
MINIGAMES in XIMPEL

XIMPEL is an interactive video platform that enables users to create games
with their own storylines. One of its features is the modularity, as XIMPEL can
incorporate the user's own minigames written in Flex (Action Script). They can be
added to the playlist in a similar manner as other media types. This gives endless
possibilities of customizing the main application.

1. Creating a Minigame

Requires programming skills in Flex (Action Script and MXML)

1.1 Making minigames compatible with Ximpel Player

Depending on the version of Action Script we use, one of these pieces needs to be
added to minigame's code:

[ActionScript 2]

var outgoing_lc:LocalConnection = new LocalConnection();
var status = "minigame_done";
var score:int;
minigame.sendEndGameMessage = function(Void):Void
{ outgoing_lc.send("minigame_status", "onMinigameComplete", status,score); }

[ActionScript 3]

import flash.net.LocalConnection;

private var outgoing_lc:LocalConnection = new LocalConnection();
private function sendEndGameMessage():void
{
private var status:String = "minigame_done";
private var score:int;

 outgoing_lc.send("minigame_status", "onMinigameComplete", status, score);
}

Via a local connection with the name "minigame_status", the function
onMinigameComplete is called with 2 arguments: status and score. If status
"minigame_done" is sent, XIMPEL understands, that the minigame has been
completed and it sends the score to the main application (this way general score can
be updated with results from each minigame). The way the score is counted, should
be indicated in minigame's code.

Once MXML file is ready, we need to create an SWF file, which can be easily
done using Flex SDK.

1.2 How Does It Work?

One of XIMPEL's features is the possibility to register custom media types. To
program a custom media type you need to create a class that implements
the IMediaType interface. In order to use minigames in Ximpel Player, Minigame class
has been created (see Appendix A). Every time a new minigame is added to the
playlist, a new object is created with its local connection, that enables sending the
status and score of each minigame to the main application.

To make this custom media type accessible in XimpelPlayer, it has been
registered in the main application:
var minigame:Minigame = new Minigame();
minigame.addEventListener(MediaScoreEvent.SCORE_RESULT,updateMediaScore);
myXimpelPlayer.registerMediaType(minigame);

2. Templates

Does not require programming skills

A couple of minigame templates is available for users. Customizing them does
not require any programming skills, so that everyone can easily create their own
games. The templates use dynamic XML files, which include paths to the files and
other variables. In folder named 'assets', you can find directories for each type of a
minigame. This is where the files are being stored.

2.1 Memory Game

Does not require programming skills

In assets/memory you can find memorycards.xml. Do not change the name of the
file! An exemplary code looks as follows:

<?xml version="1.0" encoding="utf-8"?>
<memoryCards>

<welcometxt>
<txt>Find all pairs. Less clicks = higher score!</txt>
</welcometxt>

<genericCardSide>
<url>mozart.jpg</url>
</genericCardSide>

<card>
<url>mozart1.jpg</url>
</card>
<card>
<url>mozart2.jpg</url>
</card>
<card>
<url>mozart3.jpg</url>
</card>

</memoryCards>

In order to create a memory game with your pictures, you need to change the
names of the files within <url> tags. genericCardSide is the picture that will be
displayed if the card is not flipped.
Within <welcometxt><txt> tag you can change text with instructions for your
memory game.

Requires some programming skills

It is also possible to adjust memory game by changing the main code in
memory.mxml file (see Appendix B). Such adjustments include:
- how the score is counted - in the original version, total clicks influence the score
(less clicks = higher score); the formula used to count the score:
Math.floor((20 * cardPairsTaken) / totalClicks); this can be changed in the code;
- changing the size of images; in the original version they are displayed as 100x100px.

