DYNAMIC GRAPHICS IN SERIOUS GAMES

DYNAMIC GRAPHICS
IN SERIOUS GAMES

by Timen P. Olthof

MASTER THESIS

Supervisor: prof. dr. Anton Eliéns (VU Amsterdam)
Internship supervisor: Berelgd Weij, MA (Mijn naam is Haas)
Second reader: dr. Zeljko Obrenovié¢ (TU Eindhoven)

CONTENTS

Table of contents v
Preface ix
1 Introduction 1
1.1 Multimedia 2

1.2 Seriousgames 2
1.3 MijnnaamisHaas 3
14 GameDesign. 4

A phenomenology of game design 5
Interactive narratives. 6

2 Research questions 9
2.1 Introduction 10
2.2 Research questions 11
2.3 Dynamicvisuals 12
2.4 Render engine performance 15

v

3 Technologies 19

3.1 Introduction 20
3.2 Flash and ActionScript 20
The Adobe Flex SDK 22

3.3 PixelBender 24
34 Alchemy 27
35 HaXe 0., 31
3.6 PureMVC. 32
3.7 Other optimizations 35
4 Dynamic graphics 37
4.1 Introduction 38
4.2 Final dynamic graphics architecture 39
4.3 Designdecisions 42
4.4 Graphics workflow: importing and rendering 49
A: the importing process 50

B: the rendering process 51

4.5 VisualAssetsImporter 55
Importing 55
Windows and panels 56
Usage, 57

4.6 Results: architecture and workflow 58
5 Render Engine 63
5.1 Introduction 64
5.2 General render engine theory 64
5.3 A new Mijn naam is Haas render engine . . . 67
5.4 Implementation 70
Game Initialization 71
Adding VisualObjects 72
TICK notification 72
FRAME notification 72

5.5 Results: functionality and performance ... 74

vi

6 Conclusion
6.1 Summary
6.2 Technical conclusions
6.3 Personal internship evaluation
6.4 Internship evaluation by Berend Weij

Bibliography

vii

83
84
85
87
88

89

PREFACE

Computer scientists are system builders. As systems be-
come more complex, computer scientists will have to be-
come more complex too. During my study Computer Sci-
ence at the Vrije Universiteit Amsterdam, I have learned
to analyze, design and build ever more complex systems
and use increasingly complex technologies.

Users are busy people. They want systems that are
easy and simple to use, yet perform the most complex tasks
in a second and fit within their ever more complex daily
lives. Over the last decade I have seen users struggling
more and more while using new technologies.

The connections between humans and computers often
remain difficult and unintuitive. The only solution to this
problem is education, and it is working. I am very happy
and proud to have done an internship at a company that is
on the forefront of computer aided education, and of which
the product combines the essential ingredients of modern
learning: solid teaching material, explorative narrative
and a fun experience.

The last few years I have specialized myself in the field
of multimedia, working on rich internet applications, pre-

ix

sentation and visualization applications, generative art,
content distribution and ebooks, computer graphics, multi-
touch applications and mobile applications. I believe that
in these times, even now that content may often appear
to be obscured by form, the message is also the core of
the medium and is still the ultimate connection between
humans and machines. Of course there are a lot of media
and, consequently, a lot of connections.

I would like to thank prof. dr. Anton Eliéns for his
excellent guidance during my entire master study. Any
student would wish for a supervising professor like Anton.
I also would like to thank Berend Weij for his great super-
vision of my internship, and Peter Peerdeman for being my
most direct critic and friend during the whole internship
and master study.

CHAPTER

1

INTRODUCTION

1.1 Multimedia

Multimedia is a badly defined field of expertise. It includes
such diverse topics as document engineering, content cre-
ation and annotation, content distribution, interactive ap-
plications and experiences, serious games, social media,
visual design and human computer interaction. And there
are many ‘media’. Different types of sound, images, and
tactile interfaces, and different types of ways for humans
to communicate and interact with (things in) the world.
In fact, the concept of an interface is possibly the most
important concept of multimedia. Media are by definition
‘in between’ a sender and a receiver (although it may not
be clear who is the sender and who is the receiver). Me-
dia are connectors, and multimedia deals with connecting
many things. The field of multimedia is ‘artistic’ in the
sense that it requires both technique (technical skill) and
talent (inspiration). It deals with education of skills and
techniques, as well as harnessing the creativity of human-
ity.

1.2 Serious games

Media are very hard to distinguish from the message(s).
According to Marshall McLuhan, games are to humans
as social beings what technology is to humans as animal
organisms ([49], p255). In other words: where technology
supports and extends tasks that have to do with everyday
life (eating, moving, working), games support and extend
tasks that are related to the social part of life (communi-
cation, playing, performing). Of course, these parts of life
are heavily ‘intertwingled’.

Serious games are games that interwingle entertain-
ment and education. The idea behind this is that the com-
bination of entertainment and education improves learn-
ing, not only because it evokes curiosity, but also because it

2

offers control to the player and a certain challenge within
a given context [20]. Serious games give direct feedback
about learning accomplishments, offer a relatively realis-
tic sandbox for experiments and insert learning goals into
concrete situations [37].

1.3 Mijn naam is Haas

Mijn naam is Haas (My name is Haas) is a games produc-
tion company with the serious game Mijn naam is Haas
as their core product. Until now, three CD-ROM games
for Mac and PC as well as two picture books have been
released and more products are on their way. The products
are targeted at children aged 3-7, and help the children
to improve their dutch language skills in a creative and
playful way.

One of the unique points of the Mijn naam is Haas
games is the fact that the game commences with the in-
struction for the player to draw the world of Haas, the
main character of the game. After the player has drawn
a horizon line, a metaphor for the story line, the world
of Haas is generated upon it and an interactive, non lin-
ear narrative unfolds as Haas accomplishes his journey
through the game world. During his quest, Haas and the
player encounter a number of problems that have to be
solved to continue, and while solving these problems, the
player is brought into contact with the dutch vocabulary
in a didactically responsible way. Solving the problems is,
again, done by drawing objects in the game world. Those
objects will then influence the game world so that the prob-
lem is solved and Haas can continue his journey.

The Mijn naam is Haas games are developed in the Ac-
tionScript3 (AS3) programming language, which compiles
to a Flash (SWF) application. Flash is currently the de
facto standard for (rich) internet applications. The Mijn
naam is Haas game is currently developed as an Adobe

3

Integrated Runtime (AIR) application, but the goal is to
distribute future versions as a web service application run-
ning in the browser. This is easy to accomplish, because
ActionScript can be compiled to either a standalone AIR
application or a Web application. In chapter 3, I will dis-
cuss the Flash platform in more detail.

1.4 Game Design

Computer game design is an innovative sub discipline of
the field of multimedia. In some sense computer games
are the newest type of media, succeeding film and televi-
sion. While games are becoming more and more realistic,
reality becomes more and more like gaming. Games can be
considered art, in the sense that they reflect and represent
the human condition.

Learning and playing have always been intrinsically
related, as all children and young animals learn things by
playing. It is only logical that learning and playing are
moving into the digital age, like many other parts of hu-
man life. As this is not a text about learning, we won’t go
into pedagogical discussions about what constitutes true
learning, but at least a development can be identified to-
wards more creative types of education.

Creative learning transcends the classical educational
distinction between talent and technique, where a talent
is an innate mastery of a certain skill and a technique
the execution of a set of rules that can be learned from
a teacher. Instead choosing one of the classical sides, cre-
ative learning focuses on placing student users in educa-
tional situations, where students have to solve a certain
problem with a certain toolset. As a result, students gain
experience, and improve themselves. In (serious) games,
experiences are structured similarly.

4

A phenomenology of game design

A game starts out with a certain individual situation, an
opportunity of the user or player to do something. This
situation can for example be the detection of a certain pat-
tern in what was previously apparent chaos, a ‘cognitive
dissonance’ or an aesthetic peculiarity. Often, this situ-
ation has some external meaning or reference to reality.
The situation can also be a metaphor for an event in real
life.

But a situation is never alone. It is surrounded by pre-
ceding and following situations, by situations that occur
at a slightly different place, and, thanks to the fantasy of
the human mind, by situations that are not actualized and
may never be actualized. In other words, the situation is
integrated within a spatio-temporal world. In most games,
the notion of a game world is mainly one of topology and
projection. The game world is shown to the player as a 2D
(top or side view), 3D (isometric or frustum based), virtual
reality or immersive projection. But more importantly, it is
shown as a world that can be explored, navigated, mapped
and possibly expanded.

For the user to be able to be in a situation implies
that the user is able to act in a situation, which means to
not just passively observe, but to ‘actually’ do something.
Doing something requires the skill to do something. Doing
without skill is doing anything, not something. Skill can
for example be aiming, timing, concentration, strategy al-
location, agility, forcing, moving or another activity, and
associated with skills can be affordances and features like
size, speed, power, strength, memory, knowledge, terri-
tory, intuition, etcetera. Within computer games, skills are
usually enforced with the help of game mechanics, user
interface design and virtuality (immersion). If the player
can leave the game, his freedom is absolute. If he cannot,
his freedom is control within a situation. Most computer
games can be left. Life cannot be left.

5

Activity implies development, and a player will gain
experience with every act. Experience may come in the
form of power, superpower(s), magic, evolution, progress,
rewards or increasing skill level(s). Acts are executed with
a certain goal or objective in mind, which may or may not
be accomplished. It is important to note that experience is
not just gained when goals are successfully accomplished,
but that failing also brings experience, a fact that is often
forgotten. The best objectives are those that are not too
easy and not too difficult for the player, and in serious
games, the difficulty of objectives can often be matched
to individual players. Experience is the primary learning
component of games, and the most important educational
part of game experience is feedback such as failure costs
and success rewards. Of course, fairness is important here,
for a game that unjustly punishes players will be tossed
aside quickly.

Interactive narratives

Narrative is the link between the absolute and the con-
crete, as narrations and stories are registrations of series
of concrete events, but at the same time contain absolute
situations that reoccur in new concrete situations again
and again. Narratives compare abstract acts (ethics) with
concrete acts (praxis). It is no surprise that narratives are
often about good versus evil.

But when reading, listening to or watching a story, the
audience can not really act itself. Consequently, classic
narratives are more about ethics than about praxis. Inter-
active narrative changes this, by adding ‘actual’ situations
to storyline. In a sense, movies and books are (just) worlds,
while interactive narratives are worlds with situations.
While experience from watching movies is only experience
with actions of other people and characters, experience
from interactive narratives and games is experience with

6

personal responsibility.

It is important to align the responsibility of the player
and the game character (avatar), and that the personal
goals of game characters are realistic even if the goals
are to be achieved by the player. The goals should be
justified by the (supposed or projected) internal motivation
of the game character, but also become the personal goals
of the player. This is an absolute requirement for creating
‘involvement’ of the player and the game character.

CHAPTER

2

RESEARCH QUESTIONS

2.1 Introduction

In this chapter I will discuss the research questions of my
internship at Mijn naam is Haas. The general research
problem for this master project internship ultimately rises
from the wish to keep improving the unique Mijn naam is
Haas game experience. While the world of Haas is already
a very elegant and coherently styled world, the game is
under constant development to improve the freedom and
subtlety of the world of Haas as experienced by the player.
This means the research question can be formulated as
follows:

(How) can the (visual) game experience of the
Mijn naam is Haas game be improved?

In this research question, a few different tracks meet.
First and foremost there is the element of the coherence
and diversity of the visual style of the Mijn naam is Haas
game. With the use of dynamic graphics, the (more or less)
subtle run time manipulation of the game graphics, it is
possible make the world of Haas more organic. At the
same time, the visual style of the game needs to remain
coherent. In chapter 4 I present the results of this part of
the internship.

Secondly, there is the more technical track of improving
the game experience by improving the functionality and
performance of the render engine. If the game renders
faster, it will feel more direct, and/or there will be (more)
cpu time left to add more (complex) visuals. The default
flash.display renderer is very powerful but it is dif-
ficult to optimize and extend because it is implemented
inside the FlashVM virtual machine, not in ActionScript3
code. The limitations of the flash.display renderer can
perhaps be circumvented with the design and construction
of a custom render engine. Solutions to this part of the
research question are listed in chapter 5.

10

Of course these research tracks are joined in the task of
translating the results into functional designs for the Mijn
naam is Haas game, and implementing these designs into
actual software components.

2.2 Research questions

In summary, the following three sub questions can be dis-
tinguished:

1. (How) can the visual style of the world of
Haas be enriched with the use of dynamic
graphics? Which approaches are possible
and how do they compare in terms of effec-
tiveness and performance?

2. How do different types of render engines
compare in terms of functionality and per-
formance? How do they compare to the
default FlashVM render engine?

3. Within the Mijn naam is Haas game, which
approaches to improve the game experience
with the help of dynamic graphics are most
effective? How could these approaches be
designed and implemented? (How) can a
custom built sprite based render engine im-
prove the (visual) game experience, and how
could such an engine be designed and im-
plemented?

It is clear that these sub questions are closely inter-
connected, and as such require a holistic approach to be
solved. The solution of these questions also profits from
an explorative and experimental hands-on approach.

A number of problems and requirements can be distin-
guished in the context of the research question and sub
questions. For clarity, these problems and requirements

11

have been divided into two sections, one having to do with
dynamic visuals and another one dealing with render en-
gine performance.

2.3 Dynamic visuals

The Mijn naam is Haas game has a unique and consis-
tent visual style, which is intelligently designed instead of
pseudo-randomly generated, and as such has a coherent
look and feel. When the visual elements of the game are
made more dynamic, it is very important that the over-
all visual style remains intact and coherent. This means
adding dynamics to the graphics should be done in such
a way that the visual elements remain within the bound-
aries of the overall visual style, adding richness to the vi-
sual representation of the story universe while sustaining
its credibility and believability. Because players are al-
lowed to add game world objects to the screen by drawing
anywhere on the game screen, a relatively big part of the
landscape composition is in the hands of the player instead
of in the hands of the designer(s). This introduces the risk
of the landscape becoming too cluttered and imbalanced.
This loss of control over the composition is partly recov-
ered because the designer remains in control of the objects
that are actually added based upon interpretation of the
user’s drawing actions, but a second method to do this is
the distribution of game world objects over multiple visual
layers. This will not only give the world more depth, but
also offers the solution of putting game world objects in
back layers when the screen is about to become to clut-
tered. However, users should not be tempted to actually
try and draw in the background, because this may create
a counterintuitive drawing experience. Instead, the visual
style should make it clear to the user what the appropriate
drawing area is.

12

Often, multiple game objects are in a certain relation
to each other. One of those relations is that of one ob-
ject existing on, in or at another object; the first object is
a sub-object of the second. This is for example the case
when the character Haas carries a tool (for example an
umbrella) or when living objects grow in or on other objects
(for example berries on a bush or ivy and fungi on tree
stems). Sub-objects can be rendered onto their parent ob-
ject dynamically. If however these sub-objects have some
kind of movement/animation, they need to be rendered as
separate visuals / world objects.

Dynamic graphics can be used to reflect global atmo-
sphere, weather or mood changes, but also to provide vi-
sual diversity between different visual elements and cre-
ate a more organic world.

To accomplish dynamic visuals, two rendering methods
are available. One method is to create a pool of differ-
ent pre-rendered visual representations of the same game
world object. Another method is to generate the visual rep-
resentation at runtime based on a list of parameters. How-
ever, both of these methods have (dis)advantages: pre-
rendering visuals only leads to a small, limited degree of
dynamics, but there is much control over the resulting
graphics; generating graphics at runtime has the advan-
tage of not having to design all graphics beforehand, but it
may lead to too much diversity and an inconsistent visual
style. In order minimize the disadvantages, a combination
of the two methods can be used, for example a method in
which the visuals are not completely randomly generated
(or composited) at run time, but instead from a limited set
of predefined input elements and values. This is effectively
a balance between randomization and control.

