
VRIJE UNIVERSITEIT AMSTERDAM

Data driven Ximpel

interactive video

J.Heymans

1275089

[june - july 2009]

Interactive video can provide viewers with more options than the usual play, stop, etc. Ximpel
is one such interactive video platform which can provide users with questions and choices
about which fragments within a video they would like to watch. In this thesis I will describe
how adding database functionality to the Ximpel platform will make it more user-friendly and
how it can provide possibilities to make the interactive videos created using Ximpel, more
dynamic

Table of Contents

Introduction ... 3

1. Overview of Ximpel interactive video platform ... 5

1.1. What is Ximpel. .. 5

1.2. Features & functions of Ximpel .. 5

1.3. The playlist.xml .. 6

1.4. The ximpelConfig.xml .. 8

1.5. Benefits of a data-driven Ximpel application ... 9

2. Requirements & goals of data-driven Ximpel application .. 10

2.1. Success scenario .. 10

2.2. Functional requirements .. 10

2.3. Non-functional requirements .. 12

2.4. Goal of the application .. 12

3. Design & implementation ... 13

3.1. Design decisions ... 13

3.2. Database structure ... 16

3.3. The code .. 19

3.4. External scripts used ... 21

4. Usage of data-driven Ximpel playlist builder ... 22

4.1. Tutorial .. 22

Conclusion ... 26

References ... 27

Appendix 1: example of a ximpel playlist.xml ... 28

Appendix 2: example of ximpelConfig.xml .. 29

.

Introduction

Digital video has become a widely used media format in recent years. Partly because it can
better convey the goals of a provider in means of image, motion, sound and text as opposed
to static data types like plain text and graphics. Besides this, it’s also thanks to content
providers such as YouTube who have made it increasingly easy to share and distribute your
own personal digital video content on the web.

Traditionally video data is provided in predefined linear format, providing the user the default
control options as: play, stop, pause, forward and rewind.
The video is then watched in a mostly passive way from beginning to end during which the
user's interaction is very limited. Interactive video could improve the user's ease and
efficiency for instance by:

• providing a representative visual summary of the video prior to watching it
• presenting a list of visual entries that serve as access point to desired video content
• showing a list of navigational options that allow users to follow internal and external

links between related items in the same video or perhaps other media documents.

For my bachelor project I have chosen to research en develop a tool that will add data-driven
functionality to the Ximpel interactive video platform.
XIMPEL was developed for the Clima Futura climate game, in which interactive video is used
as a basis for scenario-driven games, with additional mini-games for elaborating on specific
topics or tasks that arise during game play. XIMPEL has also been deployed in education, for
creating short viral videos which allow for further interactive explorations.

Ximpel itself currently uses manually created playlists in .xml format. The objective of my
bachelor project is to develop an application that can automatically generate this xml playlist
from data previously inserted into a database. I will develop this application using php &
mysql, I have chosen for this web based environment because Ximpel itself is a flash
application which can be embedded in websites. I will try to keep the code in php as simple as
possible to make it easy to modify and understand the code even when I am no longer
available to provide assistance. Because of time constraints I will use mysql as a database
during the project, but afterwards I will port the database to sqlite to decrease the need for
administrative permissions when using my application.

The goal of my application is to make it easier to create and edit a playlist for Ximpel
interactive video applications. To determine if the tool actually makes Ximpel easier to use I
will have the application tested by both people who are familiar with Ximpel and those that
have never used it before. During the development of this application I will document the
steps taken and summarize some of the added benefits of adding database functionality to
Ximpel.

A brief explanation of the chapters in this document:
Chapter 1: Overview of Ximpel interactive video platform
 In this chapter I provide a short explanation of what Ximpel is and I analyze the
 different features that Ximpel offers

Chapter 2: Requirements & goals of data-driven Ximpel application
 In this chapter I describe the requirements that I think the application should
 comply to and I state the goal of the application.

Chapter 3: Design & implementation
 In this chapter I document the various decisions taken during design and why
 they were taken.

Chapter 4: Usage of data-driven Ximpel application
 This chapter is more of a tutorial describing how to use the application I have
 created.

