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Abstract This paper is inspired by a vision of self-sufficient robot col-
lectives that adapt autonomously to deal with their environment and to
perform user-defined tasks at the same time. We introduce the monee
algorithm as a method of combining open-ended (to deal with the envir-
onment) and task-driven (to satisfy user demands) adaptation of robot
controllers through evolution. A number of experiments with simulated
e-pucks serve as proof of concept and show that with monee, the robots
adapt to cope with the environment and to perform multiple tasks. Our
experiments indicate that monee distributes the tasks evenly over the
robot collective without undue emphasis on easy tasks.

1 Introduction

The work presented in this paper is inspired by a vision of autonomous, self-
sufficient robot collectives that can cope with situations unforeseen by their
designers. An essential capability of such robots is the ability to adapt their
controllers in the face of challenges they encounter in a hands-free manner, “the
ability to learn control without human supervision,” as [14] put it.

One approach to solve this issue uses evolution as a force for adaptation,
rather than as “just” an algorithm for optimisation. This dichotomy has been
noticed early in the history of evolutionary computing, [4]. Since then, these two
attitudes have became dominant in different areas. Optimisation is the primary
goal in Evolutionary Computing [6], while evolution as a driver of adaptation is
typical in Artificial Life (ALife) [23]. In a common ALife setting, agents, pos-
sibly (simulated) robots, populate a world and the one that can cope with its
environmental challenges will survive and reproduce. In systems like this, there
need not be any objective function to be optimised, nor a centrally orchestrated
evolutionary selection–reproduction loop. Instead, evolution is driven by a de-
centralised, asynchronous process of mate selection and reproduction and purely
environmental selection that gives a reproductive advantage to well-adapted in-
dividuals. Such open-ended approaches are slowly finding their way into evolu-
tionary robotics, e.g. the medea algorithm[2] and Bianco and Nolfi’s work [1].

Of course, an adapting robot collective must also serve the purpose of its
designers: it must satisfy human preferences and tackle particular tasks. Evolu-
tionary robotics has traditionally focussed exclusively on this latter aspect, em-
ploying evolution as a force for optimisation. Robots are set some specific task,
their performance is measured through some objective function and a, typically
centralised, evolutionary algorithm optimises robot behaviour accordingly.



In our vision, evolution serves two purposes: on the one hand to allow robots
to adapt to the environment and to behave so that they can operate at all. On the
other hand, evolution is a force to promote task-performance, where we interpret
‘task’ in a broad sense: it is any user-defined preference with a measurable level
of compliance. It can be a direct task, like collecting rubbish (measured by
the amount of rubbish cleared), but also more indirect, like energy efficiency
(measured by battery lifetime). Combining these two (seemingly) contradictory
roles of evolution is a generic, fundamental challenge that to our knowledge has
to date not been tackled successfully.

As Jones and Mataŕıc note [7], collectively tackling tasks also entails a divi-
sion of work: if, for instance, the swarm has two (sub-)tasks, it may be possible
that all robots perform both tasks or that part of the swarm focusses on one task
and the other robots tackle the second task. Therefore, an algorithm that en-
ables our vision of an adaptive collective of robots should combine the adaptive
and optimising facets of evolution as well as promote a good division of labour.

This paper introduces the monee (Multi-Objective aNd open-Ended Evo-
lution) algorithm that combines the open-ended and task-driven aspects of evol-
ution. It is inspired by the open-ended algorithms described in [2] and [19].

Monee allows the robot collective to optimise their behaviour to suit mul-
tiple tasks while distributing the tasks over that collective. It extends the open-
ended approach as found in medea [2] with a currency-based system where an
individual can earn as well as spend credits. Please note that our idea of open-
endedness in this case entails the lack of an explicit fitness function, whether our
system adheres to the more general sense of open-endedness where evolution does
not converge has not yet been tested. The main idea is that earnings are based
on task-performance, while spendings are related to reproduction. Individuals
accumulate credits through task performance - the better a robot performs a
task, the more credits it earns for that task. When an individual puts its gen-
ome forward as a potential parent, it also passes information on its earnings for
each defined task as a parental investment. Section 3 provides more detail on
our implementation of the monee algorithm.