Three main approaches for dynamic graphics can be
distinguished:

1. shape variation (compositing): This approach, dynamic
composition, probably helps most to maintain the Mijn

13

naam is Haas visual style. It works by building a
visual representation from a collection of partial vi-
sual elements. For example a tree can be built up by
selecting a canopy from a pool of canopies, a trunk
from an array of trunks and for example a root from
a list of roots and optionally branches from a selec-
tion of predefined branches. While all partial ele-
ments are pre-rendered, the whole tree is not. This
results in an exponentially growing number of differ-
ent visual representations, that nonetheless all com-
ply with the global visual style. In addition to this,
different partial elements can be distributed across
multiple visual layers, giving more depth to the visu-
als.

. size variation (scaling/skewing): Another approach is
scaling, making pre-rendered visual elements bigger
or smaller, thereby creating a variance in size. How-
ever, all visual elements in the Mijn naam is Haas
game are carefully designed in proportion to each
other, so that they fit together well. As scaling would
lead to differences in proportions between different
visual objects, it is not the best approach to create a
more dynamic visual style. Skewing (scaling without
preserving the aspect ratio of visuals) is also not a
good idea, since it will lead to ugly visuals that don’t
fit in with the overall Mijn naam is Haas visual style.
Additionally, variations in size do not effectively cre-
ate the idea of richness in visual elements, but rather
expose the limits of the visual style.

. color variation (color palette(s)): Finally, color vari-
ation is a powerful approach to generating dynamic
graphics. The idea here is not to use random color
variations, but maintain a certain degree of control
over the visual style by combining pre-rendered visu-
als with predefined color palette(s). This can be done

14

with conventional color replacement algorithms, but
more sophisticated custom algorithms can of course
also be used. Dynamic color palettes for the visual
elements can play an essential part in controlling
the overall atmosphere, because differences in sea-
sons, time of day, weather types, mood settings, etc.
are mostly established by altering the global color
palette (on a per object basis).

Associated with dynamic visuals are a number of work-
flow optimizations, such as visual editors for managing,
adapting and possibly converting the game graphics after
they are created in a graphics editor. One could think for
example of a Photoshop plugin that exports to a file for-
mat usable for the Mijn naam is Haas game, a landscape
coloring editor or a ‘visuals test lab’ to create and generate
color palettes or test partial visual element compositions.
During my internship, I chose to build a separate visual
assets management application.

2.4 Render engine performance

The default f1ash.display renderer is in general very
fast (because it is implemented natively in the FlashVM),
and very powerful, because as a programmer you only have
to add visual elements to the display list, and the renderer
takes care of everything else. But there are also a many
problems with the default Flash renderer:

1. As the default Flash render engine is not specifically
designed for the Mijn naam is Haas game, it some-
times does too much work, for example re-rendering
game visuals or re-caching. A custom render engine
based on a custom FRAME notification could improve
performance and thereby the game experience, by
focussing on those points that are specifically impor-
tant for the Mijn naam is Haas game. In this case all

15

render tasks like positioning, compositing and draw-
ing have to be customly implemented.

2. The default Flash BitmapData class has a size limi-
tation of 16,777,215 pixels. Because the current ren-
der engine uses the zoom functionality that is inte-
grated in the flash.display renderer to zoom to a
specific region on a large bitmap, the maximum game
world size is effectively limited to about 4095x4095
pixels. A custom render engine that doesn’t use zoom-
ing, but instead only renders the user’s current view-
port could transcend this maximum world size limit.
Unfortunately, this also requires appropriate changes
in the Model side of the game (for example to accom-
modate terrain type checks in a different way).

Currently, visual game elements (visual assets), are
loaded from a few big compiled Flash movies (libraries).
Internally the different images (a lot of them animation
frames for different ‘postures’ of different game objects)
are stored as lossless compressed PNG image files. To
use these assets in a custom render engine, they have to
be converted (drawn) to a BitmapData object. This takes
time. Luckily there are a number of possible optimizations
to this method.

1. It can be faster to load and convert larger images
than smaller ones. By using sprite sheets (larger im-
age files containing multiple animation frames of the
same visual object), loading and rendering can poten-
tially be sped up.

2. Another method is to store the visual data in a cus-
tom format that can be loaded to a BitmapData ob-
ject. This can be done by serializing visual assets to
ByteArrays and storing this as a binary file. Load-
ing from a binary file is much faster than loading
separate image files like PNG’s.

16

3. All serialized image files can be combined into one
ore more binary assets files to potentially speed up
loading and rendering even further.

4. ActionScript 3 provides native z1ib compression for
ByteArray objects (which is probably the same com-
pression as is used internally by the Flash SWF li-
braries to provide lossless PNG compression). This
compression functionality can be used on a per frame,
per animation (posture), per object basis or on the
complete asset library as a whole.

17

CHAPTER

3

TECHNOLOGIES

19

3.1 Introduction

In this chapter I discuss the tools and technologies related
to dynamic graphics in the Mijn naam is Haas game. This
chapter not only provides the technical context in which
the internship research has been done, but also gives an
overview of relevant technical background research into
technologies that support or could support the solution of
the challenges the research problem of this internship poses.
Successively, the Adobe Flash platform (ActionScript, Flex,
etc.), Adobe Pixel Bender, Adobe Alchemy, HaXe, PureMVC
and general programming optimizations are discussed.

3.2 Flash and ActionScript

The Adobe Flash platform has been the dominant and de
factor standard for rich internet applications for years now.
Almost every web application that is more complex than a
web form is built in Flash, and especially animation based
web applications such as games can be built very well with
Flash, originally an animation platform.

The Flash platform is based around the Flash Player,
a piece of plugin software for browsers and mobile devices
that contains the Flash virtual machine. The FlashVM
interprets compiled .swf files that contain Flash byte code.
This means that Flash applications are virtually operating
system independent. Flash players are available for all
major operating systems.

In recent years a lot of new competitors have joined the
market of rich internet application platforms, but to date
none of them deliver the universal (multi platform) exe-
cutability, easy development process and feature richness
of the Flash platform.

Probably the biggest competitor is HTML5/JavaScript,
but that technology still suffers from a lack of standard-
ization: every browser client requires specific implemen-

20

tations of the rich internet application, and no universal
standards exist for video codecs, animation and interac-
tivity.

Microsoft SilverLight and Unity are more standard-
ized, but require additional plugins. Of course the Flash
platform also requires a plugin, but the installed base of
the Silverlight and Unity plugins is nowhere near the 97-
99% penetration rate of the Flash Player. Additionally, the
Flash plugin will be integrated into the upcoming versions
of the Google Chrome browser by default, so no separate
installation will be required.

The most important development in web technologies
is the movement of applications to mobile devices such as
mobile phones and tablets. In response to this develop-
ment, Adobe has created packagers for both Apple iOS and
Android operating systems to allow Flash applications to
be deployed to those devices. While these packagers are
still in their infancy, they present an easy way of targeting
multiple problems with one codebase.

The Flex framework is a set of quickly usable GUI Flash
components released by Adobe to make the construction of
rich internet applications easier. Adobe is working hard to
optimize the Flex framework also for mobile applications.

Another development is the AIR runtime (Adobe Inte-
grated Runtime) which allows Flash applications to run
as desktop applications, and abstracts system services to
Flash applications more directly. A mobile version of the
AIR runtime is also being developed by Adobe.

The main advantage of the Flash platform is the fact
that it is really a platform independent framework. There
are small differences between implementations on differ-
ent platforms, but these concern mainly performance is-
sues and platform specific functionality (such as GPS de-
vices in mobile devices, or touch screens). From the point
of view of the programmer, any Flash application will just
work’ on each computer that has the Flash player installed,

21

which is almost every computer. Additionally the Flash
platform’s work flow can be as easy or complex as is re-
quired by each specific project. Flash works just as well
with very easy rich internet applications or mini games as
with highly complex multicomponent application architec-
tures.

Disadvantages of Flash are that its development (com-
piler and languages) are controlled exclusively by Adobe,
which means that as a user of the framework (a program-
mer) you are dependent on strategic decisions made by
Adobe. Unfortunately, Adobe has not taken compiler opti-
mizations very seriously. Hardware acceleration has been
introduced in Flash Player 10.1, but only for very specific
(narrow) situations, like h264 video and mobile applica-
tions [54]. Another disadvantage is the fact that de devel-
opment of the Flash platform has a long history, and that
all versions are backwards compatible. This makes the
platform more sluggish than necessary.

The Adobe Flex SDK

The Adobe Flex SDK is a collection of required and op-
tional compilers and tools to compile Flash, Flex and AIR
applications. Despite being named Flex SDK, it can also
be used to compile and package non-Flex (pure Action-
Script3) projects. It is structured as follows:

/ The root folder of the SDK contains a set of read me files
and license description files.

ant/ contains the files needed for the Ant builder tool, a
Java-based build tool. It is used (and not make for
example) because it is cross platform, and uses easy
configurable xmlbased build configuration files.

asdoc/ contains support files for the asdoc application.
The asdoc application is used to automatically gen-

22

erate documentation files from ActionScript applica-
tions.

bin/ provides a cross-platform abstraction (Windows, Unix,

Linux, MacOS) for the compilers and tools. It does
this by providing executables (shell scripts and batch
files) that call the actual platform independent java
application files (which are located in 1ib/). This
way, from any platform the aliases in bin/ can be
executed, which in turn will launch the platform in-
dependent jar application files from 1ib/.

frameworks/ contains support files for the compilers and
tools, like Ant build configuration files for the differ-
ent targets: regular flash and AIR, and some other
support resources.

lib/ contains the actual compilers and support tools (java
applications). In principle they are not executed di-
rectly, but are called by the aliases in bin/.

runtimes/ contains the different runtime executables
(Flash Player, Adobe AIR runtime) for multiple plat-
forms (win/linux/mac).

samples/ contains example code.

templates/ contains packaging templates for Flash web
and standalone AIR applications.

While the Adobe Flex SDK is a very powerful collection
of tools (henceforth referred to as the Flex compiler), there
are a few problems with it. Firstly, the Flex compiler is
not that well optimized as other modern compilers (such
as for example the gcc ¢ compiler and c++ compilers are).
As a result, the Flex SDK compiler(s) don’t produce fully
optimized applications.

Secondly, the Flash Virtual Machine by default only
uses one processor core, and application code doesn’t run

23

multithreaded. Since modern processors often have mul-
tiple cores and/or multithreading optimizations, Flash ap-
plications could run a lot faster if they could make use of
multiple cores and or multithreading.

Thirdly, Flash applications do not make use of hard-
ware acceleration. Hardware acceleration is the use of
specialized hardware components to perform specialized
tasks faster than they could be performed when they are
implemented in software running on the main CPU(s), and
consequently Flash applications don’t use the GPU to speed
up graphics related tasks.

Finally, because all Flash applications run in a Virtual
Machine, there is an extra layer of interpretation between
the application code and the processor. This layer provides
security and stability, but also leads to slower execution
than native processor execution. Memory access is also
abstracted, causing speed loss as well.

There are number of strategies that can be applied to
create faster applications. Of course there are general Ac-
tionScript performance coding optimizations (just writing
more efficient code), but there are also a few extensions
of and alternatives to the default Flex compiler workflow.
Adobe Pixel Bender and Adobe Alchemy are official re-
search projects by Adobe, while HaXe is an open source
project.

3.3 Pixel Bender

Adobe Pixel Bender is a cross platform and cross applica-
tion (it also works in Adobe Photoshop and Adobe After Ef-
fects) pixel shader programming language. Pixel shaders
are small applications that perform pixel color calculations
in a highly parallelizable way, that are generally executed
on the graphics processing unit (GPU). With Pixel Bender,
these shaders can in principle be executed by the CPU (cpu
mode) and by the GPU (gpu mode). Unfortunately, the

24

Flash VM only supports cpu mode.

To create a Pixel Bender kernel, as a Pixel Bender code
fragment is called, Adobe supplies the free Pixel Bender
Toolkit. In this application, available for Mac and Win-
dows, these kernels can be programmed using a kind of
XML/C like programming language. A kernel can than
be tested on one or multiple images in the Pixel Bender
Toolkit application, and can be exported for use in Photo-
shop or Flash.

Pixel Bender kernels usually take one ore more input
images as input and result in one output image. The ker-
nel is executed on each pixel of the destination image. An
example Pixel Bender kernel (that just outputs the pixel
at the coordinates of the output pixel at the current coor-
dinate) is listed below:

<languageVersion : 1.0;>

kernel HaasFilter

< namespace : "com.mijnnaamishaas.pixelbender";
vendor : "Mijn naam is Haas";
version : 1;
description : "Haas Bender Test";

input image4d src;
output pixeld dst;

void evaluatePixel ()
{
dst = sampleNearest (src,outCoord());
}
}

In summary, Pixel Bender can be used in five ways:

1. Filter: the kernel is applied as a filter for a Display-
Object. To do this, the pixel bender kernel is loaded
into a ShaderFilter object, which in turn is added to
the DisplayObject’s filters array (the filters prop-
erty of a DisplayObject). The ShaderFilter object can

25

also be manually applied using the applyFilter ()
function.

. ShaderFill: the kernel is used to generate a fill for
a Flex component. This is done with the help of the
Graphics.beginShaderFill () method.

. Blend: the kernel is executed to calculate the blend-
ing of two images or visuals. This is done by setting
the DisplayObject .blendShader property.

. Shaderdob mode (asynchronous): A kernel can be ex-
ecuted by adding an eventListener to the shader and
starting it with ShaderJob.start (false). This
tells Flash not to wait for completion of the Shader-
Job. Instead, as soon as the job finishes, it will dis-
patch a ShaderEvent to the eventListener. The main
program continues while the job is being executed,
and the job itself is run on a different core or thread,
if available. The Shaderdob method executes a bit
faster than the other (synchronous, blocking) meth-
ods, but it takes some time to start the Shaderdob
and there is some overhead for the eventListener.
The Shaderdob also has to be restarted each time it
is used again.

. ShaderJob mode (synchronous): this can be done by
starting a Shaderdob with the waitForCompletion pa-
rameter set to true (ShaderJob.start (true)). The
Flash Player will block until the ShaderdJob has com-
pleted, and afterwards continue the main program.

Pixel Bender can not only be used for (shader) graphics,
but it can also be (ab)used to execute large sets of mathe-
matical calculations tasks in a faster way. One way to do
this is by ‘transforming’ (reformulating) a mathematical
problem in graphical terms.

26

A problem with Pixel Bender is that its speed is very
much dependent on the platform the application is exe-
cuted on, even more so because Pixel Bender doesn’t run
on the GPU in Flash (yet). The Filter, ShaderFill and
Blend modes run multithreaded and will scale across mul-
tiple CPU cores, but currently the only way of using multi-
ple cores/threads by yourself is executing an asynchronous
Shaderdob. This will cause Flash to execute the complete
Shader on a separate core or in it’s own thread, but even
then, this is only efficient with Jobs that are large enough
to overcome the overhead of setting up a-synchronization.
Additionally, a number of performance optimizations can
be made to allow faster execution [44]:

e Using 3 channels (no transparency) is faster than 4
channels.

e Use pre-calculated constants.
e Only process the relevant part of the BitmapData.
e A Shaderdob is faster than ApplyFilter

Processing BitmapData is faster than using ByteAr-
rays. Using Vector<Number> is even slower.

Try to avoid conditionals by adapting the kernel flow.

For smaller datasets, synchronous Shaderdob is faster
than an asynchronous one.

e Don’t use input data structures to store output data.

3.4 Alchemy

Adobe Alchemy is an official Adobe project that makes it
possible to compile C and C++ source code to Flash byte
code that can be executed in the Flash Player. This is ac-
complished with the help of the Low Level Virtual Machine

27

(LLVM) compiler infrastructure. The LLVM framework is
a compiler framework that allows the use of various front-
ends to compile code written in various programming lan-
guages (including C(++), Java, ActionScript and others) to
LLVM intermediate code. Next, the LLVM offers multiple
back-ends to compile this intermediate code to machine
specific machine code. In the Alchemy project, Adobe cre-
ated a back-end for the LLVM framework that compiles
intermediate code to FlashVM machine code, effectively
allowing all languages that are supported by LLVM to be
compiled to FlashVM byte code.

