
Battling Bad Bits with Checksums in the Loris
Page Cache

David C. van Moolenbroek, Raja Appuswamy, Andrew S. Tanenbaum
Dept. of Computer Science, Vrije Universiteit, Amsterdam, Netherlands

{dcvmoole, raja, ast}@cs.vu.nl

Abstract—In this paper, we aim to improve the reliability
of a central part of the operating system storage stack: the
page cache. We consider two reliability threats: memory errors,
where bits in DRAM are flipped due to cosmic rays, and
software bugs, where programming errors may ultimately result
in data corruption and crashes. We argue that by making use of
checksums, we can significantly reduce the probability that either
threat results in any application-visible effects. In particular,
we can use checksums to detect memory corruption as well as
validate the integrity of the cache’s internal state for recovery
after a crash. We show that in many cases, we can avoid the
overhead of computing checksums especially for these purposes.
We implement our ideas in the Loris storage stack. Our analysis
and evaluation show that our approach improves the overall
reliability of the cache at relatively little added cost.

I. INTRODUCTION

Reliability of operating systems is important because a fail-
ure in the operating system can affect all running applications
on the system. The storage stack is the part of the operating
system that deals with maintaining the user’s data. Reliability
of the storage stack is particularly important, because a failure
in its components has the potential to destroy the only copy of
important user data. This is especially true for the page cache:
this component caches file data, but also holds file changes
that have already been written by applications but have not
yet made it to permanent storage. In this paper, we take a
look at the page cache in the light of two reliability threats:
memory errors and software bugs.

Memory errors, in particular those caused by external fac-
tors such as cosmic rays, may affect application and operating
system memory anywhere at any time. Machines without
error-correcting memory hardware are fully exposed to such
errors. The page cache typically uses all of free memory for
caching purposes, and is therefore relatively likely to get hit.
Ideally, we would like the cache to detect memory corruption
with a high probability before it gets the chance to spread to
applications.

Software bugs are a different, well-known source of re-
liability problems. Bugs may cause arbitrary behavior when
triggered. Ideally, we would like to recover from the effects
of software bugs in the cache, in an application-transparent
way. However, recovery can succeed only if the necessary
internal state of the cache can be recovered, and the difficulty
is assessing that this state has not been corrupted as a result
of the crash.

In this work, we claim that we can address both these
problems at little extra cost, by making use of specific infor-
mation present in the storage stack. Specifically, we reuse the
checksums already employed by the storage stack to detect
disk corruption. If the page cache is brought in the loop
regarding these checksums, it can reuse them for runtime
verification of cached pages against memory errors, and for
integrity assessment of the cache’s internal state after a crash.
This allows the cache to catch memory corruption with a
high probability, and to recover from a crash when possible–
all completely transparent to the running applications. We
implement our ideas in the Loris storage stack, which we
developed in previous work [1]. Our evaluation shows that
the two solutions are not independent, and in fact interact in
an overall beneficial way.

The rest of the paper is organized as follows. In Sec. II we
describe our Loris storage stack. In Sec. III, we analyze the
two reliability threats, argue that the cache is especially impor-
tant in respect to the threats, and show that checksumming has
the potential to help alleviate both. We then detail our approach
to use checksums against memory errors (Sec. IV) and against
software bugs (Sec. V). Sec. VI describes our implementation.
In Sec. VII, we evaluate our solutions. We list related work in
Sec. VIII, and conclude in Sec. IX.

II. BACKGROUND: THE LORIS STACK

Fig. 1a depicts the traditional operating system storage
stack. Applications send requests to the Virtual File System
(VFS) layer, which passes them to an actual file system. The
file system operates on a single device; the RAID layer below
may however transparently multiplex these operations across
several devices for performance and redundancy purposes.
Disk drivers are used to talk to the actual hardware.

In previous work, we have developed a new storage stack
called Loris. It was formed by splitting up the traditional
file system into three individual layers (a naming, a cache,
and a layout layer), and swapping the layout layer with the
traditional RAID layer, forming the physical and logical layers.
The VFS and driver layers have been left as is. The result is
depicted in Fig. 1b. This new stack has advantages in the areas
of reliability, heterogeneity, and flexibility [1].

The four new layers communicate using files. Each file has
a unique identifier and a set of associated attributes. The four
layers support the following operations: create, read, write,
truncate, delete, getattr, setattr, and sync.



File

system

VFS

Physical

Naming

VFS

Cache

Logical

Disk driverDisk driver

Software

RAID

(a) (b)

Fig. 1. The figure shows (a) the layers of the traditional stack and (b) the
new arrangement in Loris. The layers above the dotted line are file aware;
those below are not.

At the bottom, the physical layer consists of one or more
file stores. Each file store is responsible for one underlying
device, and determines the layout on that device. It manages
an independent set of physical files on its device, converting
file operations from above to block operations below. Each
file store has a small cache for the metadata of its layout. All
file stores are required to implement a parental checksumming
scheme in their layout [1]. As a result, the contents of the
devices are fully covered by checksums, so that all forms of
disk corruption are guaranteed to be detected.

The logical layer is the file-based equivalent of the tradi-
tional RAID layer. It exposes a logical file abstraction to the
layers above, multiplexing operations on files across the file
stores according to per-file RAID-like policies. Thus, each
logical file has an associated policy and is made up of one
or more physical files on different file stores. The logical
layer stores this per-file information in a special mapping
file, which is mirrored across all devices. It also implements
RAID-like recovery for when an underlying file store reports
a checksum or device failure. Our prototype implements file-
based equivalents of RAID 0, 1, 4, and 5.

The cache layer implements a page cache, caching both
file data pages and file attributes. It uses a large amount
of memory for caching purposes, staging and evicting parts
of files according to predefined policies. For performance
reasons, it does not pass on incoming create, setattr, and write
operations directly to lower layers; instead, it delays them to
reduce request costs and to aggregate changes.

The naming layer converts POSIX operations to Loris file
operations. It manages directories, which are treated as normal
files by the lower layers. It uses Loris attributes to store the
POSIX attributes of files.