This paper provides a proof-of-concept for the monee algorithm. We simulate
a collective of e-puck robots that are set multiple tasks to ascertain:
– if the robots adapt their behaviour to suit the tasks;
– if all tasks are performed equally well;
– how the system reacts to changing tasks.

2 Related Work

Open-ended and task-related evolutionary robotics Evolutionary Robotics has
been widely studied since the early 1990s [15]. Initially, research focussed on
individual robots, but since then substantial effort has been directed at evolution
in larger numbers of interacting autonomous robots in swarms [20], research
projects include for instance the Swarmanoid project [5]) or modular robots (e.g.
M-tran[8]). In all these cases, evolution is used to achieve some fixed user-defined
objective such as locomotion or explicit coordination.



Open-ended or objective-free evolution as well as self-replication have been
studied in Artificial Life since Rasmussen’s (1990) [16] and Ray’s (1991) [17]
work. Such research primarily investigates evolutionary dynamics in the absence
of tasks, but as a result of implicit or environmental criteria that impact the
ability to spread genomes through the population. This open-ended approach has
gained interest from the evolutionary robotics community, for instance in Bianco
and Nolfi’s experiments with self-assembling organisms [1] and more recently in
the medea algorithm [2].

Open-ended approaches have been considered as a strategy to promote be-
havioural diversity in multi-objective settings by, for instance, Mouret and Don-
cieux [13]. Lehman and Stanley’s novelty search [9] also embraces open-endedness
to tackle elusive problems where a straightforward objective function leads to
sub-optimal behaviour. These recent advances do define objective functions,
though: the definition of novelty for Lehman and Stanley and the secondary
objective for Mouret and Doncieux are ad-hoc, task-specific definitions of be-
havioural diversity that amount to tangential and creative redefinitions of the
orginal objective function. Thus, such methods are not the completely objective-
free approaches where survival and rate of procreation determine fitness rather
than the other way around.

Parental Investment When animals reproduce they invariably invest time and
energy in their offspring, for which Trivers coined the phrase parental investment
[21]: ”Parental investment covers any cost that a parent incurs in looking after
an offspring, be it in gamete production, gestation or care after birth”. Parental
investment has been investigated in biology, and theories have been proposed on
the evolutionary origins of the differentiation between sexes. These theories have
also been verified in ALife settings, including experiments with robots [10,22,19].
In artificial life parental investment is often used to give the offspring a starting
value of (virtual) energy [11,12,3,18] and a parent’s energy level is often linked
to task performance (e.g., agents tasked with eating grass to gather energy [3]).
While these approaches benefit the offspring of good individuals, none of these
approaches use parental investment as a method for parent selection. Distributed
on-line evolutionary systems such as Watson et al’s embodied evolution [24]
sometimes employ (virtual) energy as a currency to determine parent selection
[24,25].

3 MONEE: Multi-Objective And Open-Ended Evolution

At its core, monee is an adaptation of the medea algorithm described by
Bredèche et al. [2] and Schwarzer’s artificial sexuality algorithm [19].

The robot lifecycle in monee consists of two phases: life and rebirth. The ro-
bots have a limited, fixed, lifetime during which they perform their actions; mov-
ing about, foraging, et cetera. When their lifetime ends, they enter the rebirth
phase and become ‘eggs’: stationary receptacles for genomes that are transmit-
ted by passing live robots. This rebirth phase also lasts a fixed amount of time,
at the end of which the egg selects parents from the received genomes to create a



new controller. The robot then reverts to the ‘life’ role with this new controller.
Thus, robots (or rather, their controllers) can procreate by transmitting their
genome to eggs, and the more eggs a robot inseminates, the more chances it
has for procreation. Because the transmission of genomes is continuous and at
close range (e.g. through infrared), the more a robot moves about the arena,
the better its chances of producing offspring. This aspect of monee is clearly
open-ended: there is no calculated performance measure that defines the chances
of being selected as parent, there is no task. Only the environment dictates what
robots may or may not become parents.

