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Current computer games are being set in increasingly more complex and dynamic virtual environments.  
Massively multiplayer online games, for example, are played in persistent virtual worlds, which evolve and 
change as players create and personalize their own virtual property.  In contrast, technologies for controlling the 
behavior of nonplayer characters that populate virtual game worlds are frequently limited to preprogrammed 
rules.  Characters using fixed rule-sets lack the ability to adapt in time with their environment.  Motivated 
reinforcement learning offers an alternative to character design that can achieve nonplayer characters that both 
evolve and adapt in dynamic environments.  This article presents and evaluates two computational models of 
motivation for use in nonplayer characters in persistent computer game worlds.  These models represent 
motivation as an ongoing search for novelty, interest, and competence.  Two metrics are introduced to evaluate 
the adaptability of characters controlled by motivated reinforcement learning agents using different models of 
motivation.  These metrics characterize the behavior of nonplayer characters in terms of the variety and 
complexity of learned behaviors.  An empirical evaluation of characters in simulated game scenarios shows that 
characters motivated by the search for competence are more adaptable in dynamic environments than those 
motivated by interest and novelty alone.   
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1. INTRODUCTION 
Motivated reinforcement learning (MRL) offers a new approach to the design of 
behaviors for nonplayer characters (NPCs) in computer games [Merrick and Maher 
2006].  A current focus of MRL research is on producing agents that can learn a variety 
of believable behaviors in complex environments and adapt those behaviors in dynamic 
environments.  As such, MRL techniques offer a promising approach to the design of 
NPCs that can adapt in complex or dynamic environments.  MRL is an approach to 
learning by trial and error in response to reward or punishment.  In MRL, reward and 
punishment  are  modeled as a motivation signal that encourages general behavioral char- 
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acteristics such as the desire to learn novel or interesting behaviors.  The resulting 
diversity of learned behaviors has the potential to create NPCs that are more flexible and 
responsive than those using existing techniques.   

Massively multiplayer, online role-playing games (MMORPGs) are a current example 
of computer games in complex, persistent, dynamic virtual environments.  In 
MMORPGs, NPCs take on the role of enemies, partner characters, and support 
characters, and have the potential to benefit from MRL technologies.  Previous 
approaches to the design of support characters, in particular, have tended to use fixed 
rules and looping animations so that characters are frequently unable to respond to the 
evolving environment [Laird and van Lent 2000].  More sophisticated NPCs have the 
potential to enrich game worlds by providing opportunities for interesting interactions 
with players.  This makes the game world more interactive and improves the believability 
of the game [Zeltzer 1992].   

Previous work with MRL in MMORPGs [Merrick and Maher 2006] and simulation 
games [Merrick and Maher 2007] has demonstrated the abilities of support characters 
controlled by MRL agents motivated by the search for novelty and interest.  This work 
has shown, qualitatively, that characters using MRL can exhibit adaptive behavioral 
patters for performing different tasks at different times.  However, existing work has not 
quantified the extent to which agents achieve these behavioral characteristics.  Likewise, 
alternative approaches to modeling motivation that may achieve different behavioral 
characteristics have not been considered.   

This article looks, in depth, at the role of motivation in creating adaptive NPCs using 
MRL.  Two computational models of motivation are presented for the control of NPCs in 
MMORPGs.  These models represent motivation both as an ongoing search for novelty 
and interest and as the search for competence.  In order to quantify the effect of different 
models of motivation on the behavioral characteristics of NPCs, two metrics are 
introduced to evaluate the adaptability of NPCs controlled by MRL agents using different 
models of motivation.  Specifically, the behavior of NPCs is characterized in terms of its 
variety and complexity.  An empirical evaluation of MRL for controlling NPCs in 
simulated game scenarios shows that NPCs motivated by the search for competence are 
more adaptable in dynamic environments than those motivated by interest and novelty 
alone.  

2. CURRENT TECHNOLOGIES FOR CONTROLLING THE BEHAVIOR OF 
NONPLAYER CHARACTERS 

NPCs fall into three broad categories: enemies, partners, and support characters [Laird 
and van Lent 2000].  Enemies are characters that oppose human players in a pseudo-
physical sense by attacking the virtual life force of the human player with weapons or 
magic.  Partners take the opposite role and attempt to protect the human players with 
whom they are allied.  Alternatively, partner characters might perform noncombat tasks 
such as selling goods on behalf of their human ally.  In some games, partner characters 
may be taught to perform certain behaviors by players.  Finally, support characters are the 
merchants, tradesmen, guards, innkeepers, and so on who support the storyline of the 
game by offering quests, advice, goods for sale, or training.   

The basic architecture for an NPC must be highly reusable – so that it can be applied 
to different characters – and support humanlike behavior [Travis et al. 2000].  A common 
approach to the control of NPC behavior is to use an agent architecture [Wooldridge and 
Jennings 1995].  Agent architectures define a framework for the processes an NPC must 
execute repeatedly during game-play: sensing the environment, reasoning about sensor 
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data, and acting in the environment.  This set of recurring processes is an NPC’s 
intelligence loop [Baille-De Byl 2004].  Different approaches have been taken to 
implementing the intelligence loop.  The approach chosen determines the complexity, 
flexibility, and adaptability of a character’s behavior.       

2.1 Reflexive Agents  
Reflexive behavior [Maher and Gero 2002] is a preprogrammed response to the state of 
the environment – a reflex without reasoning.  Only recognized states will produce a 
response.  State machines, rule-based approaches, fuzzy logic, and flocking are reflexive 
reasoning processes commonly used to control the behavior of NPCs.   

Rule-Based Systems 
Games that use characters with rule-based reasoning include Baldur’s Gate, FX Fighter, 
and Terra Nova.  Rule-based approaches define a set of rules about states of the game 
world of the form: if <condition> then <action> [Russel and Norvig 1995].  
If the NPC observes a state that fulfils the <condition> of a rule, then the 
corresponding <action> is taken.  Only states of the world that meet a <condition> 
will produce an <action> response.  While this approach ensures a fixed set of 
responses by a character, the details of these rules must be established prior to characters 
interacting with their environment.  Any adaptation in behavior can only occur within the 
fixed set of predefined rules.   

State Machines  
State machines can be used to divide an NPC’s reasoning process into a set of internal 
states and transitions [Baille-De Byl 2004].  Each internal state defines rules controlling 
how the agent should respond to its environment while in that internal state.  State 
machines are one of the most popular control strategies for NPCs, used in games 
including Dungeon Siege, Age of Empires, The Sims, Enemy Nations, and Half-Life.  
Nonetheless this approach has similar issues to rule-based systems.  Internal states, like 
rules, are established prior to characters interacting with their environment.  While 
different rules in different internal states can lead to behavior that is more adaptable than 
rule-based systems, this adaptability is again limited by the predefined rules within each 
internal state.   

Fuzzy Logic  
Fuzzy logic provides a way to infer a conclusion based on facts that may be vague, 
ambiguous, inaccurate, or incomplete [Baille-De Byl 2004].  Close Combat 2 is an 
example of a game using fuzzy logic.  Fuzzy logic uses fuzzy rules of the form if <X 
is A> then <Y is B>.  X and Y are linguistic variables representing character-
istics being measured – such as temperature, speed, or height – while A and B represent 
fuzzy categories – such as hot, fast, or tall.  Fuzzy categories define decision thresholds 
within which certain courses of action may be pursued.  Fuzzy logic can be applied to 
both rule-based approaches and state machines.  While fuzzy logic allows characters to 
reason in environments where there is uncertainty, the ability of characters to adapt is still 
limited by the set of predefined fuzzy rules.   

Flocking 
Flocking [Reynolds 1987] is special example of rule-based reasoning used to control 
groups of characters such as crowds or animals.  Flocking uses three rules governing the 
separation, alignment, and cohesion of individuals in a flock, herd, or other kind of 
group.  Separation rules steer an individual to avoid others, alignment rules steer an 
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individual towards the average heading of the flock, and cohesion rules steer an 
individual towards the average position of the flock.  Flocking algorithms have been used 
with great success to represent lifelike crowd and animal movements and have been 
incorporated in games such as Half-Life and Unreal.  Using the basic flocking rules, 
flocks can adapt to changes in their environment by moving around, towards or away 
from objects.  However, flocking does not allow character individuality or more complex 
adaptation.     