We have implemented a prototype of the Loris stack on the
MINIX 3 microkernel operating system. On this platform, all
the layers of the stack (and all the file stores) are implemented
as separate userspace processes.

III. THE CASE FOR CHECKSUMMING IN THE CACHE

In this section, we discuss two reliability issues: memory
errors (Sec. III-A) and software bugs (Sec. III-B). We state
why it is important to address these problems specifically in
the Loris page cache, and we show that in both cases, we
can significantly reduce the potential risks by making use of
checksums.

A. Memory errors

The problem: Various studies have shown that dynamic
random-access memory (DRAM) is susceptible to errors [2],
[3], [4]. Such memory errors constitute arbitrary corruption
in the system’s main memory at unpredictable times and
locations; unsurprisingly, software does not deal well with this.
Memory errors are found to be responsible for a significant
fraction of system failures in the field [5].

Memory errors are categorized as either soft or hard. Soft
errors are transient changes in memory state (bitflips) caused
by external factors; in particular, cosmic rays [2]. Soft memory
errors are generally assumed to be distributed randomly in
both space (i.e., affected memory location) and time. Various
lab and field tests have suggested that soft errors are a serious
problem [3], [4], and error rates in the 200-5000 FIT (Failures
In Time) per Mbit range have been cited [6], [7]. More recent
field studies found lower soft-error rates [7], [8].

Hard errors are caused by physical hardware faults, and
may manifest themselves intermittently or permanently (stuck
bits). The same recent field studies found hard errors to be
more common than soft errors [7], [8], although little is known
about their exact cause. These studies observed that a relative
minority of memory modules see the vast majority of errors,
and that there is a strong correlation between the errors in both
location and time [8], [9].

To counter the effects of memory errors, DRAM mod-
ules with error-correcting codes (ECC) have been developed.
Typical ECC memory has single error correction and double
error detection (SEC/DED) capability; the Chipkill memory
family can also cope with whole-chip failures [10]. ECC
memory can deal well with in particular soft errors. However,
many computer systems are not equipped with ECC memory,
primarily because of the added cost. This leaves them utterly
exposed to memory errors. In a significant number of cases,
these memory errors will end up causing serious damage to
the running system [11]. Therefore, we believe that there is
room for software approaches that can detect memory errors
before they cause damage.

In this work, we consider only soft errors, on systems
without ECC memory. All non-ECC memory is vulnerable
to soft errors to some degree, and software solutions have the
potential to overcome such problems. In contrast, not even
SEC/DED memory can correct all hard errors [12], [9], and
given that only a small subset of memory modules experiences
such errors, the only real remedy for hard errors may thus be
replacement of faulty modules. At the same time, we believe
that any solution for soft errors can also help detect hard errors,
although perhaps not as effectively.



Like hardware ECC memory, software approaches may use
some form of redundancy (checksums, full copies, etc.) to
detect and possibly correct memory corruption. However, such
approaches are inherently imperfect: not every memory access
can be guarded (e.g., device DMA), whereas any memory
access can hit a bitflip. Software approaches can therefore only
lower the probability of being affected by memory corruption,
and more extensive forms of redundancy come at greater cost
in terms of both performance and resource usage. Given the
low probability of memory corruption, significant extra cost is
typically not justified.

Therefore, we propose to start by significantly reducing
the chance of undetected memory corruption while adding
little extra performance and resource costs. We argue that the
operating system page cache is the right place to start.

Why the cache: First of all, modern operating systems
use all available memory (i.e., not used by applications) for
caching purposes, so a large fraction of main memory is
typically used by the cache for data pages. With a random
spatial distribution of memory corruption, these data pages are
therefore relatively likely to get hit by a soft error. Second, the
operating system cache is shared by all applications. Memory
corruption in the cache may affect the system integrity beyond
just a single application. While this applies to all components
of the operating system, measurements on our own systems
revealed that the cache’s pages typically use over 95% of all
memory in use by the operating system. Third, in many cases
we can recover from detected corruption without the overhead
of keeping copies in memory: for clean data, there is already
a valid copy on disk, so we can restore the data in the cache
from there.

The case for checksumming: In order to detect memory
corruption in the cached data pages, we propose to use
checksums. As we will show in Sec. IV, we can obtain
checksums for the page data essentially for free, and that only
leaves the verification aspect.

B. Software bugs

The problem: Another major source of reliability problems
is software bugs. Bugs may cause arbitrary behavior during
software execution. Previous research suggests that the number
of bugs is a linear function of the number of lines of software
source code [13] and that 0.5–6 bugs per thousand lines of
code can be expected even in well-written software [14].

The operating system is of particular importance in this
regard because a failure in the operating system may affect
all running applications on the system. Microkernel-based
operating systems allow failures to be contained, since most
parts of the operating system are implemented as isolated
system processes running in user mode. In that case, many
software bugs in the operating system will manifest them-
selves as observable failures in the containing system process
(“process crashes”). If the cause of the failure was transient–
for example, a race condition–the system then may be able to
recover transparently.

In the MINIX 3 operating system, crashed system processes
can be restarted [15]. This is necessary but not sufficient for
application-transparent recovery: most system processes have
internal state, and after a restart, they must recover this state.
Preferably, the state would be recovered from other system
processes, so that the memory image of the crashed process
need not be used for state recovery. However, this is not always
possible.

Why the cache: The storage stack components of the
operating system are directly responsible for storing user’s
data. Therefore, we believe that these parts deserve extra
attention. In previous work, we have outlined how the system
can survive process crashes in the Loris layers above and
below the cache, without requiring reuse of internal state of the
crashed processes [16]. This however leaves the cache layer,
for which we will show such recovery is not possible.

The strict separation of the layers of the Loris stack into
separate processes, and the process isolation provided by the
underlying microkernel, ensure that the cache cannot be taken
down as a result of crashes in the rest of the storage stack.
However, the cache itself may crash. The current implementa-
tion of the Loris cache, including supporting library routines,
is well in excess of 10,000 lines of code, and makes heavy
use of nonpreemptive multithreading. It is therefore likely to
contain dozens of bugs.

