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CHAPTER1
Introduction

The one physical system, the
brain, contains an accurate
working model of the other [...].
Not just a superficial image of it,
though it contains that as well,
but an explanatory model,
embodying the same
mathematical relationships and
the same causal structure. Now,
that is knowledge. [...] So, the
laws of physics have this special
property, that physical objects as
unlike each other as they could
possibly be, can nevertheless
embody the same mathematical
and causal structure and to do it
more and more so over time. So
we are a chemical scum that is
different.

David Deutch

Although the rules of quantum mechanics are well understood, the emergent
behavior of large collections of quantum components continues to reveal surprises.
One-dimensional systems are particularly fruitful in this respect.

Intuitively, there is at least one reason why many-particle physics in one
space dimension should be qualitatively different from two or more dimensions:
particles have no room to pass each other. This, combined with simplifying
constraints due to the reduced dimensionality, seems to lie at the heart of many of
the quirks of one-dimensional physics which are now rooted in deep and elaborate
mathematical theory. Let us try to give an overview of some of the important
features without diving too deep.
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1. Introduction

The strong effects of interactions become apparent when one considers a
gas of almost free particles. In fact, the somewhat artificial limit of truly free
particles does not care much whether we are in one, two or three dimensions.
But in gradually introducing interactions the low-energy physics will change in a
dramatically different way for dimension d = 1 compared to higher dimensional
counterparts.

Let us start by imagining a gas of bosons. Whereas in higher dimensions the
Bose-Einstein condensate persists in the ground state upon introducing repulsive
interactions, in one dimension the condensate is immediately destroyed leading
(there is no longer a macroscopic occupation of a single one-particle state). One
often states that order is melted due to quantum fluctuations, and this is an
instance of the Mermin-Wagner theorem at play which states that this effect is
general in preventing one-dimensional systems to attain long-range order.

Considering fermions on the other hand, the free system is characterized by
a Fermi-sea ground state and the low-energy physics is understood in terms of
particle and hole excitations. Turning on interactions, the spectral properties—as
measured by absorption and emission experiments—in higher dimensions are still
very similar but with sharp δ functions for the allowed energy versus momentum
values of excitations replaced by broadened Lorentzians. On the contrary, in one
dimension some regions of the energy-momentum plane are still strictly forbidden
by the restrictions of one-dimensional kinematics (two-body elastic scattering
cannot change the momenta) while on the non-forbidden side of the thresholds
characteristic power-law singularities emerge. Power-laws also characterize the
real space correlations, differently from d > 1.

Another effect of the lack of room in 1d appears when we consider particle
statistics. While in three dimensions particles are either bosons or fermions,
which has to do with the many-body wave function being symmetric or anti-
symmetric when exchanging particles, in 2d and 1d the situation drastically
changes. Intuitively one can explain this as follows: in order to test what happens
to the wave function of a many-body system upon interchanging the constituent
particles there should be a physical process responsible for this interchange with-
out otherwise disturbing the system. This means that the particles should be
kept far apart so that there is no influence of interaction effects. In two dimen-
sions this is possible, but performing the exchange clockwise or counter clockwise
is not equivalent leading to a plethora of exotic braid statistics and the corre-
sponding particles are named anyons. In one dimension the situation is even
more severe as no process is imaginable in which the particles are interchanged
without interacting. This arguably removes all meaning from the concept of
particle statistics and hence the names ‘fermion’ or ‘boson’, or at least makes
particle statistics and interaction effects inseparably intertwined. While at first
sight this may seem like a rather esoteric observation, it turns out that in the
theory of one-dimensional systems this is of tremendous practical use as will be
seen in the numerous times that we can freely map a problem formulated in
terms of bosons to one in terms of fermions or vice versa (or even somewhere in
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1.0.

between) resulting in the necessary simplification to come to a solution.

Finally, let us mention the effect of spin-charge separation. This entails that,
for example, adding an electron to a quantum wire its spin and charge quan-
tum numbers can be carried separately by the system and may propagate with
different velocities. While this may seem counter-intuitive at first, it is easily
illustrated by a toy model why this can happen in one dimension and not in
two or three: Consider a half-filled anti-ferromagnetically ordered lattice of elec-
trons. Let us remove an electron (this is slightly easier to visualize than adding
an electron but the logic is the same). If we try to separate the resulting charge
and spin excitation in 1d there is no additional energy cost, but in a 2d or 3d
lattice there will be a string or sheet excitation in the magnetic order of which
the energy increases with size, hence spin and charge excitation are confined to
each other [9] (see Fig. 1.1).