2.2  Learning Agents 
Learning agents are able to modify their internal structures in order to improve their 
performance with respect to some task [Nilsson 1996].  Some NPCs such as partner 
characters can be trained to learn behaviors specified by their human master.  The human 
provides the NPC with rewards such as food or patting to encourage desirable behavior 
and punishment to discourage unwanted actions.  Learning algorithms used in games 
include decision trees, neural networks, and reinforcement learning.   

Decision Trees 
Decision trees are hierarchical graphs that structure Boolean functions [Russel and 
Norvig 1995]. A decision tree is learned from a training set of previously made decisions.  
The learned decision tree can then be used to make future decisions.  In Black and White, 
for example, creatures can learn decision trees about what food to eat based on how tasty 
the creature finds previously eaten food provided by a human player.  While decision 
trees allow characters to learn, thus permitting more adaptable characters than do 
reflexive approaches, they require a set of examples from which to learn.  These 
examples must be provided by players.  While this is appropriate for partner characters, it 
is generally inappropriate for enemies and support characters to have their behaviors 
determined only by players.   

Neural Networks 
Artificial neural networks comprise a series of neurons with interconnecting pathways 
[Russel and Norvig 1995].  Neural networks, like decision trees, learn from examples.  
Examples of correct actions in different situations are fed into the network to train a 
character.  When a character encounters a similar situation it can make a decision about 
the correct action to take based on the data stored in the neural network; neural networks 
are used by characters in Battlecruiser: 3000 AD. However, in many cases neural 
networks are frozen before the release of a game to prevent further learning during the 
game because learning from character actions can produce networks capable of adapting 
erratically or unpredictably to players’ actions.   

Reinforcement Learning 
Reinforcement learning (RL) agents [Sutton and Barto 2000] are connected to their 
environment by sensation and action.  On each step of interaction with the environment, 
the agent receives an input that contains some indication of the current state of the 
environment and the value of that state to the agent.  This value is called a reward signal.  
The agent records the reward signal by updating a behavioral policy that represents 
information about the reward received in each state sensed so far.  The agent then 
chooses an action that attempts to optimize the reward gained over time.  Because RL is 
directed by reward and not examples, it is possible for game designers to provide a 
reward signal for a character prior to the character’s learning during a game.  This means 
that RL approaches, unlike decision trees and neural networks, are suitable for enemy and 
partner characters.  Researchers from Microsoft have shown that it is possible to use RL 
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to allow enemies to improve and adapt a skill during a game.  RL was applied to fighting 
characters for the Xbox game, Tao Feng [Graepel et al. 2004].  However, while Tao Feng 
characters using RL can adapt their fighting techniques over time, it is not possible for 
them to identify new skills to learn about.  This is because they are limited by a 
preprogrammed reward for a single skill – fighting.  The key difference between RL and 
MRL lies in the replacement of the skill-specific reward signal in RL with a general 
motivation signal in MRL.  The motivation signal allows characters to identify multiple 
different tasks or skills about which to learn.      

Evolutionary Agents 
Evolutionary approaches such as genetic algorithms simulate the process of biological 
evolution by implementing concepts such as natural selection, reproduction, and 
mutation.  Individuals in a population are defined in terms of a digital chromosome.  
When individuals reproduce, offspring are defined by a combination of their parents’ 
chromosomes via processes of crossover and mutation.  Offspring are then evaluated 
using a fitness function to determine which will remain in the population and which will 
be removed (die).  Evolutionary algorithms are robust search methods that can optimize 
complex fitness functions.  However, when genetic algorithms are used in NPCs, fitness 
functions must be predefined by game designers.  As in RL, the fitness function limits the 
adaptability of a given population of individuals to the skills or tasks defined by the 
fitness function.   

3. MOTIVATED REINFORCEMENT LEARNING 
RL agents learn by trial and error through direct interaction with their environment.  
Learning is directed by rewards and punishments that guide an agent towards a specific, 
predefined task or skill.  MRL introduces a motivation signal into the RL framework.  
Where reward defines a specific task, motivation may inspire learning of multiple tasks at 
different times in response to general concepts such as interest or curiosity.  MRL 
algorithms occur in two broad classes: MRL(I) algorithms incorporate a motivation 
signal in addition to a reward signal, while MRL(II) algorithms use a motivation signal 
instead of a reward signal.  Within these classes, motivation has been used for a range of 
different purposes.  A number of MRL(I) models use motivation in conjunction with a 
reward signal as a means of speeding up learning [Singh et al. 2005].  Other MRL(I) 
models use motivation as an exploration mechanism either to facilitate later behavioral 
exploitation [Simsek and Barto 2006] or to direct action while waiting for task-oriented 
reward feedback [Huang and Went 2002.  In contrast, MRL(II) approaches use 
motivation in the absence of a reward signal as an automatic attention-focus mechanism 
[Kaplan and Oudeyer 2003; Merrick and Maher 2006; Oudeyer and Kaplan 2004; 
Oudeyer et al. 2007; Saunders and Gero 2001].  MRL(II) models have potential as 
adaptive control algorithms for NPCs because attention-focus is determined by 
experience-based motivation only.  A task-oriented reward defined prior to learning 
based on rules about the environment is not required.  Rather, the motivation component 
is designed to be general enough to direct learning towards different tasks that might arise 
without requiring prior knowledge of what those tasks may be or when they should be 
performed.  Because MRL is based on RL, it offers a means of autonomous learning for 
NPCs that does not require direct supervision or examples by human player characters.  
This means that MRL can potentially be applied to partner, enemy or support characters. 
Merrick and Maher [2007] developed an MRL(II) approach for NPCs in complex, 
dynamic game environments.  In their approach, complex, dynamic environments are 
modeled as a set of Markov decision problems (MDPs), P = {P1, P2, P3 …}, in which 
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each Pi represents a region of the environment in which a task is situated.  Pi comprises a 
set Si of states, a set Ai of actions, and a task defined by a reward function Ri.   

The key differences between this MRL algorithm and other RL and MRL approaches 
lie in:  

 
• the use of experience-based motivation rather than task-oriented reward to focus 

learning;  
• learned policies representing behavioral cycles; and   
• context-free grammar representations for the state and action spaces. 
 
In order for a RL agent to learn to perform a task in an environment modeled by a set 

P of MDPs, a reward signal Ri is required that represents that task.  In the past, this 
reward signal has been constructed using known rules about the task or the environment.  
For example, an NPC representing a guard character can use RL to learn a patrol route, 
given a reward signal for each geographic location along the route.  However, this reward 
signal assumes detailed knowledge of the layout of the environment prior to learning.   

The role of motivation in MRL is to provide an approach to the design of reward 
signals for different tasks without the need to identify subsets of the state or transition 
space prior to learning to compose the rules that will define each task.  For example, a 
MRL agent motivated to move to interesting areas could determine a patrol route without 
requiring detailed knowledge of the layout of an environment prior to learning.  In 
addition, if changes in human activity change what is interesting in the environment 
while the game is in progress, the agent can adapt its patrol route appropriately.   

More formally, motivation Rm(t) is a function of an agent’s experiences:  
 

Rm(t) = R (Y(t) ) 

where experiences Y(t) are modeled as a single, infinite trajectory of states and actions:   

Y(t) = S(1), A(1), S(2), A(2), … S(t), A(t) 

 
The aim of motivation in MRL is to produce motivation values that will motivate the 

RL process to focus on executing actions that support the emergence of focused 
behavioral cycles in the state and action trajectories.  Behavioral cycles allow the 
development of agents that can mimic the biological, cognitive, or social cycles in natural 
systems [Mook 1987].  This is useful, for example, in applications for characters in 
persistent computer games that are required to exhibit realistic or humanlike behavioral 
patterns that can adapt over an extended lifetime.  

