On-line evolution of robot controllers by an encapsulated evolution
strategy

Evert Haasdijk, A.E. Eiben, Giorgos Karafotias

Abstract— This paper describes and experimentally evaluates
the viability of the (. + 1) ON-LINE evolutionary algorithm for
on-line adaptation of robot controllers. Secondly, it exploresthe
parameter space for thisalgorithm and identifiesfour important
parameters. the population size u, the re-evaluation rate p,
the mutation step-size o and the controller evaluation period
7. Subsequently, it investigates their influence on controller
performance, stability of behaviour and speed of adaptation.
The results indicate that the encapsulated on-line evolutionary
approach is a viable one and merits further research. In
agreement with existing research, the mutation step-size o
proves to be of overriding importance to finding good solutions.
Specific to on-line evolution, the results show that longer
evaluation times greatly benefit the quality of controllers as
well as stability of behaviour and speed of adaptation.

|. INTRODUCTION

Evolutionary agorithms have various applications within
robotics, as designers, respectively optimisers of robot con-
trollers, morphological or functional features [1]. This paper
is concerned with optimizing robot controllers. To position
our approach we use a small taxonomy whose topmost
junction distinguishes two cases by considering when the
evolutionary algorithm is applied, before deployment or after
deployment of the controllers. The corresponding terminol-
ogy distinguishes off-line (development time) and on-line
(run time) evolutionary algorithm applications as outlined in
[2].

Traditionally, evolutionary robotics focusses on off-line
applications of evolutionary computation, where an evolu-
tionary algorithm is used to design, respectively optimise,
controllers before deployment. Controllers (phenotypes) are
represented by appropriate genotypes and a population of
such genotypes undergoes eval uation, selection, and variation
in a computer external to the robot. This process terminates
at some point with a controller that is deployed onto real
robots that will subsequently perform their task without
further adaptation (at least, without further evolution). During
the evolutionary process, evaluation of controllers can be
performed by testing them either in simulation or in real
robots. However, even in the latter case we have to do with
off-line evolution, since the real-life tests with robots using
a given controller merely serve as fithess calculations. The
results are passed back to the evolutionary algorithm running
on the computer that carries out the variation and selection
operators and initiates new trials until some termination
condition is met and the best evolved controller is deployed
as the end result. Figure 1 illustrates this approach.

Dept. of Comp. Sci., Vrije Universiteit Amsterdam, The Netherlands;
email: {e. haasdi j k, gusz, gks290}@ ew. vu. nl .

Robot + its controller after
deploying “optimal” genotype

—
LD 5 =3
NN
|
A

e S

i -

Population of genotypes
evolving on a computer

Fig. 1. The classical approach to evolve robot controllers. Evolution takes
place off-line, before deployment, in an external computer. The population
of controllers undergoes selection and variation inside this computer. Fitness
evaluation can be either done in simulation (inside this computer again), or
“in vivo” by sending the controller to areal robot that uses it for a while to
collect information on its quality. The black arrow indicates the deployment
of the fina contoller.

Phenotype = actual
robot controller

R
M§ One of the
genotypes
decoded for
phenotype
L~

Population of genotypes (encoding possible
robot controllers) evolving inside the robot

Fig. 2. The encapsulated approach to evolve robot controllers. Evolution
takes place on-line, after deployment, in an internal computer. The popula-
tion of controllers undergoes selection and variation inside the robot itself.
Fitness evaluation is done “in vivo” by decoding one of the genotypes into an
active controller and let the robot use it for awhile to collect information on
its quality. To evaluate al genotypes some kind of time-sharing mechanism
must be used.

Here, by contrast, we consider the on-line application of
evolutionary computation to design robot controllers, where
an evolutionary algorithm is used to provide continuous
adaptation as the robots perform their tasks in rea life. The
major difference with off-line evolution is that in this case
controllers do undergo evaluation, selection, and variation
after deployment.