2.2 Matching Game

Does not require programming skills

In assets/matching you can find matchingImages.xml. Do not change the name of
the file! An exemplary code looks as follows:

<?xml version="1.0" encoding="utf-8"?>
<matchingImages>

<welcometxt>
<txt>Match events in Mozart's life with the correct date by dragging images from the
top row onto matching dates. Less clicks = higher score!</txt>
</welcometxt>





</matchingImages>

In order to create a matching game with your pictures, you need to change the
names of the files within <url> and <match> tags. Make sure, that the matching
images are within one 



</sortingImages>

In order to create a sorting game with your pictures, you need to change the
names of the files within <url> tag. The order of the images does not matter, but it is
important that you give a priority number to each of your pictures. The first picture
to be sorted should have a priority of 1.
Within <welcometxt><txt> tag you can change text with instructions for your game.

Requires some programming skills

It is also possible to adjust matching game by changing the main code in
matching.mxml file (see Appendix D). Such adjustments include:
- how the score is counted - in the original version, total clicks influence the score
(less clicks = higher score); the formula used to count the score:
 Math.floor((8 * pairsTaken) / totalClicks); this can be changed in the code;
- changing the size of images; in the original version they are displayed as 120x120px.
The semi-transparent image displayed when dragging is called a drag proxy. When
changing the size of the image, you might also want to change the size of the proxy
in initiateDrag function.

2.4 Questionnaire

Does not require programming skills

One of the available templates is a questionnaire. It allows users to create a
survey or a test with a random number of questions and answers.

In assets/questionnaire you can find questions.xml. Do not change the name of
the file! An exemplary code looks as follows:

<?xml version="1.0" encoding="utf-8"?>
<test>

<welcometxt>
<txt>Choose correct answer. When ready, click the submit button!</txt>
</welcometxt>

<question>
<q>When did Mozart live?</q>
<answer value="false">1754 - 1789</answer>
<answer value="false">1756 - 1789</answer>
<answer value="true">1756 - 1791</answer>
</question>

<question>
<q>What was the name of Mozart's wife?</q>
<answer value="true">Constanze</answer>
<answer value="false">Aloysia</answer>
</question>

</test>

In order to create your own questionnaire, you need to state your questions
within <q> tag and all the possible answers within <answer> tags. Do not forget to
add a value="true" or "false" for each answer!

Within <welcometxt><txt> tag you can change text with instructions for your
questionnaire.

The full code of a questionnaire template is available in Appendix E.

3. Adding a Minigame to the Playlist

To add a minigame to the playlist, simply use <minigame file="sorting.swf"/>
within <media> tags, adjusting the name of your swf file.

Requires some programming skills

It is possible to add to the playlist more than just one minigame of a kind and
it can be done in few steps (the example is for a sorting game, but works the same for
each minigame):

1) Create your first sorting game.
2) Find the file sorting.swf and rename it to sorting1.swf. From now on this is your first
sorting game.
3) Open sorting.mxml file and find a line with url for a HTTP Service (one of the first
lines): url="assets/sorting/sortingImages.xml" . Change the path to
assets/sorting/sortingImages2.xml.
4) Using make_sorting.bat, create your new sorting.swf file. This step requires using
Flex SDK.
5) Store all your images in the usual assets/sorting directory (all the files for all your
sorting games should be in the same folder). This is also were the xml file should be
stored. Make sure that the xml file for your new sorting game is called
sortingImages2.xml.
6) You have now two sorting games! The first one saved as sorting1.swf (using
sortingImages.xml) and the new one as sorting.swf (using sortingImages2.xml). Now
you can easily add them both to the playlist or create a third minigame!

4. Possible Extensions

The new minigame media type is registered in XIMPEL ver. 1.7. As the new version
2.0, with youtube support, is launched, the possibility of adding minigames should
be also included.

Minigames use a local connection to send a message to the main application with the
score and the status of the game. If the user does not finish the game, they can still
proceed to the next item in the playlist, just that the score will not be updated. It is
worth considering such an extension, that in some cases users are not allowed to play
the next media item before they have completed the minigame.

