained,” in FAST, 2008.

A. S. Tanenbaum and A. S. Woodhull, Operating Systems

Design and Implementation (Third Edition). Prentice Hall,

2006.

J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.

Tanenbaum, “Construction of a highly dependable operating

system,” in EDCC, 2006.

[14]

[15]

[16]

[17] D. T. Meyer and W. J. Bolosky, “A study of practical
deduplication,” in FAST, 2011.

[18] D. Vogt, C. Giuffrida, H. Bos, and A. S. Tanenbaum, “Tech-
niques for efficient in-memory checkpointing,” in HotDep,
2013.

[19] Y. Zhang, D. S. Myers, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Zettabyte reliability with flexible end-to-end
data integrity,” in MSST, 2013.

[20] A. Lenharth, V. S. Adve, and S. T. King, “Recovery domains:

an organizing principle for recoverable operating systems,” in
ASPLOS, 20009.

[21] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the
reliability of commodity operating systems,” in SOSP, 2003.