To add task-driven parent selection to this basic evolutionary process, we use
parental investments. During their lifetime, robots amass credits by performing
tasks. For instance, a robot could get one credit for every piece of ore it collects,
one for successfully solving some puzzle, and so on. If multiple tasks are defined,
the robots maintain separate counts for the credits awarded for each task, for
instance one counter for the pieces of ore collected and another one for the
number of puzzles solved. When a robot inseminates an egg, it passes these
numbers along with the genome and the egg uses that information to select
parents when it revives.

When a robot’s egg phase finishes, it compares the parental investment for
each genome it has received. To enable this comparison across task, the egg
calculates an exchange rate between tasks. This ensures that genomes that invest
in tasks for which few credits are found overall (presumably hard tasks) are not
eclipsed by genomes that favour easier tasks. The pseudo-code in algorithm 1
details this auction scheme.1

The parental investments relate task performance to reproductive success:
besides the open-ended goal of ‘merely’ transmitting genomes to eggs, robots
must also become proficient at the defined tasks for these genomes to be selected.
The more proficient a robot is at a task, the higher its chances of procreating.
The comparison of investments across multiple tasks introduces an exchange rate
between the earnings per task: the more common credits are for a particular task,
the less their worth and vice versa. Thus, parent selection becomes a marketplace
for skills and features that the user requires. Users can influence this economy
to prioritise tasks, for instance by setting a premium on investments related
to a particular task that the user deems more urgent than others. This system
naturally caters for multi-objective approaches and allows the user to prioritise
tasks in a straightforward manner.

4 Experiments

To investigate the monee algorithm, we implement it in a scenario with simu-
lated e-pucks in a simple 2D simulator.2 This scenario places 100 robots in an
arena roughly 330 robots wide, with a number of obstacles (depicted in the lower

1 Note, that our implementation uses roulette wheel selection and only mutation only,
so a single parent is selected. These are incidental design choices: monee does not
preclude the use of other selection schemes and/or recombination operators.

2 RoboRobo, https://code.google.com/p/roborobo/



Algorithm 1: Selecting a parent based on parental investments

for every defined task do // total credits

for every received genome do
creditstask ← creditstask + genome.creditstask

end for
creditsoverall ← creditsoverall + creditstask

end for

for every defined task do // exchange rate per task

ratetask ← creditsoverall+numtasks
creditstask+1

end for

for every received genome do // parental investment per genome

for every defined task do
genome.rating ← genome.rating + (genome.creditstask · ratetask)

end for

end for

parent← roulettewheel selection(received genomes) // select and mutate

child← mutate(parent)
reactivate(child) // revive

right of Fig. 1) and defines seven concurrent foraging tasks. Concurrent foraging
is a variation of regular foraging where the arena is populated by multiple types
of objects to be collected [7], rather than just a single resource. In our case, just
as in [7], these objects are pucks of different colours, and the collection of each
different colour is a different task.
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Figure 1. Distribution of pucks of various colors and
obstacles present in the arena.

We use seven differ-
ently coloured pucks, de-
fining seven similar but
different tasks. The col-
ours are SteelBlue, Or-
angeRed, LimeGreen, In-
digo, SeaGreen, Sandy-
Brown and Siena. The
pucks are spread in the
environment according to
a number of gaussian dis-
tributions as indicated
in Fig. 1. As can be
seen from the distribu-
tions, some colours (like
Indigo and SandyBrown)
are placed very compactly at the corners of the arena, which makes gathering
those a more specialist proposal than for instance SteelBlue pucks, which can be
found scattered across the entire arena. The number of pucks per colour varies
between 25 and 150, also indicated in Fig. 1. When placing pucks we make sure
that they do not overlap with existing pucks, robots or other obstacles.