Figure 1.1: Illustration of the possibility of spin-charge separation in 1d in a toy
model. Top: In a 2d system, trying to separate the spin and charge excitation
leads to a domain wall in the anti-ferromagnetic spin order with an energy penalty
proportional to its length. Bottom: In 1d the energy cost of a spin and charge
excitation does not increase if we seperate them from eachother indicating the
possibility that they are carried seperately by the system.

These character traits of the one-dimensional quantum world will be pervasive
in the theoretical considerations presented in this thesis. They are present in the
rich collection of models and theoretical concepts that one-dimensional physics
is exceptionally blessed with. Important will be so called quantum integrable
models, the Bethe ansatz and conformal field theory. Just from a mathematical
perspective, these are of outstanding beauty and deserve extensive investigation.
They form the cornerstone of our understanding of one-dimensional physics,
where the philosophy of John von Neumann should be kept in mind [10]:

13



1. Introduction

The sciences do not try to explain, they hardly even try to interpret,
they mainly make models. By a model is meant a mathematical
construct which, with the addition of certain verbal interpretations,
describes observed phenomena. The justification of such a mathe-
matical construct is solely and precisely that it is expected to work.

Recent developments in experiments have put actual testing of the models
of one-dimensional systems within reach (or sometimes even already in the pub-
lished literature). Particularly the developments in ultra cold atomic gases in
optical lattices [11] have put near-perfect realizations of textbook models in the
hands of experimentalists in the lab. While the main chunk of this thesis is
concerned with theoretical considerations sometimes supported by numerical ev-
idence, the current convergence of theory and experiment is definitely one of the
motivations behind this research.

1.1 This thesis
If this thesis was a Chinese syllable it would be in a superposition of the second
(´) and third (ˇ) tone. We start with low-energy equilibrium theory for one-
dimensional (with one two-dimensional exception) quantum many-body systems
while ending with high-energy out-of-equilibrium problems. Furthermore, we
start with high level theory, progressing to down-to-earth experimental consider-
ations and ending with more ivory-tower theory again. All in all it represents a
collection of results mostly from the perspective of effective field theory and rea-
soning rooted in Bethe ansatz methods. While some questions are clearly related
to experimental situations and sometimes we touch on fundamental questions in
theoretical physics such as on the equilibration of closed quantum systems, other
times this research is more of an exploration of the theoretical methods that to-
gether form the fabric of our understanding of the quantum world of many par-
ticles to see how they uphold in slightly non-standard situations. Bethe ansatz
solvable (or quantum integrable) models are a perfect theoretical laboratory in
this respect.

The thesis is written in such a way that all chapters can be read indepen-
dently, which is part of the reason that it has become pretty lengthy. As a guide
to the reader, let us outline the content of each chapter.

In chapter 2 we will start with a more elaborate introduction to one-dimensional
quantum liquids and the techniques we will use to study them. This can be con-
sidered as a short review of the relevant literature. The most important concept is
that of a nonlinear Luttinger liquid by which we mean a one-dimensional quan-
tum liquid treated beyond the Luttinger liquid approximation, i.e. including
dispersion curvature effects.

Chapter 3 deals with nonlinear Luttinger liquids with a boundary. Here, we
combine the newly developed theory of nonlinear Luttinger liquids with the clas-
sic problem of having a boundary (i.e. a sudden potential barrier representing
the end of, say, a quantum wire) in a one-dimensional system. It is shown that

14



1.1. This thesis

adjusting the techniques used for Luttinger liquids with a boundary leads to
predictions for time-dependent correlations which are different when measured
in the bulk or at the boundary of the system. Similar to the properties described
well within the Luttinger liquid approximation, the defining quantities for the
band curvature effects show certain universal relations between bulk and bound-
ary which can be used for experimental verification of nonlinear Luttinger liquid
physics. We have tested these results in numerical simulations for integrable
models. For non-integrable models with a boundary the predictions from non-
linear Luttinger liquid theory are considerably weaker for the boundary than for
the bulk and we comment on the underlying mechanisms for this observation.

In chapter 4 we discuss an experimental system of self-organized atomic wires
which form on a germanium surface after deposition of evaporated gold. Due
to the highly anisotropic structure the hopes were high for finding effective one-
dimensional conduction channels resulting in Luttinger liquid physics. Although
certain experimental signatures seemed to point to hallmark Luttinger liquid
predictions we show that exhaustive experimental investigations negate a one-
dimensional scenario and put forward a two-dimensional scenario as most likely
for the electron dynamics at the surface. By studying simple tight-binding models
and reasoning based on the literature on disordered systems we argue that the
observed characteristics are most likely caused by an interplay of disorder and
interactions of the anisotropic 2d system rather than by one-dimensionality.

