Eduard Belitser

Department of Mathematics, VU Amsterdam
De Boelelaan 1111, 1081 HV Amsterdam

Teaching


Research

The main research interests are in mathematical statistics, in particular:

Publications, preprints, submitted, ongoing (in reverse chronological order)

  1. General framework for projection structures.
    E. Belitser and N. Nurushev. Submitted.
    https://arxiv.org/abs/1904.01003
  2. Robust estimation of sparse signal with unknown sparsity cluster value.
    E. Belitser, N. Nurushev and P. Serra. To appear in 4th ISNPS, Salerno, Italy, June 2018, Springer (2020).
    https://www.tomlinsons-online.com/p-25730196-nonparametric-statistics.aspx
  3. Empirical Bayes oracle uncertainty quantification for regression.
    E. Belitser and S. Ghosal. Ann. Stat., 48, 3113-3137 (2020).
    https://projecteuclid.org/euclid.aos/1607677229
  4. Needles and straw in a haystack: robust empirical Bayes confidence for possibly sparse sequences.
    E. Belitser and N. Nurushev. Bernoulli, 26, 191-225 (2020).
    https://projecteuclid.org/euclid.bj/1574758826
  5. Local inference by penalization method for biclustering model.
    E. Belitser and N. Nurushev. Math. Methods Statist., 27, 163-183 (2018).
    https://link.springer.com/article/10.3103/S1066530718030018
  6. Contributed Discussion on paper by Yao, Vehtari, Simpson, and Gelman.
    E. Belitser and N. Nurushev. Bayesian Analysis, 13, 992-993 (2018).
    https://projecteuclid.org/download/pdfview_1/euclid.ba/1516093227
  7. Contributed comment on article by Wade and Ghahramani.
    E. Belitser and N. Nurushev. Bayesian Analysis, 13, 606-607 (2018).
    https://projecteuclid.org/euclid.ba/1508378464
  8. Contributed comment on article by van der Pas, Szabo, and van der Vaart.
    E. Belitser and N. Nurushev. Bayesian Analysis, 12, 1267-1269 (2017).
    https://projecteuclid.org/euclid.ba/1504231319
  9. Local posterior concentration rate for multilevel sparse sequences.
    E. Belitser and N. Nurushev. Bayesian Statistics in Action, Springer Proc. Math. Stat., 194, 51-66 (2017).
    http://www.springer.com/gp/book/9783319540832
  10. On coverage and local radial rates of credible sets.
    E. Belitser. Ann. Stat., 45, 1124-1151 (2017).
    https://doi.org/10.1214/16-AOS1477
  11. Optimal measurement allocation under precision budget constraint.
    E. Belitser. Statist. Probab. Lett., 117, 46-53 (2016).
    https://doi.org/10.1016/j.spl.2016.05.008
  12. Recursive tracking algorithm for a predictable time-varying parameter of a time series.
    E. Belitser and P. Serra. Math. Methods Statist., 24, 243-265 (2015).
    https://doi.org/10.3103/S1066530715040018
  13. Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes.
    E. Belitser, P. Serra and H. van Zanten. J. Statist. Plann. Inference, 166, 24-35 (2015).
    https://doi.org/10.1016/j.jspi.2014.03.009
  14. Recursive estimation of conditional spatial medians and conditional quantiles.
    E. Belitser and P. Serra. Sequential Analysis, 33, 519-538 (2014).
    https://doi.org/10.1080/07474946.2014.961856
  15. Adaptive priors based on splines with random knots.
    E. Belitser and P. Serra. Bayesian Analysis, 9, 859-882 (2014).
    https://doi.org/10.1214/14-BA879
  16. Estimating the period of a cyclic non-homogeneous Poisson process.
    E. Belitser, P. Serra and H. van Zanten. Scand. J. Statist., 40, 204-218 (2013).
    https://doi.org/10.1111/j.1467-9469.2012.00806.x
  17. On properties of the algorithm for pursuing a drifting quantile.
    E. Belitser and P. Serra. Autom. and Rem. Control, 74, 613-627 (2013).
    [https://doi.org/10.1134/S000511791304005X]
  18. Optimal two-stage procedures for estimating location and size of maximum of multivariate regression functions.
    E. Belitser, S. Ghosal and H. van Zanten. Ann. Stat., 40, 2850-2876 (2012).
    https://doi.org/10.1214/12-AOS1053
  19. Oracle Wiener filtering of a Gaussian signal.
    A. Babenko and E. Belitser. Theory Stoch. Process., 17, 16-24 (2011).
    http://tsp.imath.kiev.ua/files/256/tsp1720_2.pdf
  20. Lower bound for the oracle projection posterior convergence rate.
    A. Babenko and E. Belitser. Statist. Probab. Lett., 81, 175-180 (2011).
    https://doi.org/10.3103/S1066530710030026
