
1

Director Manual

Æliens

eliens@cs.vu.nl

original design: H. vd Lubbe
accompanying: A (not so) gentle introduction to multimedia

draft version 0.5 (12/3/2001)

2

Introduction

This manual includes a description of the different user functions, that is the
different windows (eg. Control Panel and Cast window) which can be opened in
Director. Also the basic concepts Director uses are explained. The different tools
(like Paint en Text) are described. It is important to study this pages carefully,
before starting with the actual assignments (you could open Director also, to get
a better view on the things explained.

Another thing, which is quite important, is the HOWTO’s page. Here are
practical examples of certain things (eg. let text zoom in the screen or dynamically
add a background), that can be done with Director. These can of course easily
be integrated with the assignments. We think the students can benefit from these
examples, so try them.

For eager students, who would like to move on, during and after the assign-
ments, with Director, we’ve included a section about the ’programming’-language
behind Director, Lingo. Also there is a so called ’advanced’ section, with advanced
examples and concepts.

The last page is reserved for pictures, which can be used for the presentations
that are to be made.

3

4

Windows

The Stage window

The central empty window is the Stage window, where the end result of your work
is displayed. It’s the screen on which Director movies are projected.

If you create a self-running piece of software, the Stage window is the universe
in which that software will exist. Quite literally, this is where the action is.

What can you do to the Stage? You can change its color and size, and you can
reconfigure it in a number of ways to suit the needs of a project. You can change
the Stage size of any movie at any time, but each movie can have only one Stage
configuration. If you want your project to incorporate Stages of different shapes
and sizes, you’ll need to create several movies and link them together.

The Cast window

The theatrical metaphor that dubs director’s playback screen the Stage continues
with the Cast window. Actually, it is here that the metaphor begins to break
down: the Cast might more accurately be called the Cast/Scenery/Props/Musical
Instrument Department.

Essentially, everything that goes into a multimedia production can reside in
the cast:

cast members

• still graphics (artwork/photo scans)

• sounds (in digitized form)

5

6

• interface elements (such as buttons and icons)

• text

• digital video (quicktime/AVI movies)

• animation (gifs/Director film loops)

• palettes (certain group of colours)

• other director movies

• scripts/behaviours.

All cast members come into being in one of two ways: You can create them
directly in Director, or you can import them from documents by other applica-
tions. In either case, unless you specify otherwise, each is automatically assigned
a location in the Cast database and given a cast member number (you can also
give them names if you like). Once in a Cast, a cast member can be cut, copied,
pasted, deleted, relocated, and modified. Any changes made to a cast member
are automatically reflected in that cast member’s appearance on the Stage. This
means, for example, that if a cast member 12 was originally a blue dot and you
change it to a red one, all instances of the dot in the Director movie will be
changed from blue to red.

The Score window

The score window is where the whole project really takes shape. When Director
runs a movie, all it’s doing –for the most part– is interpreting the information in
the Score and whisking elements on and off the Stage accordingly.

It is possible to create commands that overrule Score information (Lingo).

As you can see, the Score resembles a spreadsheet with lots of individual cells
divided into rows and colums. The rows are called channels, the colums are called

7

frames. Each column has a number associated with it, and each channel begins
with either a number or a distinctive icon.

Score information is organized in a strictly linear fashion, even when the
project is a nonlinear interactive movie. Each frame maps out a certain instance
in time during the planned playback; it’s not a specific time but a relative one. For
instance, frame 15 isn’t necessarily 15 seconds in your movie, and it doesn’t nec-
essarily represent 1 second in Stage time. Frame 15 is simply a set of instructions
Director should place on the Stage before frame 16, but after frame 14.

The Control Panel

To the new user, the Control Panel seems like a mix of the obvious and the
arcane, If you’ve ever operated a cassette or videotape deck, the purpose of the
main arrow buttons are clear. But what about the other items?

Most important is that the Control Panel shows the frames per second (fps)
rate. The top one is the predefined fps, the bottom one shows the actual tempo.
This is important for online movies of course, but not for this practical assignment.

8

Basic Concepts

Sprites
You could conceivably make dozens of different incarnations of one cast mem-

ber, each for example a different size or place on the stage, each with its own
score channel. these incarnations are called sprites, and they’re the basic building
blocks of Director animation.

Understanding the role of sprites (and their potential) is a key step in working
with Director.