Broadly speaking, there are two kinds of approach to
on-line evolution of robot controllers. One approach, dis-
tributed evolution, exemplified by Watson, Ficici and Pol-
lack’s method, has a single controller in each robot and
implements selection and variation (reproduction) operators
through the interactions between individual robots [3], [4],
[5], [6]. The second approach encapsulates a complete evolu-
tionary algorithm with a population of controllers within each
robot; the robotsindividually adapt through evolution without
the necessity of interaction amongst themselves [7], [8], [9].
Figure 2 illustrates this encapsulated approach. Of course,
these two methods may be combined, yielding a system
analogous to that of an island-based parallel evolutionary
algorithm with each robot running its own evolutionary
algorithm and the interactions between robots amounting to
migration between islands [10][11].

The work in this paper falls in the second category with
an encapsulated population in each robot, without migration.
We are investigating this approach in the context of a running
research project, SYMBRION, where on-line evolution is one
of the pivotal mechanisms for adaptive robot control.® Inher-
ent to this project, and to some extent to on-line evolutionary
approaches in general, are the physical limitations:

1) Even though the robot’s evolving population contains
multiple controllers, at any time only one of them can
actually control the robot. Consequently, atime sharing
system must be implemented that activates controllers
one by one.

2) The evolutionary process must be autonomous, without
any human intervention or central control. Hence,
when a new controller is activated for evaluation, its
test period starts at the location where the previous
controller led the robot.

3) To obtain sufficient feedback on the quality of a given
controller, its test period —the time-span where it is
activated and actually controls the robot— should be
sufficiently long.

In the following section, we discuss the specific con-
Siderations in on-line evolution of robot controllers. Then,
we introduce an encapsulated evolutionary agorithm called
the (u + 1) ON-LINE algorithm. Section IV describes the
experimental set up we used to evaluate the agorithm with
Sec. V analysing the results. Section VI concludes the paper.

II. CONSIDERATIONS IN ON-LINE EVOLUTION
The constraints listed above imply some considerations
specific to on-line evolution and its analysis.

1European Union FET Proactive Intiative: Pervasive Adaptation, grant
agreement 216342, htt p: / / www. synbri on. eu.

The first challenge derives from the rea-time character
of the evolutionary process. Fitness evaluations need a test
period with a reasonable length [(say, in minutes) to obtain
realistic performance figures. Meanwhile, the whole exper-
iment is constrained by a reasonable maximum duration L
(again, in minutes). Consequently, the total number of fitness
evaluations available to the evolutionary process is limited
to % Obvioudly, this ratio can vary depending on various
practical details, but in our practice it fals in the range
between 500 to 1500. In general, it is impossible to say
what the minimum number of fitness evaluations is for a
decent evolutionary progress, but one thousand is definitely
avery low budget to spend compared to what is common in
evolutionary algorithms.

The second challenge is the noisy nature of the fithess
evaluations. Using the off-line evolutionary approach with
human intervention it is possible to test a given controller
starting at different locations (in general: under different
circumstances). This helps to obtain good fithess information
in two ways, by producing more data —one fitness value for
each starting point— and by the ability to use representative
or otherwise well-selected locations. However, in the on-
line case, where human intervention is excluded, starting
locations are arbitrary and we only have one measurement
for each activated controller. Consequently, the evaluation
of a genome is inherently very noisy because of the very
dissimilar evaluation conditions from one genome to ancther.
For any given genome, this implies that the evaluation of
its fithess may be misleading, smply because of lucky or
inauspicious starting conditions. Given these considerations,
the viability of the on-line evolutionary approach itself is an
open question.

Thirdly, actual performance matters: in contrast to typical
applications of evolutionary algorithms, the best performing
individual is not necessarily the most important when apply-
ing on-line adaptation. Remember that controllers evolve as
the robots go about their tasks; if arobot is continually evalu-
ating poor controllers, that robot’s actual performancewill be
inadeguate, no matter how good the best known individuals
as archived in the population. Therefore, the evolutionary
algorithm must converge rapidly to a good solution (even
if it is not the best) and search prudently: it must display
a more or less stable level of performance throughout the
continuing search. This leads to considerations very similar
to those concerning the trade-off between exploration and
exploration in reinforcement learning.