    

 
Fig. 1.  Behavioral cycles of complexity one, two, three, and n.      
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The complexity of the behavioral cycle is defined as the number of states or actions in 
the trajectory.  Four behavioral cycles of different complexities are illustrated in Fig. 1.   
The key ability of MRL that is not available using other agent models is the capacity for 
MRL agents to adapt their behavior autonomously to form different cycles, without 
requiring these cycles to be preprogrammed.      

In this MRL model, sensed states S(t) are represented as a string from a context-free 
grammar (CFG ) [Merceron 2001] (VS, ΓS, ΨS, S) where  

• VS is a set of variables or syntactic categories; 
• ΓS is a finite set of terminals such that VS ∩ ΓS = {}; 
• ΨS is a set of productions of the form V Æ v where V is a variable and v is a 

string of terminals and variables; and 
• S is the start symbol.   

Thus, the general form of a sensed state is  

 
S    Æ  <sensations> 
<sensations>  Æ  <PiSensations><sensations> | ε 
<PiSensations> Æ  <sL><PiSensations> | ε 
<sL>   Æ  <number> | <string> 
<number>  Æ  1 | 2 | 3 | ... 
<string>  Æ  ... 

 
This representation is flexible enough to represent environments containing different 

numbers of elements Pi.  This is important in dynamic game worlds where the elements 
comprising P may change over time as players modify the game environment by building 
or crafting new objects.  This representation is also flexible enough to represent objects 
with different properties.  For example, one object may have a shape and color, while 
another may also have an age or usage limit, and so on.   

In fixed-length vector representations two states can be compared by comparing the 
values of vector elements with the same index in each state.  In variable length sensed 
states, a label L is assigned to each sensation by the sensor that produced it, such that two 
states can be compared by comparing the values of sensations that have the same label 
where such sensations exist.   

A flexible representation is also required for the action space in dynamic 
environments.  While characters may maintain a fixed set of effectors for the duration of 
their lives, the actions they can perform with those effectors may change with the 
addition or removal of elements Pi from the environment.  Thus, the action space A is 
also represented using a CFG (VA, ΓA, ΨA, A) where  

• VA is a set of variables or syntactic categories; 
• ΓA is a finite set of terminals such that VA ∩ ΓA = {}; 
• ΨA is a set of productions of the form V Æ v where V is a variable and v is a 

string of terminals and variables; and 
• A is the start symbol.   

The general form of the action space is:  
A    Æ   <actions> 
<actions>  Æ   <PiActions><actions>  | ε 
<PiActions>  Æ   <Aj><PiActions> | ε 
<Aj>   Æ   ... 
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The algorithm in Figure 2 represents the basic MRL control strategy for character 
reasoning, which achieves attention-focus that supports life-long, adaptive, multitask 
learning in complex, dynamic environments.  MRL is modeled as a continuing task, 
temporal difference learning algorithm.  The algorithm is arranged in five phases 
concerned with sensing the environment (line 3); action selection (lines 4-6); experience-
based attention-focus using motivation (lines 7-9); learning (line 10); and activation (line 
12). In this article, Q-learning [Watkins and Dayan 1992] is used as the temporal 
difference learning approach.   

4. MODELING MOTIVATION FOR ADAPTIVE NONPLAYER CHARACTERS 
Support characters support the storyline of games by offering quests, advice, goods for 
sale, or training.  In World of Warcraft, for example, trainers include blacksmiths, 
herbalists, alchemists, and tailors.  These characters tend to stand in one place, displaying 
only limited behavioral characteristics such as hand gestures or facial movements.  More 
interesting blacksmiths or tailors, however, might perform tasks such as forging weapons 
or bleaching linen, with behavior dependent on the availability of materials in the 
environment and the experiences and motivation of the character.  

A number of computational models of motivation exist for use in MRL and other 
agent-based systems.  Huang and Weng [2002] and Saunders and Gero [2001] 
experimented with MRL models that incorporate a computational model of novelty with 
RL.  Huang and Weng [2002] used their model in a robotics domain, while Saunders and 
Gero [2001] experimented with novelty in design agents.  While novelty-based models 
were appropriate in those settings, in games, where human interaction with the game 
world introduces the possibility of random occurrences, novelty-based models become 
problematic.  Random occurrences tend to be highly novel, but there is generally little for 
characters to learn from such situations.   

Kaplan and Oudeyer [2003] developed several alternatives that overcame the 
problems associated with novelty-based models by using an approach designed to 
motivate a search for situations that show the greatest potential for learning.  In one 
model, they defined such situations in terms of three motivational variables: 
predictability, familiarity, and stability of the sensory-motor context of a robot.  While 
this technique overcomes the issues associated with novelty-based techniques, it is 
tailored specifically to the robotics domain where stability of sensors such as cameras is a 
key concern.   

 

 
1. Y(0) = Ø 
2. Repeat (forever): 
3. Sense S(t) 
4. if (Q(S(t), A) not initialized): 

5.   initialize Q(S(t), A) arbitrarily ∀ A 
6. Choose A(t) from S(t)  
7. Update Y(t) 
8. if (S(t-1) is initialised): 
9.  Compute Rm(t) 
10.  Update Q for S(t-1) and A(t-1)  
11. S(t-1)  S(t); A(t-1)  A(t) 
12. Execute A(t)  

Fig. 2. Motivated reinforcement learning: Motivation is computed as a function of  the experiences of states and 
actions. 
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Other models of motivation based on concepts such as curiosity and interest have 
more potential in game applications.  Such models have been proposed by Schmidhuber 
[1991; 1997], Oudeyer et al. [2007], and Saunders [2001].  The idea of curiosity modifies 
novelty by motivating behaviors that achieve a moderate degree of novelty, which 
precludes highly novel, random occurrences.  Merrick and Maher [2006; 2007] adapted a 
model of interest developed by Saunders [2001] for using in NPCs.  Because it is 
desirable for game characters to be interesting to players, a model of interest as the 
motivator for characters is a useful starting point.   

The model of Merrick and Maher [2006] is summarized in the next section, and an 
additional model of motivation as the search for competence is presented.  Unlike novelty 
and interest, which are computed based on an agent’s external experiences of its 
environment, competence is an introspective motivation.  Competence motivation is 
computed based on the structures currently learned by an agent, which enables a 
character to adapt not only in response to external triggers, but in response to internal 
settings. 

4.1  Modeling Motivation as Interesting Events 
In the Merrick and Maher [2007] model of interest in Figure 3, changes in the 
environment are represented as events.  Events represent potential learning tasks that, in 
turn, may lead to the emergence of new behaviors to perform those tasks.  An event E is 
computed as the difference between, or change in, two successive sensed states as shown 
in line 2 of Figure 3.  In their model, interest in a task is aroused when its novelty is at a 
moderate level, meaning that the most interesting tasks are those that are similar-yet-
different to previously encountered tasks.     

The key component of this model of motivation is a habituated self-organizing map 
(HSOM)  [Marsland et al. 2000].  The HSOM identifies similar tasks by clustering 
events; the clustering error is used to trigger the computation of novelty; novelty is 
calculated using Stanley’s [1976] model: 

τ
dt

dN (t)  = α [N(0) – N(t)] – ς (t) 

τ is a constant governing the rate of habituation of interesting stimuli and α is a constant 
governing the rate of recovery.   

The HSOM can be modified to accept variable-length strings from a CFG as input by 
initializing each SOM neuron as a zero-length vector.  Each time a stimulus event is 
presented to the HSOM, each neuron is lengthened by adding randomly initialized 
variables with any labels L that occur in the event but not in the neuron.  String-valued 
sensations are enumerated and events normalized before input to the HSOM.  The 
novelty value output by the HSOM is modified using the Wundt curve to produce an 
interest value, which is used as the motivation signal Rm(t).       

