
VRIJE UNIVERSITEIT AMSTERDAM

FACULTEIT DER EXACTE WETENSCHAPPEN

FINAL PROJECTTHESIS

HearMe: Voice communication in
Web 2.0 and beyond

Author:
Javier Quevedo Fernández
1731645

Supervisor:
Dr. Anton Eliens

Co-supervisor:
Dr. Patricia Lago

August 26, 2008

Forward The development of this project was possible for various reasons. One
of them was the technical skills learned in the courseIntelligent Multimedia Tech-
nologygiven byAnton EliensandZeljko Obrenovic. After the courseAntonand
Zeljkowere very patient and helpful giving me the chance and support to develop
the idea. Anton’s role in the project was crucial, without his guidance I would
have not been able to structure the writing of the thesis or would have seen the
real possibilities or further possible improvements of thesystem.Patricia Lago
as a co-supervisor made great improvements to the thesis with very helpful com-
ments and suggestions increasing the documents quality in many aspects.

The project was deployed on a small testing environment due to hardware
constraints. The need of a server machine and a professionalbandwidth internet
connection made it impossible for it to be tested on a wider scale. This leaves an
interesting business opportunity for the future to deploy it in a commercial context.

Javier Quevedo Fernandez
August 26, 2008

1

Contents

1 Introduction 1
1.1 Definition of the problem . 1
1.2 Document Organization . 2
1.3 Motivation . 2

2 Background - Audio on the web 4
2.1 Media . 5
2.2 Possibilities of audio on the web 7

3 Technology survey - Services and media 9
3.1 Considerations . 9
3.2 HearMe Web Service . 9

3.2.1 What is a Web Service? 10
3.2.2 RESTful Web Services 10
3.2.3 Ruby on Rails . 11

3.3 Voice on the web technology . 16
3.3.1 Hardware . 16
3.3.2 Software . 17

3.4 Data Storage . 19
3.4.1 File type and compression 19
3.4.2 Hardware storage architecture 20

4 System Design - HearMe and TellIt 21
4.1 Introduction . 21

4.1.1 Purpose and readers . 21
4.2 Requirements . 22

4.2.1 Functional Requirements (TellIt) 22
4.2.2 Quality Requirements (TellIt) 23

2

4.2.3 Functional Requirements (HearMe) 24
4.2.4 Quality Requirements HearMe 24

4.3 Use cases . 25
4.4 Architecture overview . 27

4.4.1 HearMe Player/Recorder Client 28
4.4.2 HearMe Stream Server 28
4.4.3 HearMe Web Service . 29

4.5 HearMe API . 30
4.5.1 Audio resource . 31

5 HearMe Player 35
5.1 Interface . 35
5.2 Player Architecture . 37
5.3 Web Page integration . 38

6 Hearme Recorder 40
6.1 Interface . 40
6.2 Recorder Architecture . 41
6.3 Web Page integration . 43

7 Evaluation and future work 46
7.1 Evaluation . 46

7.1.1 Deployment experiences 48
7.2 Future work . 50

7.2.1 Rich recorder client . 50
7.2.2 Scalability . 51

8 Summary and conclusions 54

9 Apendix 58
9.1 Source code . 58
9.2 HearMe system . 58

3

Abstract

The web is today one of the most extended platforms for communications. Through
the web users send emails, discuss articles or share pictures or videos. For this
uses there are all sort of Web Sites and Web Services which provide users the
necessary tools to create the desired content. But, where are the real timevoice
recordings?. Why can we not leavevoice messagesanywhere on the web? In this
paper I study the benefits of using real time voice recordingson the web, I evalu-
ate the available technologies that deal with this type of media and I implement a
system to satisfy the needs.

Chapter 1

Introduction

Nowadays we perform all sort of communication through the Internet. What be-
gan as a network to share information on research and development in scientific
and military fields[12] has turned into the most powerful communication tool for
machines and humans. One of it’s most extended applicationsis the Web. Apart
from other Internet utilities such as email or file transfer,the World Wide Web is
being widely used for human communication. Every time we post in a forum or in
a blog, every time we share a video, we are communicating. We have many ways
to do this, we can communicate with images, with text or with videos, however,
there is no simple tool on the Web to communicate with voice, simply with our
own voice.
How wonderful would it be if wherever we write a text message we could also
leave a voice message? How wonderful would it be if in every Web Site we vis-
ited we could hear what others had said?

1.1 Definition of the problem

Formally the problem can be defined as it follows:
The nonexistence of a platform or Web Service to allow users to create audio

content on the fly and place it anywhere on the Web.
Therefore, the main concern of this thesis is the following question:How can

I hear and be heard in the collaborative Web era and beyond?

1

1.2 Document Organization

This thesis is divided in eight different chapters.
Chapter I and II are theIntroductionandBackground. The background places

the reader in the context of the Web2.0, social applicationsand the understanding
of why theHearMeinfrastructure is a move ahead of the current situation.

Chapter III is theTechnology Survey. This chapter analyzes the different tech-
nologies that currently exist and which are involved in someway in the research
and development of this project. It focusses on the design ofa Web Service and
on how to deal with a non conventional input -voice- within the context of a Web
Application.

Chapter IV is theArchitecture and Design. This chapter defines the functional
and quality requirements of the system and the use cases. Additionally it includes
an overview of the architecture and a description of the API of the Web Service.

Chapters V and VI includes a detailed description of theHearMeplayer and
theHearMerecorder design, and usage.

Chapter VII is calledEvaluation and future work. This chapter is divided in
different subsections, where the work done so far is evaluated and the deployment
experiences are described. Furthermore the benefits of creating richer clients for
the recorder and player applications are studied as well as issues about scalability
or OpenSocial like the creating of gadgets.

Chapter VIII is theSummaryover all.

1.3 Motivation

For a few years I used to play a MMORPG (Massively multiplayeronline role-
playing game) calledWorld of Warcraft. In this game teams of 25 persons have to
coordinate with each other in order to kill monsters and advance through the game.
Because of the sophistication of the games tactics, it was absolutely necessary to
use a voice communications tool to speak during the combats.The tool we used
was a VOIP (voice over IP) software calledVentrilo. After a while we all got used
to talk for long hours and felt very conformable with it. Another tool that we had
to use was a Web Forum to keep track of tactics and other issues. We noticed that
voice messages in the forum could come very handy, they wouldhelp us in the
debates or in any of the topics we discussed about. This lead me to realize that I
was never using my voice on the Web. Not in forums, wikis, blogs or anywhere.
Why not? Why could I not leave my voice with all that it impliesanywhere where

2

I was already leaving text? What would it need to be done to make this possible?
With this motivation I began to think of how this idea could merge with the current
web and how it could be implemented. With the help and supportof Anton Eliens
the concept got a shape and with this shape I began to implement parts of the it
while writing this thesis document. There are other services that may seem close
or similar to HearMe, but none of them are based on audio and none of them
permit you to create the content on the fly and from an externalpage. So because
nothing like it really exists, the work had to be totally selfdeveloped but using
technologies available in the market that deal with the multimedia inputs in the
web context.

3

Chapter 2

Background - Audio on the web

In the beginning we could see the Web as a huge memory that users would query.
This information was mainly text, and the ability to create it was limited to just a
few with lots of knowledge and resources. For regular users it was very compli-
cated to contribute to this information in any ways until WebSites likewikipedia.org
or debianart.orgappeared. This type of sites were called social networking sites,
under the label of Web 2.0. In the Web 1.0 era, users were either publishers or
readers[20], but there was no collaboration between both. As new Web technolo-
gies appeared, the Web evolved into a collaborative space, regular users began to
have the ability to take part in the development of the Web content. According
to Tim O’Reilly, what makes a Web be 2.0 it’s not just the combination of new
technologies such asJavascriptor Web Services, it is that they have embraced
the power of the web to harness collective intelligence[18]. As we can see on his
article What is Web 2.0[18] there are many reasons why sites likeAdsensehave
survived against sites likeDoubleclick, or GoogleoverAltavista. All of the rea-
sons could sum up into one:Network effects from user contributions are the key to
market dominance in the Web 2.0 era[20]. In social networks userstag the content
defining metadata that gives additional information about it. User can also com-
ment it and share it in many different ways. Users decide whatis interesting and
popular because without even realizing about it, they have become the publishers.

According toK. Gottschalk, S. Graham, H. Kreger, and J. Snell, a Web ser-
vice is an interface that describes a collection of operations that are network-
accessible through standardized XML messaging[13]. In the Web 2.0, Web Sites
turn into Web Services by standardizing their operations and permitting other Web
Sites or Web Services to connect to them and interexchange data. We can consider
social networksas Web Services of a specific type of data. For example, we can

4

considertwitter.comas a Web Service for short text messaging, ordel.icio.usas
one for bookmarks. So speaking in a general way, most of the existing Web Sites
act asWeb Servicesof the nature of the data that they manage. This is why users
have one or more accounts in each type service that they use, they have an account
to publish videos inyoutube.com, an account to manage blogs inwordpress.com
or blogger.comand so on. There are plenty ofWeb Servicesfor almost any kind
of data that someone can think of, but yet, there is noWeb Servicethat deals with
voice recordings.