This paper proposes an algorithm for encapsulated on-line
evolution of robot controllers and concerns itself with two
guestions. The first question is whether, in the face of the
considerations outlined above, such an algorithm can evolve
good controllers on-the-fly. Secondly, it investigates the in-
terplay between a number of parameters of the proposed
algorithm. To this end, we implement the mechanism in
the well-known simulation platform Webots? and conduct a
series of experiments where controllers to perform a simple

2htt p: // ww. cyber boti cs. conl

task must evolve from scratch. The next section describes
the algorithm in detail.

[11. THE (1 + 1) ON-LINE EVOLUTIONARY ALGORITHM

The challenge concerning the low number of fitness
evauations mandates that the evolutionary algorithm must
converge very quickly to an acceptable level of solution
quality. Therefore, we have chosen to base our method
on evolution strategies [12], because 1) the controllers we
have in mind can be parameterised, hence represented by a
vector of real-valued numbers, 2) evolution strategies have
a very good reputation as evolutionary solvers of numerical
optimisation problems[13]. As the notation indicates, (u+1)
ON-LINE generates A = 1 child per cycle. This value is
extremely low to evolution strategy standards, where the %
is usualy between 4 and 8, but using A = 1 can save on
fitness evaluations.

Our (114 1) ON-LINE evolutionary algorithm comprises an
encapsulated evolutionary algorithm, where a population of
w1 individuals is maintained within each robot. As an encap-
sulated evolutionary algorithm it is similar to the agorithms
described in [7], [5], [8] concerning its main design principle,
but it has a number of specific novel features. It is also
different from its earlier version described in [9] in that

« the present version uses fitness-based parent selection,
rather than selecting parents by a uniform distribution,

o the present version uses recombination (crossover),
rather than mutation only,

« in the present version the mutation step-sizes are either
constant or self-adaptive, while [9] used a heuristic
adaptive scheme to adjust them on-the-fly,

« in the present version the extra information obtained by
re-evaluation (see details later) is used to update, rather
than replace, old information.

Below we discuss the specific properties of our (u + 1)
ON-LINE evolutionary agorithm; its pseudo code is shown
inAlg. 1.

To cope with the issue of inherently noisy fitness evalu-
ations, (i + 1) ON-LINE re-evaluates genomes in the pop-
ulation with a given probability. This means that at every
evolutionary cycle two things can happen: either a new
individual is generated and evaluated (with probability 1—p),
or an existing individual is re-evaluated (with probability p).
To ensure that re-evaluation efforts are spent on promising
individuals, the individual to be re-evaluated is chosen by
binary tournament selection from the whole population.
The fitness values from subsequent (re-)evaluations of any
given individual are combined using an exponential moving
average; this emphasises newer performance measurements
and so is expected to promote adaptivity in changing envi-
ronments. This is, in effect, a resampling strategy to deal
with noisy fitness evaluations as advocated in [14].

To promote rapid convergence we diverge from the com-
mon practice of uniform random parent selection in evolu-
tion strategies and use binary tournament parent selection,
increasing the selective pressure. For the same reason, we

use A = 1 and apply recombination. Thus, in each cycle, one
new individual is created from two parents, each of which
is selected with a binary tournament. Selective pressure is
increased even further by using an plus-strategy, even though
self-adaptive mutation rates such as we have here usually call
for using a comma-strategy [15].

for i=1tou do
/1 Initialisation
popul ation[i] = CreateRandonGenone ;
popul ation[i]. oS = Ginitial;
popul ation[i].Fitness =
RunAndEval uat e(popul ation[i]);
end
for ever do
/1 Continuous adaptation
if random() < p then

/1 Don't create offspring, but
re-eval uate sel ected indivi dual

Eval uatee =

Bi nar yTour nanment (popul ati on);

Recover (Eval uat ee) ;