The Wundt curve peaks for moderate novelty values, so the most interesting and thus 
most highly motivating events are those that are similar-yet-different to previously 
encountered experiences, as shown in Figure 4.  Highly novel experiences such as 
random occurrences trigger low interest values, which can be thought of as caution in 
unfamiliar situations.  Likewise, experiences that generate very low novelty values also 
trigger low interest; which can be thought of as boredom with overly familiar situations.   
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1. Subtract S(t) - S(t’) using  

∆ (sL(t), sL(t-1)) = 

⎪
⎩
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¬∃

¬∃

 otherwise null
 0 s s if s s
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L(t))L(t'
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2. Compose E(t) = (∆ (s1(t), s1(t-1)), ∆ (s2(t), s2(t-1)), … ∆ (sL(t), sL(t-1)),...)  
3. Compute N(t) = N(E(t) ) using an HSOM and Stanley’s model. 
4. Compute I(N(t)) using the Wundt curve: 

I(N(t))=
e1

F

)F(2Nρ

max

min(t)
+−−+

+

+

– 
e1

F

)F(2Nρ
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min(t)
−−−+

−

−

 

5. Output Rm(t) = I(N(t))  
 

Fig. 3.  Algorithmic description of motivation to achieve interesting events [Merrick and Maher 2007]. 

 

 
Fig. 4. Interest is computed as the joint action of positive and negative responses to novelty [Merrick and Maher 

2006]. 

This simple, extrospective model of motivation has potential for learning simple tasks 
in complex, dynamic environments.  It is possible that learning will display some 
sensitivity to changes in parameters of the motivation function.  For example, higher 
values of τ may improve the complexity of behavioral cycles that can be learned.  
However, finding values for these parameters that achieve specific behavioral variety or 
complexity characteristics is likely to require careful tuning for any given environment.  
Other algorithms that modify the shape of the motivation curve while learning is in 
progress have the potential to avoid this problem.  Such algorithms will use some form of 
introspection to allow the learning process to influence the motivation signal.  Such a 
model is proposed in the next section.   

4.2  Modeling Motivation Using Interest and Competence 

The second algorithm for motivation for support characters is shown in  
Fig. 5.  In this algorithm, the desires for interest and competence compete to motivate 
learning.  The computational model of interest described above is used to focus attention 
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on new, interesting tasks.  A computational model of competence is introduced that 
competes to maintain the current focus of attention for long enough to ensure that a stable 
behavior has emerged for completing that task.  Competence is modeled by first 
computing the learning error of the current RL policy update from the Q-learning 
equation:  

∆Q(t) = |Q(t)(S(t), A(t)) – Q(t-1) (S(t), A(t))| 
 
Events are again clustered and novelty computed using an HSOM.  However, an 

additional error layer is attached to the HSOM with one neuron for each SOM neuron.   
Each time an event is passed to the SOM, the error layer is updated to maintain the 

maximum error value X(t) experienced since the last time an event triggered the attached 
SOM  neuron.  Competence  motivation  is  computed  using  the Wundt curve.  Moderate  
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2. Compose ES(t) = {E(t)} where E(t) = (∆ (s1(t), s1(t-1)), ∆ (s2(t), s2(t-1)), … ∆ (sL(t), sL(t-

1)),)  
3. Compute N(t) = N(E(t) ) using an HSOM and Stanley’s model. 
4. Compute I(N(t)) using the Wundt curve: 

I(N(t))=
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5. Compute ∆Q(t) and X(t) 
6. Compute C(X(t)) using the Wundt curve: 
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7. Output Rm(t) = max(I, C)  

 
Fig. 5. Algorithmic description of motivation using interest and competence. 
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Fig. 6.  (a) Modeling interest motivation with an aversion to low novelty (highly familiar tasks);   (b) modeling 

competence motivation.  
error is valued the most highly, so the most highly motivating events are those at which 
the agent currently has learned a little but not too much.  This models the desire to 
approach optimal challenges that is thought to exist as a human motivation [Deci and 
Ryan 1985].  Tasks that are either too easy or too difficult trigger low motivation, while 
tasks that are moderately difficult based on prior learning are highly motivating.     

Interest and competence compete to motivate learning, with the maximum value being 
used as the motivation signal.  The intuition behind this model is that the ability to 
compute motivation with reference to learning error should encourage shifts in attention-
focus to new task whenever a current, highly motivating task has been learned to a 
sufficient level of competence.   

• In order to motivate the pursuit 
of competence more strongly than the pursuit of interest, the shape of the Wundt 
curve used to model interest is modified as shown in 

 
(a) to model an aversion to highly familiar tasks.   

5.   METRICS FOR EVALUATING ADAPTIVE BEHAVIOR IN NON-PLAYER 
CHARACTERS 

A number of different metrics have been developed for MRL algorithms. However, these 
techniques measure either the output or internal processing stages of the motivation 
function, and thus tend to be specific either to the domain or the motivation function 
being studied.  In the developmental robotics domain, for example, Kaplan and Oudeyer 
[2003] aim to build robotic agents that are able to learn to maintain the stability of head 
and light source variables in a simple vision application.  In order to measure the 
performance of their algorithm with respect to fulfilling this goal, Kaplan and Oudeyer 
[2003] use line charts to show the evolution of the three motivational variables: 
predictability, familiarity, and stability.  The charts used by Kaplan and Oudeyer [2003] 
allow them to draw conclusions about the performance of their model for motivating 
vision-related joint manipulation.  However, because these metrics are based on 
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properties such as head pan position and light position, they do not extend well to the 
evaluation of NPCs.    

In a different approach to characterizing the internal performance of a motivation 
function, Huang and Weng [2002] use line charts for the evolution of Q-variables in 
table-based RL to characterize the distribution of the motivation signal.  They use bar 
charts to characterize the agent’s emergent behavior in terms of the frequency with which 
actions are performed.  This approach allows Huang and Weng [2002] to conclude that 
their robot is displaying desirable emergent behavior and gives some indication of the 
efficiency with which that behavior is learned.  However, as |A| x |S| charts are required 
to completely represent a learned policy, this technique for measuring performance does 
not scale well in complex environments with large state or action spaces.     

In the design science domain, Saunders and Gero [2001] used bar charts to 
characterize the evolution of novelty within their design agents. The primary goal of the 
Saunders and Gero [2001] model of motivation is to maintain the agent’s focus of 
attention on novel designs.  As a result, charting the output of the motivation function and 
showing its continuing ability to identify novel design solutions is sufficient for 
measuring the performance of their model.  However, characterizing the output of the 
motivation function is not a sufficient metric to quantify the adaptable behavior of the 
actual actions performed by NPCs.    

In a different approach, Merrick and Maher [2006] used a scatter plot to visualize the 
emergent behavior of MRL agents controlling NPCs in MMORPGs.  They identify 
different repeated patterns in the plot as representing different behaviors, and conclude 
that their agents can exhibit different behaviors for solving different tasks at different 
times.  While this metric is more generic than previous approaches, being based on 
actions performed rather than internal variables specific to the motivation function used, 
it does not provide a quantitative evaluation of learning performance.     

This article uses the idea of a behavioral cycle to represent a behavior by NPCs.  In 
existing approaches, a behavioral cycle may be the result of animation or the firing of 
behavioral rules in reflexive agents.  MRL extends such approaches to behavioral 
sequences that can adapt to different tasks at different times in response to changes in an 
NPC’s environment.  Thus, to develop learning performance metrics that evaluate 
adaptive, multitask learning, this section begins by defining mathematically what it 
means for a behavioral cycle to be learned for a task.   

In order to recognize when a behavioral cycle is learned for a task, first, the standard 
deviation σE(t) is computed for the number of actions used to solve a task for the event E 
during the last h times the task was completed:  

 

σ E = ∑
=−

h

1i

2
Ei )a(a

1h

1  -  

 

ĀE is the mean number of actions required to repeat E during the last h successive 
completions of E.   

• A task represented by the event E is learned when the standard deviation σE 
over the last h repetitions of E is less than some error threshold r for the first 
time.   
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    Fig. 7. Multitask learning can be visualized as instantaneous behavioral variety.    

 
The intuition behind this approach is that a task is learned when there is a stable 

behavioral cycle incorporating that task.  The use of h completions of E captures the 
cyclic nature of NPC behavior, while allowing for those cycles to change.  The error term 
accommodates the random component of exploration strategies in RL.  Using this model, 
charts can be produces that evaluate learning performance as information about σE.  The 
following sections introduce two such metrics: behavioral variety and behavioral 
complexity.   