Although the technology doesn’t make a Web be 2.0, it also hasits part on it.
The Web 2.0 would not exist if the technology was not able to support it. It is
thanks to buzzwords likePHP, Ajax or Webserviceswhy the sites have been able
to create the infrastructure to provide this rich collaborative experience. In the
last years there has been an increment of multimedia contentsuch as audio and
video. There are many reasons for this, but the most important are the increment
of the internet speed access and the development of new hardware and software
products. The Web has taken advantage of this technologies.In between 2004 and
2005 sites likeyoutube.comor flickr.comappeared. Users can upload their photos
or videos and share it with the rest, creating databases of multimedia content. Now
that the technology supports it, Web Sites can choose from different multimedia
elements to include them. Most of the Web Sites use text, pictures or video for
their material, but it seems like the voice is being left apart and it is not being
widely used.

2.1 Media

Voice communications have many pros and cons comparing themwith video or
text. Initially it may seem that video is more complete than audio because video
includes both audio and video, but this is not really be the case. We can look for
example at the differences between the television and the radio. The television
needs both visual and audible attention, which does not happen when you listen
to the radio. It is much easier to do something else while you are listening to the
radio than while you are watching television. Another good comparison could be
a phone conversation versus a videoconference. In a videoconference, specially
when you are doing it with someone you don’t feel familiar with, you have to take
care of your looks, take care of the photograph of the place you are at (illumina-
tion, scope, etc) while in a phone conversation you just haveto take care that your
voice is in good conditions and that the place you are at is silent enough. There

5

is also an endless debate between oral vs written communication. Voice commu-
nication carries many more elements than written, for example when we listen to
someone we can easily tell if the person feels scared, in pain, or enthusiastic and
also we have more elements to detect if the person is being sarcastic, lying or be-
ing sincere. Additionally, not everyone is able to read. Thepossible receivers of
a message can vary depending on if it is a text, an audio or a video one. Speakers
of one same language may not understand each other when talking because of the
accent or their specific language skills. With text some receivers may speak the
language but are illiterate, or they might be blind, but texthas the advantage in
that for someone who is not too skilled in one language or who has a dramatically
different accent than another speaker of the same language,it is easier for him
to understand a text message than an audio one. So the possible targets can vary
depending on the type of media that is used. There are severalranking criteria to
discuss about the benefits and looses from one type of communication to another.
In the table 2.1 I gather some of these, to show that neither one of text, audio or
video are better than the others, they are all complementary. Depending on the
type of message than you want to transmit, you should choose from one kind to
another. This is the main reason why voice should not be left out of the web, voice
enhances the user experience by permitting him to express himself in another way,
a way that we have been using for ages to communicate with eachothers.

6

Figure 2.1: Text vs Audio vs Video

2.2 Possibilities of audio on the web

Imagine that there was a very elastic system that permitted you to build any kind
of Web Application using audio recording. That you could either upload audio
from files, you could create themon-the-fly, listen to them from any Web Site or
download them to your personal music player.

The potential applications that could be built with this technology are yet to
be discovered. The initial ideas that come into mind are to enhance current Web
Sites like forums to include voice recordings. Updating theonly text content to
text and audio content. Another example of this could be to create atwitter.com
clone of voice recordings, or a voice news system.

New applications that no one has thought about yet could be developed. For
example suppose a person who has really good reading skills,he could build a
Web Site where he offered readings of texts to other people, maybe news, maybe
books. Another person may want to build recordings to createvoice tutorials
(voicecasts) to help other people be more productive with the tasks they usually

7

do. Other Web Sites could use it to enhance the communicationbetween their
users, for exampleebay.comcould include it so that consumers could send a mes-
sage to a seller and vice versa.

Other interesting applications in the field of accessibility could be created.
There are many Web users who are blind or illiterates for whomtext is not a
legible format. For this group of people there could be some applications related
to translation, readings, guides and on.

There are already Web Sites that use voice recordings in someways. Usually
these are called podcasts. The system described in this thesis could be used as a
support tool for them, making their task easier and more accessible to unexperi-
enced users.

Summarizing, we can assure that with the proper audio recordings system,
existing Web Sites could improve their services and contentand that new Web
applications could appear with new ideas and functionalities not ever seen before.

8

Chapter 3

Technology survey - Services and
media

3.1 Considerations

The software to be developed consists in two different parts, each one requires
to survey specific technological aspects. The first concern relates to how to deal
with a non conventional input, voice, in the context of a web application. The sec-
ond part focuses on how to develop a proper Web Service to fulfill the functional
and quality requirements (detailed in the chapter Architecture Design). Also ad-
ditional concerns about data storage are evaluated.

3.2 HearMe Web Service

The first thing to understand before explaining what a Web Service is, is why
shouldHearMebe designed as a one. According toSun Microsystems, Web Ser-
vices should be used when you need interoperability across heterogeneous plat-
forms. That is, when you need to expose all or part of your application to other
applications on different platforms[17]. Because theHearmeis meant to be a neu-
tral and externally accessible platform, its design as a WebService is obligatory.

9

3.2.1 What is a Web Service?

If you ask five people to define Web Services, you’ll probably get at least six dif-
ferent answers [15]. The standard definition according to the W3C is:
A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAPmessages, typi-
cally conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards [10]. This definition is slightly complicated and personally
I prefer the one that Anne Thomas gives: A Web service is an application that
provides a Web API. An API supports application-to-application communication.
A Web API is an API that lets the applications communicate using XML and the
Web[15].

Thanks to the use of Web Services, Web Sites now have the ability to inter
operate ones with another exchanging data and resources easily. It is crucial for
the HearMe to be designed this way for its purposes as a extensible voicecom-
munications platform.

3.2.2 RESTful Web Services

The concept of REST architectures was introduced by Roy Thomas Fielding in his
PhD. dissertation [11]. The term REST stands for Representational State Transfer
(REST) architectural style and in his dissertation he describes how REST web
applications can request and manipulate web resources by the use of standard
HTTP methods GET, POST, PUT and DELETE. There are many advantages of
using a RESTful design for the architecture ofHearMe, most of them can be seen
in the book RESTful Rails Development[19]. In the section 1.2 of the mentioned
book, the authors give us the following key advantages:

• Clean URLs. REST URLs represent resources and not actions. URLs al-
ways have the same format: first comes the controller and thenthe id of
the referenced resource. The requested manipulation is independent of the
URL and is expressed with the help of HTTP verbs.

• Different Response Formats. REST controllers are developed in a way
that actions can easily deliver their results in different response formats.
Depending on the requirements of the client, the same actioncan deliver

10

HTML, XML, RSS, or other data formats. The application becomes able to
handle multiple client demands, cleanly and simply.

• Less Code. The development of multi-client-capable actions avoids repeti-
tions in the sense of DRY (don’t repeat yourself) and resultsin controllers
having less code.

• CRUD-oriented Controllers. Controllers and resources melt together into
one unit, each controller is responsible for the manipulation of one resource
type.

• Clear Application Design. RESTful development results in aconceptually
clear and maintainable application design.

3.2.3 Ruby on Rails

RESTful Web Services can be developed using various Web development frame-
works such as Konstrukt, Cake PHP, JSF, Struts and on. Rails is one of these based
on the programming language Ruby. Marcus Baguley discussesin the article[2]
10 Reasons why - ruby on railsabout the benefits of using this framework amongst
the others. In the following section the key concepts and philosophy of the frame-
work are analyzed in order to justify its usage for the development of theHearMe
Web Service.

Introduction

The Ruby programming language was released by Yukihiro Matsumoto in 1995.
Yukihiro affirms[16] that Ruby is designed for programmer productivity and fun,
he stresses that systems design needs to emphasize human, rather than computer,
needs and that the language should behave in such a way as to minimize confusion
for experienced users. In July 2004, David Heinemeier Hansson released the first
version of Ruby on Rails, a web development framework based on Ruby with a
model-view-controller architecture. The philosophy of Rails is to make it easier
to develop, deploy and maintain web applications.

Rails philosophy and key concepts

In order to make easier to develop, deploy and maintain Web applications, Rails
focuses on a couple of key concepts[9].

11

• DRY: DRY stands fordon’t repeat yourselfand it means that every piece
of knowledge in a system should be expressed in one place. Thanks to the
advantages of Ruby and its syntactic sugar there is very little duplication of
code in Rails web applications.

• Convention over configuration: Rails has sensible defaultsfor just about
every aspect of knitting together web application. By following the conven-
tions, usually called the Rail’s way, you can write a Rails application using
less code than a typical Java web application uses just in XMLconfigura-
tion. It is also possible to override the conventions in casethe application
does not fit into the Rails standards.