/1 Brief intermezzo of random
novenment to get out of bad
situations due to previous
eval uation

Eval uat ee. Fit ness =

(Eval uat ee. Fi t ness +

RunAndEval uat e(Eval uatee)) / 2;

/1 Combi ne re-evaluation results
t hrough exponential noving average

end
else

/1l Create offspring and eval uate that
as chal | enger

Parent A =

Bi nar yTour nanent (popul ati on);

Parent B = Bi naryTour nanment (popul ati on

- parentA);

Chal | enger =

Aver agi ngCr ossover (Parent A, ParentB);

/1l Crossover also recomnbi nes os

Mut at e(Chal | enger) ;

/1 Miutation al so updates os cf.
p. 76

Recover (Chal | enger);

/1 Brief intermezzo of random
nmovenment to get out of bad
situations due to previous
eval uati on

Chal | enger. Fitness =

RunAndEval uat e(Chal | enger) ;

[15],

/! Replace last (i.e. worst)
i ndi vidual in population w.
elitism

if Challenger.Fitness > population[y] .Fitness then
popul ation[] = Chall enger;
popul ation[u] . Fitness =

Chal | enger. Fi t ness;
end

end
dSort (popul ati on);

Algorithm 1: The (u + 1) ON-LINE evolutionary algo-
rithm.

IV. EXPERIMENTAL SET-UP

As mentioned in Section 11, we conduct a series of exper-
iments. Firstly, to verify that the (1 + 1) ON-LINE algorithm
is capable of producing robot controllers with acceptable
quality within acceptable time. Secondly, to investigate the
effect of a number of parameters of the (u + 1) ON-
LINE agorithm.

(1 + 1) ON-LINE sports two parameters that are peculiar
to the challenges posed by on-line, on-board evolution and
directly influence the speed of evolutionary adaptation. These
are;

p There-evaluation rate: larger values for p lead to better
fitness value estimations, thus improving the quality of
selection, meanwhile slowing down the search. p’s value
governs the likelihood of using an evaluation cycle for
re-evaluation of one of the current population members
instead of evaluating a newly generated controller. We
tried three values for p: 0.2, 0.4 and 0.6;

7 The duration of controller evaluation: increasing 7 in-
creases the evaluation’s reliability while it obviously
decreases the number of evaluations per time-unit and
thus the search. Controller evaluations are measured
in ticks: the simulator invokes the controller once per
tick, one tick lasting 50 milliseconds simulated time in
our experiments. We tried two settings: 60 and 300,
corresponding to 3 and 15 seconds simulated time,
respectively.

Fig. 3. The arena used in the experiments. The circle represents an e-puck
robot to scale.

Two further parameters that might be expected to be
influential from general evolutionary a gorithm point-of-view
are;

1 The population size: a larger population size reduces
the danger of getting stuck in local optima, meanwhile
it slows down the search. We ran experiments with
set to 6, 10 and 14,

o The mutation step-size. We compare two regimes
that manage the mutation step-size: the standard self-
adaptation mechanism used in evolution strategies (see
[15], p. 76) and a simplistic approach using a constant
o value. As fixed o values, we used 0.2 and 0.8.

Notethat in [9], we used a o adaptation scheme that varied
the o values based on a heuristic in an attempt to balance
exploration and exploitation. Here we look at aternatives,
but strictly speaking we cannot consider it a comparison with
the previous version of (;z+ 1) ON-LINE because many other
details of the evolutionary algorithm have changed as well.

All together, we have 54 agorithm variants to compare
here: 3 values for p, and 3 different values for p, 3 different
o management mechanisms/values and two 7 values. The
details of the experimental settings are shown in Table I.