You’ll create a sense of animation either by changing the sprite position from
cell to cell or by switching one sprite for another. Sprites are usually refered to
by the number of the channel they occupy. Changes to the sprite don’t affect its
source cast member, but changes made to that cast member will be reflected in
all sprites derived from it.

Registration point
When you place a sprite on the Stage by dragging a cast member to the Score,

that sprite appears centered on the Stage. To achieve that nice balanced effect,
Director has to calculate the physical center of the sprite as well as of the Stage.
That is why every graphic cast member has a registration point, which you can
see in the Paint window.

If you push the registration point button, crosshairs appear to indicate where
the registration point is. Just drag the crosshairs to a desired point. This point
will be the center of the cast member.

Alway remember when you’re working on the Cast level, keep in mind that
your changes here affect all sprites!

Keyframing and auto-tweening
Keyframing makes it easy to designate any point in a sprite segment as a

keyframe. Auto-tweening enables Director to automatically ”tween” (as in ’in
between’) the cells between keyframes to show any movement that should occur.
In other words, with auto-tweening you can lengthen or shorten a sprite segment,
and the motion of sprites within that segment will be compressed or extended
accordingly.

Space to Time animation

9

10

With Space to Time you place all the necessary sprites in a single Score frame,
arranging them in the form of the action. Once you’re satisfied with the flow of
the sequence, a single command converts the arrangement into a segment suitable
for playback.

Reversing sequence
The reverse sequence command will retain all of our sprite placement infor-

mation but will simply flip the order within the segment.
Reverse sequence is a good tool for orchestrating exits: you can animate a

cast member’s entrance onto the Stage, use In-between to keep the cast member
steady for any duration, and then paste the entrance animation and select Reverse
Sequence to make the exit.

Switching cast members
You can switch cast members corresponding to any sprite while retaining that

sprite’s placement information. Applying such a substitution to a segment of
sprites effectively gives you the power to save the motion while changing the
image.

Exchange Cast Members is an especially powerful tool, as it can allow you to
build your movie first and then refine the graphic elements later.

Ink effects
We’ve already established that each sprite is an individual copy of a cast

member. Well, ink effects can change the nature of that copy by dictating how
it’s drawn on the screen. The various ”inks” are actually modes of display; some
change the sprite’s appearance radically, while others make subtle changes that
show up only when one sprite interacts with another.

Tools

The Paint window
The Paint window has some truly impressive features (intelligent lasso’s/ink

effects), but in terms of sheer flexibility, it’s not in the same league as standalone
applications such as Photoshop or Corel Draw. You can use it to create original
artwork, but depending on your desired level of sophistication, you may find
yourself choosing to create graphics elsewhere and then importing them.

One really convenient feature of Director is that it lets you specify an external

11

12

application (i.e. Photoshop) to edit a bitmap, digital video, or sound cast member.
From the File menu, choose Preferences and then Editors to specify your choice
for each cast member type. When you double-click a cast member, the chosen
program will now automatically be launched.

The Vector Shape window
To understand the difference between bitmapped graphics and vector shape

graphics, imagine a simple line: You can either physically draw the line on a piece
of paper (bitmaps), or you can jot down the coordinates of point A (the starting
point) and point B (the ending point). Vectors take the latter approach, juggling
the mathematical representation of a line rather than the line itself. Although the
computer screen will display an actual line in either case, the vector format is a
lot more versatile.

A vector’s mathematical description isn’t just length and shape; it also includes
fill color and thickness of the line. This makes it possible to resize them without
introducing any distortion. Moreover, they require a lot less disk and memory
space and will download and animate much faster when used on the Web.

The Text window
Along with specifying font, size, and style, you can set tabs, margins, leading

(line spacing), and kerning (letter spacing) values. What’s especially impressive is
Director’s ability to display text on the screen in anti-aliased form, which means
the characters are smooth edged rather than jagged. and it’s all done in the
Text window. You can type directly in the Text window, or you can import files
saved as plaint text (ASCII), saved in Riched Text Format (RTF), or saved as

13

HTML documents. RTF is supported by many word processing applications and
preserves some formatting niceties. Director 7 recognizes most HTML tags.

The Field window

Text is handled slightly differently in the Field window. there are no tabs,
paragraph formats or typographic controls, and when placed on the stage, a
field cast members won’t animate as quickly as a text cast member. The main
advantage of fields is that they take up a lot less space.