• Model-View-Controller architecture: Model-View-Controller is the concept
introduced by Smalltalk’s inventors (TrygveReenskaug andothers) of en-
capsulating some data together with its processing (the model) and isolate
it from the manipulation (the controller) and presentation(the view) part
that has to be done on a UserInterface. A model is an object representing
data or even activity, a view is some form of visualization ofthe state of
the model, and a controller offers facilities to change the state of the model.
Rails follows this principle in order to structure application which helps the
development and maintenance.

• Generators: Rails includes many generator scripts that create Ruby skeleton
code leaving the programmer with just the need to fill it with their code,
simplifying the task of code organization and also helping the developer to
place each thing were it belongs. A really good example of this scripts is
called the Scaffold script.

• ActiveRecord: Active Record connects business objects anddatabase tables
to create a persistable domain model where logic and data is presented in
one wrapping[3]. Its an implementation of the object-relational mapping
(ORM) pattern by the same name as described by Martin Fowler:An object
that wraps a row in a database table or view, encapsulates thedatabase ac-
cess, and adds domain logic on that data. ActiveRecord has support for most
of the current database systems, such as PostgreSQL, SQLiteor MySQL.
Because of this Rails developers do not have to deal with specific SQL state-
ments depending on the SQL manager that they are using . Its implemen-
tation is Thread Safe, supports easy associations, it has built-in validations

12

and supports custom value objects such as timestamps, moneyor tempera-
tures.

• Other goodies: Rails includes integrated Web Services support, a unit test-
ing framework, and isolated environments for development,testing and pro-
duction.

Rails and RESTful resources

When the RESTful concept begun to be used in the design of Web Services and
resources Rails rapidly adapted to it. At first a plugin called simply restful was
developed in 2006 that was soon included in the Rails core.

The scaffold generator takes a name and the model attributesand creates a
resource with it. It creates the model, controller and view,and also a migration
script to generate the database table with the appropriate fields. In addition to all
of this, the generator adds a mapping entrymap.resources :resourcenameon the
routes.rbfile which is responsible for the RESTful character of this resource. So
simply with the primitivemap.resourcesthe Rails magic takes care of creating the
RESTful resource.

REST actions are activated through a combination of a resource URL and an
HTTP verb. Normally the clients of a resource are web browsers but also Web
Services may want to manage the resource. If a RSS reader request data from a
REST resource it will probably expect an Atom formated response, a Web Service
a XML one and a Web Browser an HTML one. For this, Rails includes a primitive
calledrespondto which specifies the type of response to an specific action. The
following example illustrates how therespondto works.

def show
@project = Project.find(params[:id])
respond_to do |format|
format.html # show.rhtml
format.xml { render :xml => @project.to_xml }
end
end

Thanks to this the RESTful resource can be easily accessed from many different
types of clients and creates the expected response from eachone of them.

13

Example of creating a RESTful resource with Rails

Let’s say that we want to create a web site called School that includes a resource
of students. After installing Ruby, Ruby gems and Ruby on Rails, we would have
to create the skeleton of the project. For this we would invoke therails school
script. This script creates a group of directories and files which serve as a skeleton
for the resource. The skeleton includes the configuration, controller, model and
views. Additionally it creates a database schema, unit testing and log files. The
details of the output of the script can be found in the Appendix section.

After executing the commandrails schoolRails automatically creates differ-
ent files and directories. Now we would have to create a model for the students
resource, the views and controller for each operation and etc. We can do all of this
together by executing the scaffold generator:

> script/generate scaffold student
exists app/models/
exists app/controllers/
exists app/helpers/
create app/views/students
exists app/views/layouts/
exists test/functional/
exists test/unit/
create app/views/students/index.html.erb
create app/views/students/show.html.erb
create app/views/students/new.html.erb
create app/views/students/edit.html.erb
create app/views/layouts/students.html.erb
create public/stylesheets/scaffold.css

dependency model
exists app/models/
exists test/unit/
exists test/fixtures/
create app/models/student.rb
create test/unit/student_test.rb
create test/fixtures/students.yml
create db/migrate
create db/migrate/001_create_students.rb
create app/controllers/students_controller.rb
create test/functional/students_controller_test.rb

14

create app/helpers/students_helper.rb
route map.resources :students

In the filedb/migrate/001createstudents.rbwe have to include the attributes
of a student. If a student has an Identificator, a date of birth, an name, we would
have to include the following lines in the file:

class CreateStudents < ActiveRecord::Migration
def self.up

create_table :students do |t|
t.column :name, :string
t.column :birth, :date
t.timestamps

end
end
def self.down

drop_table :audios
end

end

After we have included those lines we have to invoke the following script:

>rake db:migrate
(in /Users/senc/Documents/temp/school)
== 1 CreateStudents: migrating ==============
-- create_table(:students)

-> 0.0034s
== 1 CreateStudents: migrated (0.0041s) =====

This automatically connects to the database and creates thetable students with
a column for each of the students attributes. Thanks to ActiveRecord the model
students is now dynamically linked to the database. With just a few lines of code
and after executing a few scripts we have created a RESTful resource for students.
By accessinghttp://server/studentswe can create, edit or delete students and also
access it from another Web Service with standard REST http verbs.

Another goodie about Rails and ActiveRecord is the easinessto create associ-
ations. The fileapp/models/student.rbdetails the associations between this model
and any other models. For example if there was another model for courses which
had an association with students that said that one course could be taken by one
or many students we would have to include the following linesin the model files.

15

file: app/models/student.rb
class Student < ActiveRecord::Base
belongs_to :course

end

file: app/models/course.rb
class Student < ActiveRecord::Base
has_many :students

end

As it has been show, it is really easy to create associations between different mod-
els. You can also create other type associations with primitives likehasand belongsto many
or belongsto many. Thanks to this, if we had a variable called@courseand we
wanted to get an array of the students that are enrolled in that course we would do
it with @course.students.

HearMe and Rails

In the chapterArchitecture Designthere is a detailed description of the functional
and quality requirements and those match with the Rails and RESTful principles.
Indeed, because of all of the benefits previously mentioned,Rails also appears
to be the perfect Web development framework to implement theHearMe Web
Service.

3.3 Voice on the web technology

HearMedeals with a non conventional input, voice, from the user in aWeb Site
context. In order to retrieve the voice the user needs a capable hardware, normally
a microphone, and a software piece which can operate inside aWeb Page.

3.3.1 Hardware

There are two hardware devices that are able to retrieve sound. One are mobile
phones, and the other one are the computer microphones. Although it would
be very interesting to analyze the possibilities of permitting users to create or
upload recordings made with the mobile phone, this feature will be discussed in
the chapterEvaluation and future workas a possible enhancement to the system.
Most of the PCs and Laptops have microphones or at least a sound card with

16

a microphone input. If not there are also USB microphones. This means that
virtually any desktop or laptop computer has the capabilityto retrieve the audio.
The quality of these microphones may not be really good, but it is enough for the
needs of the system. Computers with no microphone will have to buy one, but the
prices are really low compared to any other piece of computerhardware.

3.3.2 Software

Web browsers basically understand variations of HTML, CSS and Javascript.
With Javascript or any other technology that is built-in themainstream web Browsers,
we can read the inputs of the user with the mouse and the keyboard, but we can-
not read other inputs like the webcam or the microphone. If wewant to connect
our web application with the end-user’s microphone or webcam we have to either
embed aJavaor aFlashapplication.

Java

Java applications require not only theJava Runtime Librariesbut also aJava Plu-
gin on the browser. Java supports the reading of the microphone or webcam and
supports the communication with a back-end server to send the streams, but the
main problem withJavais the low performance ofJavaapplications and that it is
very complicated to deal with security and permissions whenreading multimedia
inputs.
Thanks to thatFlash has many advantages overJava for this specific purpose,
Javais mentioned and evaluated but it will not be used.

Adobe Flash & Flex

Adobe Flash- previously calledShockwave FlashandMacromedia Flash- is a
set of multimedia technologies developed and distributed by Adobe Systems and
earlier by Macromedia[6]. It is available for most of the webbrowsers and some
mobile phones and it only requires to have theFlash Plugininstalled. The mature
markets present a 99.3% of ubiquity of theFlash plugin in web browsers [1],
so we know that if we deploy aFlash basedweb application almost everyone is
going to be able to use it.

Adobe Flexis a collection of technologies released byAdobe Systemsfor the
development and deployment of cross platform, rich Internet applications based

17

on theAdobe Flash platform[7]. ActionScript is the language used for the devel-
opment ofFlash Applications[5].