The case for checksumming: The cache is a crucial piece
of the storage stack, and typically contains the only copy of
significant amounts of application-generated state: dirty file
data and other delayed file operations. If the cache crashes, this
state cannot be restored from external sources, and the cache
can thus be recovered only if the crashed cache process’s state
is left in a proper condition. The main question is then how to
assess this condition after a crash. To this end, we propose that
the cache keep checksums of its crucial state during normal run
time. As we will show in Sec. V, we can generate checksums
for a large part of this state at very little added cost.

IV. DEALING WITH MEMORY ERRORS

The Loris file stores require checksums for all data in order
to detect disk corruption. In this section, we discuss reusing
those checksums for detecting memory errors in the cache.
Since the file stores have to have a checksum for each block
on disk, the cache can in principle get the checksums for all its
clean pages for free. This obviates the need for generation of
checksums specifically against memory corruption, and only
leaves the verification.

Our goal is to reduce the window of vulnerability of
undetected memory errors, while at the same time incurring
little overhead. We focus exclusively on clean pages in this
section, since clean pages may stay in the cache indefinitely,
whereas dirty pages will be flushed to disk after (typically) at
most 30 seconds, thus making them clean as well. We further
discuss memory corruption in dirty pages in Sec. V.

In this section, we first analyze whether the checksums used
against disk corruption are usable against memory corruption
at all (Sec. IV-A), and discuss how the cache can obtain



on-disk checksums (Sec. IV-B). We then present a number
of verification strategies (Sec. IV-C). Finally, we consider
memory corruption in other memory of the cache and in other
parts of the storage stack (Sec. IV-D).

A. Suitability of on-disk checksums
There may be significant computational overhead involved

in verification of checksums. Thus, we first consider whether
the on-disk checksums are the best choice for use against
memory errors at all.

The Loris file stores use a checksum type from the family of
Cyclic Redundancy Check (CRC) codes. Compared to simpler
checksums such as exclusive OR (XOR), CRC codes are
complex and traditionally implemented in software, and thus
expensive in their use. However, it appears that an increasing
number of platforms incorporates support for CRC in hardware
[17], [18], closing the performance gap between XOR and
CRC checksum computation.

At the same time, CRC codes are much stronger than XOR.
XOR checksums have a Hamming Distance (HD) of 2, thus
guaranteeing detection of one bit error only. The Loris file
stores use the CRC-32C polynomial, which has a HD value
of 4 for 5244 to 131072 bits [19], thus guaranteeing detection
of up to three bit errors per block of the typical page and block
size of 4096 bytes plus the checksum itself. In addition, CRC
codes are guaranteed to detect burst errors in length of up to
the polynomial width.

This extra strength not only helps in detecting a wider range
of on-disk errors, but also helps in detecting memory errors. A
single cosmic ray may affect multiple adjacent memory cells
at once [12], and cells within either the same row or column
are likely to fall on the same page. The on-disk checksums
are very likely to detect such corruption, whereas XOR-based
checksums are not.

B. Propagation of checksums
We can involve the cache in the checksumming, by propa-

gating checksums between the cache and the file stores. The
most basic approach works as follows. Immediately before
issuing a write operation to lower layers, the cache computes
the checksum of each involved data page, and sends those
checksums along with the write call. The file stores involved
need not compute the checksum themselves any longer, and
after the write, the cache will have the checksum for that page
until the page is changed or evicted. In addition, when the
cache issues a read operation for data, the file store always
has to obtain and verify the checksum of the data anyway, in
order to be able to detect and recover from disk corruption
before the data reaches the cache. However, the file store now
propagates up the verified checksum along with the data, so
that the cache has the checksum from that point on at well.

C. Verification strategies
We now outline several strategies that the cache can use for

checksum verification. They offer different tradeoffs between
coverage against memory errors and overhead from verifica-
tion. We note again that we can always recover after detection:

all the pages involved are clean, and so a corrupted page can
simply be read back from disk.

Background checker: On systems that see little overall
storage activity, data may be held in the page cache for a
long time. In general, the lifetime of data in the cache, and
thus its vulnerability to errors, is potentially unbounded [20].
A single soft error may already get close to the limits of
guaranteed detection of the CRC checksum; accumulation
of multiple independent errors on a single page may be
undetectable. To remedy this, the cache can slowly verify
pages in the background. The expected time of accumulation
is rather long even with high FIT/Mbit rates, but the cost of
performing a slow background check is very low as well and
puts a hard bound on the window of vulnerability. However,
such background verification is independent from actual page
accesses, and therefore ineffective at catching a single soft
error before the affected page is accessed. Other strategies
thus have to be considered in addition.

Check on every read: The cache could verify the checksum
of a page upon every incoming read call involving that page.
Combined with a background checker, this virtually closes the
vulnerability window for clean pages. However, it comes at a
steep computational cost. Even for small subpage reads, the
cache can only verify the checksum of the entire containing
page. An application that reads from a file in small sequential
chunks will force the cache to recheck the same pages very
often with little time in between, resulting in significant CPU
overhead and almost no gain.

Check on read after minimum last-check time: In order
to alleviate this issue, the cache can prevent the same page
from being rechecked too often. The cache could recheck the
page’s checksum only if the last check was at least a certain
minimum time ago. This eliminates duplicate checks within
that time frame, while ensuring that even frequently accessed
pages will occasionally be rechecked.

Check on read after minimum last-use time: One could
argue that there is no point for the cache to detect a memory
error, if there is a high probability that that error has already
been propagated to an application. From this perspective, there
is no gain in rechecking a page that has been accessed recently
before. Thus, a page’s checksum could be checked only if there
has been at least a certain amount of time since the last access.
This approach leans even further towards the performance end
of the spectrum, but may be less effective in practice: the
application may not have actually hit the memory error on the
earlier read (for example, due to small reads); also, different
applications may access the same page.

Checking memory-mapped files: The options for verifica-
tion of memory-mapped pages are limited, since the operating
system is only involved in the first read from each page.
Depending on the applications, memory-mapped I/O may not
be all that common [21]. However, operating systems typically
use memory-mapped files for shared libraries, and verification
can thus help protect the integrity of important parts of running
applications. The cache can use more generic techniques
to reduce the vulnerability window of mapped pages. For



example, it can perform more frequent background checks on
these pages, or monitor them to trap after long times of no
activity [22], at the extra cost and reduced accuracy of the
polling-based monitoring.