This not only makes it possible to reuse all those little
C libraries that are available on the web within Flash ap-
plications, but in fact in many cases also produces faster
Flash byte code than the default Flex SDK compiler. This
is possible, because the LLVM compiler uses a few ex-
tra instruction codes that are available in the FlashVM,
but (strangely enough) are not used by the default Flex
compiler. There are other reasons why Alchemy may pro-
duce faster applications than regular ActionScript. The
Alchemy compiler framework supports inlining of instruc-
tions, which means that individual assembly codes that
would take a function call to execute in regular Action-
Script3 are inserted directly into the instruction stream.
Because function calls are very expensive operations, in-
lining leads to a big performance improvement, especially
on small operations that are executed often. The third rea-
son behind Alchemy’s better performance is the fact that
the LLVM compiler framework does a lot of optimizations
while converting the C code to ActionScript, while the reg-
ular ActionScript3 compiler does few to no optimizations.
Finally, because Alchemy generated applications run in
fast memory themselves, and use faster memory to store
data, execution performs faster [33], [34].

The use of alchemy requires an adaption of the pro-
gramming workflow. Generally, an application will con-

28

sist of an ActionScript3 part that makes use of a second
part of code written in C and compiled with Alchemy. The
C/Alchemy part is to be programmed as a C application
that defines a code library with library routines. This li-
brary is than compiled with the Alchemy compiler to cre-
ate a .swec library file that behaves just like a regular .swc
library, and can thus be used in any ActionScript3 project.
This .swc file will be a bit bigger than most .swc files be-
cause it contains POSIX overhead for all relevant C calls.
An example of an Alchemy C code application is:

#include "AS3.h"
int 1i;

AS3_Val init (voidx self, AS3_Val args)
{

i = 0;

return 0;

}

AS3_Val increment (voidx self, AS3_Val args)
{

i++

return i;

}

int main ()
{
AS3_Val initMethod = AS3_Function (NULL, init);
AS3_Val incrementMethod
= AS3_Function (NULL, increment);

AS3_Val result
= AS3_Object ("init: AS3ValType, increment: AS3ValType",

initMethod, incrementMethod);

AS3_Release (initMethod) ;
AS3_Release (incrementMethod) ;

AS3_LibInit (result);

return 0;

29

This code will expose two functions, an init () and an
increment () function to the ActionScript programmer
who uses the resulting swc file. Within a Flash applica-
tion, the following ActionScript 3 code is used to open and
use the swc:

package

{
import cmodule.AlchemyExampleLib.CLibInit;
import flash.events.Event;

public class AlchemyExample extends Sprite
{
protected const lib:Object
= (new CLibInit()) .init();
private var counter:int;

public function AlchemyExample ()
{

//initialize counter
counter = lib.init();

addEventListener (Event .ENTER_FRAME,
enterFrame) ;

}

protected function enterFrame (e:Event) :void
{

//increment counter every frame

counter = lib.increment ();

Considering the complexity of the process, this works
actually relatively easy, but there are of course also a few
downsides of using Alchemy. One problem is that in the
code, communication between the AS3 part and the C part
is relatively expensive (performance wise) to do. Luckily
there are a few ‘tricks’ to quickly move data both ways [74],
[64], but still it is best to prevent as much communication
as possible (switching back and forth between contexts is
called “marshaling” [32]). A similar problem occurs also

30

during the actual coding of the application; as the C part
requires a separate workflow, the programmer finds him-
self switching back and forth between the Flash and C
workflows, which also has some overhead costs.

Is Alchemy in practice really faster than ActionScript3?
Theoretically yes, but the practical results seem to vary.
There are a lot of examples where Alchemy seems to speed
up tasks very much, for example with JPEG encoding [42],
[39], and particle system rasterization [35], but other ex-
periments suggest that it may be very difficult to achieve
big speedups in real world applications [7], because of the
overhead Alchemy generates and the general difficulty to
fit Alchemy code into an ActionScript3 application.

3.5 HaXe

HaXe is an open source programming language and com-
piler that can target multiple platforms including the Flash
Virtual Machine. It was created by Nicolas Cannasse, who
is also the main developer. HaXe’s syntax is much like
the ActionScript3 syntax, and quite some pieces of code
can be copied between HaXe and ActionScript3 with lit-
tle to no changes. The HaXe compiler supports compila-
tion of HaXe code to multiple platforms, including Flash,
JavaScript, Neko, PHP and C [36].

HaXe is much like Alchemy in that the HaXe compiler
supports the fast virtual machine opcodes that the default
Flash compiler doesn’t use, supports inline assembly, and
contains more optimizations than the default Flash com-
piler. Just like with Alchemy, HaXe programs can be com-
piled to a reusable .swc library file that can be included
and used in any regular ActionScript3 application [68].
However, HaXe compiles directly to Flash code, without
using LLVM as an intermediate stage, and a lot of classes
can be compiled exactly into their as3 counterparts. Also,
because HaXe doesn’t need to support the whole C POSIX

31

standard, the .swc overhead is much smaller.
Consider the following example HaXe code, that simply
draws a box:

class Test {

static function main() {
var mc : flash.MovieClip = flash.Lib.current;
mc.beginFill (OXFF0000) ;
mc.moveTo (50, 50) ;
mc.lineTo (100,50);
mc.lineTo (100,100);
mc.lineTo (50, 100);
mc.endFill () ;

Here, the main downside of HaXe becomes apparent:
that it is somewhat like ActionScript3, but not completely
like ActionScript, which might be difficult to switch to as
a programmer. Another problem is that the project is not
officially supported by Adobe, so there is not really a guar-
antee that the project will be kept up to date. Until now
however, it is being maintained very well. The compiler
seems to be very good, and there are quite a few examples

of well working HaXe applications, for example web games
[301].

3.6 PureMVC

As discussed before, Flash supports applications of every
complexity. For larger applications, design patterns are
usually used to make the large source code repositories
more readable and better organized. An often used design
pattern is the model view controller (MVC) design pattern.
PureMVC is a popular model view controller code library,
and an ActionScript 3 version of PureMVC is available
[58].

The model view controller design pattern divides all
software components into three categories: models (com-

32

ponents that manage data), views (components that show
information to the user and offer interaction to the user),
and controllers (components that contain business logic to
perform operations on data and update views). The goal
of this approach is to decouple data storage from the way
data is shown. This leads to better data structures, cleaner
view components, and makes expansion of the application
easier.

sees uses

updates manipulates

\ application /

Figure 3.1: The basic Model View Controller pattern

33

PureMVC slightly adapts the basic model view con-
troller design pattern. The central component is the sin-
gleton Facade, which functions as the central hub through
which all components can access the components they are
allowed to communicate to. Within PureMVC the Model is
an abstract concept that exists in the form of one or more
Proxies that manage data objects, the View is an abstract
concept that exists as a set of Mediators that each manage
a Ul view component, and the Controller is an abstract
concept that exists in the form of multiple Commands.

puremvciNg iramework

D O
N
NN
\\\ \\\ Data Objects
\ Local or Remote
\ \

AN

=
yd] \
/ |
-

N

\
AN

7 T
’//' //
P
N
y Facade
/ \

©C 6

Figure 3.2: The PureMVC design pattern architecture

Because the Mijn naam is Haas game is using the Pure-
MVC framework to structure the software components ar-
chitecture, I also used it in this internship project. It is
a very powerful framework and forces a programmer to
write well structured components.

34

3.7 Other optimizations

Some other ActionScript3 optimization strategies include:

e Post compile optimization using Apparat. Apparat is
“a framework to optimize ABC, SWC and SWF files.”
[17]. It can be used to speed up and compress com-
piled Flash applications and libraries. Apparat does
this by taking already compiled Actionscript Byte-
Code (ABC) and speeding up this ABC by applying
inlining of short methods, resulting in less instruc-
tions in the application and thus a faster application
[18].

e Choose the right data structures. ActionScript3 sup-
ports (among others) BitmapData, Vector and ByteAr-
ray data structures. In different situations, different
data structures are faster, so it is important to choose
the right ones for the right situation [51], [72].

e Do less work. Usually when processing a large set
of objects, a lot of useless work can be avoided us-
ing culling strategies (determining at runtime which
objects are not relevant for the current context, sepa-
rating them from the objects that are relevant, and fi-
nally processing only those objects that are relevant).
For example, when building a render engine, Visu-
als that are not inside the current viewport, or vi-
suals that are invisible for other reasons, don’t need
to be rendered at all. Techniques like this are used
very heavily or example in 3d render engines [38].
Another strategy to prevent doing useless work is
caching, in which objects that have not changed since
the last iteration of a repeated process are not pro-
cessed again; instead, the previously processed ver-
sion is reused.

e Efficient code. The most obvious way to optimize Ac-
tionScript3 applications is by writing efficient code,

35

for example using different loop types (for, while, for
each, etc.), instantiating and scoping variables with
care, reuse variable, using bit/byte operations like bit
shifts and logical operations like AND and OR, and
smart typing and casting of variables [16], [47], [48].

Profiling. To keep an eye on performance during de-
velopment, it is important to profile applications.

Some IDE’s, such as Flash Builder and FDT, have
advanced profiling functionalities which may help lo-
cating performance bottlenecks. Additionally, there
are ActionScript3 frameworks that help in profiling
applications [46]. Finally profiling can be done by
hand using the trace () debug statement in combi-
nation with getTimer () statements and some sim-
ple math. However, there are area’s in the FlashVM
that are almost impossible to profile, except by eval-
uating the user experience (hiccups, hangs, frame
drops etc.).

Recently, a new performance measurement library
was released, named FrameStats [21]. Unfortunately,
because it was released only after my internship ended,
I didn’t have the chance to try it, but it apparently
is very powerful, and should definitely be used in
future research.

36

CHAPTER

4

DYNAMIC GRAPHICS

37

4.1 Introduction

During the first part of my internship, I focused on an-
swering the first research sub question (as listed on page
11). In this chapter, I describe the problems and possi-
bilities related to implementing dynamic graphics in the
Mijn naam is Haas game and workflow, in other words,
the run time compositing and manipulation of visual rep-
resentations in the game and the workflow of importing
these visual representations into the game.

This research has resulted in a VisualArchitecture for
implementing dynamic graphics in the Mijn naam is Haas
game and workflow. It supports multipart objects, vari-
ants of the same objects, shared mood palette(s) and world
layering. In the first sections of this chapter, all termi-
nology and the structuring of the VisualArchitecture is
explained. In the concluding sections, the VisualAssetsIm-
porter, a workflow application that can be used to import,
organize, and package Visuals, is discussed. For clarity, I
will only discuss the final versions of those results in this
thesis.

This chapter uses a strict vocabulary to identify the dif-
ferent parts of the VisualArchitecture. All relevant terms
have the prefix Visual. In situations when the context has
clearly been established, and it is clear that Visuals are
the subject, the architectural elements below may also be
referred to without the Visual prefix.

Because the terminology used in the dynamic graphics
architecture is also used in the discussion of the design
decisions, I first present the final dynamic graphics archi-
tecture, before moving on to the design decisions.

38

4.2 Final dynamic graphics archi-
tecture

A ModelObject (or GameObject) is one model object in the
Mijn naam is Haas game world, for example Haas, Tree or
Bridge. The VisualArchitecture describes and organizes
how a ModelObject is represented on the screen. The Vi-
sualArchitecture is defined by the following terminology:

e Visual: a prefix relating to anything Visual.

e VisualArchitecture: the VisualArchitecture consists
of a few parts: a VisualStructure, VisualLayer(s) and
VisualMood(s).

e VisualAsset: one image file containing a VisualFrame.
All VisualAssets that belong to a certain ModelOb-
ject should have the same size (width, height) in or-
der to allow smart cropping and positioning (storing
localWidth, localHeight, localX, localY with a Visu-
alFrame’s BitmapData). All VisualAssets should be
organized in the VisualAssetsFolder with a certain
folder structure to be importable by the VisualAsset-
sImporter. During the import process, every Visu-
alAsset is transformed into one VisualFrame.

e VisualAssetsFolder: the folder containing all image
files that have been exported by the visual artist. For
more information about the folder structure, see the
section about the VisualAssetsImporter below.

e VisualAssetsImporter: the application used to im-
port VisualAssets from the VisualAssetFolder, orga-
nize them, and package them into (a) VisualPack-
age(s).

e VisualPackage: a (set of) VisualFrame(s) packaged
to be used in the game. VisualPackages should be

39

’smart distributable’, which means that two ore more
packages can be combined to form one bigger Visual-
Package containing the contents of both small pack-
ages.

VisualStructure: the data structure describing how
different VisualFrames are related to each other.

The VisualStructure consists of a hierarchy of Visu-
alCategories, VisualObjects, VisualVariants, Visual-
Parts, VisualPalettes, VisualAlternatives, VisualAn-
imations, and VisualFrames.

VisualObject: (or ‘visual’) a Visual representation of
a ModelObject. Every ModelObject is represented
by one VisualObject. Every VisualObject has one or
more VisualParts. A VisualObject has a number of
VisualVariants.

VisualPart: a part of a VisualObject. For example,
in case of a Tree, the following parts might be dis-
tinguished: Canopy/Leaves, Stem, Branches. Every
VisualPart has one or more VisualAlternatives. Ev-
ery VisualPart lives on a certain VisualLayer. A Vi-
sualPart can have up to one VisualPalette for every
global VisualMood.

VisualMood: A state in which the game world is,
that can be reflected in the appearance of individual
VisualParts with the help of VisualPalettes.

VisualPalette: A set of modifier values (brightness,
contrast, saturation, hue) that determines how a cer-
tain VisualPart is to me modified when the game
world is in a certain VisualMood. If no VisualPalette
is defined for a certain VisualPart and a certain global
VisualMood, the VisualPart’s appearance is not mod-
ified, and the ‘default’ images are used.

40

e VisualLayer: the game world can contain any num-
ber of VisualLayers (although it is best to not use too
many), indicating the order in which Visuals are to
be drawn to the screen.

e VisualAlternative: an alternative for a VisualPart.
For every VisualPart, at most one VisualAlternative
is selected (the selectedAlternative). VisualAlterna-
tives can be used in any number of VisualVariants
of the same VisualObject. Every VisualAlternative
contains a number of VisualAnimations.

e VisualVariant: In order to make it possible to com-
bine different VisualAlternatives for the VisualParts
of a VisualObject, but not allow all possible combina-
tions, VisualAlternatives can be used in any number
of VisualVariants. At any given moment, for all Vi-
sualParts of a VisualObject, only VisualAlternatives
that can be a part of the VisualObject’s currentVari-
ant can be selected as valid currentAlternatives.

e VisualAnimation (replaces Posture(s)): A collection
of VisualFrames composing a certain state a Visu-
alAlternative is in, for example ‘walking’ or ‘eating’.
VisualAnimations can be looped or non-looped. Vi-
sualAnimations that have their looping property set
to true will be restarted from their first frame when
they complete, non-looped VisualAnimations will stop.

e VisualFrame: a frame of a VisualAnimation. Every
VisualFrame is loaded from zero or one VisualAs-
set(s).