Changing gears a bit towards the study of out-of-equilibrium models, we
discuss theoretical results pertaining Bragg pulse experiments and the quantum
Newton’s cradle setup of the group of David Weiss [12] in chapter 5. Apart
from modeling the experimental situation relatively closely—be it for a limited
parameter regime of strong interactions and very short single pulses—this study
provides an interesting case to test different approximations and techniques.
We combine results based on a local density approximation, integrability and
nonlinear Luttinger liquid theory in obtaining measurable quantities.

Taking the quantum Newton’s cradle as an inspiration, in chapter 6 we study
a certain class of states in the Lieb-Liniger model for a one-dimensional gas of
bosons and the XXZ model for a one-dimensional quantum magnet which share
with the Bragg pulsed state that they consist of pockets of particles traveling
with a certain mean momentum, but they have zero entropy density just like the
ground state as if these pockets were completely cold. Their similarity with the
ground state gives them a certain theoretical appeal and many of the techniques
fit for the ground state can be generalized for this class of states. In the Bethe
ansatz solution these states are represented by consecutive blocks of completely
filled quantum numbers as if the ground-state Fermi sea configuration is split. For
this reason we refer to such a state as a Moses sea. Dynamic response functions,
static correlations and time-dependent correlations are computed using Bethe
ansatz and a multi-component Luttinger liquid theory as well as a nonlinear
Luttinger liquid theory developed for the appropriate correlations.

Fixing the parameters of an effective field theory for Bethe ansatz solvable

15



1. Introduction

models often proceeds by studying the finite-size corrections to the energy of low
lying excitations. We extend this strategy in chapter 7 to Moses seas and show
that general finite size corrections can be obtained for these states. This high-
lights the importance of the phase shifts at the effective Fermi points, a conclu-
sion which has become clear in equilibrium systems by the recent developments
in nonlinear Luttinger liquid theory. It gives the mathematical justification of
certain results that were found in chapter 6 and fine-tunes our understanding the
effects of the Hamiltonian time-evolution versus the reorganization of the state
upon addition or removal of a particle or density fluctuation in correlations.

Finally, chapter 8 offers concluding remarks.
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CHAPTER2
One-dimensional quantum fluids

The career of a young theoretical
physicist consists of treating the
harmonic oscillator in
ever-increasing levels of
abstraction.

Sydney Coleman

In this chapter we embark on the study of one-dimensional quantum fluids.
Typical applications one should have in mind are the description of electron
liquids in quantum wires, Bose gases in elongated optical traps or spin chains as
formed effectively in certain materials. We will touch upon certain microscopic
models first—in particular those which are integrable—but we will quickly shift
attention to effective-field-theory methods which are able to capture universal
properties irrespective of the microscopic realization.

This chapter serves as an introduction to the ideas and techniques which will
feature in the continuation of this thesis. We will not be able to do justice to
all the facets nor to the interesting historical development of these ideas and the
topic of quantum physics in one dimension. The marvelous book [9] serves as the
basic reference for everything one-dimensional which predates the development
of nonlinear Luttinger liquid theory. The review [13] takes over this role for
the more recent developments. The pedagogical papers [14, 15] are also highly
recommended. The reader is referred to these works for a much better discussion
of the physical and historical background including all the relevant references.

2.1 Microscopic models and observables
Consider a gas of bosons confined to a one-dimensional tube. At low energies,
when transverse fluctuations freeze out, one expects a model Hamiltonian of the
general form

H =
~2

2m

∫
dx ∂xΨ†(x)∂xΨ(x)+

∫
dxdyΨ†(x)Ψ†(y)V (|x−y|)Ψ(x)Ψ(y) (2.1)

17



2. One-dimensional quantum fluids

to capture the physics well. Here x, y are coordinates along the tube, Ψ(†)(x)
annihilates (creates) a boson at position x and V (|x−y|) is an effective interaction
potential. For short range interactions and long length scales one moreover can
imagine that a substitution V (|x−y|) ∝ δ(x−y) is allowed. Indeed, the resulting
Lieb-Liniger model