Robots gather these pucks simply by driving over them, and as soon as a
robot has gathered a puck it is immediately removed: the robots do not have
to transport the puck to a particular region. A replacement puck of the same
colour is then randomly placed in the arena, taking the appropriate distribution
into account, to allow the experiment and evolution adequate time.

Each robot is controlled by a single-layer feed forward neural network which
controls its left and right wheels. The inputs for the neural network are the
robot’s sensors: a robot has 8 sensors for each type of puck, as well as 8 sensors
to detect environmental obstacles and other robots. The layout of these sensors
is that of a standard e-puck’s infrared sensors: four face forward, two to the sides
and two face backwards. Because the robots have separate sensors for each type
of puck and the network only has direct connections from input to output, the
task of collecting each type of puck –although very similar– needs to be learned
completely separately.

The robot’s genome directly encodes the neural network’s weights (8 types of
sensor × 8 sensors × 2 outputs plus 2 bias connections plus 4 feedback (current
speed and current rotation to either output) = 134 weights) as an array of reals.

As specified by the monee algorithm, the robots alternate between peri-
ods of explorative block gathering and motionless genome reception. To prevent
synchronised cycles among the robots, we add a small random number to each
robot’s fixed lifetime. This forces desynchronised switching between life and re-
birth even though our runs start with all robots perfectly in sync at the first
time-step of their lifetime.

At the end of the egg phase offspring was created by selecting a parent from
the received genomes according to the parental investment and mutating it using
gaussian perturbation with a single, fixed mutation step size σ = 1.

To investigate the response of this system to dynamically changing tasks, we
radically change the distribution of pucks during the runs: halfway through the
run, at 1 million iterations, all distributions generate pucks of a single colour
only: only SteelBlue in half the runs, only Indigo in the others (i.e., either a
common or a rare task remains).

Due to time constraints, we were only able to conduct a limited number of
runs. Therefore, it is not feasible to provide meaningful statistics on the exact
level of performance. The data does suffice, however, to indicate the potential
of the monee approach and to analyse some of the dynamics of a population of
robots that use monee to adapt their behaviour.

5 Results & Analysis

Irrespective of the foraging tasks, the robots must cope with their environment
to be able to procreate: they must at the very least develop controllers that drive
around the arena to inseminate eggs. Thus, the environment implies that the ro-
bots should move around. The robots should also avoid obstacles, even though
this is not specified as an explicit task. If they do not, the time they spend
trying to drive through an obstacle cannot be spent spreading their genome,
limiting their chances of creating offspring. Therefore, we measure the number



of collisions between robots and obstacles to gauge the level of adaptation to
the environment. Figure 2 shows the total number of collisions for the whole
collective over time. The number of collisions is aggregated over 1000 time steps.
The number of collisions decreases with time. Even though the decrease is not
spectacularly steep, it is a clear indication that controllers do adapt to the en-
vironment without any specifically set goal.

Figure 2. Number of collisions over
time. The grey lines denote individual
runs, the black line shows the average
over the four runs.

Of course, we did specify the for-
aging tasks for the robots. Figure 3
shows the number of pucks harves-
ted against time, here too the number
of pucks gathered is aggregated over
1000 time steps. Clearly, the robots
do evolve effective foraging behaviour:
the number of collected pucks per
time unit steadily increases through-
out the runs. Changing the environ-
ment so that only pucks of a single
colour are generated in most cases ac-
tually leads to a slight increase in the total number of pucks gathered. This seems
to indicate that the robots in those runs do not specialise in a particular task.
Possibly, when only a single colour remains, they are not distracted by pucks of
a different colour and they therefore forage more effectively.

Figure 3. Number of pucks gathered over time. The grey lines denote individual runs,
the black line shows the average over the four runs. The vertical line indicates the
moment where the task changes and all pucks become a single colour.