41

4.3 Design decisions

In this final architecture, adding dynamics to the visu-
als (VisualObjects) is done in multiple ways: using color
transformations (VisualMood(s)/VisualPalette(s)), by divid-
ing visuals in multiple parts (VisualParts) and choosing
between multiple alternatives for each part (VisualAlter-
natives), and finally by distributing VisualObjects across
multiple layers. Here follow all important design deci-
sions, and their drawbacks and alternative implementa-
tions.

e Multiple VisualParts per VisualObject, with multiple
alternatives per part, allow for many combinations.
Another option is to choose not to include a certain
part in some circumstances. In that case, that part
is using the ‘empty’ alternative. This allows for more
flexibility in the use of parts and alternatives.

e In the old graphics architecture of the Mijn naam is
Haas game, some VisualObjects have posture(s). A
posture was a certain state of a visual, for example
‘walking’ or ‘eating’. Most postures had their own an-
imation(s). In the new architecture, postures are re-
placed by VisualAnimations, which function almost
exactly the same as postures did. A problem is, how
do postures relate to parts? Should parts have pos-
tures/animations, or should postures/animations have
parts? The second options seemed to be a bit more
logical than the first one, so in the final architecture
VisualAnimations are placed below VisualParts in
the hierarchy of the VisualStructure.

e But regardless of which option is chosen, the fact
that there can be postures as well as parts (which
have alternatives) leads to an explosion in the num-
ber of VisualAssets required. Therefore, it is in prac-
tice better not to use multiple postures and multiple

42

parts in the same visual. Effectively, the safe choice
is: one VisualPart with multiple VisualAnimations;
or multiple VisualParts with only one VisualAnima-
tion per part. Theoretically however, the architec-
ture also supports multiple VisualParts with multi-
ple VisualAnimations (postures).

A goal in future versions of Mijn naam is Haas is
to distribute visuals over multiple layers (in the cur-
rently released games, visuals can only be placed in
front of, or behind the main character Haas). The
new VisualArchitecture supports multiple VisualLay-
ers. It is also possible to distribute different parts of
a VisualObject over different VisualLayers, so that
for example characters can move (walk) before cer-
tain parts of a visual but behind other parts of the
same visual. This gives more depth to the visual
world, while not making the game controls (or more
specific the clearness of where a user can draw) more
difficult and chaotic. A question that yet has to be
answered is how many layers to allow. Theoretically
the new VisualArchitecture support any number of
layers, but in practice it will probably be best to limit
this number of layers to a certain reasonable amount
(mainly for performance reasons).

Color variations can contribute a lot to the visual
diversity of the game. In line with the ‘intelligent
design’ principle for Mijn naam is Haas, we however
don’t want to surrender too much control over the
resulting visual style to the game engine itself. The
solution for this problem are VisualMoods and Vi-
sualPalettes. The idea is that colors should not be
changed (pseudo-)randomly, but based on color pro-
files (VisualPalette(s)) that are predefined. This way,
the designer retains control over the visual style. Ev-
ery VisualObject always has the same VisualMood

43

applied, but the VisualPalette selected by the global
VisualMood is defined for each VisualPart individu-
ally.

In other words: a VisualMood can be ‘applied’ to a Vi-
sualObject, which will effectively apply to each Visu-
alFrame of each of the VisualParts of that VisualOb-
ject the VisualPalette for that specific VisualMood.
Every VisualObject has a ‘default’ VisualPalette: the
VisualFrames as they are by default. A VisualPalette
effectively defines a set of color transformations that
indicate how to get from the ‘default’ VisualFrame
to the VisualFrame as effected by a certain Visual-
Mood. VisualPalettes are implemented in the final
VisualArchitecture as ColorMatrixFilters with four
parameters: brightness, contrast, hue and satura-
tion.

Another method to implement VisualPalettes (that
was not implemented for performance reasons) is by
using a color replace list, containing colors in the
‘default’ palette and their related colors after the Vi-
sualPalette has been applied. To apply a certain Vi-
sualPalette, this list is traversed, and every color is
replaced according to the list (taking into account a
certain precision parameter, so that colors that are
‘like’ the replaced color are also modified). A color
replace list can be constructed by:

1. generating a color palette with distinct colors
that occur in the ‘default’ palette.

2. selecting zero or more colors in this palette.

3. choosing a new color (and a precision value) for

each of those selected colors.

The problem with this solution is relatively bad per-
formance, especially when a lot of visuals need to
have their VisualPalette (re)applied at the same time.

44

The advantage of this approach over the implemented
ColorMatrixFilters is that while the ColorMatrixFil-
ters perform better, the color replace lists give a more
fine grained control over the visual style of the Mijn
naam is Haas game.

e The final VisualArchitecture allows any VisualOb-
ject to be dynamic. But it is not required for every
VisualObject to be dynamic. Which objects could be
made more dynamic? Probably the best objects to
make more dynamic are objects that are used many
times (multiple instances). Variations in these ob-
jects will lead to the most effective enrichment of the
visual world. These objects are primarily objects that
are part of the (natural) world, such as grass, trees
and possibly animals.

In contrast, objects with a clear identity (that are
often only used one instance at a time), such as actors
(Haas, Sofie, etc.) should look the same every time
they appear, and should thus not be dynamic.

As it turns out, the objects that are the best candi-
dates to be made dynamic are mostly those that don’t
have postures. This fits nicely with the earlier named
‘best practice’ to not use VisualAnimations and Visu-
alParts/VisualAlternatives with the same VisualOb-
ject.

e Ideally, it should be possible to influence the ‘dynam-
ics’ of a visual in the Mijn naam is Haas application
code, to request a dynamic graphic with certain prop-
erties (like ’a high thin tree with only a few leaves
and no apples’. It should however also be possible
to request just a certain type of visual (like ’a tree’),
and have the system determine the specifics by itself.
The VisualArchitecture supports this.

e The VisualArchitecture also introduces a number of

45

workflow related decisions. In the currently released
games, visual assets are imported into the Mijn naam
is Haas game via .swf library files. While this works
well and is quite fast, it is not very elegant and flex-
ible. As an alternative, visual assets can be loaded,
serialized, compressed and finally packaged into fast-
loading VisualsPackages. Assets (png files) should
be organized in the VisualAssetsFolder (root) in a
hierarchical way, using this folder structure:

root.category.object.part.alternative.animation.frame

Some visuals in the current swf library have Flash
frame jump logic in them. This logic is not accounted
for in this new system, except for the option to set
the looping to true or false, causing the current ani-
mation to loop. Additionally, telling a VisualObject
to animate will cause its current Posture or Visu-
alAnimation’s parts to be animated. When an anima-
tion completes, an Event will be dispatched, allowing
the game engine to take appropriate action. Empty
frames at a few parts should be possible for better
performance.

In the same manner, some of the visuals currently
have audio effects associated with them in the swf li-
brary. This audio is not taken into account in the pro-
posed new assets organization, and should be han-
dled by another part of the game engine.

The organization of the VisualStructure and the stor-
age of the pool of actual BitmapData objects have
been designed as two separate software components,
the AppearanceProxy and VisualRenderProxy (pre-
viously named BitmapDataProxy) respectively. The
AppearanceProxy only administers the organization
of visual structures, and the VisualRenderProxy (the
component that also does the Rendering) stores the

46

actual BitmapData objects so that they are quickly
accessible during the render process. This makes the
BitmapData storage very scalable and flexible, but at
the same time allows the AppearanceProxy to keep a
low footprint (and be loaded fast in its entirety at the
start of the game).

The hierarchical relations between the architectural el-
ements are reflected in the following diagram, which also
shows their relation to the Model, a connection made by
the AppearanceProxy software component. See also the
diagram of the VisualAssetsFolder structure on page 48
(figure 4.2).

- AppearanceProxy
ModelObject VisualObject

‘ Partl ‘ ‘ Part2 ‘
‘ Alternativel ‘ ‘ Alternativel ‘ ‘ Alternative2 ‘

[Animationt | [Animation2 | [Animation1 | [Animation1 |
Framel } f1.png H Framel } f1.png Framel } """ null
Frame2 } f2.png Frame2 } f2.png Frame2 } ———— null
Frame3 } 3.png Frame3 } f3.png Frame3 } ————— null
Frame4 } f4.png Frame4 } f4.png Frame4 } ————— f4.png
Frame5 } 5.png Frame5 } f5.png Frame5 } """ 5.png

Figure 4.1: From model to visual.

W~

7

E‘;(VisualAssetsFolder)
ﬂ metadata.xml (stores general metadata (VisualMoods, VisualLayers)
{AssetCategoryl} (exmample: objects)
{VisualObject1} (example: Tree)
ﬂ metadata.xml (stores registration point)

{VisualPart1} (example: Trunk)

metadata.xml (stores MoodPalettes and Layer placement)
{VisualAlternativel} (example: trunk1)

metadata.xml (stores variant membership)
{VisualAnimation} (example: grow)

metadata.xml (stores animation looping)
00.png

01.png

{VisualAlternative2} (example: trunk2)
metadata.xml (stores variant membership)

{VisualAnimation} (example: grow)

- {VisualPart2} (example: canopy1)
®

- metadata.xml (stores MoodPalettes and Layer placement)
_e- {VisualAlternativel}

- metadata.xml (stores variant membership)
{VisualAnimation) (example: grow)

_- metadata.xml (stores animation looping)

{AssetCategory2} (example: actors)

Figure 4.2: The VisualAssetsFolder structure.

48

4.4 Graphics workflow: importing
and rendering

In the process of implementing this VisualArchitecture, it
is important to take the complete graphics workflow into
consideration, essentially the complete life of a visual from
drawing board to game element. There are multiple parts
to this workflow. Of course the most important part of
implementing dynamic graphics is the rendering of the
actual Visuals in the game at runtime. But because good
preparation of the Visuals makes the actual rendering pro-
cess easier and more powerful, I will discuss the complete
workflow of getting an image from artist to rendering: the
life of a visual. In general, two distinct processes can be
distinguished, Importing (A) and Rendering (B):

1 2 3 4 5
A [creare |——m[mpORT |——m{ wANAGE |——m{ SERIALZE | ——m[PACKAGE |

1 2 3 4 5
B [oraw }—w] wmatcH | ADD ——[reneR |——m[DisPLar |

Figure 4.3: The Import and Render pipelines.

This distinction of the two processes leads to two separate
implementation tasks:

1. The construction of an application (external to the
game) that handles the importing process. This ap-
plication is henceforth referred to as the VisualAsset-
sImporter.

2. Building component(s) (within the Mijn naam is Haas
game) that handle(s) the adding of dynamic graph-
ics and rendering of the game world. I have cre-
ated multiple software components for the different
tasks. The component that handles the management

49

(adding, removing) of the dynamic graphics is called
the VisualSceneMediator. The VisualSceneMediator
consults the AppearanceProxy for information on how
to composite visuals and make them dynamic. The
component that renders the game world is named the
VisualSceneProxy.

A: the importing process

The Importing process is performed at development time
by the VisualAssetsImporter, and is as such less time and
performance critical than the Rendering process. Within
the context of my internship, step A2 and A3 are the most
important, while step A4 and A5 are side projects for get-
ting the visuals from VisualAssetsImporter into the game.

Step Al: create

After visuals are drawn by the artist and animated by
the animator, they are exported as PNG files to an export
folder, called the VisualAssetsFolder. The PNG VisualAs-
set files should be organized in a clear hierarchy (see the
image of the folder structure on page 48).

Step A2: import

Next, this VisualAssetsFolder is loaded by the VisualAs-
setsImporter, which does this by looping over the folder
structure and storing all frames into memory. Smart crop-
ping is applied to remove transparent ‘whitespace’ from
the frames, in order to have them use less money. In this
process, the localX and localY values of these cropped Vi-
suals are saved. All Visuals belonging to the same Visu-
alObject are stored together.

50

Step A3: manage

When all Visuals have been loaded, they can be managed
in the VisualAssetsImporter application. The following
tasks can be performed: (1) set, edit and store each Vi-
sualObject’s registration point; (2) test VisualAlternatives
(skip through all alternatives of a VisualPart); (3) edit, test
and store VisualPalette’s for each VisualPart; (4) play and
skip through all animations; (5) edit for every VisualPart
the layer on which it is rendered.

Step A4: serialize

All individual images are converted to raw image data
(ByteArray) and compressed using the lossless z/ib com-
pression that is built into the FlashVM.

Step A5: package

Finally, the images can be exported to (a) VisualPackage(s)
that can be opened quickly by the game, either packaged
with the game or from a web API. This packaging is done
in a smart way, so multiple VisualPackages can be con-
catenated to form a combined bigger VisualPackage.

B: the rendering process

The rendering process is ‘executed’ at run time within the
Mijn naam is Haas game by the ObjectMatchProxy, Ap-
pearanceProxy, VisualSceneMediator, VisualRenderProxy
and other components. Step Bl is handled by the Ob-
jectDrawer component(s) and step B2 by the ObjectMatch-
Proxy. For the purpose of adding dynamic graphics, step
B3 is the most important.

51

Step B1: draw

In this step, the player draws something in the Mijn naam
is Haas game world.

Step B2: match

Next, the player’s drawing is matched by the ObjectMatch-
Proxy. This results in a ModelObject being added to the
game world model.

Step B3: add

This step mainly takes place within the VisualSceneMedi-
ator and AppearanceProxy. When the user has drawn an
object and it has been matched to a certain type of object,
the corresponding VisualObject is selected and an alterna-
tive is selected for each VisualPart. After this selection
has been done (either on the basis of parameters from
the ObjectMatch, or for some alternatives (for example
which branches to use) more randomly), the required Vi-
sualPackages are fetched if they are not already available.

For performance reasons it is best if all required Vi-
sualPackages are already available (preloaded). The new
VisualObject is added to the display list. The add step is
shown in the following MVC diagram.

52

;/S/ceneMembé\i‘\,‘
. Library ¢

AddObjectCommand

Proxy

| VISUALOBJECT_ADDED |

Figure 4.4: The process of adding a VisualObject

When the AddObjectCommand adds a new object, it
first (1) adds a ModelObject to the SceneProxy (with the
help of the SceneMember libary (2) and (3)). Next, it (4)
sends an OBJECT_ADDED notification, which is (5) picked
up by the VisualSceneMediator. The VisualSceneMediator
(6) consults the AppearanceProxy to (7) retrieve a suit-
able VisualObject for the ModelObject and adds it to the
VisualScene. Finally it sends a VISUALOBJECT_ADDED
notification.

Step B4: render

The render process is managed by the VisualSceneMedia-
tor, but takes place mainly within the VisualRenderProxy.

53

First all VisualFrames in the display list are sorted (based
on VisualLayer) and the renderer will loop over the dis-
playList and copy or blit all VisualObjects to the main
Bitmap. This is done by copying the currentFrames from
all selected VisualAlternatives (one for each VisualPart) to
the main BitmapData. In this step actions like z-/layer-
sorting, clipping, culling, VisualPalettes, projection and
rotation are performed if these are necessary. This step
is examined in greater detail in chapter 5.

FRAME |

w@ VisualRenderProxy

FRAME_RENDERED

Figure 4.5: The render step of the rendering process

Whenever a frame is to be drawn, a FRAME notification
is sent by the game core timing mechanisms (TimerProxy).
The VisualSceneMediator is (1) interested in this notifica-
tion and (2) responds by constructing a sceneGraph with
the help of the VisualRenderProxy and having the Visu-
alRenderProxy render this sceneGraph. The result (3) is
returned back to the VisualSceneMediator which displays
it in its viewComponent (VisualScene) and (4) dispatches

54

a FRAME_RENDERED notification.

Step B5: display

The final rendering step consists of instructing the default
flash.display renderer to show the resulting Bitmap
on the game screen.

4.5 VisualAssetsImporter

The VisualAssetsImporter is an Adobe AIR application that
can be used to import VisualAssets from the VisualAs-
setsFolder, manage VisualVariants, manage VisualLayers,
distribute VisualParts over VisualLayers, manage Visual-
Moods, edit VisualPalettes, export VisualPackages, and per-
form other Visual related tasks. Because all images that
are related to the same VisualObject should have the same
size, relative positions of the different parts of an object
can automatically be detected. The application also en-
ables editing of important metadata such as every Visu-
alObject’s registration point in a GUI.

The VisualAssetsImporter performs a ‘smart crop’ on
every frame, stripping away transparent pixels to save
memory and bandwidth, while preserving local positions
of visuals. The application finally performs ‘smart packag-
ing’, resulting in VisualPackages that can be concatenated
to form bigger packages. These packages can then either
be supplied with the game, or fetched from a web ser-
vice (php or something faster in any requested granularity.
Ideally, this back end system is integrated with other back
end systems, such as the Intelligent Tutoring System [56].