D. Other memory

The cache’s pool of data pages make up by far the largest
fraction of memory used by the cache, and indeed by the
entire Loris stack altogether. However, the cache’s internal
state comprises more than its data pages, and the remainder
is worth at least some consideration as well.

Particularly noteworthy are the cache’s data structures that
describe the actual data pages, as every data page has to have
such a corresponding data structure. However, this structure
is much smaller than the page itself. For example, while
not particularly optimized for size, the Loris page descriptor
structure is currently 48 bytes, and thus about a factor 85
smaller than corresponding 4KB-page of data. The cache’s
data structures to track file objects and their attributes are
similar in total size. Besides these, the cache has a long tail
of smaller structures and global variables.

It may still be worthwhile to protect these parts of cache
memory as well. Even though they are less likely to be hit
by soft errors, their corruption may affect the behavior of
the cache itself–comparable to the effects of software bugs.
More runtime checks on internal correctness can be added (for
example with assert statements), but it is hard to reason
about the coverage of this technique.

As an alternative, we attempted to implement checksum-
ming for the internal data structures of the cache. We found
that even with the simple design of the Loris cache prototype,
manually adding support for checksumming of data structures
added a prohibitive amount of complexity to it. While some
parts were straightforward (e.g., linked-list macros and mutex
operations were good places to start), a substantial amount of
ground was left to cover with manual checksum update and
verification statements.

We now believe that the solution lies in compiler support, in
the form of programmer-guided (annotation-based) automatic
checksumming of data structures, for example using the LLVM
compiler framework. This would be similar to automatic
approaches proposed for use against software bugs [23], but
requires manual guidance so as not to automatically double-
checksum the data pages as well. We believe the cache would
be an interesting use case for such a technique, and we intend
to work on this in future work.

Both asserts and semi-automatic checksumming would only
enable error detection. In Sec. V, we show that our proposed
recovery system for software bugs can equally help recover
from detected memory errors.

Finally, we note that the techniques presented in this entire
section are also applicable to other layers of the Loris stack.
For example, each file store has its own small metadata
cache, and the checksum verification approaches for the page
cache can be applied directly to this cache as well, although
possibly with a different level of effectiveness. Any future

semi-automatic checksumming solution may in fact be applied
to large parts of the entire operating system, including the
(small but crucial) microkernel.

V. DEALING WITH SOFTWARE BUGS

In this section, we look at failures due to software bugs in
the cache. Since MINIX 3 already provides several means of
detecting misbehavior resulting from software bugs, we are
concerned only with recovery. We propose a recovery ap-
proach that extends the checksum propagation from Sec. IV-B.
In principle, it is otherwise fully independent from the memory
errors solution from Sec. IV. However, we also show that there
is a beneficial interaction between the two solutions if they are
both used at the same time.

We first describe our assumptions regarding software bugs
(Sec. V-A). We then show how any recovery procedure needs
a way to verify the integrity of the crashed cache’s internal
records of delayed operations, how this verification can be
performed, and that checksums of all dirty pages are required
for it (Sec. V-B). We discuss checksumming dirty pages next
(Sec. V-C), and then sketch the crash recovery procedure
(Sec. V-D). Finally, we show the benefits of checksumming
dirty pages for memory error detection (Sec. V-E).

A. Assumptions

Software bugs may cause arbitrary behavior. This includes
scenarios where corrupted results escape detection and reach
the application, in which case application-transparent recovery
is impossible. Thus, we have to make assumptions about the
errors we target.

First, we assume that if a software bug triggers in the
cache, it will lead to a detectable failure; for example, a CPU
exception, a failed assertion, or a bad interprocess call. In this
case, the system can shut down the cache process, considering
it to have crashed. Previous research on errors in operating
systems suggests that a large majority of errors, if manifested
in any way at all, indeed cause a detectable failure–silent
failures are rare [24].

Second, we assume that the crash occurs within the ex-
ecution of the requests that were active when the bug was
triggered. This means that no bad results are propagated before
the detection of the failure. Similarly, previous research has
shown that fault propagation as the result of software bugs is
relatively unlikely to occur [24], [25].

However, we do not assume that the failure was necessarily
fail-stop, and want to attempt recovery even if (for example)
arbitrary memory was overwritten within the cache. These
assumptions are similar to those made in other contemporary
work [26], [27], [23].

B. The Dirty State Store

As stated before, the cache typically has the only copy of
many delayed file modification operations. This is the part of
the cache state that cannot be recovered from elsewhere, and
thus, the memory of the crashed cache process must be used
to attempt recovery of such state. Thus, the first step for any



recovery procedure is salvaging the delayed operations present
within the cache at the time of the crash.

The cache supports three different types of delayed file
modifications: create, setattr, and write (i.e., dirty pages).
In order to assess the feasibility of recovery, the recovery
procedure must be able to enumerate all delayed operations
in the crashed cache process’s memory image, and verify that
they have not been corrupted as part of the crash.

To this end, we propose that the cache use an internal store
to keep track of such dirty state. We call this store the Dirty
State Store (DSS). It is a small and passive part of the cache,
and exposes a very narrow API to the main cache code. Using
this API, delayed operations can be added to the store as new
application requests arrive, and removed from it as changes
are flushed to disk. The store uses its own (very basic) data
structures to keep track of the operations, using a separate
memory region.

However, this region is still part of the cache’s address
space, and any accidental overwrites from the main cache code
could violate the integrity of the DSS. For this purpose, the
DSS protects its data structures with checksums (XOR suffices
for this). Thus, wild writes result in a checksum mismatch. The
checksums need to be generated at runtime, but need never be
verified unless the cache crashes.

We believe that the narrow and strictly checked API,
the separate memory region, the checksumming of all parts
involved, and the relative simplicity of the DSS allow us
to put trust in the contents of the DSS if after a crash its
checksums all match. Therefore, the recovery procedure can
use the DSS memory to exhaustively enumerate and verify all
delayed operations. The only requirement is that the DSS is
kept up-to-date at all times, which means that its API must be
used as part of each request handled by the cache.