HLL =
~2

2m

∫
dx
[
∂xΨ†∂xΨ + cΨ†Ψ†ΨΨ

]
, (2.2)

is a good low-energy description of three-dimensional bosons confined to elon-
gated traps. It has been shown that the coupling constant in that case can be
expressed in terms of the one-dimensional scattering length, c = −2/a1D [16–18],
which is related as a1D ≈ −a⊥(a⊥/a3D − 1.0326) to the oscillator length of the
confining potential a⊥ and the three-dimensional scattering length a3D. In cold
atoms the three-dimensional scattering length is in fact variable by means of
Feshbach resonance [11] leading to a versatile experimental platform to study
properties and regimes of the Lieb-Liniger model.1

As Lieb and Liniger noted and exploit in their seminal paper [19] in which
they formulated and solve the model that carries their names, the Hamiltonian
HLL in Eq. (2.2) can be diagonalized by Bethe ansatz. This technique, first
employed by Hans Bethe [20] to solve the Heisenberg spin chain

HXXX =
∑

j

[Sxj S
x
j + Syj S

y
j + Szj S

z
j − hSzj ] (2.3)

constructs the eigenstates in terms of scattering states of suitably chosen ‘parti-
cles’.

The Lieb-Liniger model for a one-dimensional Bose gas and a slight general-
ization of Eq. (2.3) known as the XXZ model,

HXXZ =
∑

j

[Sxj S
x
j + Syj S

y
j + ∆Szj S

z
j − hSzj ], (2.4)

will be our theoretical laboratory. As excellent ‘experimental’ setups beseem,
these models—thanks to there their exact solution—allow to extract a great
deal of information with excellent control.

The N -body wave functions of Bethe ansatz solvable models are completely
determined by the two-particle scattering phase shifts θ(λ) due to the property
of non-diffractive scattering, closely related to the notion of quantum integra-
bility [21].2 This leads to a classification of states in terms of rapidities {λj}

1We will put ~ = 1 throughout this thesis and usually consider m = 1/2 for the Lieb-Linger
model. The strength of interaction in this model is determined by the dimensionless parameter
γ = c/ρ0, but we usually put the mean density to be unity ρ0 = 1.

2Quantum integrable systems are supposed to be the quantum counter part of classical
integrable systems [21] but the discussion of what should be the precise definition of quantum
integrability is still open [22].
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2.1. Microscopic models and observables

(quasi-momenta). A quantization condition enforced by choosing (anti-)periodic
boundary conditions in the finite system of length L leads to the so-called Bethe
equations which can generically be written (in logarithmic form) as

p0(λj)L+

N∑

k=1

θ(λj − λk) = 2πIj . (2.5)

Here, the quantum numbers Ij can be chosen as integers or half-odd integers
depending on the number of particles N and possibly subject to some constraints.

The origin of Eq. (2.5) can be easily understood: A particle j traversing
the circle of circumference L on which we have placed our system, will acquire a
phase determined by its momentum p0(λj) as well as a scattering phase from the
interaction with the N−1 other particles on the ring. In the case of diffractionless
scattering the latter is just the sum of the two-body phase shifts θ(λj − λk).
The Bethe equations simply state that that in order to satisfy the periodicity
condition the phase associated to the momentum plus the total scattering phase
should add up to 2π times a (half-odd) integer.

In many considerations, the information of the specific model can be put into
the momentum function p0(λ) and scattering phase shift θ(λ) while the form of
Eq. (2.5) remains valid. This allows manipulation of the solution in a uniform
fashion where specialization to the model at hand can be done in the final steps.
This technique is particularly fruitful in discussing results in the thermodynamic
limit (N,L → ∞ with N/L fixed) and in discussing thermodynamic quantities
in which case the Bethe equations become integral equations and a powerful
formalism to derive analytic and numeric results exists [23–25].

Note that while experimental realizations may no longer be validly described
by the Lieb-Liniger or XXZ models at high energies, the accessibility of the
full Hilbert space has many interesting theoretical consequences. High-energy
properties can for example in principle be studied just as well as the physics of the
ground state, opening up the way to the study of out-of-equilibrium and dynamic
effects in an exact manner which are often out of reach for other theoretical
methods. This will play an important role in this thesis.