Importing

When the VisualAssetsImporter is started, it will auto-
matically check the user’s Documents folder and search

55

for the VisualAssetsFolder (see the folder structure
diagram on page 48), and use that folder as its main work-
ing directory. It will loop through the folder structure,
store the VisualStructure, and convert all VisualAssets
to VisualFrames. It will load any metadata.xml files
it encounters, loading additional metadata for the differ-
ent Visuals. These metadata files could theoretically be
edited manually with a basic text editor, but in principle
all metadata can be managed from within the VisualAs-
setsImporter.

Windows and panels

The VisualAssetsImporter features two windows, the main
window and the world preview window. Each of those
windows contains a few different panels.

The main window contains a titlebar with the word
‘VisualAssetsImporter’ and the location of the VisualAs-
setsFolder, and three panels. On the left is the visuals
panel, which contains selectors for the VisualCategory and
VisualObject, a selector to select the current active Vi-
sualMood (and buttons to rename or add VisualMoods), a
button to start editing VisualLayers, and a button to save
all changes to disk (to the VisualAssetsFolder). Finally
the visuals panel contains a button to export the Visuals
to a VisualsPackage. The parts panel contains controls to
edit all VisualParts of a VisualObject independently, and
a button to add copies of the edited VisualObject to the
world preview. The palettes panel contains controls to edit
a VisualPalette. The main window cannot be resized.

The world preview window contains a world preview
panel that takes up most of the window, and a display list
panel, which contains controls to manage the VisualOb-
jects that are in the world preview at any given time. The
world preview window can be resized to occupy a whole
screen.

56

Usage

When an object is selected using the selector in the visu-
als panel, that object will become the CurrentObject, the
object that is currently being edited. The CurrentObject is
automatically added to the world preview, and can’t be re-
moved from it. Instead, it is automatically replaced when-
ever another object becomes the CurrentObject. Persistent
copies of the CurrentVisual can be added to the world pre-
view by clicking the ‘Add Visual to Preview’ button in the
parts panel.

Additionally, when a VisualObject becomes the Cur-
rentObject, controls to configure its VisualParts, VisualAl-
ternatives and VisualAnimation are added to the parts
panel. For each part, a layer can be selected onto which
that part will be placed in the world, and one of the al-
ternatives can be selected as the selected alternative (se-
lectedAlternative) for that part. By clicking the ‘Variants’
button, a selection of the VisualVariants this VisualAl-
ternative is a valid alternative for can be made. For the
selectedAlternative, the active VisualAnimation (Posture)
can be changed. The checkbox next tot the posture selector
can be used to set the animation behavior of the posture to
loop (restart from the first frame after the VisualAnima-
tion completes) or not looping (stop after one animation
cycle). For each part, the VisualPalette corresponding to
the globally selected VisualMood can be edited by clicking
the Edit Palette(s) button.

Using the ‘Package’ button in the visuals panel, all Vi-
sual information (the VisualStructure, the VisualMoods,
the VisualLayers and the BitmapData (VisualFrames)) can
be exported for use in the Mijn naam is Haas game. This
functionality has been implemented, but has not optimized
for smart packaging, because that is outside the scope of
my internship.

57

4.6 Results: architecture and work-
flow

This part of my internship has resulted in a powerful dy-
namic graphics architecture and a very useful visual as-
sets workflow application. The VisualArchitecture pro-
vides a lot of possibilities for dynamic graphics, and all re-
quired functionality of the VisualAssetsImporter has been
implemented. Of course, the VisualArchitecture could also
be partly used, as there are no dependancies between the
different parts of the architecture or between the different
methods of dynamic graphics the architecture offers. Sim-
ilarly, the VisualAssetsImporter can easily be improved or
changed as it is built using the PureMVC framework.

Use case diagram

VisualAssetsimporter

edit regi-
stration poin

i

edit layering

Manage

.

test / edit

User VisualPalette

Alternatives

play / loop

animations

Figure 4.6: The VisualAssetsImporter use case diagram

58

Development wireframe

Coelect folder) [objects) (ree
Postures / Preview Parts / Alternatives
T r—) PART I: Trunk
Palette: (st 18) (5 () (5
Aliemative: {vunkz %)
PART 2: Canopy
Palette: (g 18) () () (5
Alternative: |_canopy3 |4
animation: (<< prev) € next>>)

1) (export) (exportto 08) (options) (save settings)

Palettes
now editing: {Canopy NIGHT}
replace with: (color) tolerance: [slder here]

replace with: (‘color) tolerance: [slider here]

replace with: (color) tolerance: [slder here]

replace with:

) tolerance: [slider here]
replace with: (‘color) tolerance: [slider here]

replace with: (‘color) tolerance: [slider here]

replace with: (cslor) tolerance: [slder here]
replace with: (color) tolerance: [slider here]

replace with: (eslor) tolerance: [slder here]

replace with: (color) tolerance: [slider here]

Figure 4.7: The VisualAssetsImporter wireframe

Screenshots

800 Visual Assets Importer

VisualA ter

Done.

Figure 4.8: The VisualAssetsImporter’s main window

59

Nl

Figure 4.9: The VisualAssetsImporter’s review window

Bugs, additions and improvements

There is a number of features and improvements that could
be implemented that would make the VisualAssetsImporter
a better program. For possible future use I list them here
in a very short manner:

e Import empty frames based on filename (0.png, 1.png,
5.png should create 3 empty frames), could be imple-
mented in VisualAnimation or VisualFrame.

e VariantsList per VisualObject + variant checkboxes
per VisualPart.

e VisualObject filtering so that only VisualAlternatives
that can be an alternative for the selected Visual-
Variant are shown.

e More and better visual feedback on which elements
(Parts, Objects, Palettes, etc.) are currently being
edited.

60

e Animation controls per posture, and/or global anima-
tion controls.

e Animation for all visuals in the preview window, in-
stead of only for the the CurrentObject.

e Support for empty VisualAnimations, default Visu-
alAnimations and empty frames.

e Implement a better world preview renderer.

e A button to delete VisualMoods.

e Check consistent part/alternative ordering.

e Multiple PaletteAlternatives per VisualPalette.
e Undo functionality.

e Move preview objects and registration point using
arrow keys.

e Palettes copyable between parts.

e Multiple LayerAlternatives / LayerTypes

61

CHAPTER

5

RENDER ENGINE

63

5.1 Introduction

During the second part of my internship, I focused on an-
swering the second and third research sub questions (as
listed on page 11). After the structural design of the new
dynamic graphics architecture for the Mijn naam is Haas
game was completed (including an application for editing,
testing and packaging visuals), the goal was design and
build (a part of) a render engine that can render these
dynamic graphics in the fastest way possible. This chapter
discusses the render engine architecture and implementa-
tion I have developed during my internship, based on the
research listed in chapter 3.

The wish for a new render engine for the Mijn naam is
Haas games did not just originate from the requirement
of adding dynamic graphics to the game. Other reasons
to investigate the possibilities for a new render engine
are the fact that a custom engine would allow for more
game specific tweaking, could be optimized for use in the
web service version of the Mijn naam is Haas game, could
improve the overall graphical assets workflow, and make
the game world bigger and more free. While researching,
designing and implementing the new render engine, I took
into account all those requirements, but the implementa-
tion of dynamic graphics remained the core of the project.

5.2 General render engine theory

Usually, rendering is an expensive task in terms of the
machine power required. Therefore, when it comes to ren-
der engines, performance and functionality are eternally
battling for importance. A lot of methods, techniques and
tricks are used in creating render engines, in order to make
them more powerful as well as faster. Here, I discuss some
of these.

64

parallax parallax is a technique used to ‘fake’ 3d depth
in 2d worlds. It works by rendering multiple layers
in front of each other. The key point is that whenever
the camera moves, ‘deeper’ layers move slower than
layers closer to the camera. This suggests depth.

animation animation is the simulation of internal move-
ment within elements of the visual world. It works
by showing multiple still images that slightly differ
quickly after each other. This suggests change within
the visual element.

blitting blitting is the strategy of translating manipula-
tions of visual elements into manipulations of blocks
of bits. Usually, blocks of bits that represent a visual
object are copied to one big block of bits representing
the world. After this has been done for all objects in
the game world, the big block of bits has become a vi-
sual representation of the game world. This method
works very well with all kinds of caching strategies,
as the small source blocks can easily be stored and
reused.

caching caching is the storage and reuse of elements dur-
ing the render process. It works by storing the result
of each task. This way, tasks that have not changed
since the last iteration don’t have to be performed
again. Instead of performing a task again, the re-
sult that was obtained last time can be reused. Im-
proved caching strategies try to predict which tasks
are likely to be reused, and store just the results of
those tasks.

scrolling scrolling is the rendering of a large part of the
world, and then showing just the visible part of this
large part. When the camera position changes, the
world doesn’t need to be rendered again. Instead,
another part has to be shown.

65

dirty areas using dirty areas (also known as redrawing
areas), the render algorithm can be improved so that
only parts of the game world that have changed need
to be re-rendered. This saves a lot of rendering time
if there are only a few or small local changes, but is
a lot of work if there are many changes in the global
game world.

culling / visibility testing culling is the process of se-
lecting a subset of render tasks from a larger set
of possible tasks. This can be used to select only
relevant tasks, and discard tasks that have no in-
fluence on the end result of the rendering process
before actually completing them. This can save a lot
of time. A widely used example of a culling strategy
is visibility testing, which checks (using fast math-
ematical algorithms that take into account position,
size, viewPort and other properties) for each visual
object that is to be rendered whether or not it would
be visible in the end result. The render engine can
than decide to drop all invisible render jobs from the
render queue, saving a lot of execution time.

garbage collection garbage collection is the ‘automatic’
removal of unused data structures from memory, cre-
ating more room for new tasks. Garbage collection
can be very important if caching strategies store a
lot of previously generated results. Results that are
not likely to be used again have to be cleaned up.

display list a display list is a data structure storing all
(visual) objects in a given world or scene. This list
is used as administration of the world state, and is
used as a starting point for rendering jobs during
the rendering process. A scene graph is a display list
with a more complex structure, that for example also
stores relations between objects and sub objects.

66

viewport aviewport is the area on the users screen where
the resulting visual representation of the world is
shown to the user. The viewport is used (together
with the view rectangle, which stores the part of the
world which is visible) to determine which objects
need to be rendered, and which are visible on screen.

FlashVM render engine the FlashVM render engine is
the default Flash render engine. It allows program-
mers to add various types of DisplayObjects to a dis-
play list. This display list is then rendered auto-
matically by the Flash virtual machine. The pro-
grammer just has to set certain properties such as
X, y, rotation, aplha, etc. and the FlasVM render
engine takes care of the actual processing of these
values. It is not very much customizable, and perfor-
mance varies per operating system platform.

5.3 A new Mijn naam is Haas ren-
der engine

This section describes the core components and architec-
tural elements of the new Mijn naam is Haas render en-
gine. It also lists the basic workings of those components
and elements.

e The new render engine is built around the dynamic
graphics VisualArchitecture described in chapter 4.

e VisualScene: A scene in the game (or: all objects in
the game world at a certain moment.)

e AppearanceProxy: The proxy component responsible

for managing the VisualStructure, VisualLayers and
VisualMoods.

67

— On game startup, the VisualStructure, Visual-
Layer(s) and VisualMoods are loaded into the
AppearanceProxy. They will be serialized from
the VisualAssetsImporter, and deserialized on
game startup.

e BitmapDataProxy: The proxy component responsi-
ble for managing the BitmapData (VisualFrames).

— On game startup, the visuals that are expected
to be needed in the game session are loaded from
one or more VisualPackage(s). The package im-
porting functionality has been implemented, but
it has not been optimized for ‘smart packaging’
yet. Possible smart packaging technologies in-
clude static package files (serializing, compess-
ing and packaging BitmapData during develop-
ment), SQL tables and databases, http reposi-
tory and/or dynamic server side packaging (con-
structing client-specific packages on the fly from
tables or data files).

e VisualSceneMediator: The mediator component re-
sponsible for managing changes in the sceneGraph,
and setting the renderer to work on FRAME notifi-
cations.

— When a MODELOBJECT_ADDED notification
is sent, the VisualSceneMediator will respond
by asking the AppearanceProxy for the appro-
priate VisualObject that is to be used to repre-
sent the ModelObject in the VisualScene. The
VisualSceneMediator than adds the VisualOb-
ject to the VisualRenderProxy’s sceneGraph.

— When a MODELOBJECT_CHANGED notifica-
tion is sent, there will have to be some kind of
way of updating VisualObjects when their cor-

68

responding ModelObject changes (for example
position).

— When a MODELOBJECT_REMOVED notifica-
tion is sent, the VisualSceneMediator will re-
spond by removing the related VisualObject from
the VisualSceneProxy’s sceneGraph.

— When a FRAME notification is sent, the Visu-
alSceneMediator will respond by instructing the
VisualSceneProxy to render its sceneGraph to
the viewPort.

e VisualSceneProxy: The proxy component responsible
for rendering the visual scene.

— The VisualSceneProxy has a sceneGraph (a (hi-
erarchical) list of all VisualObjects in the Visu-
alScene), viewPort (a Bitmap instance) and a cam-
eraRect (a certain region of the world that is to
be rendered, and from which a zoom value can
be calculated).

e The VisualSceneProxy can be implemented using dif-
ferent technologies (as examined in chapter 3):

- FlashVM: the FlashVM DisplayObject renderer.

— ActionScript3: use a custom ActionScript3 ren-
derer using draw () and copyPixels ();

— Alchemy: use an external C library to do the
actual rendering. This library is compiled to
a .swc and used by the VisualSceneProxy. To
speed up this rendering, the BitmapDataProxy
will also have to be implemented in Alchemy/C.

- HaXe: use an external HaXe library to do the
actual rendering. This library is compiled to
a .swc and used by the VisualSceneProxy. To
speed up this rendering, the BitmapDataProxy
will probably also have to be implemented in
HaXe.

69

5.4 Implementation

The VisualSceneProxy can theoretically support up to four
render modes, each using a different technology. The se-
lection of the different render modes is listed here in pseu-
docode:

if (renderMode=="Alchemy") { //use Alchemy
//loop over sceneGraph
//check visibility (incl. rotation size change)
//create multidimensional queue
// (DrawFrame (screen position, rotation,
// palette (4values), bmdPointer))
//concatenate to 1 queue
//copy queue to alchemy Memory
//render queue
//lib.render ()) does position, rotation,
// palette (4values) (unzip?)
//copy result to screen

} else if (renderMode=="HaXe") { //use HaXe
//loop over sceneGraph
//check visibility (incl. rotation size change)
//create multidimensional queue
//render queue, per item:
//get bmd from bmdproxy (or cache pointer)
//palette (optionally: cache result)
//rotate

} else if (renderMode=="FlashVM") { //use FlashVM
//add all VisualFrames as DisplayObjects
// to the VisualScene
//the VisualArchitecture isn’t really optimized
// for this type of rendering

} else { //renderMode =="as3" //use ActionScript3
//use naive BitmapData.draw() and copyPixels() rendering
//loop over sceneGraph
//check visibility (incl. rotation size change)
// (DrawFrame (screen position, rotation,
// palette (4values), bmdPointer))
//concatenate to 1 queue
//copy queue, render everything using copyPixels

70

Here follows a breakdown of the workings of the new
render engine game components as implemented within
the Mijn naam is Haas game. Part of the implementation
centers around loading assets when the game initializes, a
second part is related to the run time adding of visuals to
the world based on input from the user input (as matched
by the ObjectMatch), and a third part (consisting of the
TICK and FRAME steps) deals with the actual drawing
of a frame of the visual appearance of the world on the
screen.

Game Initialization

e Using the VisualAssetsImporter, the visual structure
and bitmap data can be organized and exported to
two different files: an Appearances file and a Bitmap-
Data package file. The Appearances file contains the
complete VisualArchitecture structure. The Bitmap-
Data package file contains all BitmapData objects
serialized to a ByteArray and compressed using zlib.

e In the LoadAssetsCommand, the VisualRenderProxy
is instructed to load the BitmapData package file.

e Also in the LoadAssetsCommand, the Appearance-
Proxy is instructed to load the Appearances file.

e Both these files are binary files that are imported
to their respective proxy’s. The BitmapData pack-
age file is parsed and the individual ByteArrays are
stored in the bmdStorage Array in the VisualRender-
Proxy indexed by their bitmap-data ids The ByteAr-
rays are wrapped into RenderData objects that also
contain some metadata.