Actionscript 3.0is the language thatFlashapplications are written in.Actionscript
was created precisely to deal with graphics and multimedia purposes on the web,
it includes primitives to easily work with the multimedia inputs. When record-
ing the reading of multimedia inputs require an interface between the multimedia
hardware layer and the client application. This interface is given by theFlash
plugin. With just one line of code we can gain control of the microphone and with
a few more we can connect to aFlash Media Server. Flash Media Serveris the
streaming server whichFlashapplications work with and it is used to stream in
both directions. For example, we can stream an audio or videofrom aFMS(Flash
Media Server) to a web application, and we can do it the other way around, wecan
stream the sound gathered from the clients microphone to aFMS. So combining a
Flashapplication on the client side with aFMSon the server side, we can retrieve,
stream and store the sounds produced by the user on a server. In the same way we
can have a set of voice recording on the server side and streamthem to the clients
web application.

There are two possible alternatives to implement theFlash Media Serverpart.
One of them is the proprietaryAdobe’s Flash Media Serverand the other one is
the open source alternative,Red5. Both of them do more less the exact same task,
Red5is programmed inJavaandFMA in Actionscript. I will useRed5simply
because it is free, well documented and it runs on more operating systems.

Flex characteristics:

• Flex is a free, open source framework for building highly interactive, ex-
pressive web applications that deploy consistently on all major browsers,
desktops, and operating systems.

• It provides a modern, standards-based language and programming model
that supports common design patterns.

• MXML, a declarative XML-based language, is used to describeUI layout
and behaviors, and ActionScript 3, a powerful object-oriented programming
language, is used to create client logic.

• Flex also includes a rich component library with more than 100 proven,
extensible UI components for creating rich Internet applications (RIAs), as
well as an interactive Flex application debugger.

18

• RIAs created with Flex can run in the browser using Adobe Flash Player
software or on the desktop on Adobe AIR, the cross-operatingsystem run-
time.

• LiveCycle Data Services ES is a high performance, scalable,and flexi-
ble framework that simplifies development of Flex and AIR applications.
Backed by a powerful data services API, LiveCycle Data Services simpli-
fies complex data management problems such as maintaining a single in-
stance of data across the application, data synchronization across clients
and applications, and conflict resolution really simple.

• LiveCycle Data Services ES is architected to be scalable, secure and high
performance server. Besides basic remoting capabiliites,it supports a rich
set of features to create real-time and near real-time applications. It abstracts
the complexity and realiability required to create server push (comet like)
applications.

3.4 Data Storage

There are two main concerns when dealing with data storage. The first one would
be the size and compression of the files to hold, the second onethe distribution of
the storage hardware.

3.4.1 File type and compression

Flash uses.FLV file for the streaming operations. The.FLV works as a container
of both audio and video. The initial system only supports audio therefore the
video compression will not be discussed. The audio can be encoded with different
codecs. As we can see in the wiki Open Source Flash[4], the codecs that Flash
supports for audio are MP3, AAC, PCM and ASAO. The ASAO codec is the
default for speech compression. It has been developed by Nellymoser, a company
in Arlington, Massachusetts specialized in mobile computing. According to the
Wikipedia[8], the codec is optimized for real-time and low-latency encoding of
audio. Adobe Flash Player clients, when recording audio from a user microphone,
use the Nellymoser ASAO codec and do not allow Flash programmers to select
any other. The sampling rate of the audio capture can be controlled by the Flash
programmer to increase and decrease encoding bitrate and quality. Flash forces
us to use this codec in the client side in order to stream the audio to the Flash

19

Media Server. Once that this audio has been retrieved in the flash media server it
could be re-compressed using another codec such as MP3 or ACC, but because
the ASAO is perfect and the standard for the systems needs theaudio streams will
not be re-encoded..

3.4.2 Hardware storage architecture

The initial system is very simple since it is used as a proof ofconcept. Basically
all it needs is a hard drive with some gigabytes of space in thecomputer where the
Flash Media Server runs. The streams are stored as regular files in a file system,
not in a database. SQL managers permit the storage store filesin databases, but
managing such a big amount of files within a database would compromise the
system’s performance.

In the chapterEvaluation and future workI evaluate a solution to the storage
scalability problem based on multiple Flash Media Servers.

20

Chapter 4

System Design - HearMe and TellIt

4.1 Introduction

HearMe is a Social Web Service that handles voice streams create by the user
on-the-fly directly from a Web Site. The Web Service offers anexternal API so
that other Web Sites or Web Services can easily use it to include real time voice
recordings. In order have a working environment that usesHearMe,TellIt has been
developed.TellIt is a social Web Site where users create voice streams and share
in many different ways. We can considerTellIt as aYouTubeclone but about voice
clips instead of video clips.

This design documentation is divided in four different parts. The first part cor-
responds to theFunctional and Quality requirementsof bothTellIt andHearMe.
Because the design of theTellIt Web Site is not relevant to the purpose of the the-
sis, only its functional requirements are included in this chapter. The second part
corresponds to theUse Cases, the third part is a general overview of theArchitec-
tureof HearMeand the fourth is itsExternal API.

4.1.1 Purpose and readers

This document offers a design solution for theHearMeandTellIt systems.
The aimed readers of this document are the design team, the developer team

and any other team related to the design and implementation of the system.

21

4.2 Requirements

4.2.1 Functional Requirements (TellIt)

1. Account-Management

(a) Registration: A generic guest user can signup and becomea registered
user obtaining an account providing his/her personal data .

(b) Edit-Details: A registered user can modify his/her personal data.

(c) Cancel-Account: A registered user can delete his account. This will
also delete all of his voice streams.

2. Friends-Management

(a) Add-Friends: A registered user can add another user as a friend.

(b) Remove-Friends: A registered user can delete any user from his friends
list.

3. Registered-Users-Commnunication:

(a) Private-Messaging: Registered users can send other registered users
private messages.

(b) Edit-Private-Messages: A registered user can delete any private mes-
sage in his inbox.

(c) Subscriptions: Registered users can subscribe to otherregistered users
streams.

4. Stream-Management

(a) Create-stream-Reg-User: A registered user can create avoice stream
providing the data. This voice stream will be a part of the users stream
collection.

(b) Create-stream-Generic-User: A generic user can createa voice stream.
The voice stream will be part of the anonymous user stream collection
and it is forced to be a public stream. The streams data will not de
editable once it has been created.

(c) Edit-stream: The streams data of a stream created by a registered user
can be edited by its creator. Anonymous streams cannot be edited.

22

(d) Stream-Privacy-Policy: A stream created by a registered user can be
set to be either public, private, friend-shared, or user-specific-shared.

(e) Stream-Listen: A generic user must be able to listen to all of the public
streams in the system. A registered user must be able to listen to all
of the public streams, all of his private streams and all of his friends
friend-shared streams.

(f) Stream-Ranking: Any user can rank any stream.

(g) Stream-Comment: Any user can comment any stream.

(h) Stream-Edit-Comments: The creator of a non-anonymous stream can
delete any comment of any of his streams.

(i) Stream-Tag: Any user can tag any stream.

(j) Stream-Edit-Tags: The creator of a non-anonymous stream can add,
edit or delete any tags associated to any of his streams.

(k) Stream-External-Embed-Policy: The creator of a non anonymous
stream can permit or not the stream to be embedded from a thirdparty
website.

5. Dashboard:

(a) View-top-ranked: View list of the top ranked streams.

(b) View-latest-streams: View list of the latest streams.

(c) View-subscriptions: View list of the new streams from the users sub-
scriptions.

4.2.2 Quality Requirements (TellIt)

1. Usability: The interface with the user must be simple enough that a none ex-
perienced user may be able to use the system without the need of a previous
learning process.

2. Cost: The cost for the end user must be free.

3. Availability: The TellIt Web Site must always be available. The uptime
must be 100%.

4. Performance: The system must be fast enough to perform thetasks in real
time. Users must be able to create and retrieve streamson-the-fly.

23

5. Security: The system must grant the privacy policies established by the user.

6. Accessibility: A user must be able to access the system with a Web Browser
and the cross platformAdobe Flash Player Plugin.

4.2.3 Functional Requirements (HearMe)

1. Access-Key-Management

(a) Request-Access-Key: A third party Web Site can request aKey to
access the system’s operations.

(b) Destroy-Access-Key: A third party Web Site can destroy its Key so
that it is no longer able to access to the system.

2. Clip-Management

(a) Clip-create: A third party Web Site can embed aHearMe recorder
application providing the access Key and the clips parameters to create
a clip if the privacy policies permit it.

(b) Clip-edit: A third party Web Site can embed aHearMerecorder appli-
cation providing the access Key and the clips parameters to edit a clip
if the privacy policies permit it.

(c) Clip-reproduce: A third party Web Site can embed aHearMeplayer
application providing the access Key and the clips parameters to play
the clip if the privacy policies permit it.

(d) Clip-edit-privacy: The creator of a clip can determine the external pri-
vacy policies. The clip can be public, password protected orprivate.

4.2.4 Quality Requirements HearMe

1. Usability: The interface with the user must be simple enough that a none ex-
perienced user may be able to use the system without the need of a previous
learning process.

