
3
Distributed Logic

Programming

Distributed Logic Programming combines logic programming, object oriented
programming and parallelism, which may be characterized by the pseudo-
equation

DLP = LP +OO + ||

The language DLP can be regarded as an extension of Prolog with object
declarations and statements for the creation of objects, communication be-
tween objects and the destructive assignment of values to non-logical instance
variables of objects.

3.1 OBJECT DECLARATIONS

Object declarations in DLP have the following form:

:- object name.

var variables.

clauses.

:- end_object name.

where object and end object are directives to delimit an object. Variables
declared by var are non-logical variables; they may be assigned values by a
special statement.

Objects act as prototypes in that new copies may be made by so-called new
statements. Such copies are called instances . Each instance has its private
copy of the non-logical variables of the declared object. In other words, non-
logical variables act as instance variables.

15



16 DISTRIBUTED LOGIC PROGRAMMING

Dynamically, a distinction is made between active objects and passive ob-
jects. Active objects must explicitly be created by a new statement. Syn-
tactically, the distinction between active and passive objects is reflected in
the occurrence of so-called constructor clauses in the declaration of active
objects. Constructor clauses are clauses of which the head has a predicate
name identical to the name of the object in which they occur. Constructor
clauses specify an object’s own activity. Other clauses in an object declaration
may be regarded as method clauses, specifying how a request to the object is
handled. Passive objects only have method clauses.

3.2 STATEMENTS

DLP extends Prolog with a number of statements for dealing with non-logical
variables, the creation of objects and the communication between objects.
These statements may occur as a goal in the body of a method.

Non-logical variables. For assigning a term t to a non-logical variable x
the statement

x:=t

is provided. Before the assignment takes place, the term t is simplified and
non-logical variables occurring in t are replaced by their current values. In
fact, such simplifications take place for each goal. DLP also supports arith-
metical simplification.

New expressions. For dynamically creating instances of objects the state-
ment

O := new(c)

is provided, where c is the name of a declared object. When evaluated as
a goal, a reference to the newly created object will be bound to the logical
variable O. For creating active objects the statement

O := new(c(t1, ..., tn))

must be used. The activity of the newly created object consists of evaluat-
ing the constructor goal c(t1, ..., tn), where c is the object name and t1, .../tn
denote the actual parameters. The constructor goal will be evaluated by the
constructor clauses.

Method calls A method call is the evaluation of a goal by an object. To
call the method m of an object O with parameters t1, ..., tn the statement

O < −m(t1, ..., tn)



EXAMPLES 17

must be used. It is assumed that O is a logical variable bound to the ob-
ject to which the request is addressed. When such a goal is encountered,
object O is asked to evaluate the goal m(t1, ..., tn). If the object is willing
to accept the request then the result of evaluating m(t1, ..., tn) will be sent
back to the caller. After sending the first result, subsequent results will be
delivered whenever the caller tries to backtrack over the method call. If no
alternative solutions can be produced the call fails. Active objects must ex-
plicitly interrupt their own activity and state their willingness to accept a
method call by a statement of the form

accept(m1, ...,mn)

which indicates that a request for one of the methods m1, ...,mn will be ac-
cepted.

Inheritance An essential feature of the object oriented approach is the
use of inheritance to define the relations between objects. Inheritance may be
conveniently used to factor out the code common to a number of objects.

The declaration of an object name inheriting from an object base is:

:- object name : [base].

var variables.

clauses.

:- end_object name.

Multiple base objects are separated by ”,” in the declaration like:

: −object name : [base1, base2, ..., basen].

3.3 EXAMPLES

3.3.1 Hello World

The following is a simple DLP program, which only prints the text ’hello
world’.

:- object hello_world1.

main:-

format(’Hello, World ~n’).

:- end_object hello_world1.

Similar to Java, the predicate ’main’ is the starting point of an object. If the
program above is saved in a file ’helloworld1.pl’, we can use the command ’dlpc



18 DISTRIBUTED LOGIC PROGRAMMING

helloworld1.pl’ to compile the DLP program. Note that the file extension of a
PROLOG or DLP program is ’pl’. After compiling, we can use the command
’dlp hello world1’ to run the program. Note that we use the file name to
compile a DLP program file, however, we use the object name to run a DLP
program, for a program may consist of multiple objects.

The second ’hello world’ example prints 20 times the text ’Hello World’:

:- object hello_world2.

var count=0.

main:-

repeat,

format(’Hello World ~w ~n’,[count]),

++count,

count >= 20,

!.

:- end_object hello_world2.

The program above uses a non-logical variable ’count’ as a counter in a repeat
loop. If the goal ’count ≥ 20’ fails, the program will backtrack to the start
of the ’repeat’ loop until the condition ’count ≥ 20’ succeeds. The program
above looks more like a procedural Java program instead of a declarative
program. However, we can design a recursive program which behaves the
same but without using the non-logical variable and the ’repeat’ loop. We
leave it as an exercise.

In the following, we show an object which prints the text ’hello’, and an-
other object which prints the text ’world’.

:- object hello.

var count=0.

hello:-

repeat,

format(’hello ~w~n’,[count]),

sleep(500),

++count,

count >= 10,

!.

:- end_object hello.

:- object world.



EXAMPLES 19

var count=0.

world:-

repeat,

format(’world ~w~n’,[count]),

sleep(250),

++count,

count >= 10,

!.

:- end_object world.

:- object hello_world3.

main:-

_H := new(hello),

_W := new(world).

:- end_object hello_world3.

The object ’hello world3’ uses the ’new’ statement to create two threads. In
order to see that these two threads run independently, we specify different
’sleep’ times for each thread. The goal ’sleep(500)’ is used to delay the thread
for 500 milliseconds.

Observing the fact that the above-mentioned objects ’hello’ and ’world’
have the same program structure, we can implement a single object to achieve
the same result. Moreover, in the following, we want to design a ’hello world’
program in which multiple threads can share an independently running ’clock’
thread. The ’hello’ and ’world’ threads print their text until the clock counts
10 :

:- object clock.

var time = 0.

get_clock(T):-

T := time.

set_clock(T):-

time := T.

:- end_object clock.

:- object pulse.



20 DISTRIBUTED LOGIC PROGRAMMING

pulse :-

repeat,

sleep(1000),

clock <- get_clock(T),

T1 is T + 1,

clock <- set_clock(T1),

T1 > 10,

!.

:- end_object pulse.

:- object hello4.

hello4(Text):-

repeat,

clock <-get_clock(Time),

format(’~w ~w~ n’, [Text,Time]),

sleep(500),

Time >= 10,

!.

:- end_object hello4.

:- object hello_world4.

main:-

_C := new(pulse),

_H := new(hello4(hello)),

_W := new(hello4(world)).

:- end_object hello_world4.

The object ’clock’ provides the two methods get clock and set clock for getting
and setting the clock pulse counter. The object ’pulse’ simulates a clock by
incrementing a counter after each repeat step.

3.3.2 File I/O

This is an example of file I/O operations in DLP.

:- object pxfile.

var x, y, z.