71

Adding VisualObjects

e Whenever a model object is added by the AddObject-
Command, the object is no longer added to the Scene-
Mediator, but instead the new VisualSceneMediator
listens itself to changed (additions and removals) of
model objects.

e When the VisualSceneMediator detects an addition
of an object, it creates a new VisualObject (that con-
tains a reference back to the corresponding World-
Member model object), and adds this VisualObject to
the VisualSceneProxy.

e To determine the type and settings of the new Visu-
alObject, the VisualSceneMediator consults the Ap-
pearanceProxy, which in turn uses the stored Visu-
alArchitecture structure to decide.

e A similar process is performed to remove objects

TICK notification

e On a TICK notification, playing animations are ad-
vanced one frame and completed / looping anima-
tions are handled.

FRAME notification

e — Construct SceneGraph —

— Whenever a new FRAME is to be drawn, the Vi-
sualRenderProxy is instructed to build a Scene-
Graph. To construct this SceneGraph, the list
of VisualObjects that are currently in the View-
Port (=ViewRectangle) is examined. Since a Vi-
sualObject may consist of multiple parts, which
may each have a selectedAlternative with a Vi-
sualPosture, the bmdId of the currentFrame of

72

each of those VisualPostures is looked up in the
bmdStorage Array, which results in a reference
to a RenderData object for each VisualFrame.

— A check is performed to determine if that spe-
cific RenderData’s BitmapData has been uncom-
pressed already. If not, it will be uncompressed.

— A Renderdob is constructed for each frame that
is within the ViewPort. This selection is made
with the help of a isVisible() method, that checks
whether the VisualFrame’s visibility rectangle
(based on the frame’s location and size) inter-
sects with the ViewPort.

— If a Renderdob is within the ViewPort, the Ren-
derJob is added to the SceneGraph. Otherwise,
the RenderJob is discarded.

e — Create renderQueue —

- All Renderdobs are serialized into one large Ren-
derQueue ByteArray. This process could pos-
sibly be sped up by using fast memory for the
RenderQueue ByteArray.

e — Render —

— The RenderQueue is read byte by byte and the
correct BitmapData is blitted to the main Bitmap-
Data screen. This is done using copyPixels if no
scaling or rotation is required, or using draw() if
scaling or rotation is required.

— During this process, the position of the Visu-
alObject in the world, the VisualFrame cropping
area, the VisualObject’s registration point, the
world zooming factor and the ViewPort size are
taken into account.

— An optional VisualPalette is also applied during
this step.

73

5.5 Results: functionality and per-
formance

As planned during the first weeks of my internship, I have
implemented (a first version of) a new Mijn naam is Haas
render engine, that can help in determining the options
for a final new render engine, and functions as a first ref-
erence prototype for future versions.

The resulting render engine was written entirely in Ac-
tionScript3. The experimental technologies I researched,
Pixel Bender, Alchemy and HaXe, didn’t perform as I had
hoped. Even with small example render tests and imple-
mentations, frame rates actually dropped, and the work
flow complexity drastically increased. Therefore, I decided
to go for a pure ActionScript 3 implementation, which not
only fits better within the existing project work flow, but
also leaves more room for easy fine tuning. Also, a pure
ActionScript3 implementation will benefit more directly
from any improvements Adobe makes to the FlashVM im-
plementation.

I would recommend Adobe Pixel Bender only for per-
pixel graphics filters, and for large computational tasks
that can be ‘translated’ into many small pixel manipula-
tions. Hopefully Adobe will update Pixel Bender to actu-
ally use the video card hardware acceleration in Flash.

Similarly, Adobe Alchemy can be very useful for large
calculations, and for using existing C libraries in Flash,
but as a replacement of ActionScript3 it doesn’t help per-
formance in render engines.

The power of HaXe lies in it’s cross platform deploy-
ment and optimized compiler, but the result is only faster
when very specific features, like the fast Memory, are used.
To use these features in the context of render engines,
requires to much work flow adaption and creates to much
overhead to be feasible in practice.

What all this shows is the need for Adobe to do some-

74

thing to the performance of the FlashVM, and especially
the graphics implementation. They announced that they
are working on a better 3D engine, but true hardware
acceleration and compiler optimization may actually be ar-
eas where more performance improvements can be earned.

The resulting new render engine for the Mijn naam
is Haas games supports a lot of features. Like any ren-
der engine it supports basic rendering features like po-
sitioning, scaling/zooming and rotation. Of those, rota-
tion and scaling are quite expensive operations, as the
ActionScript3 function that perform these tasks, draw (),
is a lot slower than copyPixels (), a similar function
that doesn’t do rotation and scaling. Caching rotation and
scaling operations therefore would be a very good strategy.
Unfortunately I had no time to implement this during my
internship. What makes rotation more complex is the fact
that a lot of per frame values, such as relative location of
parts (and cropping values) have to be taken into account.

Of course the new render engine supports the three
methods of dynamic graphics described in chapter 2: it
supports the compositing of VisualObjects using Visual-
Parts, VisualAlternatives and VisualFrames. It supports
animation of those graphics. It also supports dynamic col-
ors with the help of per part VisualPalettes and global
VisualMoods. This works quite fast, but there is room
for improvement in the implementation. Finally, the ren-
der engine supports multiple world layers, which basically
translates to a depth sorting algorithm in the render en-
gine. This sorting can be further optimized to obtain some
performance improvements.

To increase performance, I implemented culling in the
form of a visibility test. This test checks for each frame in
the display list whether or not it would possibly be visible
in the final render result. It does this by calculating a
visibility rectangle for every frame and checking whether
or not this rectangle intersects with the rendered part of

75

the world (see figure 5.5). I also implemented a blitting
algorithm that reuses the same source bitmap data for
each visual of the same type. This means for example that
all trees of the same type share one source bitmap data
object for their frame. This saves memory.

Because the new render engine was developed in close
relation to the complete visual assets work flow process, it
deals with deserializing and uncompressing visual assets.
It also uses preloading of all visual assets so they load
faster when they are needed during the render step.

The new render engine has been implemented next to
the existing one, and all graphics that are drawn by the
player during free drawing game phases have been trans-
ferred to the new render engine. The new render engine
was then overlaid onto the old one. This was done to make
development easier, because it allowed the piece by piece
transition to the new render engine, and a lot of visual
and debug feedback during development. It also meant
that there was a working game build during every stage of
the development process. The render engine has been im-
plemented using the PureMVC framework, just like other
game components. However, at some points in the code,
code readability has partly been sacrificed to improve per-
formance. In general there is a trade off between code
readability (more overhead) and execution speed (less over-
head). At a few points in the render engine, the code
could be made even faster by sacrificing even more code
readability. However, this will require some architectural
changes, and possibly also a deviation from the PureMVC
framework.

It turned out to be practically impossible to obtain co-
herent, comparable performance tests of the new render
engine. Of course it is possible to perform perform basic
tests on small parts of the render process or on data struc-
ture, and determine which data type is faster than which
when performing a lot of small mathematical calculations

76

on them. However, rendering is very much unlike small
mathematical calculations. Rendering is performing a list
of fifty to a few hundred small to medium sized operations,
and rendering is not just performing computational cal-
culations. The performance of the render engine greatly
varies depending on the context: the number of visuals,
the movement, zooming, animation, the user’s actions etc.
Individual parts of the render pipeline can be tested, but
those tests are difficult to compare and do not necessary
help in determining the performance of the render engine
in practice. In the end, the best measurement is simply
the experience of the responsiveness of the game in actual
use.

The default frame rate of the Mijn naam is Haas games
is 20fps. As long as no rotation or scaling is involved, the
new render engine performs really well and easily renders
a large number of complex visual objects (multiple parts)
with color filters applied that are distributed over multiple
layers. However, as soon as rotation and scaling is needed,
performance drops significantly. This shows how much
an ActionScript3 renderer is still dependent on Adobes
choices on the implementation of the f1ash.display ren-
derer. While all independent parts of the render pipeline
are quite fast, except for scaling and rotating, the over-
all render process is, with all functionality enabled, too
slow. As long as Adobe doesn’t update its compiler and/or
improves the implementations of the API calls, the best
solution is to focus on part of the functionality and cancel
the rest of the functionality. For example, the compositing
could be limited to a certain number of parts or a smaller
hierarchy, as the amount of work that needs to be done
augments with every added part.

But in practice, there isn’t really one part of the ren-
der process that is the main culprit of the so-so perfor-
mance. It is really all parts together that perform less
than I hoped for. The dynamic color replacements are

77

relatively fast, because they are based on internal filters
(ColorMatrixFilter). The compositing is not very slow as
it mainly uses more memory to store the different alterna-
tives and their relations. The retrieval of the selected al-
ternatives is quite fast. The sorting of the visual elements
based on their layer is not that difficult either and could be
sped up if better native sorting algorithms would be avail-
able. The fact that all visual data is preloaded removes
all network and filesystem overhead for the cost of extra
memory usage and a longer (pre)loading time. Compres-
sion and serializing save memory space on data that isn’t
actually used in the game. The visibility test is complex
yet mainly consists of (relatively fast) mathematical cal-
culations. The blitting is powerful and can easily be com-
bined with caching strategies. During my internship I only
implemented global caching (by integrating the Bitmap-
DataProxy component into the render engine component)
for the source visuals in the blitting algorithm. There is
certainly room for additional caching strategies to increase
performance further. However, the zooming that occurs in
the Mijn naam is Haas game is a problem, as it influences
caching strategies a lot. Whenever a zoom-in or zoom-out
occurs, all visual elements will have a new scale, and need
to be re-rendered at the same time. In other words, the
whole cache will be invalidated, causing a lot of work for
the renderer at once. Other possible caching strategies
include for example the caching of the coloring, scaling,
visibility check and animation frames.

78

Figure 5.1: Screenshot of new render engine in action (1),
the new render engine is overlaid on the old engine

Figure 5.2: Screenshot of new render engine in action (2)

79

Figure 5.3: Screenshot of new render engine in action (3)

Figure 5.4: Screenshot of new render engine in action (4)

80

Figure 5.5: Screenshot showing the visibility rectangles
for some of the visuals

81

CHAPTER

6

CONCLUSION

83

6.1 Summary

Serious games are an important part of the multimedia
discipline. By mixing education and entertainment, they
provide a combination of learning and playing experience.
The goal of my internship was to work on the visual ap-
pearance of the game world of the Mijn naam is Haas
serious game, in order to make it more diverse, dynamic
and free.

A common problem in the creation of virtual and digital
worlds is a lack of diversity in appearances. For example,
when you look at a real forest, no tree is exactly alike,
but in virtual worlds, multiple trees often are very much
or completely alike, because they are rendered from the
same source image as drawn by an illustrator or designer.
Another approach at creating virtual worlds is procedural
world (content) generation. In this case de appearance of
the world is completely generated by mathematical rou-
tines. Generated virtual worlds often look too dynamic,
and contain too much variation. A virtual world with not
enough variation looks ‘closed’, ‘boring’ and ‘strict’, and
a virtual world with too much variation is experienced
as ‘random’, ‘dazzling’ and ‘cluttered’. To overcome these
extremes, I used ‘intelligently designed’ dynamic graphics
for the Mijn naam is Haas game, which means that the
visuals are designed by an illustrator and designer. These
graphics are then dynamically altered when they are used
in the game world. The goal of this process is to make the
game world ’open’, ‘interesting’ and ‘organic’.

The internship produced multiple results. First I de-
veloped a dynamic graphics architecture that supports dy-
namic adaption of graphics with the help of shape vari-
ations (multiple versions of the same tree with a differ-
ent shape), color variations (subtle and situation based
color differences between the same graphics) and composi-
tion variations (multiple layers of depth within the game

84

world). To support the implementation of this dynamic
graphics architecture I developed a work flow application
that can be used to import, manage and package visuals
and their variations. Next, I worked on the implementa-
tion of these dynamic graphics within a new render en-
gine software component for the Mijn naam is Haas game.
The Mijn naam is Haas game is being developed in Flash,
the de facto internet standard for interactive applications.
After researching several additional technologies (Adobe
Pixel Bender, Adobe Alchemy, HaXe) that could be used
to implement the render engine, I decided to implement
the render engine in pure Flash ActionScript. The result-
ing render engine prototype supports all dynamic graph-
ics functionality of the dynamic graphics architecture. I
also spent a lot of time improving the performance of the
render engine: I implemented a visibility testing culling
strategy and a bitmapdata blitting algorithm with shared
source images.

The render engine prototype works very well, but the
integration within the Mijn naam is Haas game has not
reached the state where it can be used in release build
of the Mijn naam is Haas games. Also, a lot of future
research can be done to improve the performance further,
because the more visual elements are to be rendered, the
slower the game becomes. The first prototype provides a
lot of practical information about how dynamic graphics
could be used within the Mijn naam is Haas game world,
and which implementation possibilities work better than
others.

6.2 Technical conclusions
The experimental approach of this project has allowed me
to investigate a lot of different technologies and possibil-

ities. It is important to summarize the conclusions of all
this theoretical work in a few key points. This makes the

85

general advantages and disadvantages clear.

Returning to the original research questions, we can
conclude that there are multiple effective strategies for
making graphics dynamic. The three implemented meth-
ods, color variations, shape variations and depth varia-
tion (layers) all are working very well in practice, and the
individual strategies are all implementable with reason-
able performance. Using all strategies at the same time
however quickly demonstrates the limits to the number
of visuals that can be rendered at the same time with
playable performance. Because parts of the VisualArchi-
tecture are not dependent on each other, the architecture
can be implemented selectively to obtain better results.

While experimental technologies like Adobe Alchemy
and HaXe appear potentially very powerful, their use in
the field of speeding up render engines is problematic, be-
cause these technologies are most effective to improve per-
formance of large sets of repetitive mathematical calcula-
tions or memory intensive recurring algorithms, but they
do not significantly speed up pixel manipulations and trans-
formations. To bypass the limits of the FlashVM render
engine, a pure ActionScript3 blitting render engine that
has more specific functionality can be built, but that still
not overcomes the relatively bad optimization of the flash
compiler.

In the Mijn naam is Haas game, dynamic graphics can
really contribute to a more vivid and organic world. In or-
der to obtain the best performance, choices should be made
about the most important methods of dynamic graphics,
that improve the visual style most.

Personally, I would definitely introduce small (maybe
even pseudo random) color differences between visuals that
are used very often (such as trees and other natural ele-
ments), and also changing the colors using VisualPalettes
based on the ‘mood’ of the game is a powerful yet easy
process.

86

Layering world objects can be a real improvement to
the game world, but it also introduces sorting overhead.
This overhead can be justified more easy if the effect of
the layering is greater, for example if a small amount of
parallax would be introduced.

Compositing multi part visual objects introduces most
overhead into the graphics work flow and render engine.
An alternative to run time compositing could be the pre-
rendering different variations of the same object. This will
however introduce a lot of extra memory usage and reduce
the influence the designer has on coloring individual parts
at runtime.

A final improvement that could be made to the Mijn
naam is Haas game core to better accommodate dynamic
graphics is redesigning the ModelObject architecture and
integrating it with the VisualObject architecture, so that
one single GameObject architecture is formed. Doing this
will remove a lot of updating and organizing overhead.

6.3 Personal internship evaluation

The five months of my internship at Mijn naam is Haas
were over before I knew it. My internship was a great
experience from beginning to end. From the start I was
welcomed with great warmth, and I really liked working
in the enjoyable team of professionals. The original plan-
ning of my internship was successfully completed a few
days before my internship period ended. Of course every
completed challenge opens new challenging paths.