5.1  Behavioral Variety 
Behavioral variety evaluates learning performance by measuring the number of tasks 
learned.  The behavioral variety V of the agent increases each time a new task is learned:   

V(t+1) = 
⎪⎩

⎪
⎨
⎧ <+

otherwiseV

first time for ther  if 1  V

(t)

E(t)(t)   σ
 

Instantaneous behavioral variety can be visualized using a bar chart to provide insight 
into the multitask learning performance of a NPC controlled by a MRL agent.  This 
visualization characterizes multitask learning in terms of the number of tasks learned by a 
specified time.  Because a single agent can be represented by a single series, multiple 
characters controlled by MRL agents using different motivation components can be 
compared by plotting a series for each character on the same chart.    Fig. 7 shows an 
example of such a comparison for three characters using different motivation functions.  
Error bars show the 95% confidence interval.   

Cumulative behavioral variety can be visualized using a line chart with a single series 
to provide insight into the adaptability or multitask learning performance of a NPC 
controlled by an MRL agent.  This visualization characterizes multitask learning in terms 
of the gradient and maximum of the curve, which indicates, respectively, the rate at 
which new tasks are being learned and the number of tasks learned.  Adaptability is 
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characterized by changes in the trend of the behavioral variety curve.  Because a single 
agent can be represented by a single series, multiple characters controlled by MRL agents 
using different motivation or learning components can be compared by plotting a series 
for each character on the same chart.    Fig. 8 shows an example of such a comparison for 
two characters using different motivation functions.   

 

 
Fig. 8. Adaptive, multitask learning can be visualized as cumulative behavioral variety. 

5.2  Behavioral Complexity 

Behavioral complexity characterizes learning performance by measuring the complexity 
of a learned task in terms of the average length of the behavioral cycle required to repeat 
the task.  More formally, when a task E has been learned according to the definition 
above, the complexity of the task can be measured as the mean numbers of actions āE 
required to repeat E:   

CE  = āE 

Behavioral complexity can be visualized using a bar chart to provide insight into the 
multitask learning performance of a NPC controlled by a MRL agent.  This visualization 
characterizes multi-task learning in terms of the complexity of tasks learned by a 
specified time.  This could include the most complex task learned, the least complex task 
learned or the average complexity of learned tasks. Because a single agent can be 
represented by a single series, multiple characters controlled by MRL agents using 
different motivation or learning components can be compared by plotting a series for 
each agent on the same chart.  Fig. 9 shows an example of such a comparison for three 
agents using different motivation functions.   

5.3  Alternatives to Motivation  
Alternatives to motivation for achieving adaptive behavior are possible.  The simplest 
alternatives include greedy or random reward signals, which are computed based on an 
agent’s experiences in its environment, but differ from motivation signals in that they are 
not necessarily inspired by psychological models of motivation.  The disadvantages of 
non-motivated, experience-based reward signals for influencing behavior are that they 
tend to be either very general or highly contrived.  General experience-based reward 
signals such as greedy or random rewards have no theoretical basis for application as 
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motivation, and thus less likely to be efficient as approaches to attention-focus.  In 
contrast, over-constrained reward signals may perform well in certain environments but 
lack the capacity to display adaptive emergent behavior in others.    

Despite their disadvantages, general experience-based reward signals that do not 
incorporate  concepts  of  motivation can offer a useful baseline against which to evaluate  
 

       
Fig. 9. Multitask learning can be visualized in terms of maximum behavioral complexity. 

learned behavior.  The use and development of complex computational models of 
motivation can only be justified if they significantly outperform simpler alternatives.  As 
a baseline in the experiments in this article, a slowly changing, frequency-based reward 
signal is introduced.  The idea of this reward signal is that, at each time step, there is 
some probability that the currently experienced task E will be chosen as a “goal task”.  
This task will remain the goal task until a new one is chosen.  The smaller the probability 
that the goal task will change, the longer the agent will have to learn about each.  This 
reward function represents the narrowest possible focus of attention with respect to tasks.  
Agents using this reward function learn a single task for some period of time until a new 
task is chosen.  Formally, this reward process remembers a single goal task Eg that has 
some probability p of changing to a current task E(t) at each time step:     

Eg =
⎪⎩

⎪
⎨
⎧

otherwiseE

py probabilitwith E

1)-g(t

(t)   
 

The reward signal takes the following form:    

R(t) = 
⎩
⎨
⎧ =

otherwise 0

E E if 1   g(t)
 

6. AN EMPIRICAL EVALUATION OF MOTIVATED REINFORCEMENT 
LEARNING FOR NONPLAYER CHARACTERS IN MMORPGS 

Previous work has demonstrated MRL in controlling characters in games implemented in 
the Second Life virtual environment [Merrick and Maher 2006; Merrick and Maher 
2007].  While these demonstrations provide a qualitative analysis of MRL for character 
control, they do not quantify the behavioral characteristics of NPCs controlled by MRL 
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agents.  In order to achieve this, a controlled test environment is required.  This article 
describes two experiments using a Java program to simulate the MMORPG game 
scenario described by Merrick and Maher [2006].  The environment used in these 
experiments is relatively simple, with 52 states and 24 actions available across different 
states.  In the first experiment, the only changes to occur in the environment while 
learning is in progress are those triggered by the MRL-controlled NPC.  The second 
experiment simulates an unpredictable change in a dynamic environment.   

As it is possible to design rule-based reward signals for both of these environments, 
MRL would generally not be required for character control in this scenario.  However, 
testing NPCs using MRL in simple, closed environments under controlled conditions 
permits the production of repeatable data as input for an empirical analysis.   

6.1  Experiment 1 

The environment used in this experiment is a simple, simulated role-playing game 
scenario, modeled on the village shown in  
Fig. 10.  The village can be modeled as a set of two MDPs, P1 and P2,  describing two 
regions of the village, one containing the objects required to mine iron-ore and forge 
weapons and another containing the objects required to cut timber and craft furniture.  
These regions can be described by the CFG in Figure 11.  This grammar describes the 
two regions P1 and P2 in terms of the locations, inventory, and visible objects they 
support.  Locations have enumerated values, while visible objects and inventory are 
valued according to the number of units currently visible or held in inventory.  A NPC’s 
inventory describes the objects it is currently carrying.   
 

  
 

Fig. 10.  A game environment in Second Life. 

 
S    Æ  <sensations> 
<sensations>  Æ <P1Sensations><P2Sensations> 
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<P1Sensations> Æ  <P1location><P1inventory><P1visibleObjects> 
<P1location>  Æ <mine> | <smithy> 
<mine>   Æ 1 
<smithy>  Æ 2 
<P1inventory>  Æ <P1objects> 
<P1visibleObjects>  Æ <P1objects> 
<P1objects>  Æ <P1object><P1objects> | ε 
<P1object>  Æ <pick> | <forge> | <smelt> | <iron-ore> | 
<iron>     | <weapons>  
<P2location>  Æ <forest> | <carpenter-shop> 
<forest>  Æ 3 
<carpenter-shop> Æ 4 
<P2inventory>  Æ <P2objects> 
<P2visibleObjects>  Æ <P2objects> 
<P2objects>  Æ <P2object><P2objects> | ε 
<P2object>  Æ <axe> | <lathe> | <timber> |<furniture> 
<pick>   Æ 1  
<forge>  Æ 1  
<smelt>  Æ 1  
<iron-ore>  Æ 1  
<iron>   Æ 1  
<weapons>  Æ 1  
<axe>   Æ 1  
<lathe>  Æ 1  
<timber>  Æ 1  
<furniture>  Æ 1  

 
Fig. 11. A context-free grammar for sensed states in a game scenario in which agents control non-player 

characters.  Agents have location sensors, inventory sensors, and object sensors. 

 

Each object is visible at one location.  The maximum number of any object that can be 
visible or held in inventory is one.  Some example sensed-states in the environment in 
this experiment are shown in label-sensation (L:s) format in eq. (1).  Labels L are 
constructed from the set of grammar variables, while values for sensations come from the 
set of terminals.   