Closer to the traditional questions of condensed matter physics is the use of
a complete basis in the computation of correlation functions encoding observable
quantities which can be probed by experiment. In experiments one often probes
the system by an external source of for example photons, neutrons or electrons.
The linear response is then governed by the Kubo formula and be expressed in
terms of space and time dependent correlation function of the form C(x, t) =
〈O†(x, t)O(0, 0)〉 or alternatively by its Fourier transform C(k, ε) encoding the
energy and momentum resolved signal. Here O denotes some local operator
which couples to the perturbing field, such as O = ρ or O = Ψ. Having access to
the complete basis |α〉 allows in principle to compute such quantities, for example
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2. One-dimensional quantum fluids

by evaluating the Lehmann expansion

C(k, ε) ∝
∑

α

|〈α|O|0〉|2δ(ε− Eα + E0)δ(k − Pα + P0). (2.6)

Although formally an insightful way of representing correlations, practically the
evaluation of Eq. (2.6) is highly nontrivial. In the case of XXZ and Lieb-Liniger,
efficient determinant expressions for matrix elements combined with heuristics
on the behavior of matrix elements of local operators are implemented in the
ABACUS algorithm [26] in order to select a large but finite number of terms in
the sum which nevertheless account for the correlation function to great accuracy.
In this thesis, most of the time we will be concerned with effective field theory
methods to compute correlations but these are often compared to results obtained
with ABACUS or sometimes other numerical methods.

The depth and extent of Bethe ansatz related topics and techniques, and the
theme of quantum integrability reach far beyond the limited scope of this thesis.
The book [24] serves as a standard reference for what will be used here. Other
textbooks for this material include [23,27,28].

2.2 Luttinger liquid theory
A common strategy in physics is to focus on the long wavelength and long time-
scale properties of physical systems in order to capture the universal aspects
which are often independent of more short-distance details. One-dimensional
systems form a very interesting testing ground for this approach. On the one
hand, such effective-field-theory methods are fantastically successful for one-
dimensional systems. On the other hand, a naive implementation turns out
to miss essential features when it comes to dynamics. Fortunately, the existing
integrable models provide a platform that makes accurate tests of approximate
techniques possible.

2.2.1 The Tomonaga-Luttinger Hamiltonian

In dimensions two and higher, an interacting Fermi gas can to first approximation
be modelled as free fermions with renormalized paramaters. This is roughly the
content of Landau’s Fermi liquid theory [29]. We understand now that the free
fermion field theory is a fixed point of the renormalization group (RG) flow and
repulsive interactions are an irrelevant perturbation.

For one-dimensional systems, it was Haldane [30, 31] who noted that it is
rather the Tomonaga-Luttinger Hamiltonian [32, 33] than free fermions which
plays the role of the appropriate fixed point model in this case. While interactions
are inherent to this model it is still completely solvable by a mapping central to
this thesis known as bosonization. In analogy with the higher dimensional case
Haldane coined the term ‘Luttinger liquid’ and we will consider Luttinger liquid
theory to mean describing the physics of some other physical system or model by
using calculations and reasoning based on the Tomonaga-Luttinger model [see
Eqs. (2.7), (2.11), (2.14)].
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2.2. Luttinger liquid theory

The Tomonaga-Luttinger (TL) model for spinless fermions is formulated in
terms of two branches of chiral fermions

HTL = vF

∫
dx{:ψ†R(−i∂x)ψR : + :ψ†L(i∂x)ψL :}

+

∫
dx{(g4/2)[ρRρR + ρLρL] + g2ρRρL} (2.7)

where the colons denote normal ordering with respect to a Dirac sea for the right
and left moving fermions ψR,L, where ρR,L =: ψ†R,LψR,L : and vF is the Fermi
velocity.

The TL model is somewhat artificial. In the context of Luttinger liquid theory
it should be considered an approximation to a more realistic model for which the
fermion field ΨF is projected onto small sub-bands around the Fermi momenta
±kF according to

ΨF ∼ eikF xψR + e−ikF xψL. (2.8)

The fields ψR,L thus capture the long wavelength properties corresponding to
low-energy excitations on the ground state. The effective interaction parameters
g2,4 can be perturbatively related to the Fourier components of an interaction
potential V (|x − y|) as g4 = V0, g2 = V2kF , but beyond weak interactions these
have no real physical meaning.

The crucial approximation made to arrive at Eq. (2.7) from a more general
model is that of linear dispersion. This is expected to be a valid approxima-
tion as long as the physics is determined by excitations involving momenta very
close to the Fermi points ±kF . In fact, only quantities determined by zero-
momentum excitations in the thermodynamic limit are faithfully reproduced by
the TL model. As we will see, this is true for static correlations and corresponds
to certain terms of time-dependent correlations but not all. The identification of
certain additional finite-momentum excitations contributing to time-dependent
correlations will be part of nonlinear Luttinger liquid theory which will be dis-
cussed later on. We will discuss more on the relation of a microscopic model to
the TL Hamiltonian in the next section.