While the file create and getattr operations can be dupli-
cated in the DSS at little extra cost, keeping a copy of each
dirty page in the DSS is not feasible: a substantial part of
the cache’s memory usage, and indeed of the memory in the
system overall, may consist of dirty pages. Therefore, the DSS
simply contains a pointer to the actual dirty page, along with
a checksum of the contents of the page.

C. Checksumming dirty pages

The DSS thus requires an up-to-date checksum for each
tracked (and thus, each dirty) page in cache. In terms of
runtime overhead, checksumming of dirty pages dwarfs check-
summing of the DSS data structures; this is where we return
to interaction between in-memory and on-disk checksums.

In many cases, a page is modified only once and then
flushed to disk sometime later. In such a case, performing
the checksum computation upon the modification rather than
the flush does not introduce any extra computational cost:
the same checksum computation is simply performed a bit
earlier. Thus, actual overhead is incurred only when the page
is either modified again before the flush (due to another write
operation), or it is discarded before the flush altogether (due
to a truncate or delete operation).

Previous work suggests that cancelled writes (due to full-
page overwrites, truncates, and deletes) are generally not
dominant in workloads; for example, [28] reports a fraction of
cancelled data bytes in the 4–27% range. This leaves subpage
overwrites, to which we can apply two optimizations.

First of all, we find that a major source of subpage over-
writes comes from file appends, thereby “overwriting” an
unused part of the page. Many checksum types, including the
CRC family, allow checksums to be computed incrementally.
Therefore, instead of tracking only whole-page checksums,
the cache can remember the size of the used part of each page
(i.e., always the full page size, except for the last page of each
file), and track the checksum of that part only–until the page
is flushed. For appends, the checksum can then be updated
using only the new part of the page, thus avoiding checksum
recomputation of the existing part.

Second, for small subpage overwrites, a CRC checksum
can be updated for only the modified part of the page, by
computing the checksum for just the old and the new parts
with precomputed zero leads and trails, and XORing these
partial checksums into the original checksum. Our initial tests
show that this method can be more efficient than full page
checksum recomputation.

D. Recovery procedure

With the DSS in place, we can now describe the overall
crash recovery procedure. The recovery procedure is assumed
to have full access to the memory image of the crashed cache
process. Using the DSS and its checksums, the procedure
starts by assessing whether all the delayed operations can be
recovered from the crashed cache process. If this is possible,
then the following steps are taken.

1) The recovered file modification operations are flushed
down to lower layers. The result is that the cache is
completely “clean” with respect to delayed operations.

2) All of the crashed cache’s state is discarded, and the
new instance of the cache starts with a clean slate.

3) The naming layer is notified that it should replay all on-
going requests. The Loris operations are all idempotent,
so this is always safe to do, no matter what happened
before the crash.

After that, the storage stack can resume normal operation,
and applications will never notice that anything went wrong.
However, if the recovery procedure finds that recovery of
the delayed operations is not possible, or if replaying the
ongoing requests repeatedly results in a crash of the cache,
then recovery is not possible, and the system halts.

E. Consequences for memory errors

Our approach for dealing with software bugs yields two
important positive effects in relation to memory errors.

The availability of checksums for dirty pages allows us
to check these pages for memory errors as well, using the
same verification techniques described in Sec. IV-C. In fact,
in practice this simply means that we no longer have to make
an exception for dirty pages. Moreover, since the checksums



computed for the dirty pages are used directly as on-disk
checksums, the result of an undetected memory error between
the in-memory modification and flush to disk of a page, is
that the memory error will be detected upon the next read
from disk. In all these cases however, we can not recover the
page, so whenever it is read later, the stack has to report an I/O
error to the caller. At the very least, this prevents corrupted
data from reaching the application.

Additionally, as we noted before, memory errors may cor-
rupt the cache’s internal data structures, and even the program
code. The result is that a memory error may cause the cache
to crash. The crash recovery system can and will not make
any distinction regarding the cause of the cache, and thus,
the system will attempt to recover the cache in this case as
well. As a result, the cache’s primary data structures and code
will be reset, wiping out any previous memory errors. Thus,
the cache is able to survive crashes resulting from not only
software bugs, but memory errors as well.

VI. IMPLEMENTATION

We have implemented our ideas in the cache layer of our
Loris prototype, on the MINIX 3 microkernel operating system.
We briefly list what we implemented.

Memory errors: We have extended the Loris communica-
tion library to support propagation of checksums, and we have
implemented basic generation and tracking of checksums in
the cache layer. We have implemented the strategies described
in Sec. IV-C for detecting memory errors in cached pages,
except those involving memory-mapped files, as MINIX 3
currently does not support those.

Software bugs: We have modified the cache to track
checksums for dirty pages as well, including the append
optimization (but not the partial-rechecksum optimization)
described in Sec. V-C. In addition, we have implemented
the DSS. It offers a very narrow API of five calls (file
create/setattr/flush, page write/flush) in under 200 lines of
code, and the API calls were easy to add to the main cache
code. MINIX 3 implements restarting processes after a crash,
and optionally allows specified memory regions to survive
process crashes. The restarted cache instance can perform the
rest of the recovery procedure (as per Sec. V-D) fully by
itself, by verifying the checksums of the DSS and dirty pages,
flushing down all dirty operations to lower layers, freeing the
surviving memory, and requesting the naming layer to reissue
any ongoing calls.

VII. EVALUATION

We evaluate our work on an Intel Xeon W3565 worksta-
tion, with 4GB of RAM, and a 500GB 7200RPM Seagate
Barracuda SATA hard drive.

A. Microbenchmarks

We start with microbenchmarking the cost of basic read
and write calls into the cache (without checksumming). We
make calls directly from within the cache layer itself, rather
than from an external source program: context switching is

Operation Size (bytes) Time (ns)

Read

1 802
4096 920
8192 1463

16386 2547

Write

1 799
4096 822
8192 1251

16384 2544

Table I. Microbenchmarks for read and write calls of various sizes.