 
S(1) ((location:2)(visibleObjectPick:1)( visibleObjectForge:1)) 
S(2) ((location:2)(inventoryPick:1)( visibleObjectForge:1)) 
S(3) ((location:4)(inventoryPick:1)( visibleObjectAxe:1)( 

visibleObjectLathe:1)) 

 
 

(1) 

In order for NPCs to interact with their environment, the actions defined by the CFG in  

Fig. 12  are available:   
 

A   Æ  <actions> 
<actions> Æ <P1Actions><P2Actions> 
<P1Actions> Æ  pick-up <P1object> | move <direction> | use 
<P1object> <P2Actions> Æ  pick-up <P2object> | move <direction> | use 
<P2object> 
<direction> Æ north | south | east | west  
<P1object> Æ pick | forge | smelt | iron | iron-ore | weapons  
<P2object> Æ axe | lathe | timber | furniture 

 
Fig. 12.   A context-free grammar for the action set in a game environment in which agents have location 

effectors, pick-up object effectors, and use object effectors. 
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Possible tasks in this environment include traveling from place to place, cutting timber, 
mining iron-ore, smelting the ore to obtain iron, forging weapons, and crafting furniture.  
Not all actions are available in all world states.  Use actions are only available for a 
particular object if that object is in the current <inventory> or <objects> list of the 
NPC, as appropriate for that object.  For example, it is appropriate to pick-up an axe 
and have it in inventory for later use, but the forge, which is too heavy to be picked up, 
can be used when it is visible.  Move actions are available in any world state.  A use 
action produces the desired result, such as using the pick to mine iron, 90% of the time 
and no result 10% of the time.  Pick-up actions are only available for a particular 
object if that object is in the current <visibleObjects> list of the NPC, that is, if the 
object and the NPC are at the same location.  The actions that would produce the state 
sequence in eq. (1) are A(pick-up, pick) and A(move, east).  The events 
produced by these actions are shown in eq. (2).  Each of these events represents a 
potentially motivating achievement task.   
 

E(1) ((inventoryPick:1)(seePick:-1)) 
E(2) ((location:2)(seeForge:-1)(seeAxe:1)(seeLathe:1)) 

 
(2) 

This experiment compares NPCs in terms of their emergent behavioral variety and 
behavioral complexity.  Characters controlled by MRL agents using three different types 
of motivation are compared: 

• an MRL agent using the baseline reward function; 
• an MRL agent motivated to achieve interesting events; and 
• an MRL agent motivated by interest and competence. 

Each of these agents was run 20 times for 50,000 time-steps in the environment described 
above.  Results show the 95% confidence interval. The interest, competence, RL and 
metric parameters used in the experiments in this article are summarized in Table I.   

Results 
Figure 13 characterizes the multitask learning ability of the three NPCs controlled by 
different types of MRL agents in terms of the behavioral variety achieved over a period 
of 50,000 time-steps.  In the experimental game environment, NPCs motivated to achieve 
interesting events and NPCs motivated by interest and competence learn between 17 and 
23 different behavioral cycles during the first 50,000 time-steps of their lifetimes.  This is 
a key result, as it shows that NPCs capable of multiple tasks can emerge using MRL 
agents motivated by task-independent, experience-based motivation signals.   

Table I.  Parameters and their Values  
 Parameter Value 

γ 0.9 
β 0.9 
ε 0.1 
Φ1 and Φ3 0.8 

 
Reinforcement 
Learning  
Parameters 

Φ2 1000 
η 0.1 
α 1.05 
τ1 3.3 

 
 
 
 τ2 14.3 
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+
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Competence 
Parameters 

−
minF  1.5 

r 2 
h 20 

Metric and 
Baseline 
Parameters p 0.001 

 
 
NPCs motivated to achieve interesting events and NPCs motivated by interest and 

competency achieve the highest behavioral variety in the test environment.  Of the 53 
possible achievement tasks, these NPCs focus attention on an average of approximately 
20 tasks before the rate of increase of behavioral variety drops to zero.  This figure 
characterizes the multitask learning ability of MRL agents using the two motivation 
functions as significantly higher than that of agents using the baseline reward function.  
MRL agents using the baseline reward function learn approximately five tasks before the 
rate of increase of behavioral variety drops to zero.   
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Fig. 13.  Cumulative behavioral variety by nonplayer characters controlled by motivated reinforcement learning 

agents using different motivation functions. 
 

The fact that the behavioral variety attained by the NPCs is significantly lower than 
the number of potential learning tasks in the environment is another key result.  In 
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complex environments it is generally infeasible for NPCs to learn every task.  Rather, 
each character is defined by a subset of learning tasks on which they focus attention.   
The higher behavioral variety displayed by NPCs using the two motivation functions can 
be explained by the task selection function they use.  In the two motivation functions, 
task selection is modeled using a SOM that allows past experiences to influence the 
selection of current tasks.  In contrast, the baseline reward function does not model past 
experiences, other than the current goal task.  The baseline function thus has the highest 
probability of focusing learning on the most frequently experienced tasks, resulting in 
potential repetition of reward for similar tasks and lower overall behavioral variety. 

Figure 14 characterizes the multitask learning ability of NPCs controlled by the three 
types of MRL agent in terms of their maximum behavioral complexity.  NPCs using the 
two motivation functions achieve significantly higher maximum behavioral complexity 
than agents using the baseline reward function.  This is due to the nature of the reward 
function, which has the highest probability of rewarding frequently occurring tasks.  
Frequently occurring tasks require fewer actions to repeat and thus influence the 
emergence of behavioral cycles of fewer actions.  These behavioral complexity results 
again characterize a difference in the multitask learning ability of different approaches.   

In the test domain in this experiment, the most complex single task is making 
weapons, which requires at least a five-action behavioral cycle.  This is shown as a grey 
line in  

Fig.14.  NPCs using the motivation functions achieve behavioral complexity 
significantly greater than five during the first 50,000 time-steps of their lives.  This 
indicates that they have the capacity to solve the most complex task in this test 
environment, but also that they can interleave the solutions to multiple tasks in a single 
behavioral cycle.  This is because both motivation functions can provide rewards for 
more than one task during the same time period.  In contrast, the baseline function 
remembers and rewards only one goal task during any given time period.   
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Fig.14. Maximum behavioral complexity achieved by NPCs using different models of motivation after 50,000 

time-steps. 
 
As a case study to tie the empirical results above back to individual characters, Figure 

15 shows the proportion of time devoted to different tasks in the game environment by 
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two individual NPCs motivated to achieve interesting events.  The first NPC focuses its 
attention primarily on tasks concerned with forging weapons (E1-E5): mining iron-ore, 
smelting iron, traveling between the mine and the smithy, and forging weapons.  The 
second focuses primarily on tasks concerned with crafting furniture (E8, E11-E13): cutting 
timber, traveling between the forest and the carpenter, and using the lathe.  Thus, the first 
NPC has developed as a blacksmith character, while the second has developed as a 
carpenter character.  The ability of different NPCs to focus attention on different subsets 
of tasks based on their experiences in their environment is a key emergent property of 
MRL agents.  In applications such as MMORPGs, a number of NPCs using identical 
agent models can learn different behavioral cycles, representing different characters.  
This removes the need for different rule sets or internal states to be hand-crafted for 
different characters, as is the case using the traditional reflex agent approach.  

An example of a behavioral cycle learned by each NPC is shown in Figure 16.  While 
this is the primary behavioral cycle in each case, each character may also have learned 
other behavioral cycles for other tasks at different times.   