The Tool Palette

The Tool Palette is designed to deposit its creations directly on the Stage. If
you use Tool Palette’s Text Tool, your subsequent typing will make an automatic
entry in the Text window. Click the field tool, and the text will go into a Field
window instead.

14

Some of the tools in the Tool Palette look identical tro those in the Paint
window, but there’s an important difference: lines and shapes created here are
storen in a form that takes up less file space than bitmapped graphics, and they’re
easily modifiable at any point after their creation.

The tool Palette’s other strength is its button-creation function. if you want to
create buttons with built-in animations that underscore their ’button-ness’ this is
the source. But keep in mind, that anything residing on the Stage can be turned
into a button.

The Color Palettes window
You can edit the colors of a palette in two ways. the first is by selecting

the color and then using the hue, saturation and brightness arrows to modify
the color. This doesn’t let you see the results of your actions, so here’s a better
method.

It’s easier to import a piece of artwork with the color values you want to use.
You can then import not only the artwork but its palette, which Director will
display in the Color Palettes window.

The Digital Video window
Director movies can incorporate QuickTime movies and AVI movies, and you

can even export a Director movie as a digital movie in either format.
When you import a digital video file into Director it takes up residence in the

Cast window and can be viewed in the QuickTime or Avi Video window. The
logistics of a movie within a movie can get pretty thorny, especially since both
can have independent playback rates.

15

The Script window
For scripting, look at the advanced pages.

The Library Palette
Director 7 has several features designed to encourage you to use readymade

behaviours whenever possible, and one way this shows up in the interface is the
Library Palette, which lets you drag behaviours right onto your sprites or into a
frame in the behaviour channel.

Director will walk you through the process of supplying any required extra
information for the behaviour. you can now include some pretty impressive
behaviours for creating animation, navigation, user interfaces, and even an ana-
logical clock.

16

LINGO

In Director it is possible to manually program almost anything Director can do.
The scripting language used in Director is Lingo. Lingo is a basic scripting
language and is easy to master.

How does Lingo work?
First thing to know is that there are different types of Lingo-scripts:

• movie scripts,

• score scripts, and

• parent scripts.

The first kind of script, the movie script can be called to the screen pressing
CRTL+SHIFT+U, or select from the menu.(!) You will see a completely empty
text screen and it is up to you to fill it!

handlers

In Lingo you can define what are called ’handlers’, these are actually functions
and are similar like for example Javascript. An example of a Movie-script with
two handlers is:

on startMovie

alert "Multimedia is leuk!"

end startMovie

on stopMovie

alert "bye bye!"

end

Note: Lingo is a case-insensitive language, so don’t worry about those capital
letters, although good programming would be making consistent and clear use of
capital letters!

A handler always begins with on and then follows the ’event’. In this example
two handlers are programmed, the things that must be done when the movie

17

18

starts and the things that must be done when the movie ends. A handler always
closes with the word end.

Note: Just ’end’ at the end of a handler is sufficient although you can also
write ’end [handler]’ which is easy when your handler becomes somewhat big.

Note: There are a lot of system-handlers like the ones in the example above but
you can also write your own.

In this example I have issued the command ’alert [string]’ which gives a popup-
box with the string displayed in it (very useful for debugging your code!). Another
way to debug your code is too issue some ’put ¡string¿’ commands. In this case
the message is send too the messenger window which can be shown on CRTL+M.

Another movie handler is ’on prepareMovie’ which is executed before ’on
startMovie’ and is useful for setting starting-variables.

To create a variable that is accessible for more handlers, you must create a
’global’ variable. You can define a global variable anywhere outside any handler
in which case it is accessible by all handlers in the same script and handlers in
other scripts that include the variable. Or you can define a global variable inside
a script. In this case the variable is only accessible for that handler and any other
handler that also defines the variable.

Example:
global variables

global startText

on startMovie

set startText

to "Multimedia is leuk!"

alert startText

global endText

set endText = "bye bye!"

end startMovie

on stopMovie

global endText

alert endText

end

This example is actually the same as the example before except thhat the
text is now stored in two global variables. Variables in Lingo do not have a
type specification, the variable gets it’s type when it is first set or when it is
reset. Too assign a value to a variable the following notations can be used: ’set
[variable name] to [some string or other value]’ or ’set [var] = [some]’ for those
of you who dislike programming with a lot of words.