To asses the efficacy of monee’s currency scheme to distribute tasks, we
also ran our experiments with the exchange rate mechanism turned off. In this
case, a genome’s chance of selection is related purely to the number of pucks
that it collected without any consideration for their colour. Therefore, genomes
that encode harvesting behaviour for rare colours are at a disadvantage. Figure
4 compares the fraction of SteelBlue, OrangeRed and LimeGreen pucks out of
all gathered pucks with and without the exchange rate mechanism. The plots
only show the first million time-steps because after that only a single colour
remains as described above. With the exchange rate mechanism turned on (Figs.
4(a) and 4(b)). In both cases, the fraction of pucks gathered tends towards the
actual fraction of pucks available: the trend in Fig. 4(a) decreases to the natural
ratio of 0.375, indicating that the easiest task of collecting ubiquitous pucks is
balanced with the harder task of collecting rarer pucks. Similarly, the fractions
of OrangeRed and LimeGreen pucks in Fig. 4(b) slowly seem to increase to level



off at the natural ratio of 0.1875. Figures 4(c) and 4(d) show a different picture.
Without the exchange rate mechanism, the simple task is increasingly favoured
as shown by the continuing rise of the SteelBlue fraction. This is at the expense
of collecting rare colours, as indicated by the decreasing trend in Fig. 4(d).

(a) SteelBlue fractions with auction (b) OrangeRed, LimeGreen fractions
with auction

(c) SteelBlue fractions without auction (d) OrangeRed, LimeGreen fractions
without auction

Figure 4. Fraction of gathered pucks that are SteelBlue and LimeGreen for runs with
and without the exchange rate auction mechanism turned on. Light grey plots for
individual runs, black lines show the average over the runs. Horizontal black lines
indicate the fraction of all pucks for the respective colours (0.375 and 0.1875).

Figure 5. Market fraction for verifica-
tion runs. Grey lines indicate standard
deviation

To verify the decrease in collect-
ing rare pucks, we ran a more extens-
ive experiment. To isolate this claim
more purely we used only 2 colours,
red and blue, in a 1:3 ratio, i.e. 50
blue pucks and 150 red pucks. This
amounts to a natural collection ratio
of 0.25 for blue pucks. All other ex-
perimental parameters were kept the
same as the previous experiments, ex-
cept that we ran 64 repeats.

Figure 5 shows the market frac-
tion of blue pucks gathered, with and
without market. As you can see the ratio for blue pucks gathered with market
trends towards the natural ratio of 0.25, while the ratio for blue pucks gathered
without market steadily drops over the course of a run. Although the difference
in ratio without market is not significant at time step 1e6 (at least, not for 64
repetitions), the downward trend would seem to continue if the experiment was
extended.

6 Conclusions & Further Research

We have introduced the monee algorithm as a tool to combine the open-ended
and task-driven facets of evolutionary robotics. As a proof of concept, we ran
experiments where robots have to move about an obstacle-strewn arena while



concurrently foraging seven types of puck. The robot controllers were laid out
so that this amounts to having to learn seven distinct tasks.

Monee allows the robots to learn to cope with their environment as shown by
the decreasing frequency of collisions. It also drives task-driven adaptation: the
robots become increasingly proficient at the gathering tasks and a momentous
change where six of the tasks disappear has no ill effect on the collective task
performance. The exchange rate mechanism allows effective division of the tasks
over the collective without favouring easier tasks at the cost of harder ones.

We emphasise once again that these results are based on a very limited num-
ber of runs. Nonetheless, they provide a good indication of algorithm behaviour,
enough at least to show that the monee algorithm opens a promising avenue of
further research. We are of course planning to conduct further experiments to
provide solid statistical foundations for the indications we show in this paper.
Moreover, we are keenly interested in researching the intricacies of the economy
that results from the exchange rate mechanism in the face of more dynamic
changes in task composition as well as the results of enforcing some level of task
specialisation.
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