2. Cost: The cost for the third party Web Site must be free.

3. Availability: The HearMesystem must always be available. The uptime
must be 100%.

24

4. Performance: The system must be fast enough to perform thetasks in real
time. Users must be able to create and retrieve streamson-the-fly.

5. Security: The system must grant the privacy policies established by the user.

6. Accessibility: A third party Web Site must be able use the system by in-
cluding the necessary calls to theHearMeAPI.

4.3 Use cases

Use case 1: Clip playback

• Primary Actor: A generic user or a registered user

• Goal: Play an audio clip on a Web Site

• Preconditions: The Web Site has embedded a HearMe Player on the website
with a clip identifier.

• Main Success Scenario:

– The Web Site displays a Player Application

– The user clips the Play button

– The clip begins to play with a default volume if the clips is available.

– The clips ends.

Use case 2: Clip record

• Primary Actor: A generic user or a registered user

• Goal: Record an audio clip on a Web Site

• Preconditions: The Web Site has embedded a HearMe Recorder on the Web
Site with a new clip identifier.

• Main Success Scenario:

– The Web Site displays a Recorder Application

– The user clicks the Recorder button

25

– The clip begins to be recorded if the identifier is correct.

– The user stops speaking.

– The user clicks on the stop button.

– The user clicks on the play button.

– A preview of the clip begins to play.

– The user introduces textual information in the title, description or
metadata text box.

Use case 3: Clip edit

• Primary Actor: A registered user

• Goal: Edit an already existing audio clip on a Web Site

• Preconditions: The Web Site has embedded a HearMe Recorder on the Web
Site with a new clip identifier.

• Main Success Scenario:

– The Web Site displays a Recorder Application.

– The user clicks the Recorder button.

– The clip begins to be recorded if the identifier is correct.

– The old clip is overwritten.

– The user stops speaking.

– The user clicks on the stop button.

– The user clicks on the play button.

– A preview of the clip begins to play.

– The user edits the textual information in the title, description or meta-
data text box.

26

Clip operationspackage HearMe[]

Clip playback

{Use case = 1}

Clip edition

{User case = 3}

Clip record

{Use case = 2}
Registered user

Guest user

Figure 4.1: HearMe Use cases

4.4 Architecture overview

The figure 4.2 shows a basic diagram of theHearMe’sarchitecture . It consists in
three main parts:

• HearMePlayer/Recorder client

• HearMeWeb Service

• HearMeStream Server

27

Stream Media Server
Streams resource

(RESTful Web Service)

Website

Embedded
Hearme
Client

(recorder/
player)

Database
(Title,

Medatada, etc)

File System
(streams)

Figure 4.2: HearMe General Architecture Overview

4.4.1 HearMe Player/Recorder Client

This clients areFlashbased web applications which are meant to be embedded in
the Web Page that wants to play or record a stream. Their main task is to act as
a layer between the physical hardware and the Web Application and to dialogue
with the Stream Server. When recording, the recorder obtains the voice from the
users microphone and streams it to the Stream Server; when playing, it retrieves
the stream from the Stream server and plays it through the users audio system.
This software pieces will be explained in depth in the chapters HearMe Player
andHearMe Recorder.

4.4.2 HearMe Stream Server

The Stream Server is the server application which offers progressive download
and upload of the clips created by the users. This piece of software retrieves,
stores and makes available the audio recordings. The Recorder and Player client

28

connect to the Stream Server in order to publish or retrieve astream.
In the initial version of the system only uses one Stream Server but includes

partial support for using multiple. In the chapterEvaluation and Future Work
additional study about scalability and security issues of the Stream Server are
done.

4.4.3 HearMe Web Service

The HearMeWeb Service is a RESTful Web Service which contains all of the
information of the clips of the system and it is the responsible for the coherence
and structure of the data. The information of a clip that holds is the following:

• Identifier

• Title

• Description

• Metadata

• Stream Server URL

• Creation time-stamp

• Last edit time-stamp

When a Web Page wants to create a clip it connects to this Web Service and re-
quests it; the Web Service assigns a new identifier and a Stream Server for the
clip. The same occurs when a Web Page requests the playback ofa stream, the
Web Service tells it which Stream Server to retrieve it from and sends all of its
textual information to the Web Page.

An additional example of how the creation of a clip is done is included to help
in the comprehension of the systems architecture:

Example: Creation of a clip Suppose that a client Web Site -Voice Forum-
wants to include real time voice recording messages in its forum system. The
page will have a form where the user can input the text that he wants to post. The
page has to embed aHearMerecorder application in its form page. For this, first it
would have to talk to theHearMeWeb Service to obtain a stream Id and a Stream

29

Server url to use as parameters. With these parameters it creates an instance of a
recorder application. With this parameters, the recorder application knows where
to connect to stream the voice of the user and how to identify it.

Stream Server

Web Service

Client Web Site
Hearme

Recorder

publish

new stream request identifier, server url

User
Microphone

Storage

Figure 4.3: Recording process general

It will first connect to theHearMeWeb Service to request a new stream. The
HearMeWeb Service will grant the client Web Site with a new GID (global audio
identifier) and a Stream Server url. With this parameters theWeb Site can create
an instance of theHearMerecorder application, to

4.5 HearMe API

This API defines a language for clients to interact withHearMefrom an external
Web Page, Web Service or application. It is intended to be easy to implement in
any language and on any platform. The protocol operates in terms of resources
and operations on them and uses the standard HTTP methods (GET, POST, PUT,
DELETE, etc.) to retrieve and change server state.

The protocol defines Audio resource. The operations consistof retrieving
(GET), updating (PUT), creating (POST or PUT), or destroying (DELETE) these
resources.

30

It is important to notice that this API is intended to be used with theHearMe
Web Service. With the data obtained the external Web Application must create an
instance of theHearMePlayer or Recorder client to actually record or play the
audio. The usage of the Player and Recorder client is specified in the chapters
HearMe PlayerandHearMe Recorder.

4.5.1 Audio resource

An audio element contains the following attributes:

• Title

• Description

• Audio global identifier (GID)

• Metadata (tags)

• Server url (where the audio is physically located)

• Creation time

• Modification time

The audio is represented in XML as it follows:

<audio>
<created-at type="datetime">2008-04-29T11:28:10+02:00</created-at>
<description>This is a test audio</description>
<gid>s151</gid>
<metadata nil="true"></metadata>
<server-url>rtmp://localhost/test</server-url>
<title>Initial test</title>
<updated-at type="datetime">2008-04-29T11:28:10+02:00</updated-at>

</audio

Retrieval of audio collection

GET url/audios.xml The result of this operation is an Atom XML list of the
available audio.

31

<audios>
<audio>

<created-at type="datetime">2008-07-28T20:12:00+02:00</created-at>
<description>This is an audio about my cat</description>
<gid>s183</gid>
<metadata nil="true"></metadata>
<server-url>rtmp://localhost/test</server-url>
<title>Cat audio</title>
<updated-at type="datetime">2008-07-28T20:12:00+02:00</updated-at>

</audio>
<audio>

<created-at type="datetime">2008-07-30T17:16:48+02:00</created-at>
<description>This is an audio about my dog</description>
<gid>s184</gid>
<metadata nil="true"></metadata>
<server-url>rtmp://localhost/test</server-url>
<title>Dog audio</title>
<updated-at type="datetime">2008-07-30T17:16:48+02:00</updated-at>

</audio>
</audios>

Retrieval of a single audio

GET /audios/{GID}.xml The result of this operation is an Atom XML with the
data of the audio.

<audio>
<created-at type="datetime">2008-07-28T20:12:00+02:00</created-at>
<description>This is an audio about my cat</description>
<gid>s183</gid>
<metadata nil="true"></metadata>
<server-url>rtmp://localhost/test</server-url>
<title>Cat audio</title>
<updated-at type="datetime">2008-07-28T20:12:00+02:00</updated-at>

</audio>

Creation of an audio

POST /audios.xml This operation creates a new audio. It takes the parameters
specified in the request to fill the new audio’s data.

<request>
<audio>

<title>Example title</title>
<description>Example description</description>

32

<metadata>Example tag</metadata>
</audio>

<request>

It returns an XML with the information of the created audio:

<audio>
<created-at type="datetime">2008-07-28T20:12:00+02:00</created-at>
<description>Example description</description>
<gid>s183</gid>
<metadata">Example tag</metadata>
<server-url>rtmp://localhost/test</server-url>
<title>Example title</title>
<updated-at type="datetime">2008-07-28T20:12:00+02:00</updated-at>

</audio>

Edition/update of an audio

PUT /audios/{GID}.xml This operation updates the attributes of an already
existing audio. It takes the parameters specified in the request to update the audio’s
data.