  21. Oracle convergence rate of posterior under projection prior and Bayesian model selection.
    A. Babenko and E. Belitser. Math. Methods Statist., 19, 219-245 (2010).
    https://doi.org/10.3103/S1066530710030026
  22. On posterior pointwise convergence rate of a Gaussian signal under a conjugate prior.
    A. Babenko and E. Belitser. Statist. Probab. Lett., 79, 670-675 (2009).
    https://doi.org/10.1016/j.spl.2008.10.019
  23. Adaptive filtration of a random signal in Gaussian white noise.
    E. Belitser and F. Enikeeva. Probl. Inf. Transm., 44, 48-60 (2008).
    https://doi.org/10.1134/S0032946008040054
  24. Empirical Bayesian test for the smoothness.
    E. Belitser and F. Enikeeva. Math. Methods Statist., 17, 1-18 (2008).
    https://doi.org/10.3103/S1066530708010018
  25. On asymptotic expansion of pseudovalues in nonparametric median regression.
    E. Belitser. Statistics & Decisions, 22, 1-17 (2004).
    https://doi.org/10.1524/stnd.22.1.1.32715
  26. On the empirical Bayes approach to adaptive filtering.
    E. Belitser and B. Levit. Math. Methods Statist., 12, 131-154 (2003).
    http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.5662&rep=rep1&type=pdf
  27. Adaptive Bayesian inference on the mean of an infinite dimensional normal distribution.
    E. Belitser and S. Ghosal. Ann. Stat., 31, 536-559 (2003).
    https://doi.org/10.1214/aos/1051027880
  28. Consistency in nonparametric minimax regression estimation.
    E. Belitser. Comm. in Statistics, 31, 1159-1165 (2002).
    https://doi.org/10.1081/STA-120004914
  29. Minimax recovery of blurred signal from discrete noisy data.
    E. Belitser. J. Nonparametr. Statist., 13, 647-667 (2001).
    https://doi.org/10.1080/10485250108832870
  30. Asymptotically local minimax estimation of infinitely smooth density with censored data.
    E. Belitser and B. Levit. Ann. of Inst. Stat. Math., 53, 289-306 (2001).
    https://link-springer-com.vu-nl.idm.oclc.org/article/10.1023/A:1012418722154
  31. Robust recursive nonparametric curve estimation.
    E. Belitser and S. van de Geer. High Dimensional Probability II,
    E. Gine, D.M. Mason and J.A. Wellner (eds.), 391-404, Birkhauser (2000).
    https://link.springer.com/chapter/10.1007/978-1-4612-1358-1_26
  32. Local minimax pointwise estimation of a multivariate density.
    E. Belitser. Statist. Neerl., 54, 351-365 (2000).
    https://doi.org/10.1111/1467-9574.00145
  33. Recursive estimation of a drifted autoregressive parameter.
    E. Belitser. Ann. Stat., 28, 860-870 (2000).
    https://doi.org/10.1214/aos/1015952001
  34. Minimax estimation in regression and random censorship models.
    E. Belitser. CWI Tract 127, CWI, Amsterdam (2000).
    https://cwilibrary.on.worldcat.org/oclc/906855545
  35. Minimax estimation in the blurred signal model.
    E. Belitser. In: Probability Theory and Mathematical Statistics Series,
    B. Grigelionis, J. Kubilius, V. Paulauskas, H. Pragarauskas, V. Statulevicius (eds.), 57-66, TEV (1999).
    https://books.google.nl/books?isbn=9067643130
  36. Efficient estimation of analytic density under random censorship.
    E. Belitser. Bernoulli, 4, 519-543 (1998).
    https://doi.org/10.2307/3318664
  37. Asymptotically minimax nonparametric regression in L2.
    E. Belitser and B.Y. Levit. Statistics, 28, 105-122 (1996).
    https://doi.org/10.1080/02331889708802553
  38. On minimax filtering over ellipsoids.
    E. Belitser and B.Y. Levit. Math. Methods Statist., 4, 259-273 (1995).
    http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.3741
  39. On minimax estimation over ellipsoids.
    E. Belitser and B.Y. Levit. In: Information theory, statistical decision functions, random processes,
    P. Lachout and J.A. Visek (eds.), 28-31, Academy of Sciences of the Czech Republic (1994).
  40. Pseudovalues and minimax filtering algorithms for the nonparametric median.
    E. Belitser and A.P. Korostelev. Adv. in Sov. Math., 12, 115-124 (1992).
  41. On the ergodic properties in dynamical model of stepping devices.
    E. Belitser and A.V. Safonov. In: Methods of applied mathematics for investigating technical systems and mathematical software,
    dep. VINITI, MAI, Moscow (1989).