Apart from assumptions on the dispersion, the TL model clearly also deals
with a very specific ultra-local interaction. A momentum dependence of the
interaction parameters g2,4 → g2,4(k) can be taken into account and still leads
to a solvable model, but the long-distance behavior is the same when we identify
g2,4 = g2,4(k = 0).3

3One technical subtlety is that a suitable regularization procedure needs to be employed to
take care of UV divergences which could also be taken care of by an appropriate momentum
dependence. Studying out-of-equilibrium properties has been done for TL models with varying
momentum dependence of the interaction [34,35] where it was used to argue in favor of universal
behavior if a quantity did not depend on the specific choice of momentum dependence.
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2. One-dimensional quantum fluids

In writing Eq. (2.7) we have left out the Umklapp interaction term

δHλ = λ

∫
dx
[
e−i4kF x :ψ†Rψ

†
RψLψL : +ei4kF x :ψ†Lψ

†
LψRψR :

]
(2.9)

which may be generated for lattice systems but which is highly fluctuating unless
we are at commensurate fillings 4kF = 4πρ0 = 0 mod 2π. In case δHλ becomes
relevant (in the renormalization group sense) it is responsible for opening a gap.
We will be mostly interested in the case where this does not happen and we can
safely omit δHλ from the effective Hamiltonian. We understand ‘one-dimensional
quantum liquids’ as the collection of one-dimensional gapless systems, which can
however consist of bosons, fermions or spins.

We have left out any spin degrees of freedom thus far. In case one wants to
study physical electron systems or for example the Hubbard model

HHu = − t
2

∑

j;σ

(
c†jσcj+1σ + c†j+1σcjσ

)
+ U

∑

j

nj↑nj↓ (2.10)

by effective-field-theory methods, spin becomes obviously an important property.
The spinful Tomonaga-Luttinger model is defined by the Hamiltonian

H
(s)
TL =

∑

a;σ

savF :ψ†aσ(−i∂x)ψaσ : +
1

2

∑

aσ;a′σ′

gaσ,a′σ′ρaσρa′σ′ (2.11)

(with a = R,L; sR,L = ±1; σ =↑, ↓) which is exactly solvable in terms of decou-
pled spin and charge models [under the assumption of spin symmetry (↑ ↔ ↓)
and the general inversion symmetry (R ↔ L, x ↔ −x)]. This property of spin-
charge separation is expected to be general for the low-energy modes of generic
models and persists at high energies for the Hubbard model [28]. The resulting
spinon and holon Hamiltonians are of the Tomonaga-Luttinger form again, but
the details of the interaction generically lead to different effective velocities of
spinon and holon modes.

Most of our discussions will be based on the spinless model. As the spin
and charge parts of the spinful model are separately described by a Tomonaga-
Luttinger Hamiltonian as well, many results can easily be translated to the
spinful case although care should be taken in details concerning the effective
parameters.

2.2.2 Bosonization

Let us now outline the way to solve and derive consequences from the TL
model (2.7). The crucial ingredient is the bosonization identities

ψR,L =
κR,L√

2πη
e−i
√

2πφR,L , ρR,L = ∓ 1√
2π
∂xφR,L. (2.12)

Here, κR,L are so-called Klein factors lowering the number of right/left movers
leaving particle-hole excitations on the Dirac sea in tact, η is a small-distance
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2.2. Luttinger liquid theory

scale related to the regularization of the TL model and φR,L are bosonic fields
with the commutation relations

[∂xφR,L(x), φR,L(y)] = ±iδ(x− y), [φR(x), φL(y)] = 0. (2.13)

The equations in (2.12) can be derived in finite size as rigorous operator identities
making use of the properties of the Dirac sea ground state of the free TL model
g2,4 = 0 but—importantly—not of the properties of the strictly linear dispersion
[30, 36]. This is essential in justifying the inclusion of dispersion curvature in
the bosonized model, which is important in going beyond the Luttinger liquid
approximation. Bosonization dates back to the early days of quantum mechanics
when Bloch [37] used that the similarity of the spectrum of one-dimensional
fermions and a harmonic chain to study x-ray diffraction. See [38] for a nice
historical introduction and additional references.