<request>
<audio>

<title>New title</title>
<description>new description</description>
<metadata>New Tag</metadata>

</audio>
<request>

It returns an XML with the new audio’s data:

<audio>
<created-at type="datetime">2008-07-28T20:12:00+02:00</created-at>
<description>New description</description>
<gid>s183</gid>
<metadata>New tag</metadata>
<server-url>rtmp://localhost/test</server-url>
<title>New Title</title>
<updated-at type="datetime">2008-07-28T20:12:00+02:00</updated-at>

</audio>

Delete an audio

DELETE /audios/{GID}.xml This operation destroys the audio specified by a
GID.

33

The system does not support authentication or authorization. The usage of ex-
ternal application KEYS to provide security and control is evaluated in the chapter
Evaluation and Future Work. If the system already supported it the only change
in the API would be that in each request the KEY parameter would have to be
specified.

34

Chapter 5

HearMe Player

The HearMePlayer application provides the user of an interactive reproduction
of an audio clip. The Player is aFlashbased application which is embedded on a
Web Page provided and identifier of the clip to play. The application connects to
the Stream Server to retrieve a sound clip and plays it on the Web Site.

5.1 Interface

The interface is designed to be clear and simple in order to match the usability
criteria of the quality requirements. A user who has never seen the application
should be able to use it right away without learning anythingpreviously. The GUI
capabilities are:

• Provides the user the ability to play, stop and seek through an audio clip.

• Display the audio clips time information.

• Link to the clips Web Page and to HearMe Web Site.

• Volume playback control.

As it is shown in figure 5.1, the interface has two buttons to control the repro-
duction of the clip, as well as a progress bar to display the percentage of the clip
which has been downloaded. This progress bar is also clickable so that it provides
with seeking functionality. The GUI contains two additional buttons, one of them
links to the clips website and the other one to theHearMeHome Page. Addi-
tionally it contains a display area with information about the duration of the clip

35

and its current position in time. The interface has some animations to increase its
usability. When the user places the cursor over the buttons,it shows a small glow
effect which makes him realize that the cursor it is properlyplaced. When the
user clicks play or stop, the color of the button shades so it looks like it has been
pushed.

Play button Link to streams page Link to Web page

Progress barStatusTime information

Stop button

Figure 5.1: HearMe Player Interface

36

5.2 Player Architecture

GID : STRING
Server_url : STRING

Player

til:PlayerGUItil:Engine

mx:Button mx:Panel til:ImageButtonmx:Label

Figure 5.2: HearMe Player Class and Component diagram

The Player retrieves and plays the clip from the Stream Server. In order to
perform this taskm it needs to dialog with the Web Service to get the clips infor-
mation and then it connects to the Stream Server to recover the stream. The Web
Page which embeds it, provides the Player with the clips identifier (GID). The
player takes this identifier and queries the Web Service, if the clip exists and it
privacy policies permit it, the Web Service sends back to thePlayer the clips in-
formation. This information usually contains the Stream Server address where the
clip is physically located and some additional textual information such as Tags,
Name and Description. Once the Player has all of the information it needs, it con-
nects to the Stream Server and requests the streaming of the clip. If everything
is correct, aNetStreamconnection between the Stream Server and the Player is
established and the player begins to reproduce the clip.

37

User

Flash Stream

Server

HearMe

Webservice

Audio data

Stream server url
Website

Embedded

Hearme

Player

Verification

Stream Request

Status

Audio data requiest

Audio streamPlay

Stream(gid)

GET /audios/gid.xml

XML

Play

Figure 5.3: HearMe Player work flow

5.3 Web Page integration

The HearMeplayer is instanced in a Web Site with the OBJECT tag, which is
normally used to include objects such as images, videos, Java applets, and Flash
applications. In this tag the site sets the identifier of the clip as a parameter of
the Player. It is important to realize that the Web Site needsto manage the clips
identifiers as seen in the following example

Suppose a Web Site which is a voice forum. The Site might have in a single
page many instances of theHearMe player, each one of these instances corre-
sponds to a message that a user has created, but theHearMedoesn’t know which
one belongs where. Therefore, in order to use the clips properly the site must
manage the identifiers, store them and organize them so that each instance of the
Player corresponds to the message the site wants to show.

An example of how to embed the Player is as it follows:

<object width="400" height="74">
<param name="movie" value="tellitplayer.swf" />
<param name="wmode" value="transparent" />
<embed wmode="transparent"
src="http://localhost:3001/flash/tellitplayer.swf?gid=s161

38

type="application/x-shockwave-flash"
width="400"
height="74">
</embed>
</object>

The first two parameters,widthandheight, correspond to the size of the player.
The parametermoviespecifies the program filename andwmodeis to set the player
graphics as transparent for the rounded borders. After thatwe have theembedtag
which specifies the url of the player application, themimetype and again the size.
It is in thesrc parameter where the website must include the streams identificator
as it can bee seen in the example.

Figure 5.4: HearMe Player Embedded

39

Chapter 6

Hearme Recorder

The HearMe Recorder application provides the user with the tools to record a
voice clip. This application connects to the Stream Server to publish and store the
sound captured by the user’s microphone.

The Recorder is a Flash based application meant to embedded on a Web Page.

6.1 Interface

The same way the Player interface, the Recorder interface isdesigned to be clear
and simple for usability concerns. A user who has never seen the application
before should easily be able to use it right away without having to learn anything
previously. The GUI capabilities are:

• Provides the user the ability record and preview a clip.

• Displays the audio clips time information.

• Select from the different possible inputs or microphones.

• Volume recording control.

As it is shown in figure 6.1, the interface has three buttons tocontrol the
recording and playback of the clip. It also contains a display area with information
about the duration of the clip, its current position in time and network connection
information. The same way as the Player, this interface has some animations to
increase its usability. When the user places the cursor overthe buttons, it shows
a small glow effect which makes him realize that the cursor itis properly placed.

40

When the user clicks play or stop, the color of the button shades so it looks like it
has been pushed.

Play button Status

Time information

Stop buttonRecord button

Figure 6.1: HearMe Recorder Interface

6.2 Recorder Architecture

The Recorder application is divided in three components.

• Engine

• RecorderGUI

• Recorder

41

GID : STRING
Server_url : STRING

Recorder

til:RecorderGUItil:Engine

mx:Button mx:Panel til:ImageButtonmx:Label

Figure 6.2: HearMe Recorder Class and Component diagram

The Recorder publishes a clip on the Stream Server which is stores it on its
file system. This operation is slightly more complicated than the one performed
by the Player. In this case, the Web Site which is embedding the Recorder first
has to dialogue with the Web Service to obtain the new clips identifier (GID)
and a Stream Server url. It will do this by a HTTP request (detailed in the API
section) and the Web Service will return a XML file with the information. With
this information the Web Page embeds a Recorder which knows where to connect
and how to identify the clip it is going to publish. Once the Web Site has properly
embedded the Recorder, the user can click on the record button and the Recorder
will ask the user for permission to read the microphone (thisis inevitable due to
the Flash security and privacy policy). After this, the Recorder connects to the
Stream Server and requests to publish the stream. If the Stream Server validates
it, a NetStreamconnection between both is established and the sound will begin
to be stored on the Stream Server’s file system. The user can also play the clip it
just created, in that way the Recorder behaves the exact samewas as the Player

42

Flash Stream

Server

HearMe

Webservice

Stream server url

Audio GID
Website

Verification

Stablish

connection

Status

New Audio requiest

Publish audio

POST /audio.xml

XML

voice stream

Acceptance status
Params

Embedded

Hearme

Recorder

Figure 6.3: HearMe Recorder work flow

6.3 Web Page integration

TheHearMeRecorder is instanced in a Web Site with the OBJECT tag, whichis
normally used to include objects such as images, videos, Java applets, and Flash
applications. In this tag the site sets the identifier of the clip and the stream server
url as parameters of the Recorder. The same way as in the Player, it is the Web
Site who has to manage the identifiers (GID)

Example of embedding a Recorder:

<object width="353" height="140">
<param name="movie" value="tellitrecorder.swf" />
<param name="wmode" value="transparent" />
<embed wmode="transparent"
src="http://localhost:3001/flash/tellitrecorder.swf?gid=s185&server=rtmp:
type="application/x-shockwave-flash"
width="353"
height="140">
</embed>
</object>

Thewidth andheightparameters correspond to the size of the Recorder. The
parametermoviespecifies the program filename andwmodeis to set the recorders

43

graphics to be transparent, for the rounded borders. Theembedtag specifies the url
of the Recorder application, themimetype and again the size. In thesrcparameter
the website must include the streams identifier and the Stream Server url.