1. Overview of Ximpel interactive video platform

In this chapter I will take a closer look at Ximpel and the possibilities it offers. This analysis is
necessary for the development of my application. Because it should first and foremost give
the user the means to create an interactive video with the default possibilities that Ximpel
offers.

1.1. What is Ximpel.

Ximpel stands for the eXtensible Interactive Media Player for Entertainment and Learning. It is
an interactive video platform which is being developed at the Multimedia Group within the
Faculty of Sciences at the Vrije Universiteit. It was designed and developed by:

• Winoe Bhikharie, MSc (developer)
• Hugo Huurdeman, MSc (developer/designer)
• Marek van de Watering, MSc (designer)
• Anton Eliëns, prof.dr. (supervisor)

Ximpel was originally developed for the Clima Futura climate game but has also been used in
education for creating short viral videos which allow for further interactive explorations.
When watching a Ximpel interactive video the viewer can be presented with quiz question
which have a true/false answer and branch questions. Branch questions require the user to
make a choice by clicking on one of the overlays currently displayed on the screen. These
overlays can be seen as possible answers to the branch questions. Clicking on one of these
overlays leads to the playback of videos that are relevant for the chosen answer.

1.2. Features & functions of Ximpel

Ximpel’s goal is to provide an open multimedia platform which can be used for both
entertainment and education. The features that Ximpel offers are:

• Customizable, clickable overlays and visuals.
These can be used to access different branches of the storyline and can link to both
external and internal information sources.

• Customizable questions.
• A scoring mechanism to give a certain weight to the answers given.

The variables, such as the clips to be shown, the branches, overlays, questions and score
points are all modifiable through a collection of 2 XML configuration files. The Ximpel player
then reads the information stored in these files.
The 2 XML configuration files are:

• a playlist.xml
• ximpelConfig.xml

1.3. The playlist.xml

The playlist contains all the information about subjects, the video files, questions, overlays,
scores and branches. Each of these items within the video.xml is in typical xml tag format and
each has their own configurable attributes as listed below. An example of a playlist is also
included in Appendix 1.

• subject tags
Required attributes: id
Optional attributes: leadsto

The main items in the video.xml are subjects, each identified by a unique id attribute.
Branching occurs from one subject to two or more and is based on each subject’s id.
The leadsto attribute of a subject can be used to jump to the specified subject once all
media clips of the current subject have been played. A subject also has a
<description> tag which can hold text (e.g. full name of subject, descriptive text, etc)
that is displayed in the Ximpel media player during playback of all videos belonging to
that subject.
All questions, overlays, media, scores and branches are contained within the subject’s
tags.

• score tags
Required attributes: value
Optional attributes: name

The score tag allows the user to add a score value to subjects. The required value
attribute contains the score and the optional name attribute can be used to keep track
of multiple score parameters.

• media tags
Required attributes: none
Optional attributes: order

All media items are placed within media tags. Ximpel offers the possibility for users to
define their own media types. Currently the only built-in media item type is video and
for this thesis I will only take this type into account. Videos placed between media tags
are normally played in the order in which they are defined. It is possible to randomize
this order by defining the “order” attribute for the media tag. This attribute can have the
following values: default (plays items in defined order), random (plays items in random
order), randomN (picks N items and plays them in a random order).

• video tags
Required attributes: file
Optional attributes: leadsto, repeat

All information relating to videos is wrapped in <video> tags, this includes individual
video files, questions, branches and overlays. Individual video files are listed using the
<video> tag, within this tag the file attribute contains the name of the video file. For
default flash video files the .flv can be omitted but for MP4 files the extension (.mp4)
must be included within the file name. The leadsto attribute contains the id of a subject
to which the playback will jump when the current video has ended. The repeat attribute
contains a Boolean value (true/false) and can be used to force the user to make a
choice by clicking on one of the provided overlays.

• quiz question tags
Required attributes: none
Optional attributes: starttime, duration

Quiz questions are shown at the bottom right corner of the video and are either true or
false. Quiz questions are defined in pairs of <question> and <rightanswer> tags.
Between the question tags you specify the question and between the rightanswer tags
you provide a boolean value (true or false) representing the correct answer. The
startime attribute can be used to specify after how many seconds the question should
appear and the duration attribute can be used to specify how many seconds the
question should appear on screen.