When a variable is reset the type is also reset, so the following code will give
an error:

19

set myVariable to 2 -- integer

alert myVariable -- error! for 2 is not an integer

Correct would be:

set myVariable to 2 -- string

alert myVariable -- correct! since myVariable is a string

or

set myVariable to ’2’

-- integer

alert string(myVariable) -- correct! since now the value 2 will

be cast to a string

Lingo also has a lot of system variables which can be used at any time. System
variables often consist of the word ’the’ followed by the variable. this can be
confusing when debugging if you forget the word ’the’ since Lingo will create a
new local variable. Some System variables are ’the mouseV’ (vertical position of
the mouse-pointer), ’the mouseH’ (horizontal position of the mouse-pointer), ’the
shiftDown’ (boolean presenting wheter the ’shift’ key is pressed or not), ’the key’
(the last key pressed) etc One very important system-variable is ’the frame’ which
denotes the current frame of the movie and is much used in frame-scripts.

In addition to movie-scripts you can also use score-scripts. These are either
frame-scripts, sprite-scripts or behaviors (which are actually sprite or score-scripts
but more on bahaviours later).

Frame-scripts are defined in the first line of the upper-part of the score and
can be accessed by double-clicking on a cell.

frame scripts

20

In a frame-script code is programmed which will only be executed when the
play-back-head of the movie is at the frame. Handlers that can be used in a frame
script are: ’on prepareFrame’, ’on enterFrame’, ’on exitFrame’ and there effects
are obvious.

Note: You can also use these handlers in movie-scripts accept that then they
count for EVERY frame in your movie!

Example:

on exitFrame

go to the frame

end exitFrame

or

on exitFrame

go to marker("the end")

end exitFrame

In both examples the ’go to’ command is issued. This command expects a
integer value which represent a frame (the first frame is number 1 and so on). In
the first example the go to commands goes to ’the frame’ which is the frame the

21

script is in so the play-back head enters the same frame again and thus a loop is
created! In the second example the play-back head goes to the frame where the
marker ”the end” is defined.

A sprite script is also a score-script. Sprite-scripts can be called from the
menu at sprites or cast members.

sprite script

Sprites can have multiple scripts on them as long as there aren’t more then
one of each handler. Hanlders often used in sprite scripts are: ’on beginSprite’,

22

’on endSprite’, ’on mouseOver’, ’on mouseLeave’, ’on mouseDown’, ’on mouseUp’
etc.

Example:
sprite script

on mouseUp

alert nextSentence()

end mouseUp

on nextSentence

set myNounList to ["Multimedia", "Assisting",

"College", "The manual"]

set myVerbList to ["stays", "is, "is not",

"continues to be", "will be"]

set myProverbList to ["stupid.", "fun.",

"exhilarating.", "too great too put in words."’]

set myRandomSentence to

myNounList[random(count(myNounList))] &&

myVerbList[random(count(myVerbList))] &&

myProverbList[random(count(myProverbList))]

return myRandomSentence

end nextSentence

Note: I’ve written a small handler in this sprite script which generates random
sentences from the given lists.

Note: To let a handler return some value just put a return command somewhere
along with the variable too be returned.

Note: When a return command is issued the rest of the script is NOT omitted.
The same holds for the ’go to’-command and others.

You can also alter your sprites and cast members run-time with Lingo. To
select a cast member type ’member ”[yourMember]” of castlib ”[yourCastLib]” or
member [A Number]’, to select a sprite just use ’sprite [yourSpriteNumber]’. You
only have to specify your castlib if it isn’t the internal castlib. You can either
reference cast members by there name (string!) or by there place in the castlib
(int!).

Sprite-scripts are often referred to as behaviors. In effect these scripts do
not differ accept that behaviors can be attached to multiple sprites without being
copied. So if the behviour script changes the script on all sprites with the behavior
changes. In contradiction sprite-scripts are private too the sprite.

Reference: To know more about lists in Lingo choose help lingo dictionary Lists
in Director.

23

Reference: To know more about cast members in Lingo choose help lingo dictio-
nary Cast members in Director.

Reference: To know more about sprites in Lingo choose help lingo dictionary
sprites in Director.