Operation Size (bytes) Time (ns)
CRC-32C in software [29] 4096 967
CRC-32C in hardware [30] 4096 205

Table II. Microbenchmarks for page checksum computation.

not optimized for performance on MINIX 3, and the overhead
of context-switching through the other storage stack layers
would otherwise reduce the relative cost of checksumming.
Thus, the resulting relatively low times are worst case for us,
and possibly more representative for other operating systems
(we got very similar numbers in a userland benchmark on
Linux). All pages involved are already cached in the cache
layer, so no other layers are involved at all. The results are
shown in Table I. The (nanosecond) times are averages for a
million iterations.

We also measure checksum computation for a single page,
using the most optimized software and hardware CRC im-
plementations that we could find. These measurements are
shown in Table II. They are representative for the additional
cost of computing the checksum for a single page involved
in a read and/or write operation. Thus, as can be seen, if
checksumming of pages were added to the read and/or write
calls, this would account for a substantial fraction of their
time. We believe these overheads are not prohibitive: again,
they are worst case, and applications are often not overly
sensitive to such overheads [31]. However, the overheads are
high enough to warrant exploring strategies that reduce the
number of checksum operations.

B. Macrobenchmarks

Benchmarks: We perform further testing by means of
macrobenchmarks. We use the following benchmarks in our
experiments:

• PostMark (1.51), configured to perform 80K transactions
on 40K files in 10 directories, with 4–28KB file sizes and

Benchmark Err. cons. Usage Read call Read page Hit
PostMark 26% 54% 75% 75% 97%
File Server 18% 81% 37% 57% 41%
Web Server 23% 98% 93% 97% 91%
OpenSSH 10% 100% 83% 97% 98%

Table III. Macrobenchmark statistics: error consumption, total memory
usage, read percentage of all read/write calls, read percentage of read/write

page accesses made as part of calls, and page cache hit ratio.



Baseline ER LC-tick LC-1sec LC-30sec LU-tick LU-1sec LU-30sec
Benchmark O% P% O% P% O% P% O% P% O% P% O% P% O% P% O% P%
PostMark 0 0 21 49 4 49 2 49 2 48 4 49 2 49 2 48
File Server 0 0 46 72 28 72 27 72 12 51 28 72 27 72 8 40
Web Server 0 0 97 96 80 96 42 95 13 74 80 96 36 95 8 66
OpenSSH 0 0 99 96 13 94 2 71 0 47 13 94 0 52 0 45

Table IV. Overhead and protection against memory corruption, using various verification strategies on clean pages.

Baseline ER LC-tick LC-1sec LC-30sec LU-tick LU-1sec LU-30sec
Benchmark O% P% O% P% O% P% O% P% O% P% O% P% O% P% O% P%
PostMark 4 40 97 91 52 91 8 91 6 88 52 91 7 91 6 88
File Server 41 20 88 99 70 99 69 99 52 76 70 99 69 99 49 66
Web Server 0 3 98 99 81 99 43 99 14 77 81 99 37 98 9 70
OpenSSH 0 3 99 99 13 98 2 74 0 50 13 98 0 55 0 48

Table V. Overhead and protection against memory corruption, this time also checksumming dirty pages immediately.

512B unbuffered I/O operations.
• FileBench (1.4.8.fsl.0.8) File Server, single-threaded, but

otherwise with its default configuration, run for 30 min-
utes at once.

• FileBench Web Server, single-threaded, with 25,000 files,
directory width 50, file size 32KB, and defaults other-
wise, also with 30-minute runs. For Web Server, we use
a modified FileBench version which accesses the files
using a Zipf distribution rather than the default round-
robin approach. With this (we believe, more realistic)
distribution, we avoid that each cache page sees exactly
the same access interval.

• An OpenSSH build test, which unpacks, configures and
builds OpenSSH in a chroot environment.

The Loris page cache is given static size of 1GB of memory,
and the tests were run on the first 32GB of the disk. All tests
were run at least five times; average numbers are reported. For
PostMark and FileBench, we consider the run phase only.

Table III shows statistics about the benchmark runs. The
first column shows the percentage of error consumption [11]:
the probability that if an error occurs anywhere in the cache’s
1GB of memory any time during the benchmark run, the error
will be read back, and thus propagate to an application or
to permanent storage. These are the errors that matter; other
errors simply end up being discarded. While the percentages
may seem low, their upper bounds are the memory usage of
the benchmark runs, reported in the second column. Thus,
about half of the errors occurring in memory used by PostMark
would be consumed, whereas this would be a tenth with the
OpenSSH benchmark. The remaining columns of the table
show read/write ratios (on a per-call and per-page basis) and
the overall cache hit ratio.

Overhead and protection: We measure the overhead and
memory error protection of our verification strategies these
macrobenchmarks. For the overhead (O%), we count the sum
of all page accesses by all incoming read and/or write calls,
and per verification strategy, we report the percentage of page
accesses that result in an extra checksum computation for
that page. Thus, the higher the percentage, the higher the

checksumming overhead. For the protection (P%), for each
page we measure the time windows in which a memory
error on that page would be propagated to the application
or to permanent storage, and we sum the time windows of
all pages together; per verification strategy, we measure the
overall fraction of this total time where a memory error
occurrence would be caught by the strategy. Thus, given a
random memory error in the cache that would be consumed,
the resulting percentage represents the probability that this
error will be detected before reaching an application.

We list the results for the following verification strategies
and time intervals: check on every read (ER); check on read
after minimum last-check time (LC) of a MINIX 3 clock tick
(1/60th of a second), 1 second, and 30 seconds; and, check
on read after minimum last-use time (LU) with the same time
thresholds. We have omitted the background checker results.
As stated in Sec. IV-C, the background checker cannot stand
on its own as a verification strategy, and our experiments show
that it indeed adds negligible protection for active workloads,
unless configured to be prohibitively aggressive.