Looking back, I am very satisfied with the overall pro-
cess and results of the internship. While the render engine
will not be used in the Haas game in its current stage of de-
velopment, the work I did during my internship provides a
clear overview of the possibilities and impossibilities of dy-
namic graphics, and functions as a stable basis for future
work on the subject.

87

Before I started my internship I formulated the goal
of “proactively working on an innovative product within
a dynamic and creative professional environment”. This
goal was clearly accomplished. Working in the vibrant and
stimulating atmosphere of the Mijn naam is Haas team
was great. Besides working in a multidisciplinary team, I
also learned a lot about the creative business, developing
a large complex game application and of course dynamic
graphics and render engines.

For me this internship was the perfect combination of
interesting technical research and challenging practical
work. Working with experimental technologies and low
level render engine implementations was very informa-
tive and translating technological possibilities into prac-
tical solutions was challenging. Working within a team of
great colleagues made the whole internship a very pleas-
ant experience.

6.4 Internship evaluation by Berend
Weij

[nog aan te vullen]

88

BIBLIOGRAPHY

[1]

(2]

[3]

[4]

(5]

ActionSnippet. setVector vs copyPixels. http: //
actionsnippet.com/?p=1767. July 2009.

Nick Avgerinos. Understanding Adobe Flash Plat-
form technologies for building games. http : //
www . adobe . com / devnet / flashplatform /

articles / gaming_ technologies . html. Feb.
2010.

Nicolas Barradeau. Color depth change. http://
en.nicoptere.net/?p=8. July 2008.

Nicolas Barradeau. Pixel Bender 1 color tweaking.
http://en.nicoptere.net/?p=267. July 2009.
Nick Bilyk. Optimizing Actionscript and your
approach to optimizing. http://www . nbilyk .
com/optimizing-actionscript-3. July 2008.

89

http://actionsnippet.com/?p=1767
http://actionsnippet.com/?p=1767
http://www.adobe.com/devnet/flashplatform/articles/gaming_technologies.html
http://www.adobe.com/devnet/flashplatform/articles/gaming_technologies.html
http://www.adobe.com/devnet/flashplatform/articles/gaming_technologies.html
http://en.nicoptere.net/?p=8
http://en.nicoptere.net/?p=8
http://en.nicoptere.net/?p=267
http://www.nbilyk.com/optimizing-actionscript-3
http://www.nbilyk.com/optimizing-actionscript-3

(6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Corey von Birnbaum. AS3 to Pixel Bender guide.
http : / / coldconstructs . com / 2009 / 10 /
pixel-bender-gap—-guide/. Oct. 2009.

Francis Bourre. full double-buffering alchemist.
http://blog. tweenpix .net /2008/12/04/
full - double - buffering - alchemist/. Dec.
2008.

Francis Bourre. smooth plasma experiment. http:
//blog.tweenpix.net/2008/12/16/smooth—
plasma-experiment/. Dec. 2008.

Trevor Boyle. Dynamically changing the palette of
an image using Flash (AS3). http : / / blog .
webdeely . com/ 2009/ 03/ storing - custom-—
strongly-typed—-amf-files-for-air-apps/.
Oct. 2009.

Lee Brimelow. Loading Pixel Bender Filters in Flash
10. http://theflashblog. com/ ?p=386. May
2008.

Matthew Butt. Pixel Bender Tutorial. http : / /
blog.preinvent.com/node/24. Nov. 2009.

Nicolas Cannasse. Adobe Alchemy. http : / /
ncannasse.fr/blog/adobe_alchemy. Nov. 2008.

Nicolas Cannasse. HaXe: Virtual Memory API.
http://www.ncannasse . fr/blog/virtual _
memory_api. Nov. 2008.

Chris Deely. Storing Custom AMEF files for AIR
Apps. http : / /blog . webdeely . com / 2009 /
03/ storing—-custom-strongly—-typed—-amf —
files-for—-air—-apps/. Mar. 2009.

Adobe Devnet. Pixel Bender Technology Cen-
ter. http : / / www . adobe . com / devnet /
pixelbender/.

90

http://coldconstructs.com/2009/10/pixel-bender-gap-guide/
http://coldconstructs.com/2009/10/pixel-bender-gap-guide/
http://blog.tweenpix.net/2008/12/04/full-double-buffering-alchemist/
http://blog.tweenpix.net/2008/12/04/full-double-buffering-alchemist/
http://blog.tweenpix.net/2008/12/16/smooth-plasma-experiment/
http://blog.tweenpix.net/2008/12/16/smooth-plasma-experiment/
http://blog.tweenpix.net/2008/12/16/smooth-plasma-experiment/
http://blog.webdeely.com/2009/03/storing-custom-strongly-typed-amf-files-for-air-apps/
http://blog.webdeely.com/2009/03/storing-custom-strongly-typed-amf-files-for-air-apps/
http://blog.webdeely.com/2009/03/storing-custom-strongly-typed-amf-files-for-air-apps/
http://theflashblog.com/?p=386
http://blog.preinvent.com/node/24
http://blog.preinvent.com/node/24
http://ncannasse.fr/blog/adobe_alchemy
http://ncannasse.fr/blog/adobe_alchemy
http://www.ncannasse.fr/blog/virtual_memory_api
http://www.ncannasse.fr/blog/virtual_memory_api
http://blog.webdeely.com/2009/03/storing-custom-strongly-typed-amf-files-for-air-apps/
http://blog.webdeely.com/2009/03/storing-custom-strongly-typed-amf-files-for-air-apps/
http://blog.webdeely.com/2009/03/storing-custom-strongly-typed-amf-files-for-air-apps/
http://www.adobe.com/devnet/pixelbender/
http://www.adobe.com/devnet/pixelbender/

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Joa Ebert. ActionScript optimizations wiki. http:
/ /wiki . joa—-ebert .com/ index .php/Main_
Page.

Joa Ebert. Apparat: A framework to optimize ABC,
SWC and SWF files. http://code.google.com/
p/apparat/.

Joa Ebert. First results of TAAS. http://blog.
joa—ebert.com/2009/09/01/first—-results—
of-taas/. Sept. 2009.

Joa Ebert. Imageprocessing Library. http://blog.
joa—ebert.com/imageprocessing—library/.

A. Eliens and Zs. Ruttkay. “Record, Replay & Reflect
: a framework for serious gameplay”. In: Proceedings
EUROMEDIA 2009. Brugge (Belgium), 2009. URL:
http://www.cs.vu.nl/~eliens/research/
projects/media/paper—replay.pdf.

Elad Elrom. FrameStats performance monitor tool.
http://elromdesign.com/blog/2010/07/
20 /performance-monitor—-tool-to-watch-
internal —of —the- flash-player - during-
runtime/.

Elad Elrom. Using Pixel Bender to calculate
information. http://www.flashmagazine.com/
tutorials/detail/using_pixel_bender_to_
calculate_information/. Aug. 2009.

Renaun Erickson. Rendering game assets in Action-
Script using blitting techniques and Flash Builder
4. http://www . adobe . com/ devnet / flex /
articles/actionscript_blitting.html. Feb.
2010.

Jeff Fulton. Actionscript 3: Tutorial - BitmapData
rotation with a matrix. http://www.8bitrocket.

com/newsdisplay . aspx ?newspage=6765. Oct.
2007.

91

http://wiki.joa-ebert.com/index.php/Main_Page
http://wiki.joa-ebert.com/index.php/Main_Page
http://wiki.joa-ebert.com/index.php/Main_Page
http://code.google.com/p/apparat/
http://code.google.com/p/apparat/
http://blog.joa-ebert.com/2009/09/01/first-results-of-taas/
http://blog.joa-ebert.com/2009/09/01/first-results-of-taas/
http://blog.joa-ebert.com/2009/09/01/first-results-of-taas/
http://blog.joa-ebert.com/imageprocessing-library/
http://blog.joa-ebert.com/imageprocessing-library/
http://www.cs.vu.nl/~eliens/research/projects/media/paper-replay.pdf
http://www.cs.vu.nl/~eliens/research/projects/media/paper-replay.pdf
http://elromdesign.com/blog/2010/07/20/performance-monitor-tool-to-watch-internal-of-the-flash-player-during-runtime/
http://elromdesign.com/blog/2010/07/20/performance-monitor-tool-to-watch-internal-of-the-flash-player-during-runtime/
http://elromdesign.com/blog/2010/07/20/performance-monitor-tool-to-watch-internal-of-the-flash-player-during-runtime/
http://elromdesign.com/blog/2010/07/20/performance-monitor-tool-to-watch-internal-of-the-flash-player-during-runtime/
http://www.flashmagazine.com/tutorials/detail/using_pixel_bender_to_calculate_information/
http://www.flashmagazine.com/tutorials/detail/using_pixel_bender_to_calculate_information/
http://www.flashmagazine.com/tutorials/detail/using_pixel_bender_to_calculate_information/
http://www.adobe.com/devnet/flex/articles/actionscript_blitting.html
http://www.adobe.com/devnet/flex/articles/actionscript_blitting.html
http://www.8bitrocket.com/newsdisplay.aspx?newspage=6765
http://www.8bitrocket.com/newsdisplay.aspx?newspage=6765

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Jeff Fulton. Flash AS3 Speed Tests: Rendering and
Update Models. http://www.8bitrocket .com/
newsdisplay.aspx?newspage=7496. Dec. 2007.

Jeff Fulton. Tutorial : Creating an Optimized AS3
Game Timer Loop. http:/ /www . 8bitrocket .
com/newsdisplay.aspx?newspage=10248. Apr.
2008.

Jeff Fulton. Tutorial: AS3 Basic Blitting #2 :
Rotation - Part 1. http://www.8bitrocket.com/
newsdisplay.aspx?newspage=15967. Aug. 2008.

Ghostwire.com. [AS3] Serializing A Bundle
Of Bitmaps As Data Objects. http : / / www .
ghostwire . com / blog / archives / as3 -
serializing - a - bundle — of - bitmaps - as -
data-objects/. Dec. 2009.

Ghostwire.com. [AS3] Serializing Bitmaps (Storing
BitmapData As Raw Binary/ByteArray). http://
www . ghostwire . com/blog/archives /as3 -
serializing-bitmaps-storing-bitmapdata-
as-raw-binarybytearray/. Dec. 2009.

GM2D. Simple Flash game in HaXe. http://gm2d.

com/2009/02/simple—-flash—-game—-in—-haxe/.
Feb. 2009.

Kevin Goldsmith. CPU, GPU, multi-core. http://
blogs.adobe.com/kevin.goldsmith/2008/09
/cpu_gpu_multico.html. Sept. 2008.

Branden Hall. Understanding Adobe Alchemy.
http://www.automatastudios.com/2008/11/
21/understanding-adobe-alchemy/. Nov. 2008.

Ralph Hauwert. Adobe Alchemy: is it actionscript
heresy ¢ http : / / www . unitzeroone . com /
blog/2008/11/28/adobe—-alchemy—-is—-it -
actionscript-heresy/. Nov. 2008.

92

http://www.8bitrocket.com/newsdisplay.aspx?newspage=7496
http://www.8bitrocket.com/newsdisplay.aspx?newspage=7496
http://www.8bitrocket.com/newsdisplay.aspx?newspage=10248
http://www.8bitrocket.com/newsdisplay.aspx?newspage=10248
http://www.8bitrocket.com/newsdisplay.aspx?newspage=15967
http://www.8bitrocket.com/newsdisplay.aspx?newspage=15967
http://www.ghostwire.com/blog/archives/as3-serializing-a-bundle-of-bitmaps-as-data-objects/
http://www.ghostwire.com/blog/archives/as3-serializing-a-bundle-of-bitmaps-as-data-objects/
http://www.ghostwire.com/blog/archives/as3-serializing-a-bundle-of-bitmaps-as-data-objects/
http://www.ghostwire.com/blog/archives/as3-serializing-a-bundle-of-bitmaps-as-data-objects/
http://www.ghostwire.com/blog/archives/as3-serializing-bitmaps-storing-bitmapdata-as-raw-binarybytearray/
http://www.ghostwire.com/blog/archives/as3-serializing-bitmaps-storing-bitmapdata-as-raw-binarybytearray/
http://www.ghostwire.com/blog/archives/as3-serializing-bitmaps-storing-bitmapdata-as-raw-binarybytearray/
http://www.ghostwire.com/blog/archives/as3-serializing-bitmaps-storing-bitmapdata-as-raw-binarybytearray/
http://gm2d.com/2009/02/simple-flash-game-in-haxe/
http://gm2d.com/2009/02/simple-flash-game-in-haxe/
http://blogs.adobe.com/kevin.goldsmith/2008/09/cpu_gpu_multico.html
http://blogs.adobe.com/kevin.goldsmith/2008/09/cpu_gpu_multico.html
http://blogs.adobe.com/kevin.goldsmith/2008/09/cpu_gpu_multico.html
http://www.automatastudios.com/2008/11/21/understanding-adobe-alchemy/
http://www.automatastudios.com/2008/11/21/understanding-adobe-alchemy/
http://www.unitzeroone.com/blog/2008/11/28/adobe-alchemy-is-it-actionscript-heresy/
http://www.unitzeroone.com/blog/2008/11/28/adobe-alchemy-is-it-actionscript-heresy/
http://www.unitzeroone.com/blog/2008/11/28/adobe-alchemy-is-it-actionscript-heresy/

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Ralph Hauwert. Another scream on Flash,
Alchemy Memory and compilers. http : / /
www . unitzeroone . com/blog/2009/05/22/
another-scream-on-flash-alchemy-memory-
and-compilers/. May 2009.

Ralph Hauwert. Flash 10, Massive amounts of
3D particles with Alchemy. http : / / www .
unitzeroone.com/blog/2009/03/18/flash-
10 -~ massive — amounts — of - 3d — particles -
with—alchemy-source-included/. Mar. 2009.

HaXe.org. Why use HaXe. http://haxe.org/doc/
why.

W. Lewis Johnson, Hannes Vilhjalmsson, and Stacy
Marsella. “Serious games for language learning:
How much game, how much AI”. In: (2005). URL:
http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.97.3050.

Kirupa. Backface Culling. http://www.kirupa.
com / developer / actionscript / backface _
culling.htm.

Jens Krause. Speed up JPEG encoding using
Alchemy. http://www . websector .de/blog/
2009 /06 /21 / speed — up — jpeg — encoding —
using-alchemy/. July 2009.

Adobe Labs. Alchemy. http://labs.adobe.com/
technologies/alchemy/.

Adobe Labs. Alchemy: Getting Started. http://
labs.adobe.com/wiki/index .php/Alchemy:
Documentation:Getting_Started. Nov. 2008.
SegFault Labs. Asynchronous jpeg encoding. http:
/ / segfaultlabs . com / devlogs / alchemy —
asynchronous-jpeg-encoding. May 2009.

93

http://www.unitzeroone.com/blog/2009/05/22/another-scream-on-flash-alchemy-memory-and-compilers/
http://www.unitzeroone.com/blog/2009/05/22/another-scream-on-flash-alchemy-memory-and-compilers/
http://www.unitzeroone.com/blog/2009/05/22/another-scream-on-flash-alchemy-memory-and-compilers/
http://www.unitzeroone.com/blog/2009/05/22/another-scream-on-flash-alchemy-memory-and-compilers/
http://www.unitzeroone.com/blog/2009/03/18/flash-10-massive-amounts-of-3d-particles-with-alchemy-source-included/
http://www.unitzeroone.com/blog/2009/03/18/flash-10-massive-amounts-of-3d-particles-with-alchemy-source-included/
http://www.unitzeroone.com/blog/2009/03/18/flash-10-massive-amounts-of-3d-particles-with-alchemy-source-included/
http://www.unitzeroone.com/blog/2009/03/18/flash-10-massive-amounts-of-3d-particles-with-alchemy-source-included/
http://haxe.org/doc/why
http://haxe.org/doc/why
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.3050
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.3050
http://www.kirupa.com/developer/actionscript/backface_culling.htm
http://www.kirupa.com/developer/actionscript/backface_culling.htm
http://www.kirupa.com/developer/actionscript/backface_culling.htm
http://www.websector.de/blog/2009/06/21/speed-up-jpeg-encoding-using-alchemy/
http://www.websector.de/blog/2009/06/21/speed-up-jpeg-encoding-using-alchemy/
http://www.websector.de/blog/2009/06/21/speed-up-jpeg-encoding-using-alchemy/
http://labs.adobe.com/technologies/alchemy/
http://labs.adobe.com/technologies/alchemy/
http://labs.adobe.com/wiki/index.php/Alchemy:Documentation:Getting_Started
http://labs.adobe.com/wiki/index.php/Alchemy:Documentation:Getting_Started
http://labs.adobe.com/wiki/index.php/Alchemy:Documentation:Getting_Started
http://segfaultlabs.com/devlogs/alchemy-asynchronous-jpeg-encoding
http://segfaultlabs.com/devlogs/alchemy-asynchronous-jpeg-encoding
http://segfaultlabs.com/devlogs/alchemy-asynchronous-jpeg-encoding

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

LemLinh. 4 Pixel Bender project. http : / / www .
lemlinh . com / flash - source — 4 — pixel -
bender—-project/.