• branch question tags
Required attributes: none
Optional attributes: none

Branch questions provide the user with a choice that must be made at a specific
moment. Between the branch question tags you place a question that should be
displayed. The overlays then represent the possible answers to this question and link
to the relevant subject.

• overlay tags
Required attributes: none
Optional attributes: starttime, duration

Overlay tags are placed in between <overlays> tags and contain one or more
overlaycel tags. The startime attribute specifies the start time in seconds when the
overlaycels should appear on screen and the duration attribute specifies how many
seconds the overlaycels should be shown.

• overlaycel tags
Required attributes: x, y, width, height, leadsto
Optional attributes: description, color, hover_color, alpha, hover_alpha, image,
 hover_image, text, textsize, textfont, textcolor, hover_text,
 hover_textsize, hover_textfont, hover_textcolor

The x and y attributes specify where the overlay should be placed on the video screen.
The width and height attributes specify the dimensions of the overlaycel, and the
leadsto contains the id of the subject to which the playback will jump if the overlay is
clicked. Because the optional attributes are numerous I will list and summarize them.

- description: the text shown as answer to the branch question

- color & hover_color: a rgb (format: 0xrrggbb) value representing the color of the
 overlaycel during normal state and mouseover.

- alpha & hover_alpha: the transparency value (between 0 and 1) of the overlaycel
 during normal state and mouseover.
- image & hover_image: contains a path to an image (images/test.jpg) which is placed
 in the overlaycel which changes to the image defined in
 hover_image on mouseover. Allowed image types are jpeg,
 png and gif. By only specifying a hover_image attribute an
 effect is created that only show an image on mouseover.

- text attributes: The text attributes are self explanatory and control the way text can be
 display in an overlaycel during normal state and mouseover.

1.4. The ximpelConfig.xml

The ximpelConfig contains standard configurable options such as text of labels, which file
should be used as play list, etc. An example of a ximpelConfig.xml is included in Appendix 2.
The options in de ximpelConfig.xml will not be editable in the playlist builder application.
Because they are pretty straightforward and all are optional I will list them but will not go into
in-depth explanations.

1.5. Benefits of a data-driven Ximpel application

The xml configuration files described in the previous paragraph provide the Ximpel media
player with the data it needs to display the interactive video. These xml files currently have to
be manually constructed or edited. Although this not that complicated for people that have
reasonable knowledge of xml it can be an obstacle for “normal” people. These people might
be interested in creating interactive videos with Ximpel but lack the knowledge to create the
required playlist xml.

Easy to update and more user friendly

By adding a database to store the variables needed for the playlist xml file the process does
not immediately become simpler. By providing users with a backend where they can enter
these variables into the database does make the entire process simpler to understand
because the actual editing of the xml file is not needed anymore. When all data has been
inserted into the database the required xml can be generated by a php script and offered to
the user for download. If Ximpel is being used on a website it is also possible to use the
database application as a backend. The administrator of the website can change data (such
as questions) and in this way provide visitors of the website with a different interactive video
every day/week/month or different questions relating to videos.

Dynamic content

Because all data is now contained inside a database it also becomes possible to provide the
Ximpel media player with (semi) dynamic content. Having certain data changed in the
database at regular intervals can lead to perhaps having different questions displayed on a
certain video each time it’s watched. For instance, by adding multiple questions with the same
starting time to 1 video file in the database, it is possible to have the php script that generates
the xml file select a random question each time the xml is generated. In this way a different
question is shown during the video, all that would needed to be done is to generate the xml
each time the video is watched. This dynamic usage could be applied to many parts of the
Ximpel playlist, e.g. videos, overlays, overlaycells, etc.

2. Requirements & goals of data-driven Ximpel application

In this chapter I will determine the requirements which my application must fulfill. I will make a
distinction between the functional and non-functional requirements and will indicate the
importance of each.

To determine which requirements are necessary for the application, I will first describe a
typical success scenario. In this scenario a user goes through the different steps in creating a
simple interactive video using Ximpel and encounters no missteps.