6.2 Experiment 2 
This experiment is conducted in a simulated game environment that is initially identical 
to the one described for Experiment 1.  However, after 50,000 time-steps, the 
environment is changed such that the initial MDPs P1 and P2 are replaced by two new 
MDPs, P3 and P4, modeled on the environment in Figure 17.  P1 and P2  described states 
and actions that allowed activities such as traveling, mining iron-ore, forging weapons, 
cutting timber, and crafting furniture.  At t=50,000, monsters spawn.  The monsters 
damage the forge and the lathe so that the actions for using the forge or lathe no longer 
produce weapons or furniture.  Instead, when pick or axe are used in the presence of a 
monster, a dead monster results.    Dead monsters disappear and new monsters spawn 
when the agent moves away from the dead monster’s location.  The state and action sets 
for P3 and P4 are shown in Figure 18. 
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E1((location:-1.0)(visibleWeapons:-1.0)(visibleSmelt:-
1.0)(visibleForge:-1.0)) 
E2((location:1.0)(visibleWeapons:1.0)(visibleSmelt:1.0)(visibl
eForge:1.0)) 
E3((inventoryIronOre:1.0)) 
E4((inventoryIron:1.0)(inventoryIronOre:-1.0)) 
E5((inventoryIron:-1.0)) 
E6((location:-2.0)(visibleLathe:-1.0)(visibleWeapons:1.0) 
(visibleFurniture:-1.0)(visibleSmelt:1.0)(visibleForge:1.0)) 
E7((location:2.0)) 
E8((location:1.0)(visibleLathe:1.0)(visibleFurniture:1.0)) 
E9((location:2.0)(visibleLathe:1.0)(visibleWeapons:-
1.0)(visibleFurniture:1.0)(visibleSmelt:-1.0)(visibleForge:-
1.0)) 
E10((location:-2.0)) 
E11((location:-1.0)(visibleLathe:-1.0)(visibleFurniture:-1.0)) 
E12((inventoryLog:1.0)) 
E13((inventoryLog:-1.0)) 
O = other 

 
Fig. 15. Focus of attention by two individual motivated reinforcement learning agents to achieve interesting 

events over 50,000 time-steps.  Agents that focus attention differently represent different game characters. 
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Fig. 16.  Behavioral cycles learned by two motivated reinforcement learning agents:  (a) agent 1 learned a 

behavioral cycle for mining iron and making weapons (represents a blacksmith character); (b) agent 2 
learned a behavioral cycle chopping wood and making furniture ( represents a carpenter character). 

 
 

Fig. 17.   An unpredictable change is simulated as a monster that damages the forge and lathe.   
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S    Æ  <sensations> 
<sensations>  Æ <P4Sensations><P5Sensations> 
<P4Sensations> Æ  <P4location><P4inventory><P4visibleObjects> 
<P4location>  Æ <mine> | <smithy> 
<mine>   Æ 1 
<smithy>  Æ 2 
<P4inventory>  Æ <P4objects> 
<P4visibleObjects>  Æ <P4objects> 
<P4objects>  Æ <P4object><P4objects> | ε 
<P4object>  Æ <pick> | <forge> | <smelt> | <iron-ore> | 
<iron>     | <weapons> | <monster> | <dead monster> 
<P5location>  Æ <forest> | <carpenter-shop> 
<forest>  Æ 3 
<carpenter-shop> Æ 4 
<P5inventory>  Æ <P5objects> 
<P5visibleObjects>  Æ <P5objects> 
<P5objects>  Æ <P5object><P5objects> | ε 
<P5object>  Æ <axe> | <lathe> | <timber> | <furniture> |  
    <monster> | <dead monster> 
<pick>   Æ 1  
<forge>  Æ 1  
<smelt>  Æ 1  
<iron-ore>  Æ 1  
<iron>   Æ 1  
<weapons>  Æ 1  
<axe>   Æ 1  
<lathe>  Æ 1  
<timber>  Æ 1  
<furniture>  Æ 1  
<monster>  Æ 1  
<dead monster> Æ 1  
 
 
A   Æ  <actions> 
<actions> Æ <P4Actions><P5Actions> 
<P4Actions> Æ  pick-up <P4object> | move <direction> | use 
<P4object> <P5Actions> Æ  pick-up <P5object> | move <direction> | use 
<P5object> 
<direction> Æ north | south | east | west  
<P4object> Æ pick | forge | smelt | iron | iron-ore | weapons |  
   monster | dead monster 
<P5object> Æ axe | lathe | timber | furniture | monster | dead  
   monster 

 
Fig.18.   State and action spaces of the environment in Experiment 4 after t=50,000.   

 
The size of the state space decreases due to the destruction of the forge and lathe, 

although the exact set of states in the new state space will depend on the state at t=50,000 
when the environment changes.  The size of the action space increases with the addition 
of the monster.  The number of tasks in the environment after the change decreases to 12 
tasks including 4 from the original MDPs for traveling between the forest and the mine 
and between the smithy and the carpenter’s shop.  NPCs that exhibit adaptable behavior 
in this environment should, after the change, display an increase in behavioral variety that 
is significantly greater than four tasks. 

This experiment compares the performance of NPCs in terms of their emergent 
behavioral variety in an environment that changes while learning is in progress, as 
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described above.  Characters controlled MRL agents using three different types of 
motivation are compared: 

• an MRL agent using the baseline reward function; 
• an MRL agent motivated to achieve interesting events; and 
• an MRL agent motivated by interest and competence 

 
Each of these agents was run 20 times for 100,000 time-steps, with the environment 
changing at t=50,000 time-steps;  results show the 95% confidence interval.  

Results 
Figure 19 illustrates the effect of changes in the environment on the behavioral cycles 
learned by NPCs using different motivation functions.  Hypothesis bars indicate the 
minimum increase in behavioral variety (4 tasks) required to conclude that a particular 
agent is adaptable.  During the period t=20,000 to t=50,000 the gradient of the behavioral 
variety curves does not alter for any of the agent types.  In the case of the NPCs 
motivated to achieve interesting events or motivated by interest and competency, the 
gradients of these curves is close to zero.  This suggests that no new behaviors are being 
learned in that time period.  After t=50,000 when the environment changes with the 
appearance of monsters, the cumulative behavioral variety of these agents increases 
significantly by between 7 and 12 behaviors.  This indicates that learning new behavioral 
cycles is occurring for tasks such as running towards a monster, killing a monster, or 
running away from a monster.   

After the monsters appear at t=50,000, the increase in behavioral variety by NPCs 
motivated by interest and competency is significantly higher than that by NPCs motivated 
by interest alone or using the reward function.  The motive to develop new competencies 
allows NPCs to focus attention on and learn behavioral cycles for new tasks more quickly 
than the interest motive alone.  This suggests that, in simple, dynamic environments, 
NPCs controlled by MRL agents motivated by interest and competence are more 
adaptable than those motivated by interest alone.  This is due to their preference for 
pursuing tasks of low competency before tasks of low interest.   
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Fig. 19.  Cumulative behavioral variety by nonplayer characters controlled by motivated reinforcement learning 

agents using different motivation functions. 
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NPCs using the baseline reward function continue to increase their behavioral variety 
after t=50,000, but this increase is only for approximately two tasks.  Continued overlap 
of the confidence intervals with the hypothesis bar indicates that it is unclear if these are 
new tasks or tasks remaining from the initial environment.  The curve for NPCs using the 
baseline reward function still has an increasing trend at t=100,000, so significant 
adaptation may occur at some time in the future.  However, it can be concluded that these 
characters are slower to adapt than those using the motivation functions.   
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E21((visibleMonster:-1.0)(location:-1.0)(visibleDeadMonster:-1.0)(visibleWeapons:-1.0)(visibleSmelt:-
1.0)(visibleForge:-1.0)) 
E22((visibleMonster:-1.0)) 
E23((visibleMonster:1.0)(location:-2.0)(visibleLathe:-1.0)(visibleWeapons:1.0)(visibleFurniture:-
1.0)(visibleSmelt:1.0)(visibleForge:1.0)) 
E24((location:-1.0)(visibleLathe:-1.0)(visibleDeadMonster:-1.0)(visibleFurniture:-1.0)) 
E25((location:-1.0)(visibleDeadMonster:-1.0)(visibleWeapons:-1.0)(visibleSmelt:-1.0)(visibleForge:-1.0)) 
E26((visibleMonster:-1.0)(location:-1.0)(visibleLathe:-1.0)(visibleDeadMonster:-1.0)(visibleFurniture:-1.0)) 
E27((visibleMonster:1.0)(location:1.0)(visibleLathe:1.0)(visibleFurniture:1.0)) 
E28((visibleMonster:1.0)(location:2.0)(visibleLathe:1.0)(visibleWeapons:-
1.0)(visibleFurniture:1.0)(visibleSmelt:-1.0)(visibleForge:-1.0)) 
E29((visibleMonster:1.0)(location:1.0)(visibleWeapons:1.0)(visibleSmelt:1.0)(visibleForge:1.0)) 
E30((visibleMonster:-1.0)(visibleDeadMonster:1.0)) 

 
Fig. 20.  Change in attention focus over time exhibited by a single nonplayer character motivated by interest 

and competence in a dynamic environment. 