David Lenaerts. Some Flash Pixel Bender per-
formance tips + benchmarks. http : / / www .
derschmale . com / 2009 / 07 / 23 / some -
flash - pixel - bender — performance - tips -
benchmarks/. July 2009.

David Lenaerts. Some Flash Pixel Bender per-
formance tips + benchmarks. http : / / www .
derschmale . com / 2009 / 07 / 23 / some -
flash - pixel - bender — performance - tips -
benchmarks/. July 2009.

Shane McCartney. AS3 SWF Profiler. http://www.
lostinactionscript.com/blog/index.php/2
008/10/06/as3-swf-profiler/. Oct. 2008.

Shane McCartney. Tips on how to write efficient AS3.
http://www.lostinactionscript.com/blog/
index .php/2008/09/28/tips—on—how—-to-
write—-efficient-as3/. Sept. 2008.

Shane McCartney. Tips on how to write efficient AS3
- Part 2. http://www. lostinactionscript .
com/blog/index.php/2008/11/01/tips—on-
how-to-write-efficient-as3-part-2/. Now.
2008.

Marshall McLuhan. Understanding media: The
extensions of man. New York: McGraw-Hill, 1964,
pp. vii, 359.

Colin Moock. Essential actionscript 3.0. O’Reilly,
2007. ISBN: 0596526946.

Nathan. BitmapData, Vectors, ByteArrays and
Optimization. http : / / webr3 . org / blog /
haxe/bitmapdata-vectors—-bytearrays—and-—
optimization/.June 2009.

94

http://www.lemlinh.com/flash-source-4-pixel-bender-project/
http://www.lemlinh.com/flash-source-4-pixel-bender-project/
http://www.lemlinh.com/flash-source-4-pixel-bender-project/
http://www.derschmale.com/2009/07/23/some-flash-pixel-bender-performance-tips-benchmarks/
http://www.derschmale.com/2009/07/23/some-flash-pixel-bender-performance-tips-benchmarks/
http://www.derschmale.com/2009/07/23/some-flash-pixel-bender-performance-tips-benchmarks/
http://www.derschmale.com/2009/07/23/some-flash-pixel-bender-performance-tips-benchmarks/
http://www.derschmale.com/2009/07/23/some-flash-pixel-bender-performance-tips-benchmarks/
http://www.derschmale.com/2009/07/23/some-flash-pixel-bender-performance-tips-benchmarks/
http://www.derschmale.com/2009/07/23/some-flash-pixel-bender-performance-tips-benchmarks/
http://www.derschmale.com/2009/07/23/some-flash-pixel-bender-performance-tips-benchmarks/
http://www.lostinactionscript.com/blog/index.php/2008/10/06/as3-swf-profiler/
http://www.lostinactionscript.com/blog/index.php/2008/10/06/as3-swf-profiler/
http://www.lostinactionscript.com/blog/index.php/2008/10/06/as3-swf-profiler/
http://www.lostinactionscript.com/blog/index.php/2008/09/28/tips-on-how-to-write-efficient-as3/
http://www.lostinactionscript.com/blog/index.php/2008/09/28/tips-on-how-to-write-efficient-as3/
http://www.lostinactionscript.com/blog/index.php/2008/09/28/tips-on-how-to-write-efficient-as3/
http://www.lostinactionscript.com/blog/index.php/2008/11/01/tips-on-how-to-write-efficient-as3-part-2/
http://www.lostinactionscript.com/blog/index.php/2008/11/01/tips-on-how-to-write-efficient-as3-part-2/
http://www.lostinactionscript.com/blog/index.php/2008/11/01/tips-on-how-to-write-efficient-as3-part-2/
http://webr3.org/blog/haxe/bitmapdata-vectors-bytearrays-and-optimization/
http://webr3.org/blog/haxe/bitmapdata-vectors-bytearrays-and-optimization/
http://webr3.org/blog/haxe/bitmapdata-vectors-bytearrays-and-optimization/

[52]

[53]

[564]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Nathan. Optimized Flash Player 10 Z-Sorting
Class. http://webr3.org/blog/flash-10/
optimized - flash-player-10-z - sorting-
class/. Sept. 2009.

Armand Niculescu. AS3 Performance Optimization.
http : / / www . richnetapps . com / as3 -
performance-optimization/. Nov. 2008.

Chris Nuuja. Flash Player 10.1 hardware accel-
eration for video and graphics. http : / / www .
adobe . com/devnet / flashplayer /articles/
fplayerl0.1_hardware_acceleration. html.

Nov. 2009.

Ted Patrick. The ABC’s of AMF. http://onflash.
org/ted/2007/11/abcs-of-amf.php. Nov. 2007.

Peter Peerdeman. Intelligent Tutoring in Educa-
tional Games. Amsterdam, 2010.

Pradeek. Adobe Alchemy: Anatomy of a Simple C
Program. http : / / pradeek . blogspot . com /
2009/06 /getting—-started-with—-alchemy -
hello.html. June 2009.

PureMVC. the PureMVC framework. http : / /

puremvc.org/.

Quasimondo. How to draw anything into a Bitmap-
Data properly. http://www .quasimondo . com/
archives/000670.php. June 2008.

Paul Robertson. ActionScript BitmapData and
Filters resources. http : / / probertson . com /
articles / 2005 / 11 / 02 / actionscript -
bitmapdata - and- filters - resources/. Now
2005.

Rozengain. Some ActionScript 3.0 Optimizations.
http://www.rozengain.com/blog/2007/05/
01/some—-actionscript—-30-optimizations/.
May 2007.

95

http://webr3.org/blog/flash-10/optimized-flash-player-10-z-sorting-class/
http://webr3.org/blog/flash-10/optimized-flash-player-10-z-sorting-class/
http://webr3.org/blog/flash-10/optimized-flash-player-10-z-sorting-class/
http://www.richnetapps.com/as3-performance-optimization/
http://www.richnetapps.com/as3-performance-optimization/
http://www.adobe.com/devnet/flashplayer/articles/fplayer10.1_hardware_acceleration.html
http://www.adobe.com/devnet/flashplayer/articles/fplayer10.1_hardware_acceleration.html
http://www.adobe.com/devnet/flashplayer/articles/fplayer10.1_hardware_acceleration.html
http://onflash.org/ted/2007/11/abcs-of-amf.php
http://onflash.org/ted/2007/11/abcs-of-amf.php
http://pradeek.blogspot.com/2009/06/getting-started-with-alchemy-hello.html
http://pradeek.blogspot.com/2009/06/getting-started-with-alchemy-hello.html
http://pradeek.blogspot.com/2009/06/getting-started-with-alchemy-hello.html
http://puremvc.org/
http://puremvc.org/
http://www.quasimondo.com/archives/000670.php
http://www.quasimondo.com/archives/000670.php
http://probertson.com/articles/2005/11/02/actionscript-bitmapdata-and-filters-resources/
http://probertson.com/articles/2005/11/02/actionscript-bitmapdata-and-filters-resources/
http://probertson.com/articles/2005/11/02/actionscript-bitmapdata-and-filters-resources/
http://www.rozengain.com/blog/2007/05/01/some-actionscript-30-optimizations/
http://www.rozengain.com/blog/2007/05/01/some-actionscript-30-optimizations/

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Rozengain. Using an Alchemy generated texture on
a 3D object. http://www.rozengain.com/blog/
2009/04/02/using-an-alchemy—-generated-
texture-on—-a-3d-object/. Apr. 2009.

Jason Shaw. Adobe Alchemy: Anatomy of a Simple C
Program. http://jasonbshaw.com/?p=158. July
2009.

Jason Shaw. Getting the Alchemy memory ByteAr-
ray. http: // jasonbshaw . com/ ?2p=183. July
2009.

Norm Soule. PixelBlitz Render Engine. http: //
www .blog.crittercreative.com/?p=59. Aug.
2008.

Soulwire.co.uk. BitmapData Average Colours.
http : / / blog . soulwire . co . uk / flash /
actionscript-3/extract-average—-colours-—
from-bitmapdata. Oct. 2008.

Squize. Run DMC. http : / / blog
gamingyourway . com / PermalLink , guid ,
b60aafdd - c94b - 4eda—-bT7cf - cadf9fb0c74e .
aspx. Mar. 2010.

StackOverflow. Actionscript 3 vs haXe: Which
to chose for new Flash project? http : / /
stackoverflow . com / questions / 1044779 /
actionscript-3-vs—-haxe-which-to-chose-
for-new-flash-project. June 2009.

Ryan Stewart. Adobe TV: Double feature on

Alchemy. http://tv.adobe.com/watch/adc-
presents/double-feature-on-alchemy/. Jan.
2009.

Tinic Uro. Adobe Pixel Bender in Flash Player 10
Beta. http://www.kaourantin.net/2008/05/
adobe-pixel-bender-in-flash-player-10.
html. May 2008.

96

http://www.rozengain.com/blog/2009/04/02/using-an-alchemy-generated-texture-on-a-3d-object/
http://www.rozengain.com/blog/2009/04/02/using-an-alchemy-generated-texture-on-a-3d-object/
http://www.rozengain.com/blog/2009/04/02/using-an-alchemy-generated-texture-on-a-3d-object/
http://jasonbshaw.com/?p=158
http://jasonbshaw.com/?p=183
http://www.blog.crittercreative.com/?p=59
http://www.blog.crittercreative.com/?p=59
http://blog.soulwire.co.uk/flash/actionscript-3/extract-average-colours-from-bitmapdata
http://blog.soulwire.co.uk/flash/actionscript-3/extract-average-colours-from-bitmapdata
http://blog.soulwire.co.uk/flash/actionscript-3/extract-average-colours-from-bitmapdata
http://blog.gamingyourway.com/PermaLink,guid,b60aaf4d-c94b-4e4a-b7cf-cadf9fb0c74e.aspx
http://blog.gamingyourway.com/PermaLink,guid,b60aaf4d-c94b-4e4a-b7cf-cadf9fb0c74e.aspx
http://blog.gamingyourway.com/PermaLink,guid,b60aaf4d-c94b-4e4a-b7cf-cadf9fb0c74e.aspx
http://blog.gamingyourway.com/PermaLink,guid,b60aaf4d-c94b-4e4a-b7cf-cadf9fb0c74e.aspx
http://stackoverflow.com/questions/1044779/actionscript-3-vs-haxe-which-to-chose-for-new-flash-project
http://stackoverflow.com/questions/1044779/actionscript-3-vs-haxe-which-to-chose-for-new-flash-project
http://stackoverflow.com/questions/1044779/actionscript-3-vs-haxe-which-to-chose-for-new-flash-project
http://stackoverflow.com/questions/1044779/actionscript-3-vs-haxe-which-to-chose-for-new-flash-project
http://tv.adobe.com/watch/adc-presents/double-feature-on-alchemy/
http://tv.adobe.com/watch/adc-presents/double-feature-on-alchemy/
http://www.kaourantin.net/2008/05/adobe-pixel-bender-in-flash-player-10.html
http://www.kaourantin.net/2008/05/adobe-pixel-bender-in-flash-player-10.html
http://www.kaourantin.net/2008/05/adobe-pixel-bender-in-flash-player-10.html

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Tinic Uro. Pixel Bender .pbj files. http: / / www .
kaourantin . net /2008 /09 /pixel - bender -
pbj—-files.html. Sept. 2008.

Tinic Uro. Using BitmapData.setVector for better
performance. http://theflashblog.com/ ?p=
1397. Sept. 2009.

Tinic Uro. What does GPU acceleration mean?
http://www.kaourantin.net/2008/05/what-
does — gpu — acceleration — mean . html. May
2008.

Bernard Visscher. Using ByteArrays in Actionscript
and Alchemy. http://blog.debit .nl/2p=709.
Mar. 2009.

Michael James Williams. Blitting and caching movie
clips in Flash. http://www.adobe.com/devnet /
flash/articles/blitting_mc.html. Feb. 2010.

Justin Windle. BitmapData Average Colours.
http : / / blog . soulwire . co . uk / flash /
actionscript-3/extract-average—-colours-—
from-bitmapdata. Oct. 2008.

Justin Windle. BitmapData Colour Palette. http://
blog.soulwire.co.uk/code/actionscript-3
/colourutils-bitmapdata—-extract—-colour-—
palette. Oct. 2008.

Eugene Zatepyakin. FluidSolverHD [Alchemy ver-
sion]. http://blog.inspirit.ru/?p=339. Sept.
2009.

97

http://www.kaourantin.net/2008/09/pixel-bender-pbj-files.html
http://www.kaourantin.net/2008/09/pixel-bender-pbj-files.html
http://www.kaourantin.net/2008/09/pixel-bender-pbj-files.html
http://theflashblog.com/?p=1397
http://theflashblog.com/?p=1397
http://www.kaourantin.net/2008/05/what-does-gpu-acceleration-mean.html
http://www.kaourantin.net/2008/05/what-does-gpu-acceleration-mean.html
http://blog.debit.nl/?p=79
http://www.adobe.com/devnet/flash/articles/blitting_mc.html
http://www.adobe.com/devnet/flash/articles/blitting_mc.html
http://blog.soulwire.co.uk/flash/actionscript-3/extract-average-colours-from-bitmapdata
http://blog.soulwire.co.uk/flash/actionscript-3/extract-average-colours-from-bitmapdata
http://blog.soulwire.co.uk/flash/actionscript-3/extract-average-colours-from-bitmapdata
http://blog.soulwire.co.uk/code/actionscript-3/colourutils-bitmapdata-extract-colour-palette
http://blog.soulwire.co.uk/code/actionscript-3/colourutils-bitmapdata-extract-colour-palette
http://blog.soulwire.co.uk/code/actionscript-3/colourutils-bitmapdata-extract-colour-palette
http://blog.soulwire.co.uk/code/actionscript-3/colourutils-bitmapdata-extract-colour-palette
http://blog.inspirit.ru/?p=339

	Table of contents
	Preface
	Introduction
	Multimedia
	Serious games
	Mijn naam is Haas
	Game Design
	A phenomenology of game design
	Interactive narratives

	Research questions
	Introduction
	Research questions
	Dynamic visuals
	Render engine performance

	Technologies
	Introduction
	Flash and ActionScript
	The Adobe Flex SDK

	Pixel Bender
	Alchemy
	HaXe
	PureMVC
	Other optimizations

	Dynamic graphics
	Introduction
	Final dynamic graphics architecture
	Design decisions
	Graphics workflow: importing and rendering
	A: the importing process
	B: the rendering process

	VisualAssetsImporter
	Importing
	Windows and panels
	Usage

	Results: architecture and workflow

	Render Engine
	Introduction
	General render engine theory
	A new Mijn naam is Haas render engine
	Implementation
	Game Initialization
	Adding VisualObjects
	TICK notification
	FRAME notification

	Results: functionality and performance

	Conclusion
	Summary
	Technical conclusions
	Personal internship evaluation
	Internship evaluation by Berend Weij

	Bibliography