As a test case, we have chosen e-puck robots in an
arena and a classical task after [1]. The fitness function
representing this task favours robots that are fast and go
straight-ahead, which, in a constrained environment, forces a
trade-off between tranglational speed and obstacle avoidance.
Equation 1 describes the fitness calculation:

evalTime

Yo (- (l=w)-(1—-d) (1)

t=0
where v, and v,. are the trandational and the rotational speed,
respectively. v; is normalised between -1 (full speed reverse)
and 1 (full speed forward), v, between O (movement in
a straight line) and 1 (maximum rotation); d indicates the
distance to the nearest obstacle and is normalised between 0
(no obstacle in sight) and 1 (touching an obstacle)

The evolutionary algorithm governsthe weightsin a neural
net-based robot controller. This neural net is a perceptron
with a hyperbolic tangent activation function using 9 input
nodes (8 proximity sensor inputs and a bias node), no hidden
nodes and 2 output nodes (the left and right motor values),
resulting in atotal of 18 weights. To evolve these 18 weights,
the evolutionary algorithm uses the obvious representation of
real-valued vectors of length 18 for the genomes.

For each single run of the experiment, the robot starts
with a fresh random seed and a population of p randomly
generated genomes.

The experiments were performed in pure simulation using
the Webots simulator. Each experiment has a single robot
running its own autonomous instance of (u + 1) ON-LINE .
For each combination of parameter settings, we conducted
100 trias. The robot controller is called once every time-
step, each time-step lasting 50 milliseconds simulated time.

f=

V. RESULTS AND DISCUSSION

As noted before, we are specifically interested in the actual
performance of the agorithm, i.e., the performance of the
active controllers averaged over a period of time (a number of
evaluations). Clearly, this includes performance information
of controllers that evaluate poorly and are discarded after
the evaluation period, as well as controllers that survive the
(re-)evaluation period and (re-)enter the population. Another
performance indicator is that of the best performance, i.e.,
the performance of the best controller in the population,
regardless whether this controller is currently active. In
addition to performance we will consider two other indicators
of behavioural quality.

EXPERIMENT DESCRIPTION TABLE FOR THE (12 + 1) ON-LINE TESTS

TABLE |

Experiment details

Task

Arena

Robot group size

Simulation length

Number of repeats

fast forward

see Fig. 3

1

10,000 seconds (simulation time)
100

Controller details

ANN type perceptron

Input nodes 9 (8 sensory inputs and 1 bias node)

Output nodes 2 (left and right motor values)
Evolution details

Representation real valued vectors with —4 < z; < 4

Chromosome length L
Fitness

Recovery time
Evaluation time
Re-evaluation rate p
Re-evaluation strategy
Population size
Mutation

Mutation rate

Crossover
Crossover rate
Parent selection
Survivor selection

18

See Eq. 1

10 time steps

60 or 300 time steps

0.2, 0.4, 0.6

exponential moving average
6, 10, 14

Gaussian N(0,0)
Self-adaptive with oy = 0.8
or fixed at 0.2 and 0.8
averaging

1.0

binary tournament
replace worst in population if better

First, consider the stahility, or rather the noisiness of the
adaptive process. Even though a run may exhibit good actual
performance on average, it is preferable if performance is
more or less constant. Robots that often lapse into very
poor behaviour as they consider candidate controllers are
less desirable than robots that operate at a consistent level.
To measure this quantity, we analyse the differential entropy
[16] of the actual performance in runs of the experiment.

Secondly, we are interested in the speed of adaptation,
that is the rate of performance improvement over time. In
particular, we are looking for the turtle-and-hare effect.

Fig. 4. Traectory of one of the better controllers towards the end of the
run.

In the following subsections we will discuss the experi-
mental results from the perspective of these indicators.

A. Performance of controllers

Our test landscape lies within a four-dimensional space,
with one dimension belonging to each of the parameters we
vary over the experiments. mutation step-size o, evaluation
period 7, population size u, and re-evaluation rate p. In-
tensive inspection of the data reveals that these parameters
differ greatly in their impact on the outcomes, but showed
no noticeable interactive effects, so we feel justified to
consider them independently. We do so in order of decreasing
influence. The statistics shown in this subsection have been
compiled over approximately the last 8 minutes of simulated
time in the experiments.