We first test our solution for memory errors from Sec. IV,
which covers only clean pages. The results are shown in
Table IV. The protection is below 100% even if every read
is verified, because all techniques only cover clean pages, and
all benchmarks involve at least some dirty data. The last-check
and last-use strategies show that delaying checksumming by
as little as one clock tick can significantly reduce the number
of extra checksum checks, while keeping the protection at
almost the same level. This is true especially for PostMark
and OpenSSH, where the smaller (often subpage) I/O calls
make rapid repeated page accesses common, thus resulting
in overheads going down quickly. The per-tick strategies for
File Server and Web Server maintain a high overhead because
of the large (multipage) I/O granularity of these benchmarks.
Higher time thresholds lower the overhead by much; the
protection also decreases but remains substantial. There is little
difference between the two strategies’ results.

We repeat the same tests after adding our solution for
software bugs from Sec. V on top of the memory error



solution. This shows not only the extra overhead for check-
summing upon write calls, but also the extra memory error
protection resulting from having checksums of dirty pages.
The results are shown in Table V. We note again that we
cannot recover from memory errors in dirty pages, but we do
prevent corrupted data from reaching the application.

In this test, the overhead increases significantly because
reads from dirty pages can now be checked as well, and the
protection increases accordingly. These increases are shown
by the new baseline, and reflected in the per-strategy numbers
as well. Looking at the baseline, PostMark often reads back its
own written data before it is flushed, and thus ends up with a
high increase in protection. File Server has relatively the most
writes, and thus ends up with a large increase in overhead–
and, to a lesser extent, protection. Even with the every-read
strategy, 100% protection is still not achieved: this is due to
subpage writes causing entire pages to be rechecksummed,
thereby losing the ability to detect previous memory errors in
the unchanged page parts. We can solve this with the partial
rechecksumming described in Sec. V-C: this method preserves
checksum errors across partial updates.

Performance: The overall performance of the benchmarks
is shown in Table VI. The numbers represent run times of the
benchmarking phases, relative to the unmodified Loris imple-
mentation (thus, lower is better). The “clean only” columns
represent Loris configurations that check only clean pages for
memory errors, and correspond to the first three configurations
in Table IV: the baseline (BL) that implements no memory
check and thus only adds checksum propagation; a page check
on every read (ER); and, a page check after at least one
clock tick of not checking that page (LC-tick or LCt). The
“clean and dirty” columns add checksumming on writes and
the DSS keeping overhead, and thus correspond to the first
three configurations of Table V.

The baselines show that the checksum propagation has no
overhead at all, and checksumming pages as they are written
adds only little overhead. Checking checksums on every read
has a clear performance impact (up to 9% for OpenSSH).
However, the LC-tick strategy reduces the overhead to at most
1%. We believe that this overhead is acceptably low, especially
given that LC-tick still offers strong protection against memory
errors.

C. Fault injection

We evaluated the effectiveness of our DSS solution against
software bugs by means of software fault injection, using
the methodology described in [32]. We ran the OpenSSH

Clean only Clean and dirty
Benchmark BL ER LCt BL ER LCt
PostMark 1.00 1.03 1.00 1.01 1.07 1.01
File Server 1.00 1.03 1.01 1.01 1.02 1.00
Web Server 1.00 1.00 1.01 1.01 1.01 1.01
OpenSSH 1.00 1.09 1.01 1.00 1.09 1.01

Table VI. Performance relative to unmodified Loris.

benchmark 80 times, each time injecting a set of 100 random
faults into the cache process at once at a random time during
the benchmark. After each completed run, we checked the file
system contents against those of a normal run to ensure that
no corruption was propagated.

In 74 of the 80 cases, the cache crashed as a result of
the fault injection, but was able to recover using the DSS.
In all these cases, the benchmark completed and the final
check passed. In the remaining six cases, other parts of the
storage stack crashed because of deviating behavior of the
cache. These cases violate our assumptions, but may still be
recoverable if we harden these other layers. In no cases did the
cache detect an internal checksum mismatch in the DSS or its
dirty pages. Thus, the checksums had no added value in this
experiment. We believe this is mainly because the OpenSSH
benchmark is not write-intensive.

We then switched to the more write-intensive PostMark
benchmark. We first changed it to verify the results of all
its system calls, so as to detect any propagated corruption.
We then ran it 80 times, each time injecting 100 faults of
the destination type. This fault type simulates corruption by
altering the destination of random instructions [32]. This time,
the cache crashed 79 times. In 75 cases, the cache recovered
and the benchmark completed successfully. In the other four
cases, the cache detected a DSS or page checksum mismatch,
and decided that it could not recover. Without the DSS and
page checksums, the restarted cache would have propagated
corruption in these cases. Finally, in the 80th case, one of the
other layers crashed.

VIII. RELATED WORK

We list the most directly related research on memory errors
and software bugs.

A. Memory errors
We are not aware of any previous research that evaluates

the use of disk checksums to counter memory corruption
on a single system. A Lustre design document shows how
servers send ZFS disk checksums along with file data to ensure
network traffic integrity, noting that with approach, the clients
will detect any memory corruption in the server cache as a side
effect [33]. Zhang et al [20] study disk and memory corruption
effects on ZFS, and find that neither ZFS nor ext2 deal well
with local memory corruption; we build on their suggestions
in this work.

Generic software memory corruption detection and recovery
techniques have been proposed [34], [22], [35]. However, these
approaches are unable to leverage specific knowledge about
the data they operate on, and thus require higher checksum
generation costs, offer less effective detection strategies, and/or
require more runtime resources for eventual recovery. Never-
theless, they can still be applied to other parts of system and
application memory.

B. Software bugs
We are not aware of any work specifically addressing recov-

ery from bug-induced errors in the page cache. Again, more



generic techniques can be applied. These are typically rollback
based. For example, the Akeso system [27] tracks Linux kernel
state changes on a per-request basis, committing the changes
only at the end of the request. Compiler-based techniques are
used to prevent arbitrary memory corruption. When applied
to the page cache, this results in expensive copies of all dirty
data; the authors show a substantial overhead in write-intensive
workloads. A similar technique uses microkernels for better
scalability [23], but has the same basic overheads.

CuriOS’ Server State Regions (SSRs) address a similar
problem by making client state available to a microkernel
system server only during a request from that client [26]. If
the server crashes, only the active client is killed. We believe
that SSRs are not well-suited for a page cache, as it inherently
shares pages between clients.