2.1. Success scenario

• User adds a subject to the project
• User adds an id, description & score to the subject.
• User adds video files to the subject
• User adds a question to one of the video files
• User adds a branch question to one of the other video files
• User adds 2 overlays (overlay 1 & overlay2) and some of their attributes

to the video file containing the branch question
• User adds a second subject to which overlay1 points
• User adds a id, description & score to this subject
• User adds video files to this subject
• User adds a third subject to which the overlay2 points
• User adds a id, description & score to this subject
• User adds video files to this subject
• User generates the required xml files
• User can choose to download the xml file.

2.2. Functional requirements

Requirement Description Importance

add_subject User can add a subject to the
project and the relevant
attributes and option of a subject

Must have

add_videos User can add videos to a
subject with their attributes

Must have

add_question User can add questions to
corresponding to video files

Must have

add_branch_question User can add branch questions
to video files, which provide the
viewer with a choice of how to
continue.

Must have

add_overlays User can add overlays to the
video file containing the branch
question providing the user with

Must have

the graphical indication of where
to click to answer the branch
question.

add_scores User can add a score to the
subjects

Must have

configure_global_options User can modify the global
options of the interactive video

Won’t have

generate_xml_files User can generate and the xml
files

Must have

download_xml_file User can download the
generated xml files if they will
not be used on the current
webserver/location.

Must have

create_mutiple_projects User can have multiple ximpel
projects

Could have

The requirements mentioned above represent the most important requirements that the
application will need to meet. To visualize these requirements I also present them in the
following use case diagram.

2.3. Non-functional requirements

In this section I will describe the two non-functional requirements which I think are important
and I would like my application to comply to. Non-functional requirements are requirements
that specify criteria that can be used to judge the operation of a system, rather than specific
behaviors.

Usability

Usability is a term that denotes the ease with which people can use a particular tool in order
to achieve the intended goal. Within my application I think usability is the most important non-
functional attribute, because my application should make the process of using Ximpel easier.
It will try to do this by making the creation of the playlist xml automated and providing the user
with a gui of sorts to insert all the data.

Maintainability

The second most important non-functional requirement of my application is maintainability.
Maintainability denotes how easy it is to modify a certain software product. This is important
because I will not always be around to maintain the program or explain it each time a
modification must be made.

2.4. Goal of the application

Beside the possibilities and features mentioned in chapter 2, Ximpel also offers some
advanced possibilities. Some of these are the programming of custom media types and the
use of callback events. These advanced features that Ximpel offers will not be included in this
document and will also not be implemented in the application at this time. The goal of the
application is to provide the means to create “standard” interactive Ximpel videos and through
this document offer ideas of how database functionality can expand the possibilities of
Ximpel. The main functionality of the application at this time is to create the xml file that
Ximpel uses as a playlist.

3. Design & implementation

In this chapter I will discuss some of the decisions taken during the design and
implementation of the application. For each decision taken I provide the rationale why a
certain option was chosen and another one was not.

3.1. Design decisions

Decision #1 Which scripting/programming language should be used?

Options
Option# 1

PHP

Description PHP is a server side embedded programming language which is

widely used and supported. It’s free to use and most webhosting

providers provide support for it.

Status Accepted.

Evaluation Advantages: The PHP scripting language is free, it’s easier to

learn than ASP or JSP and it’s widely supported.

Disadvantages: Considered not as powerful as JSP.

Rationale of decision This option is accepted because it will make the application easier

to edit by people other than the developer. Also because it is widely
supported it will be very easy to find hosting for it.

Option# 2 ASP/JSP

Description ASP is a programming language created by Microsoft for creating

dynamic websites similar to those created with PHP. JSP is a Java

technology that allows software developers to create dynamically

generated web pages, with HTML, XML, or other document types,

in response to a Web client request.

Status Rejected.

Evaluation Advantages: ASP & JSP might be considered more powerful

languages then PHP.

Disadvantages: ASP is not free, it requires a Microsoft server to

run, and can only connect to a Microsoft database. JSP is harder to

learn and not as widely supported as PHP.

Rationale of decision This option is rejected because the learning curve & cost of using

either ASP or JSP would be considerable higher then when using

PHP.

Decision #2 Which database system should be used?

Options
Option# 1

MySQL

Description MySQL is a relational database management system. MySQL

stands for "My Structured Query Language". The program runs as

a server providing multi-user access to a number of databases..

Status Accepted.

Evaluation Advantages: Very widely used and supported.

Disadvantages: Requires admin access to the database server to

setup required tables.