Solving for the eigenstates of Hamiltonian HTL is straightforward making use
of another consequence of bosonization, : ψ†R,L(∓i∂x)ψR,L : = (1/2)(∂xφR,L)2,
which reveals that the interacting fermionic Hamiltonian HTL is quadratic in
terms of the bosonic fields and can be written as

HTL =
v

2

∫
dx

[
1

K
(∂xφ)2 +K(∂xθ)

2

]
, (2.14)

where we defined θ, φ = (φL ± φR)/
√

2 and

v = vF
√

(1 + g4/(2πvF ))2 − (g2/(2πvF ))2, K =

√
2πvF + g4 − g2

2πvF + g4 + g2
. (2.15)

Here v is the effective velocity of propagating density modes and K is related to
the compressibility and is the single effective interaction parameter. For weak
interactions K ≈ 1− (V0 − V2kF )/2πvF .

It is useful to define the rescaled fields ϑ, ϕ by φ =
√
Kϕ and θ = ϑ/

√
K and

correspondingly

φR,L =

(
K−1/2 +K1/2

2

)
ϕR,L +

(
K−1/2 −K1/2

2

)
ϕL,R, (2.16)

in terms of which the Hamiltonian HTL in Eq. (2.14) is brought back to the form
at the non-interacting point K = 1.

Correlation functions are then straightforward to compute using that

〈
eiα
√

2πφR,L(x,t)e−iα
√

2πφR,L(0,0)
〉

=

[
η

i(vt± x− i0)

]α2

. (2.17)

The strategy in using the TL model to compute physical quantities is now to
write the required correlation functions in terms of the chiral fermions ψR,L using
a projection of the form in Eq. (2.8), applying the bosonization identities to write
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2. One-dimensional quantum fluids

it in terms of the bosonic fields and then use Eqa. (2.16) and (2.17) to compute
the result. The expectation is that this reproduces correct asymptotics x→∞ of
correlations, which are determined by the states close to the Fermi momentum.
As an example, we state the results for density-density correlations function

〈ρ(x)ρ(0)〉
ρ2

0

∼ 1− K

2(πρ0x)2
+
A1 cos(2kFx)

(ρ0x)2K
(2.18)

based on the projection ρ(x) ∼ ρ0− ∂xφ(x)/
√
π+
√
A1 cos(2kFx−

√
πφ(x)) and

identifying η = ρ−1
0 as a natural short distance scale. Here, A1 is a non-universal

prefactor dependent on the short-distance physics which does not follow from
the bosonization identity but has to be fixed independently, for example from
the finite-size scaling of certain matrix elements [39–41]. The similar result for
the one-body density matrix is

〈Ψ†F (x)ΨF (0)〉
ρ0

∼ C0 sin(kFx)

(ρ0x)K/2+1/(2K)
(2.19)

following from the projection in Eq. (2.8).
In principle, all ingredients for the calculation of physical correlations using

the Luttinger liquid approach are outlined above, but let us make a few conclud-
ing remarks.

Consider again the projection of the fermionic operator in Eq. (2.8). In words
this equation states that, in projecting a physical annihilation operator onto the
low-energy subspace, we need only to keep the modes near ±kF . While these
are indeed expected to lie in the low-energy subspace, some other low-energy
configurations are not be well-captured by retaining only the modes around ±kF ,
namely configurations obtained by adding so called ‘Umklapp excitations’ which
correspond to taking particles from left to right Fermi point or vice versa. While
in a free theory such states are never created by a single particle tunneling out
of the system (which is how we interpret the application of the operator ΨF ), in
an interacting theory such configurations can be important and one needs to do
a more general projection of the Fermi operator which can be roughly thought

of as ΨF |k≈(2n+1)kF
∼ ei(2n+1)kF x

[
ψ†LψR

]n
ψR (for positive n) or in bosonized

form

ΨF |k≈(2n+1)kF
∼ ei(2n+1)kF xei

√
2π[nφL−(n+1)φR]. (2.20)

The higher n components usually lead to subdominant contributions, but not
always. See [31] and [9, 13] for further details.

Next, suppose we are interested in calculating correlations for a bosonic model
rather than a fermionic model, such as for Lieb-Liniger. Then one uses a Jordan-
Wigner string to map between bosonic and fermionic operators

ΨB(x) = exp

(
−iπ

∫ x

dy ρ(y)

)
ΨF (x) (2.21)
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2.3. Nonlinear Luttinger liquid theory

and bosonization of the density operator ρ(x) = kF /π+∂xφ/
√
π in the exponent

leading to ΨB ∼ e−i
√
πθ (neglecting terms corresponding to momenta close to

2nkF similar to the additional Umklapp terms for fermions). This way, one
bosonizes the bosonic operator after which the computation of correlations can
proceed as in the fermionic case. The bosonization formula can equivalently be
derived following Haldane’s seminal harmonic fluid approach [31], expressing the
bosonic field in a phase-density representation ΨB =

√
ρ exp(−i√πθ).