Mutation step size The most influential parameter turns
out to be 0. In Figure 5 we present the actual and best
performance observed over the last 8 minutes (simulated
time) of each run as a function of different o values. These
plots show the average values, taken over the complete set
of experiments, that is, for al investigated values of al other
parameters, amounting to 2 - 3 - 3 - 100 = 1800 data points
behind each bar. The results show that small o values (0.2
is about ---th of the domain of the variables z;) do not

40
work. The high value for o we tried (0.8 is about ---th of

the domain of the variables x;) is clearly the best chgice for
actual performance and finishes as a close runner-up to the
self-adaptive regime in the plot for best performance.

To interpret these results it is important to note that the
self-adaptive regime regulates 18, possibly different, step
sizes for each controller: one separate o value for each of
the real-valued object variables in the artificial genome rep-
resenting a controller. This means that in this case evolution
is solving a double task: optimising the 18 object variables
and finding good step sizes on-the-fly, and there are ssimply
not enough evaluations available to pull that off.

1 1

o
©
o
©

o
o

o
o

Performance
o
SN

Performance
o
SN

o
N}
o
N}

1

X X

(=)
(=)

02 08 SA 02 08 SA
(a) actual (b) best

Fig. 5. Effect of o on performance.

Evaluation period Next, we consider the effect of the
evaluation period 7. Figure 6 exhibits the actual and best
performance observed over the last 8 minutes (simulated
time) of each run as a function of different + values when
using o = 0.8. The results clearly indicate the superiority
of longer evaluation periods. 7 = 300 delivers better results
than 7 = 60. This is significant information, as in general
it is not obvious whether more, but shorter evaluations or
fewer, but longer evaluations lead to better performance. In

iR
iR

o
)

o
©
o o
(o)) for]

o
>
o
>

Performance
Performance

o
[N}
o
[N}

o
o

60 300 60 300
T T

(@ actual (b) best

Fig. 6. Effect of 7 on performance.

essence, this is a trade-off between quantity (lower 7) and
quality (higher 7) and our experiments support a preference
for the latter.

Population size The population size p is the third most
influential parameter among those we consider here. The
significance of this parameter is obvious, evolutionary search
through smaller populations can proceed faster, but it is also
more easily trapped in local optima. As Figure 7 shows p
does not have a great effect on best performance, but as
for actual performance we can articulate a preference for
the smallest value we tested, ¢ = 6. This is good news,
considering the hardware limitations in robots.

1 1
0.8 0.8
[} [}
o (5}
5 0.6 506
E E
8 8
$04 $04
o o
0.2 0.2
0 6 10 14 0 6 10 14
" w
(8 actua (b) best

Fig. 7. Effect of p on performance.

Re-evaluation rate Finaly, our experiments also shed
light on the effects of different re-evaluation rates. Somewhat
to our surprise, p is not a very influential parameter as the
results in Figure 8 indicate. Smaller values of p seem to
advance better best performance, even though the differences
are not too big. In theory, this makes sense considering
that spending less time on re-evaluating known candidate
solutions allow to visit more points in the search space.
Looking at the data regarding actual performance we see
again rather small differences between the values considered.
Having noted this we choose the middle value, p = 0.4 as
our favourite.

B. Sability of actual performance

To assess the volatility of the robot’s actua performance
over the course of the experiments, we calculate the dif-
ferential entropy of actual performance over the full length
of each run. For this analysis, runs with step size 0 = 0.2
were excluded as their performance was uniformly low and
therefore had minimal entropy; this muddles the analysis
for more interesting values of . We found that only the

[N
[N

0.8 0.8
Q Q
o o
5 0.6 5 0.6
E E
g g
5 0.4 5 0.4
o o

0.2 0.2

0 0.2 0.4 0.6 0 0.2 0.4 0.6
P P
(a) actua (b) best

Fig. 8. Effect of p on performance.

evaluation period 7 has an appreciable influence on the level
of entropy Fig. 9 shows the average entropy for different
values of 7. All runs apart from the runs with o = 0.2 are
included in the calculations for this graph. Lower entropy (in
this case, a longer bar as the values are negative®) indicates
alower level of volatility: the runswith 7 = 300 clearly lead
to much more consistent behaviour.