Rationale of decision This option is accepted because it more popular than Sqlite,

although it does require admin access to the database to be used.

Option# 2 SQlite

Description SQLite is an embedded relational database management system

contained in a relatively small C programming library.

Status Rejected.

Evaluation Advantages: No admin access required to setup the database

tables.

Disadvantages: Not as popular as MySQL (yet) and therefore not

as easy to modify.

Rationale of decision This option is rejected because although MySQL requires admin

access it will be easier to find information on how to modify the

code then if SQlite was used.

Decision #3 How should application be implemented?

Options
Option# 1

Web based (the application is displayed and used within a web

browser)

Description The application is displayed as a website to the user and can be

used in most modern web browsers.

Status Accepted.

Evaluation Advantages: No need to install any plugins or software to be able

to use the application.

Disadvantages: An internet connection can be necessary (unless

the server is run locally).

Rationale of decision This option is accepted because it provides the easiest access to the

application and because it is accessed by using a web browser. It is

not necessary to take the different operating systems of users into

account. Also Ximpel is effectively a web based video application

designed to be used on the internet.

Option# 2 Stand alone application

Description Create a custom application which the user can run/install on his

computer.

Status Rejected.

Evaluation Advantages: Can be used without a internet connection.

Disadvantages: Defeats the purpose of the making the database

driven design available to Ximpel projects which will be most likely

distributed on the internet. Providing support for different

operating systems will be more difficult

Rationale of decision This option is rejected because as Ximpel is web based itself, it

would be the most logical choice to create a web based application

as well for creating the playlists.

3.2. Database structure

After analyzing the structure of the Ximpel playlist xml file (appendix 1) I made a distinction
between five main components. These are:

• Subjects
• Videos
• Questions
• Overlays
• Overlaycells

These five components represent the main building blocks of the playlist xml file and I
decided to model the database according to them. The database contains five tables each
named after one of the components mentioned above. The tables are structured as follows:

Table name: subjects
Column name Data type

subjectTable_id int
subject_id text
leadsto text
score int
description text
playing_order text
n Int
ordering int

The subjects table is the “main” table in the sense that all the other tables are connected to it
in some way. This reflects the structure of the xml playlist in which all other tags are contained
within the subject tags. It has a field named “ordering” which is used to determine the order of
the subjects, this can be changed in the application to make it easier to switch the playing
order of subjects.

Table name: videos
Column name Data type

file int
leadsto text
repeat text
subjectTable_id int
ordering int

The videos table contains information on the videos that are used, it is connected to a single
subject identified by the field named “subjectTable_id”.

Table name: questions
Column name Data type

questionTable_id int
type text
question_text text
starttime int
duration int
rightanswer varchar
videoTable_id int

The questions & overlays table contain all information on the questions and overlays
respectively. They are both connected to a single video file by the field named
“videoTable_id”.

Table name: overlaycells
Column name Data type

overlaycellTable_id int
overlaycell_name text
x int
y int
width int
height int
leadsto text
description text
color text
hover_color text
alpha double
hover_alpha double
image text
hover_image text
text text
text_size int
text_font text
text_color text
hover_text text
hover_text_size int
hover_text_font text
hover_text_color text
overlayTable_id int

The overlaycells table contains all information on the overlaycells. Each overlaycell is
connected to a single overlay by the field called “overlayTable_id”.

The field’s named subjectTable_id, videoTable_id, questionTable_id, overlayTable_id and
overlaycellTable_id are set to auto increment in their respective tables (e.g. subjectTable_id
in subjects, videoTable_id in videos, etc) the database because this ensures that their value

Table name: overlays
Column name Data type

overlayTable_id int
overlay_name text
starttime int
duration int
videoTable_id int

is always unique. Because it is unique it can be used to link components together and to
identify single table entries.

The diagram below illustrates how the different tables are “linked” together.