 

 
Fig. 21.  Behavioral cycles before and after the monster appears: (a) behavioral cycle for cutting timber and 

making furniture;  (b) behavioral cycle for killing monsters.   

 

Experiment 1 includes a case study showing the focus of attention of two individual 
NPCs over 50,000 time-steps.  Figure 15 shows how different NPCs are motivated to 
focus their learning on different tasks in response to their different experiences in their 
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environment.   A second case study, Figure 20 traces the change in attention-focus by one 
NPC motivated by interest and competence in response to its experience in a changing 
environment.  The lifetime of this NPC is broken into four phases: t=0-25,000, t=25,001-
50,000, t=50,001-75,000, and t=75,001-100,000, and the progressive changes in attention 
focus is charted between these phases.  

Fig. 20 shows that, at the end of the first phase, the primary focus of attention is on tasks 
represented by events E1-E10 which  are traveling, cutting timber, and making furniture.  
By the end of the second phase, the NPC’s focus of attention has shifted slightly away 
from tasks E4, E6, E9, and E10 towards tasks E13-E17.  In the third phase, during which the 
environment changes, another shift in attention-focus occurs.  By the end of the third 
phase the NPC’s attention is focused primarily on tasks E21-E30.  Only four tasks, E3, E5, 
E7, and E8, remain from the initial phase; this process represents a change in character 
from a lumberjack to a monster-killer in response to change in the environment.  The 
focus of attention remains stable throughout the fourth phase.  Examples of behavioral 
cycles learned before and after the appearance of the monster are shown in Figure 21.   

7. IMPLICATIONS AND FURTHER DEVELOPMENT 
The previous section evaluated the performance of NPCs using different MRL models.  
This section considers the wider implications of MRL in relation to how it may be used 
and developed further in future.   

7.1 Integrating MRL into Existing Games 
While MRL enables new kinds of characters that can adapt and evolve, the inclusion of 
characters controlled by MRL agents in existing game genres such as MMORPGs does 
raise a number of issues.  MRL agents have higher processing and memory requirements 
than simple reflex agents, and, as a result, more resources are required to support similar 
quantities of characters controlled by MRL agents.  One approach to this issue is to use a 
combination of MRL agents for some characters and reflex agents for others.   

The introduction of adaptive, MRL agents into existing game genres also raises issues 
concerning game-play.  Players must be able to find key characters such as quest-givers 
or merchants.  This becomes more difficult if characters can move around and explore 
their environments.  Solutions include limiting characters to certain areas or marking 
their location on a mini-map.     

While current models of motivation are useful in support characters, they become 
problematic in characters such as enemies that can die.  Learning by trial and error in 
dangerous situations can prove terminal.  However, different motivation functions may 
be possible that can allow MRL agents to exhibit different behavioral characteristics; this 
and other avenues for future work are discussed in the following sections.   

7.2  Alternative Approaches to Modeling Motivation  
This article discusses alternatives to computational models of motivation for RL and 
evaluates two such approaches.  A full sensitivity analysis of these approaches was not 
presented, but would be useful to better understand the performance of MRL techniques.  
The results so far show clearly that MRL is sensitive to the motivation function used; but 
space permits an exploration of only a selection of alternative motivation functions.   

In addition to exploring the parameters of the models presented in this article, there 
also remains the question of when alternative models of motivation become appropriate.  
In natural systems such as humans and animals, there are three broad classes of 
motivation: biological, cognitive, and social models.  Models in different categories have 
applications in different types of characters: for example, biological models may be 
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appropriate for modeling animal behavior.  The introduction of pseudo-physiological 
variables for virtual animals has the potential to introduce a self-awareness that supports 
self-preservation in dangerous situations.  This extends current interest and competence 
based models that focus on exploration and discovery only. 

Alternative cognitive models of motivation, such as achievement, also have potential 
application in MRL to focus attention on different types of tasks;  where interest-based 
models focus tasks of moderate novelty, achievement motivation focuses on tasks of 
moderate, high, or low difficulty, depending on the tendency to either seek success or to 
avoid failure.  Concepts such as achievement motivation have the potential to contribute 
to a sense of personality in artificial agents and to the development of characters capable 
of identifying critical tasks.   

Social motivation theories are also an important future research direction for MRL in 
multi-agent settings such as games.  Evolutionary theories, in particular, represent an 
important component of motivation models, especially for enemy characters designed to 
function in dangerous environments.  Evolutionary approaches such as genetic algorithms 
allow adaptation over generations of individuals, so that the failure or destruction of a 
single individual can be tolerated and even used as a trigger for learning within the 
society as a whole.    

7.3  Scalability of Motivated Reinforcement Learning  
The experiments in this article consider MRL in small-scale dynamic environments.  
While this level of complexity is sufficient to describe some MMORPG scenarios, as 
games continue to increase in complexity, more sophisticated behaviors will be required.  
For example, this article considers a village modeled by two MDPs, but in many 
MMORPGs, NPCs may interact in villages or other scenes modeled by many MDPs.  A 
further suite of experiments is required to understand the impact of such complexity on 
character behavior.   
Likewise, this article considers behaviors comprising one to ten actions.  However, more 
complex tasks are also conceivable.  Again, a further suite of experiments is required to 
gradually introduce tasks of increasing complexity in order to understand the impact on 
character behavior.  As the complexity of the environment is increased, it may become 
necessary to combine motivation with other types of RL such as function approximation 
or hierarchical RL in order to achieve coherent behavior.   

7.4 Adaptive Virtual Worlds 
Finally, this article applied MRL techniques to the NPCs in computer games.  However, 
unlike physical environments, virtual environments have the capacity for the environment 
itself to adapt and respond to human interactions with similar reasoning processes [Maher 
and Gero 2002; Maher and Merrick 2005].  The use of MRL agents to control not only 
the characters in the games but the buildings, weapons, furniture, and landscape has the 
potential to transform virtual game worlds into adaptive virtual spaces that can evolve 
and change over time.  A weapon might develop new fighting skills, a room might learn 
how to trap intruders, trees might learn to repel lumberjacks.  The use of MRL techniques 
has the potential to provide a new type of dynamic game environment that extends the 
life of a game by autonomously adapting new behaviors and challenges.   

8. CONCLUSION 
This article considers the role of motivation in creating adaptive NPCs using MRL.  Two 
computational models of motivation are presented for the control of NPCs in 
MMORPGs.  These models represent motivation both as an ongoing search for novelty 
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and interest and as the search for competence.  In order to quantify the effect of different 
models of motivation on the behavioral characteristics of NPCs, two metrics are 
introduced to evaluate the adaptability of NPCs using different models of motivation.  
These metrics quantify adaptive, multitask learning in terms of the behavioral variety and 
complexity of NPCs.  An empirical evaluation of NPCs controlled by MRL agents in 
simulated game scenarios show that MRL agents motivated by the search for competence 
produce NPCs that are more adaptable in dynamic environments than those motivated by 
interest and novelty alone.   

MRL has the potential to allow new kinds of characters that adapt and evolve in time 
with their environments.  This, in turn, permits the design of new game genres that 
include the open-ended modeling capabilities of emerging virtual world platforms such as 
Second Life.  Using MRL to control characters means that players can not only modify 
the game world while the game is in progress, but characters can also respond to those 
modifications by adapting and learning.  Furthermore, because the MRL model is not tied 
specifically to characters, there is potential for a new type of dynamic environment in 
which buildings, weapons, furniture, and landscapes can also adapt and change, creating 
exciting, evolving game worlds.   
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