8
8

6|

4

Entropy

2

0

60 300
T

Fig. 9. 7 against entropy of actual performance

C. Soeed of adaptation

Fig. 10 shows the development of performance over time
for actual and best performance and for the two values of
7. Each graph contains three series: one for each value of p.
Only results from runs with o set to the optimal value of 0.8
are included. The influence of 1 on the speed of adaptation
appeared negligible, hence p is disregarded in these graphs:
the results are taken across al values of p.

To construct these graphs, we first calculated a moving
window average to smooth the performance curves for each
individual. The resulting figures were then averaged over al
appropriate runs to yield the values plotted here.

In Subsection V-A, we aready saw that 7 = 300 yields
the best results, and here we see that the performance also
increases fastest for 7 = 300, and again to our surprise, p
does little to influence the rate of performance increase.

Note, that the performance graphs have not yet levelled of
at the end of the runs, from which one may conclude that
performance could increase further yet as time progresses.

VI. CONCLUSION
This paper presented the (1 + 1) ON-LINE evolutionary
algorithm to provide the possibility of on-line evolutionary

3This is not regular Shannon entropy but the differential entropy, which
can be less than 0.

Actual Fitness Best Fitness

35 55
50

45

=60

0 1000 2000 3000 0 1000 2000 3000

=300

0 200 400 600 800 0 200 400 600 800

Fig. 10. Average actua and best (left and right column, respectively)
performance over time for different values of = and p

adaptation in robotics. This agorithm was specifically de-
signed to address three challenges inherent in on-line adap-
tation: noisy evaluations, relatively few evaluations and the
primacy of actual as opposed to best performance throughout
the developmental process. While drawing on the well-
established field of evolution strategies, (11 + 1) ON-LINE di-
verges from common evolution strategy implementations to
increase algorithm speed by using A = 1 and non-random
parent selection.

Revisiting the research questions we posed in Sec I,
we can firstly conclude that our experiments show that the
(u + 1) ON-LINE agorithm is indeed capable of developing
acceptable controllers as the robot performs its task.

Secondly, the results show that the mutation step-size o is
the single most decisive parameter when it comes to deliv-
ering good controllers. Thisis in line with previous research
into parameter setting for evolutionary algorithms [17]. The
controller evaluation period 7, specific to on-line evolution, is
the next most important parameter when it comes to quality.
Moreover, it is the deciding parameter when considering
the stability of performance and speed of adaptation. Re-
garding the population size u, we have seen that having
larger values does not improve the performance of even the
best known controllers, while the penalty of storing lower-
quality alternative controllers manifests itself in decreasing
actual performance. It may yet prove beneficial, however,
in dynamic environments where it can enable falling back
on remembered solutions. The (1 + 1) ON-LINE algorithm
has proved to be fairly insensitive to variations in the re-
evaluation rate p. While these results are promising and merit
our consideration into on-line evolution of robot controllers,
they cannot be indiscriminately generalised to other tasks,
robots or even environments without further investigation.

Acknowledgements: This work was made possible by the
European Union FET Proactive Initiative: Pervasive Adapta-

tion funding the SYMBRION project under grant agreement
216342. The authors would like to thank Nicolas Bredeche

and other partners in the SYMBRION consortium and Sel-
mar Smit for many inspirational discussions on the topics
presented here.

REFERENCES

[1] Stefano Nolfi and Dario Floreano, Evolutionary Robotics: The Biology,
Intelligence, and Technology of Self-Organizing Machines, MIT Press,
Cambridge, MA, 2000.

[2] A.E. Eiben, Evert Haasdijk, and Nicolas Bredeche, “Embodied, on-
line, on-board evolution for autonomous robotics’, in Symbiotic Multi-
Robot Organisms: Reliability, Adaptability, Evolution, P. Levi and
S. Kernbach, Eds., chapter 7, pp. 361-382. Springer, (to appear) May
2010.