44

Figure 6.4: HearMe Recorder Embedded

45

Chapter 7

Evaluation and future work

7.1 Evaluation

HearMeis designed to be used by third party Web Sites so they can include voice
recordings in real time for creating content . The basic features like playing,
creating or editing a voice clip are implemented, but some other advanced features
were not, the most noticeable are the ones that deal with security and privacy.
Technically the Stream Server should dialog with the Web Service to make sure
that the Web Site which wants to record or play a clip has the permission to do so.
This does not happen at this point, the Stream Server directly permits to record
or play any stream and does not contact the Web Service to check if all of the
parameters are correct and valid. So currently anyone can retrieve any stream
from the Stream Server, even private ones. Also the usage of aKey to validate if
a Web Site has access to the system is not implemented, so any external Web Site
can use it without any restrictions.

The Player and Recorder applications have some minor bugs which were not
fixed. The progress bar of the player does not work, and neither does the seeking.
The applications can crash if the Stream Server is not available. Volume feature
is implemented but there is no graphical component to control it. The recorder
should permit the user to choose between the different inputs he might have (mi-
crophone, line in, etc) but it does not yet implement this feature.

Voting and ranking of the clips are not implemented in theTellIt community
Web Site (explained in the next section) and the page does notyet offer feed
syndication to the most popular or recent clips.

A more detailed status of the development ofHearMeandTellIt can be found

46

on tables 7.1 and 7.2. In these two tables it can be seen which ones of the func-
tional requirements of the applications where fully implemented in the final ver-
sion of the software for the thesis. The non implemented features are left for future
work in case the system ever goes on a real productivity environment.

Functional Requirement Status
Account Management
Registration Implemented
Edit-details Implemented
Cancel-account Implemented
Friends-management
Add-friends Not implemented
Remove-friends Not implemented
Registered-Users-Communication
Private-messaging Not implemented
Edit-Private-Messages Implemented
Subscriptions Not implemented
Stream-Management
Create-stream-reg-user Implemented
Create-stream-generic-user Implemented
Edit-stream Implemented
Stream-privacy-policy Not implemented
Stream-Listen Implemented
Stream-Ranking Not implemented
Stream-comment Not implemented
Stream-edit-comments Not implemented
Stream-tag Implemented
Stream-edit-tags Implemented
Stream-External-Embed-Policy Not implemented
Dashboard
View-top-ranked Not implemented
View-latest-streams Implemented
View-subscriptions Not implemented

Table 7.1: TellIt implementation status

47

Functional Requirement Status
Access-key-management
Request-access-key Not implemented
Desrtoy-acess-key Not implemented
Clip-management
Clip-create Implemented
Clip-edit Implemented
Clip-reproduce Implemented
Clip-edit-privacy Not implemented

Table 7.2: HearMe implementation status

7.1.1 Deployment experiences

TellIt voice community

The most practical way to testHearMewas by creating a Voice sharing Web Site
that used it.TellIt uses theHearMeAPI to create a social Web Site about voice
clip recordings. TellIt is a very simple Site where users can create voice clips
to share them. We can pictureTellIt as ayoutube.comor a flickr.comof voice
recordings.TellIt also includes some additional features like a dashboard with the
latest clips or the most popular.

TellIt was developed almost at the same time asHearMe. It uses theHearMe
API to provide its users with voice recording functionality. WhenHearMewas in
an early stage of development it was not certain what external Web Sites would
need to include it.TellIt started to use it, but the initial tests did not work as
expected. The API was not completely defined or implemented,there were many
problems embedding the Player and Recorder applications and it was not very
clear how to attach the whole system. Very slowly and carefully both pieces grew
together until they coupled.TellIt follows the steps detailed in the chaptersHearMe
API, HearMe RecorderandHearMe Player.

TellIt was developed withRails technology. It manages two resources, users
and streams.

Users are the persons who are registered on the site, they cancreate their own
streams, edit or delete them. Generic users can also create streams but once they
have created them, these cannot be modified.

48

The stream resource contains the clips created by the users.The resource
is RESTful so it can be accessed both through theTellIt Web Site or as a Web
Service.

Two additional features where studied to implement in the future, both related
to Google’s OpenSocial. The first one was to expose the users resource as an
OpenSocialcontainer so that otherOpenSocialapps could connect toTellIt and
use the site’s users data. The second one was to create a collection ofOpenSocial
gadgetsso that it could easily be included into otherOpenSocialsites. As said,
both features were left for future work.

Figure 7.1: TellIt

The test system was deployed in a personal machine. TwoMongrel Web
Servers had to run, one forHearMeand one forTellIt and also theRed5flash
media server. The machine is a rather small machine, about 2 GHz of processing
speed with 2 Gigabytes or RAM. This machine was enough to testdo the basic
testing of the system but it was not able to test it in a wide productive scale. For

49

this task a server machine with a very fast internet connection would have been
needed. With such machine the system could have been tested in a wider scale,
including it in small forum communities or blogs.

7.2 Future work

In this section I study some technical problems that could appear, as well as some
of the enhancements or extensions that could be done onHearMe.

7.2.1 Rich recorder client

HearMe is all about voice and recordings. The initial Recorder client is very
simple, with it you can only record a clip all the way from the beginning, having
to start over again if you want to make any changes and it does not support to
pause while recording. At the same time, it can only record one track per stream
and the user cannot include music in the background or anything that does not
go through the microphone. This means that he cannot upload sound files. This
situation is not a big problem initially, but ifHearMewas really being used aRich
Recorder Clientwould be needed.

Figure 7.2 shows us a screenshot of a very popular Sound Editor calledGarage-
Bandfrom Apple corporation.HearMewould need a simplified version of one of
these type of applications that supported at least the following operations:

• Complex edition: Record, stop, pause, partial removal, etc.

• Multitrack support.

• Upload of sound files.

• Basic Sound filters.

• Save, stop and resume of the edition.

This application would have to be a Web based Sound Editor andfortunately it
can be done withAdobe Flex, the technology used to develop the initial Recorder
Client.

50

Figure 7.2: Apple Garage Band Screenshot

7.2.2 Scalability

Scalability is a big concern inHearMe. Web Sites usually start with a very small
amount of users but when they get popular this amount can growmany times in
very small periods of time. The system must be designed to fulfill the markets
needs, no matter the number of users.

Web Service

TheHearMeWeb Service only has to deal with regular Web Service operations
which are quick, small and simple. Its scalability concernsare the same as any
otherRuby on RailsWeb Site. A good example of large scale deployment with
Rails technology isTwitter.com. This Web Site has to process millions of re-
quests per day and it had some scalability problems, Alex Payne explains in an
interview[14] how they solved them:

Rails is a matter of cost: just throw more CPUs at it. The problem is that more
instances of Rails (running as part of a Mongrel cluster, in our case) means more
requests to your database. At this point in time theres no facility in Rails to talk
to more than one database at a time. The solutions to this are caching the hell out
of everything and setting up multiple read-only slave databases, neither of which
are quick fixes to implement.

Indeed,Railsapplications can suffer from scalability problems but as wehave
seen they can be fixed, and furthermore, most of these problems will be solved
soon in the core of the framework, so no manual fixes will need to be developed.

51

Stream Server

The Stream Server is a total different thing. When dealing with multimedia con-
tents the amount of bytes to transmit and the amount of time needed by a computer
to process it grows exponentially.

In a global scale, the number of bytes to transmit depends on the following
factors:

• Stream Bitrate

• Average time per clip

• Number of clips created or reproduced per day

Table 9.1 in the Appendix section shows a comparison of the total amount of
data transmitted per day, depending on those factors.

Supposing the service is being used by a very small communitythat creates
an average of 60 seconds per clip, recording 50 clips per day and playing 200,
the system would only have to transmit about13.18 + 52.7 = 65.88Mbytes per
day. In this case the bandwidth of the Stream server does not have to be big, an
average of 0.001 MBPS for the downloads and 0.005 MBPS for thedownloads.
Almost any connection can hold this, even a home connection.It is also important
to notice that the measurements of MBPS are an average through the whole day,
but at certain hours of the day there would be peaks of at leastfour or five times
the average. With this small amount of users pike would not bea problem. If
there were amount of 50000 clips created daily and 200000 played, a symmetric
connection of 10MBPS could struggle . Further away, we can suppose a situation
where theHearMewas massively being use in a large scale. Suppose that every-
day about 50 million voice clips where created and 200 reproduced. In this case
we would need a connection of 12 GBPS of download capacity and48 GBPS for
upload in a hypothetic situation where there were no peaks. By looking at this
numbers we can assure that at some point a single server for the Stream Server
will not be enough. This is as evident with bandwidth as it is with disk space and
with processing capacity, therefore the system must support some way to scale
the Stream Server. The initial design supports more than oneStream Server, but
it does not fully implement it. Policies about how and where to store the files and
distribution of the work load between the different serverswould need further in
depth studies. This topic is complex that it would representa new project itself.

Although all of the mentioned above is true, some small tweaks can be easily
develop to reduce the server load. One of these tweaks could be to support dif-

52

ferent qualities of streaming when the users create the voice clips. This quality
is constantly set to 9 (view table 7.3). An improvement wouldbe to dynamically
change this depending on by the users internet quality, the server load or the users
choice. The Recorder client could perform a speed test with the Stream Server
and depending on its results vary the streaming quality.