24

Howtos

howto

• How to make a transition effect

• How to add a keyframe

• Tweening

• How to let text zoom into screen

• How to make a background transparent

• How to create a repetition

• How to pause your movie

Transition effects

Name
How to make transition effects

Purpose
A transition effect is used to gradually go from one frame to another. (eg. one

frame slides over one another or pixel per pixel etc..)

Use

1. In the transition channel, double-click on the frame where you want the
transition to occur to display the dialog box.

2. In the categories list, select a categorie (eg. All), and in the transition list,
the desired transition.

3. Click OK.

4. In addition the transition becomes a member of the Cast.

25

26

Look at

Example
transition

Reference
Macromedia director7 and Lingo authorized, Phil Gross,p.100.

Keyframes

Name
How to add a keyframe

Purpose
Keyframes can be used as reference points for tweening.

Use

1. Select a sprite in the score.

2. Right-click on the frame in that sprite where you want a have a keyframe.

3. Select ’insert keyframe’.

4. The sprite will now show that is has a keyframe.

27

Look at

Example
keyframe

Reference
Macromedia director7 and Lingo authorized, Phil Gross,p.60.

Tweening

28

Name
How to do tweening

Purpose
Tweening can be used to animate sprites.

Use

1. Select a keyframe in the score. (the start of a sprite is also a keyframe).

2. Go to the stage and drag the selected sprite frame to a desired point in the
stage.

3. Playback and watch

4. Hint: holding down SHIFT while dragging will keep the spriteframes aligned!

Example
tweening

Set backs
Working with keyframes and tweening may be rather confusing. You should

save your work a lot, because you could end up dragging the wrong keyframes
and making a mess of your whole movie.

Reference
Macromedia Director7 and Lingo authorized, Phil Gross,p.58-62.

Zooming text

Name
How to let text zoom into screen

Purpose
The purpose is quite obvious. It’s could look really cool!!

Use
There are at least two ways of letting text zoom in. One way is to make

several text objects one larger than the other, and place them in sequence on the
Stage. But an easier and prettier solution is to make a text bitmap with the paint
window or, even better, an external editor such as Adobe Photoshop.

how to use a bitmap:

1. Make a bitmap. This bitmap has to be the largest enhancement of your
zoom-sequence

29

2. Place it on the Stage

3. Click on the first sprite of the segment (be sure it is a keyframe).

4. Grab a corner of the object and, while holding down the CRTL and SHIFT
key (to keep the proportions accurate), make the object smaller.

5. Now drag the reference point of the first sprite precisely over the last one

6. Playback.

Example
zoomin.dcr

Set backs
One setback is, that text can’t be used to zoom, you have to make seperate

cast members and place them one after another one the Score. Or you can use a
bitmap, but the anti-aliasing doesnt work that smooth in director, so again you
may want to use seperate cast members.

Backgrounds

Name
How to make the background of an imported picture transparent

Purpose
First of all it’s just prettier. But also, it would be nice, that if two images

overlap only the images do so and not also the background of these images...

Use

1. select the desired sprite in the score

2. select the choice ’background transparent’ from the ink-effects

3. double-click on the background-color indicator

4. select the color that has to be transparent

5. you’re done! (Look at the Stage to see the changes)

Look at

30

Pause a movie

Name
How to pause your movie

Purpose
For the practical assignment, you won’t have to make an interactive movie,

but it may come in handy to pause your movie. And it’s really quite simple

Use

1. Double click in the tempo channel on the sprite where you want the pause
to occur.

2. Here you can choose either how long a pause you want to have or a pause
until the user presses a mouse or keyboard button.

31

3. Choose the second one.

4. Play the movie and see how the movie pause and waits for a button to be
pressed.

32

Behaviors

Behaviors are most of the time little scripts which can be added easily to a sprite
or frame to increase the functionality.

There are a lot of behaviors out there, either in director like ’mouse-over-
change-cursor’ or on the internet:

• http://www.behaviors.com,

• http://www.director-online.com.

As mentioned before, behaviors can have properties. These properties are
declared outside the hanlders at the top of the screen. When a behavior is dragged
from the library palette and released on a sprite a pop-up box can appear to set
these properties to specific values for that sprite. The handlers which makes this
possible is on getPropertyDescriptionList. In this handler you can define
what and how properties are set.