[3] Richard A. Watson, Sevan G. Ficici, and Jordan B. Pollack, “Embodied
evolution: Distributing an evolutionary agorithm in a population of
robots’, Robotics and Autonomous Systems, vol. 39, no. 1, pp. 1-18,
April 2002.

[4] Steffen Wischmann, Kristin Stamm, and Florentin Worgotter, “Em-
bodied evolution and learning: The neglected timing of maturation”, in
Advances in Artificial Life: 9th European Conference on ArtificialLife,
Francesco Almeida e Costa, Ed., vol. 4648 of Lecture Notes in
Artificial Intelligence, pp. 284-293. Springer-Verlag, Lisbon, Portugal,
September 10-14 2007.

[5] Ulrich Nehmzow, “Physically embedded genetic agorithm learning
in multi-robot scenarios: The pega algorithm”, in Proceedings of
The Second International Workshop on Epigenetic Robotics: Modeling
Cognitive Development in Robotic Systems, C.G. Prince, Y. Demiris,
Y. Marom, H. Kozima, and C. Balkenius, Eds., Edinburgh, UK, August
2002, number 94 in Lund University Cognitive Studies, LUCS.

[6] Stefan Elfwing, Embodied Evolution of Learning Ability, PhD thesis,
KTH School of Computer Science and Communication, SE-100 44
Stockholm, Sweden, November 2007.

[7] Siavash Haroun Mahdavi and Peter J. Bentley, “Innately adaptive
robotics through embodied evolution”, Auton. Robots, vol. 20, no. 2,
pp. 149-163, 2006.

[8] Joanne H. Walker, Simon M. Garrett, and Myra S. Wilson, “The bal-
ance between initia training and lifelong adaptation in evolving robot
controllers’, |EEE Transactions on Systems, Man, and Cybernetics,
Part B, vol. 36, no. 2, pp. 423-432, 2006.

[9] Nicolas Bredeche, Evert Haasdijk, and A.E. Eiben, “On-line, on-board

evolution of robot controllers’, in Artificial Evolution. 2009, vol. 4926

of Lecture Notes in Computer Science, pp. 110-121, Springer.

Yukiya Usui and Takaya Arita, “Situated and embodied evolution in

collective evolutionary robotics’, in Proceedings of the 8th Interna-

tional Symposium on Artificial Life and Robotics, 2003, pp. 212-215.

Anderson Luiz Fernandes Perez, Guilherme Bittencourt, and Mauro

Roisenberg, “Embodied evolution with a new genetic programming

variation algorithm”, icas, vol. O, pp. 118-123, 2008.

H.-P Schwefel, Evolution and Optimum Seeking, Wiley, New York,

1995.

T Béack, Evolutionary Algorithms in Theory and Practice, Oxford

University Press, Oxford, UK, 1996.

Hans-Georg Beyer, “Evolutionary algorithms in noisy environments:

theoretical issues and guidelines for practice”, Computer Methods in

Applied Mechanics and Engineering, vol. 186, no. 2-4, pp. 239 — 267,

2000.

A. E. Eiben and J.E. Smith, Introduction to Evolutionary Computing,

Springer-Verlag, London, 2003.

A. Lazo and P. Rathie, “On the entropy of continuous probability

distributions’, 1EEE Transactions on Information Theory, vol. 24, no.

1, pp. 120-122, 1978.

V. Nannen, SK. Smit, and A.E. Eiben, “Costs and benefits of tuning

parameters of evolutionary algorithms’, in PPSN, Gunter Rudolph,

Thomas Jansen, Simon M. Lucas, Carlo Poloni, and Nicola Beume,

Eds. 2008, vol. 5199 of Lecture Notes in Computer Science, pp. 528—

538, Springer.

[10]

(11

[12]
[13]

[14]

[19]

[16]

[17]