3.3. The code

The functions used in the application are bundled in the following files:

• functions.php
• remover.php
• updateDB.php
• validator.php
• generator.php
• output.php
• upload.php

functions.php

The functions in this file are for adding, editing and listing the different components. The
application shows lists of subjects, videos, questions, overlays and overlaycells. Each of the
five main components have their own set of functions for adding, editing and listing. The
functions are as follows (substitute xx by the name of one of the five components):

xxList()

This function retrieves all entries of a certain type (subject, video, etc) and present them in list
format to the user.

addxx($edit)

This function is used to add an entry (subject, video, etc) to the relevant table. The variable
$edit is used to determine whether it is a new entry or one that has been edited. $edit is the id
of the entry that has to be modified.

get_xx($xxTable_id)

This function gets a single entry from the relevant table so that it can be edited by the user.
The variable $xxtable_id represents the unique id of the entry that the user wants to edit.

remover.php

The functions in this file are used to remove entries from the different tables. By deleting a
certain component entry, all entries related to it will also be removed. This happens in the
following way:

Deleting a Subject will delete all video, question, overlays & overlaycells belonging to it.
Deleting a video will delete all questions, overlay & overlaycells belonging to it.
Deleting a question will only delete that question
Deleting a overlay will delete all overlaycells belonging to it.
Deleting a overlaycell will only delete that overlaycell.

The functions are named: delete_xx($xxTable_id)

updateDB.php

This file is used to update the ordering of the subjects & videos. These are currently the only
components which can have their order changed by the user dragging and dropping the
different rows into the desired order. The file is called by Ajax to update the ordering in the
relevant table without the user having to refresh or navigate away from the current page.

validator.php

The file is currently only used to validate the subject_id before it is entered into the database.
It is called by Ajax while the user is typing in the subject id, and gives real time feedback if the
chosen subject id is unique. This is so far the only value that has to be absolutely unique. The
file could be expanded to validate other values.

generator.php

This file creates the actual xml playlist file. The code in this file queries every table in the
database and write the contents to an xml file in the correct structure that the Ximpel
application can read.

output.php

This file gives some “debug” information when the xml file is created. It currently checks 3
conditions:

• That every subject contains videos
• That every video with a branch question also contains at least 1 overlay
• That every overlay contains at least 1 overlaycell

These messages are only warnings or notices and will not stop the creation of the xml file.
This because the conditions do not have to be met for the user to create an xml file, it is just
to give notice to the user in case he might have missed something by mistake.

upload.php

This file parses the existing xml which the user uploads, it checks for all tags and their
attributes and inserts them into the database. It is only compatible with the xml file for or after
the June 2009 version of Ximpel. The file is not saved on the server, so there is no issue with
permissions.

3.4. External scripts used

To make the playlist builder more user-friendly I implemented some java scripts I found on the
internet. I will list them with a short explanation, the links to where I found them and more
information about the individual scripts are also in my references.

jqeuery [4][5]

This collection of libraries is used in the index.php & new_subject.php. In the index.php it
provides the Ajax functionality to drag & drop the row into a different order. Behind the scenes
the script then does a call to the updateDB.php which updates the database with the new
order of the fields. In the new_subject.php the script provides the Ajax functionality which
checks if the subject id is unique. It does a call to validator.php on every “key up” and tells the
user of the subject is still unique.

wz_tooltip [6]

This script as it’s name implies provides the tooltip functionality used in all the windows that
the user can use to add a component.

colorPicker [7]

This provides the color selection tool when adding overlay cells. It provides a visual way for
the user to select the color they want and does not require them to know the exact format in
which to enter the color.

4. Usage of data-driven Ximpel playlist builder

In this chapter I will provide a tutorial on how to use the playlist builder. I will start with an
example of how a user might create the playlist for a simple interactive video. I will then give
step by step explanation of how to use the playlist builder accompanied by screenshots were
necessary.

4.1. Tutorial

I have chosen to present the information to the user as a collection of lists. To keep things as
structured and straightforward as possible new options become available after each step in
the following order:

Action Options that become available

Initially Upload existing xml playlist, Create subject
Creating subject Adding videos
Add video Adding question, Adding overlays
Add Question -
Add Overlay Adding overlaycells
Add Overlaycell -

The only option available to the user in the beginning is to add a subject. This can be done by
clicking the large green button titled “add Subject”. This green button with a different text
appears on every page in the playlist builder and is used for adding each of the different
objects in the project.
When the user clicks the add Subject button the following screen appears.

screenshot 1

Once the user has filed in all the different fields the “add new Subject” button is clicked and
the subject is added to the project and appears in the subject list which can be seen in the

following picture (screenshot2).

screenshot 2

Once there is a subject available the user can choose to edit or delete the subject and also to
continue and add videos to it. When clicking the Videos link the following page appears.

screenshot 3

Here the user can add a video by clicking on the green button now titled “add Video”. This will
make the following window appear.

screenshot 4

The user fills in the desired fields and clicks the “add new video” button.