Example: properties

property anInteger

on getPropertyDescriptionList

set thePropertyListDescription = [:]

addProp thePropertyDescriptionList,

#anInteger, [#default: 0, #format: #integer, #range:

[#min: 0, #max: 10], #comment:’Enter an integer’]

return thePropertyDescriptionList

end

The property anInteger gets filled in by the method specified by the addProp
command. In this case a slider is used with possible values 0 to 10. The handler
on getBehaviorDescription gives a description of the behavior when the mouse
roll overs the behavior in the library cast.

Note: To add a behavior to the library, add or create a new external cast and
put the cast in the libs folder of the macromedia directory.

33

34

Note: To view the library choose window library palette.
Next to do is just write the behavior.

Example: behavior

-- mouseOver

property pMouseOverCursor

property pEnteredMouseCursor

on getPropertyDescriptionList

set theDescriptionList = [:]

addProp theDescriptionList, #pMouseOverCursor,

[#default: 0, #format: #cursor, #comment: "de cursor"]

return theDescriptionList

end

example (cont’nd)

on mouseEnter me

mySprite = sprite (me.spriteNum)

pEnteredMouseCursor = mySprite.cursor

cursor pMouseOverCursor

end

on mouseLeave

cursor pEnteredMouseCursor

end

on getBehaviorDescription

set description = "defines de mouse over cursor"

return description

end

This behavior let’s you select a cursor which appears when the mouse enters
the sprite and turns the mouse to it’s normal cursor when the mouse leaves the
sprite.

Note: To make behaviors fast, you can use a program which makes the basic
behavior for you in which you only have to type the specific code. Such a program
is available at. (behavior writer).

Director Overview

four main windows

• Stage – where the action is

• Cast – that play their role(s)

• Score – for the director

• Control Panel – for playback

movies and actions

• Director files are called movies.

• All actions in a Director movie take place in the Stage window.

• An action is created in the Score window. The process of experiencing
the action is known as playback; clicking the Play button on the Control
Panel sends a cursor known as the playback head through the Score, which
effectively runs your movie by sequentially processing the Score information.

cast members

• The multimedia elements are stored and accessed in the Cast window. They
are known as cast members. Some cast members are embedded, which
means that they reside entirely in the director movie. Others are linked,
which means that the actual data remains in an external file.

the score – timing and channels

• Each column in the Score represents a relative moment in time. Cast
members placed in cells in a column will show up on the Stage at that
given moment during playback.

• Each channel in the Score represents a layer on the screen. There are
specialized channel for sounds, transitions, tempos, and color palettes.

the cast – members and sprites

• Onscreen text can be created in three different ways: as formatted text, as
a field, and as artwork.

35

36

• The distinction among cast members, sprites, and sprite segments: Cast
members are media elements in a Cast database, sprites are their repre-
sentations on the Stage, and sprite segments are those representations in
sequence across the timeline of the Score.

the stage – alignment

• The registration point is what Director considers the physical center of a
bitmap cast member. You can relocate the point in the Paint window to
affect where the cast member appears on the Stage.

• Each physical element placed on the Stage has a bounding box, a square
area that’s as large as the outer perimeter of the object itself. It’s always
a rectangle, and it appears only when a sprite is selected. You can change
the proportions of the box to change the appearance of a sprite, without
changing the original cast member from which the sprite is derived.

the stage – animation

• The main method of animation in Director is step recording. It involves
placing the same cast member in multiple Score frames, in slightly different
positions.

• Step recording is made somewhat easier with auto-animation tool such as
Extend Sprite, Sprite tweening, and Space to Time.

• Other ways to introduce a sense of animation are through the use of ink
effects to vary modes of display for individual sprites, and by modifying the
size of the sprites.

tips

• Sprite sequences can be saved and reused as a unit, known as a film loop.

• For straight lines and shapes (as well as buttons), the Tool Palette is as
alternative to the Paint window.

• When inporting new cast members from external files, make sure the pop-up
menu in the Import window is set to the type of file you’re looking for.
Otherwise, the file may not appear in the list.

• To swap in a new cast members while retaining the Stage placement of the
old one, use the Exchange Cast Members command.

• Markers are useful tools for identifying and navigating the frames in your
movie.

etcetera

• The tempo channel can be made to repeat indefinetely by enabling the Loop
option in the Info window.

• Transitions can apply either to the overall Stage or only to those elements
that are different in the two frames straddled by the transition.

Resources

A small database of pictures

• photo’s

• air

• drawings

Resources

• Amsterdam Monumenten

• Amsterdam - The Channels

37