The Rio file cache [36] protects its pages by remapping them
read-only when executing kernel code outside the page cache
routines. This approach does not help if the cache routines
themselves contain bugs, nor does it help detect memory
errors. Due to space constraints, we omit a large body of other
work on software bugs, but we note that many approaches
(e.g., language-based ones) can not deal with memory errors.

IX. CONCLUSION

In this paper, we have shown that by using specific knowl-
edge about the operation of the storage stack, we can effec-
tively deal with certain reliability threats at a relatively low
cost. We have addressed the threats of memory errors and
software bugs in the page cache, and shown that there is a
two-way interaction between the solutions.

Even though we have focused on the Loris storage stack in
this work, we believe that the techniques presented here are
sufficiently generic that they can be applied elsewhere: the
techniques to detect memory errors can be applied in virtually
any page cache that can be involved in on-disk checksums, and
the techniques to recover from software bugs can be applied
on any other microkernel.

ACKNOWLEDGMENT

This research was supported in part by European Research
Council Advanced Grant 227874.

REFERENCES

[1] R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum, “Loris
- A Dependable, Modular File-Based Storage Stack,” in PRDC, 2010.

[2] J. F. Ziegler and W. A. Lanford, “The Effect of Cosmic Rays on
Computer Memories,” Science, vol. 206, no. 4420, pp. 776–788, 1979.

[3] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, H. P. Muhlfeld,
C. J. Montrose, H. W. Curtis, and J. L. Walsh, “Field testing for cosmic
ray soft errors in semiconductor memories,” IBM J. Res. Dev., vol. 40,
no. 1, pp. 41–50, Jan. 1996.

[4] E. Normand, “Single event upset at ground level,” IEEE Trans. Nuclear
Science, vol. 43, no. 6, pp. 2742–2750, 1996.

[5] B. Schroeder and G. A. Gibson, “A large-scale study of failures in high-
performance computing systems,” in DSN, 2006.

[6] Tezzaron Semiconductor, “Soft errors in electronic memory–a white
paper,” 2004.

[7] X. Li, K. Shen, M. C. Huang, and L. Chu, “A memory soft error
measurement on production systems,” in USENIX ATC, 2007.

[8] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild:
a large-scale field study,” in SIGMETRICS, 2009.

[9] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays
don’t strike twice: understanding the nature of DRAM errors and the
implications for system design,” in ASPLOS, 2012.

[10] T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for
PC server main memory,” 1997.

[11] A. Messer, P. Bernadat, G. Fu, D. Chen, Z. Dimitrijevic, D. Lie, D. D.
Mannaru, A. Riska, and D. Milojicic, “Susceptibility of commodity
systems and software to memory soft errors,” IEEE Trans. Comput.,
vol. 53, no. 12, pp. 1557–1568, 2004.

[12] A. Eto, M. Hidaka, Y. Okuyama, K. Kimura, and M. Hosono, “Impact
of neutron flux on soft errors in MOS memories,” in IEDM, 1998.

[13] T. J. Ostrand and E. J. Weyuker, “The distribution of faults in a large
industrial software system,” in ISSTA, 2002.

[14] L. Hatton, “Reexamining the Fault Density-Component Size Connec-
tion,” IEEE Software, vol. 14, no. 2, pp. 89–97, 1997.

[15] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“Construction of a Highly Dependable Operating System,” in EDCC,
2006.

[16] D. C. van Moolenbroek, R. Appuswamy, and A. S. Tanenbaum, “Inte-
grated End-to-End Dependability in the Loris Storage Stack,” in HotDep,
2011.

[17] Intel Corporation, “Intel SSE4 Programming Reference,” 2007.
[18] STMicroelectronics, “STM32 Reference Manual,” 2011.
[19] P. Koopman, “32-bit cyclic redundancy codes for internet applications,”

in DSN, 2002.
[20] Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau, “End-to-end data integrity for file systems: a ZFS case study,”
in FAST, 2010.

[21] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “A file is not a file: understanding the I/O behavior of
Apple desktop applications,” in SOSP, 2011.

[22] D. Dopson, “SoftECC: A System for Software Memory Integrity Check-
ing,” Master’s thesis, Massachusetts Institute of Technology, 2005.

[23] C. Giuffrida, L. Cavallaro, and A. S. Tanenbaum, “We crashed, now
what?” in HotDep, 2010.

[24] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang, “Characterization of
linux kernel behavior under errors,” in DSN, 2003.

[25] W.-L. Kao, R. K. Iyer, and D. Tang, “FINE: A Fault Injection and
Monitoring Environment for Tracing the UNIX System Behavior under
Faults,” IEEE Trans. Software Engineering, vol. 19, no. 11, pp. 1105–
1118, 1993.

[26] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell, “CuriOS:
Improving Reliability through Operating System Structure,” in OSDI,
2008.

[27] A. Lenharth, V. S. Adve, and S. T. King, “Recovery domains: an
organizing principle for recoverable operating systems,” in ASPLOS,
2009.

[28] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K.
Ousterhout, “Measurements of a distributed file system,” in SOSP, 1991.

[29] “Slicing-by-8,” http://slicing-by-8.sourceforge.net/.
[30] Intel Corporation, “Fast CRC Computation for iSCSI Polynomial Using

CRC32 Instruction,” 2011.
[31] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright, “A nine year study

of file system and storage benchmarking,” ACM Trans. Storage, vol. 4,
no. 2, pp. 5:1–5:56, May 2008.

[32] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum, “Fault
Isolation for Device Drivers,” in DSN, 2009.

[33] Sun Microsystems, “Lustre: End to End Data Integrity Design,” 2009.
[34] P. Shirvani, N. Saxena, and E. McCluskey, “Software-implemented

EDAC protection against SEUs,” IEEE Trans. Reliability, 2000.
[35] D. Fiala, K. B. Ferreira, F. Mueller, and C. Engelmann, “A tunable,

software-based DRAM error detection and correction library for HPC,”
in EuroPar, 2011.

[36] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani, and
D. Lowell, “The Rio file cache: surviving operating system crashes,”
in ASPLOS, 1996.