Quality value Quality bitrate (Kbps)
0 3.95
1 5.75
2 7.75
3 9.80
4 12.8
5 16.8
6 20.6
7 23.8
8 27.8
9 34.2
10 42.2

Table 7.3: Encode quality and bandwidth

53

Chapter 8

Summary and conclusions

The aim of this thesis was to create a software system that would allow users to
create real time voice clips on the Web. The system had to be designed in a way
that any already existing Web could include it and allow its users to hear and be
heard freely around the site.

The first goal to study was if the concept itself would actually have any inter-
est in the real world. Why would anyone want to leave his voiceon a Web Page
and what possible applications could be created using peoples voice clips. The
results of this study was that voice, comparing it to video ortext, is a really strong
and powerful way of communication, not better or worse than any of the others,
but simply complementary. Voice clips should be used as an additional type of
content to enhance the users experience and the Web Site value. The applications
of this technology are yet to be discovered, but some examples could be voice fo-
rums, voice comments in blogs, gadgets for social networking applications, voice
short messaging(voicetwitter) and on. Its applications may be very interesting
in the field of electronic business where the confidence between buyer and seller
is the key to the market dominance. Permitting sellers and buyers to send each
other voice messages could be very productive in that way, mainly because voice
messages turn out to be more trustable than text ones for psychological reasons.

Once that it was clear that the idea was worthwhile to developI had to deal
with more technological aspects of its implementation. Forthis task I had to
read about the current philosophy of the web, known as theWeb 2.0, about social
networking and learn about the technologies that Web Sites use communicate one
with others. Furthermore studies about multimedia on the Web had to be done.
The outcome of this time was the chapterTechnology Surveyand a draft of the
systems software architecture.

54

At that point the design and implementation of the system began, what re-
quired additional in depth study about the technologies used in the project, such
asRails, Flash, Flex. There were many complications in the beginning , specially
in putting all of the pieces together, because the system itself has many parts, each
one is rather simple but connecting them all in a proper way was not an easy task.
After all, a working version was developed which brought newconcerns, most
of the about security, privacy and scalability. These concerns are exposed in the
chapterEvaluation and Future Work.

In a personal aspect the project was very challenging. I was never given the
change before to develop a personal idea, specially not suchan ambitious one.
There was really not too much written about something similar and I was not
even sure if it was technologically possible or viable to do it. There were many
moments where I was stuck and was not sure about how to advance. Mostly thanks
to my supervisor and with some time most of the problems got fixed. At the end,
the project was functional which was very pleasant to see, although a lot of work
was left over for the future.

55

Bibliography

[1] Peter Armstrong.Flexible Rails. Manning, second edition, 2008.

[2] Marcus Baguley. 10 reasons why - ruby on rails. 2000.

[3] Daniel Choi. Ruby on rails activerecord. 2008.

[4] Red5 community. Flash video specs, open source flash. 2007.

[5] Wikipedia Community. Actionscript, wikipedia.

[6] Wikipedia Community. Adobe flash, wikipedia.

[7] Wikipedia Community. Adobe flex, wikipedia.

[8] Wikipedia community. Nellymoser asao codec. 2007.

[9] David Heinemeier Hansson Dave Thomas.Agile Web Development with
Rails. The Pragmatic Bookshelf, 2005.

[10] Francis McCabe Eric Newcomer Michael Champion Chris Ferris David Or-
chrad David Booth, Hug Haas. Web services architecture. 2004.

[11] Roy Thomas Fielding. Architectural styles and the design of network-based
software architectures. 2000.

[12] Walt Howe. A brief history of the internet. 2007.

[13] H. Kreger K. Gottschalk S. Graham and J. Snell. Introduction to web ser-
vices architecture. 2002.

[14] Bob Kenzer. 5 question interview with twitter developer alex payne. 2008.

[15] Anne Thomas Manes. Web service basics. 2003.

56

[16] Yukihiro Matsumoto. The ruby programming language. 2000.

[17] Sun Microsystems. Using web services effectively: Webservice processing
and interaction models. 2002.

[18] Tim O’Reilly. What is web 2.0. 2005.

[19] Thomas Baustert Ralf Wirdemann.RESTful rails development. b-simple,
2007.

[20] Yihong-Ding. A simple picture of web evolution. 2007.

57

Chapter 9

Apendix

9.1 Source code

The source code can be found on a digital format at: http://www.senc.yoteinvoco.com/project/public/source/

9.2 HearMe system

Rails init script output

>rails school
create

create app/controllers
create app/helpers
create app/models
create app/views/layouts
create config/environments
create config/initializers
create db
create doc
create lib
create lib/tasks
create log
create public/images
create public/javascripts
create public/stylesheets

58

create script/performance
create script/process
create test/fixtures
create test/functional
create test/integration
create test/mocks/development
create test/mocks/test
create test/unit
create vendor
create vendor/plugins
create tmp/sessions
create tmp/sockets
create tmp/cache
create tmp/pids
create Rakefile
create README
create app/controllers/application.rb
create app/helpers/application_helper.rb
create test/test_helper.rb
create config/database.yml
create config/routes.rb
create public/.htaccess
create config/initializers/inflections.rb
create config/initializers/mime_types.rb
create config/boot.rb
create config/environment.rb
create config/environments/production.rb
create config/environments/development.rb
create config/environments/test.rb
create script/about
create script/console
create script/destroy
create script/generate
create script/performance/benchmarker
create script/performance/profiler
create script/performance/request
create script/process/reaper
create script/process/spawner

59

create script/process/inspector
create script/runner
create script/server
create script/plugin
create public/dispatch.rb
create public/dispatch.cgi
create public/dispatch.fcgi
create public/404.html
create public/422.html
create public/500.html
create public/index.html
create public/favicon.ico
create public/robots.txt
create public/images/rails.png
create public/javascripts/prototype.js
create public/javascripts/effects.js
create public/javascripts/dragdrop.js
create public/javascripts/controls.js
create public/javascripts/application.js
create doc/README_FOR_APP
create log/server.log
create log/production.log
create log/development.log
create log/test.log

Bandwidth comparison table

60

Amount of users Direction Duration Kbps Clips/day Size (Mbytes) Size (Gbytes) MBPS
Very small Download 60 36 50 13.18 0.01 0.001

Upload 60 36 200 52.73 0.05 0.005
Small Download 60 36 500 131.84 0.13 0.012

Upload 60 36 2000 527.34 0.51 0.049
Optimistic Download 60 36 50000 13,183.59 12.87 1.221

Upload 60 36 200000 52,734.38 51.50 4.883
Very optimistic Download 60 36 5000000 1,318,359.38 1,287.46 122.070

Upload 60 36 20000000 5,273,437.50 5,149.84 488.281
Nonsense Download 60 36 500000000 131,835,937.50 128,746.03 12,207.031

Upload 60 36 2000000000 527,343,750.00 514,984.13 48,828.125

Very small Download 120 36 50 26.37 0.03 0.002
Upload 120 36 200 105.47 0.10 0.010

Small Download 120 36 500 263.67 0.26 0.024
Upload 120 36 2000 1,054.69 1.03 0.098

Optimistic Download 120 36 50000 26,367.19 25.75 2.441
Upload 120 36 200000 105,468.75 103.00 9.766

Very optimistic Download 120 36 5000000 2,636,718.75 2,574.92 244.141
Upload 120 36 20000000 10,546,875.00 10,299.68 976.563

Nonsense Download 120 36 500000000 263,671,875.00 257,492.07 24,414.063
Upload 120 36 2000000000 1,054,687,500.00 1,029,968.26 97,656.250

Table 9.1: Encode quality and bandwidth

6
1

	Introduction
	Definition of the problem
	Document Organization
	Motivation

	Background - Audio on the web
	Media
	Possibilities of audio on the web

	Technology survey - Services and media
	Considerations
	HearMe Web Service
	What is a Web Service?
	RESTful Web Services
	Ruby on Rails

	Voice on the web technology
	Hardware
	Software

	Data Storage
	File type and compression
	Hardware storage architecture

	System Design - HearMe and TellIt
	Introduction
	Purpose and readers

	Requirements
	Functional Requirements (TellIt)
	Quality Requirements (TellIt)
	Functional Requirements (HearMe)
	Quality Requirements HearMe

	Use cases
	Architecture overview
	HearMe Player/Recorder Client
	HearMe Stream Server
	HearMe Web Service

	HearMe API
	Audio resource

	HearMe Player
	Interface
	Player Architecture
	Web Page integration

	Hearme Recorder
	Interface
	Recorder Architecture
	Web Page integration

	Evaluation and future work
	Evaluation
	Deployment experiences

	Future work
	Rich recorder client
	Scalability

	Summary and conclusions
	Apendix
	Source code
	HearMe system