A new video will then appear in the video list and provide the user with a choice to add a

question or an overlay (screenshot3).
Clicking the questions link leads to the question list and the option to add a question as
shown below. Clicking add question will bring up a window similar to the window of the add
subject and add video buttons.

screenshot 5

Clicking the overlay link leads to the overlay list and the options to add an overlay as shown in
screenshot6 below.

screenshot 6

When an overlay is added, the final option becomes available and that is the option to add an
overlay cell. Not adding an overlay cell to an overlay is actually pretty useless, as the overlay
has no purpose then. Clicking on the overlay cell link will lead to the final page with the option
to add one or more overlay cells (screenshot7).

screenshot 7

At any point during the process the user can click on the “generate xml playlist link which is
visible on all pages. When this link is clicked a new window will open with a debug message
and a link to download the created xml file. No matter what kind of debug information is
displayed, the xml playlist will always be created with the information available in the
database. It is up to the user to determine if the information that was added to the database is
correct. For instance it is allowed to have overlays without any overlay cells within them. The
debugger will give a warning about this but it will not stop the creation of the xml file.

The reason why I decided not to impose hard restrictions or requirements for creation of the
xml file is because I wanted to provide the user with as much freedom as possible. Users will
probably come up with ways to use Ximpel that I have not even thought of yet and I wanted to
try and keep all options open if they decide to use this playlist builder for new creative ideas
about Ximpel.

Uploading existing playlist xml

When there are no subjects created yet, the user is offered the option of uploading an existing
playlist xml file. The xml file that will be uploaded must be in the format that Ximpel uses since
June 2009; this is because certain tags have different names and attributes prior to the June
2009 release.

Conclusion

After completing the development of the playlist builder application and having it tested by
some novice and experienced computer users a couple of conclusions can be reached. The
functional requirements have been achieved in the sense that the playlist builder provides the
user with all the possibilities that manually editing the xml file would. The application also
serves as an example for other developers to expand the usage of data driven ximpel
applications. By expanding my application developers could provide users with more dynamic
content in interactive videos. By using the playlist builder as a “administrative backend” the
interactive videos can be more easily distributed on websites because changing data used in
the interactive video can be easily changed or expanded.

The non functional requirements were partly reached in the sense that maintainability should
be adequate. Usability of the application itself is also satisfactory but the user will still need
moderate knowledge of Ximpel itself before he can fully understand and use all the options in
the playlist builder.

References

[1] Playlists in XIMPEL
 Retrieved June 22, 2009, from Ximpel website

http://ximpel.few.vu.nl/tutorials/Playlists_in_XIMPEL.html

[2] Configuration files in XIMPEL

Retrieved June 22, 2009, from Ximpel website
http://ximpel.few.vu.nl/tutorials/Configuration_files_in_XIMPEL.html

[3] Overlays in XIMPEL
 Retrieved June 22, 2009, from Ximpel website

http://ximpel.few.vu.nl/tutorials/Overlays_in_XIMPEL.html

[4] Using Ajax to validate forms. (2007)
 Retrieved July 7, 2009, from jquery for designers website
 http://jqueryfordesigners.com/using-ajax-to-validate-forms/

[5] Dynamic Drag’n Drop With jQuery And PHP.
 Retrieved July 16, 2009, from webresources depot
 http://www.webresourcesdepot.com/dynamic-dragn-drop-with-jquery-and-php/

[6] JavaScript, DHTML Tooltips
 Retrieved July 22, 2009, from www.walterzorn.com

http://www.walterzorn.com/tooltip/tooltip_e.htm

[7] Color picker
 Retrieved July 24, 2009, from dhtmlgoodies.com
 http://www.dhtmlgoodies.com/index.html?whichScript=submitted-color-picker

Appendix 1: example of a ximpel playlist.xml

Appendix 2: example of ximpelConfig.xml