Note that the Jordan-Wigner string leads to a vertex operator similar to the
ones appearing in the bosonization. In general, string operators of the form

exp

(
−i2πα

∫ x

dy ρR,L(y)

)
= exp

(
±iα
√

2πφR,L(x)
)
. (2.22)

will play an important role in dealing with the effective low-energy theory beyond
the TL approximation.

Using above two remarks, one may compute the full scope of Luttinger liquid
predictions for single-component bosons or fermions, like

〈Ψ†F (x)ΨF (0)〉
ρ0

≈
∑

m≥0

Cm sin[(2m+ 1)kFx]

(ρ0x)(2m+1)2K/2+1/(2K)
, (2.23)

〈Ψ†B(x)ΨB(0)〉
ρ0

≈
∑

m≥0

Bm cos[2mkFx]

(ρ0x)2m2K+1/(2K)
, (2.24)

〈ρ(x)ρ(0)〉
ρ2

0

≈ 1− K

2(πρ0)2
+
∑

k≥1

Am cos(2mkFx)

(ρ0x)2m2K
. (2.25)

One is of course not restricted to consider static correlations in the Tomonaga-
Luttinger model. Inclusion of time dependence amounts to substituting x →
x∓vt in the correlations for the free bosonic fields ϕR,L as is clear from Eq. (2.17).
We note however that, while static correlations of physical models are accurately
represented by Luttinger liquid theory, the situation for time-dependent correla-
tions is more subtle (see Sec. 2.3).

2.3 Nonlinear Luttinger liquid theory
The past decade has seen some dramatic advances in understanding band cur-
vature effects in one-dimensional quantum liquids. This section deals with a
few of the techniques and insights that have evolved in treating this problem,
which we will collectively call nonlinear Luttinger liquid theory. One of the key
observations is that many physically interesting quantities are determined by
the modes close to the Fermi points, adequately described by the Tomonaga-
Luttinger Hamiltonian, interacting with a single high-energy particle or hole,
with physics analogues to the X-ray edge singularity. This pertains to the late
time and long distance asymptotes of correlations, which are directly related to
the singular features in the momentum and energy domain of the corresponding
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2. One-dimensional quantum fluids

Fourier transform. The latter have most often been the focus of recent devel-
opments, in particular dynamic response functions such as the spectral function
and dynamic structure factor. We will adopt this perspective in this section and
consider the problem of computing features of these functions. The behavior of
space and time dependent correlations can then be viewed as a corollary of these
by taking the appropriate Fourier transforms in a saddle-point approximation.

2.3.1 Dynamic response functions

The probability of a particle to tunnel into or out of the system in a momentum
and energy conserving tunneling event is encoded in the spectral function A(k, ε).
It can be defined as

A(k, ε) = − 1

π
ImG(k, ε) sgn ε (2.26)

where G(k, ε) is the time-ordered Green’s function

G(k, ε) = −i
∫
dtdx ei(εt−kx)〈TΨ(x, t)Ψ†(0, 0)〉. (2.27)

We will focus exclusively on the case of zero temperature for which the average
〈. . .〉 is performed in the ground state (for finite temperatures one should average
over the Gibbs ensemble). It is insightful to write down the Lehmann expansion
in terms of a complete basis |α〉 with energies Eα,

A(k, ε > 0) =
1

2π

∑

α

|〈α|Ψ†k|0〉|2δ(ε− Eα + E0), (2.28)

A(k, ε < 0) =
1

2π

∑

α

|〈α|Ψk|0〉|2δ(ε+ Eα − E0), (2.29)

where |0〉 denotes the ground state. For a free system, the ground state consists

of a filled Fermi sea and only final states |α〉 of the form Ψ†k|0〉 for ε > 0 and
Ψk|0〉 for ε < 0 contribute leading to A(k, ε) ∝ δ(ε − ξk). Hence the spectral
function simply represents a δ function peak corresponding to the dispersion of
the model. This holds irrespective of dimension.

Let us now turn on interactions. In dimensions d > 1, interactions generically
renormalize the mass shell ξk and broaden the δ function. Close to the Fermi level
the result is a Lorentzian of which the width (corresponding to the inverse lifetime
τ−1
k of the quasiparticle excitation with momentum k) vanishes as one approaches

the Fermi level such that the lowest energy quasiparticles are infinitely long lived
and a sharply peaked spectral function is recovered. This is one of the main
features of Fermi liquid theory.

Calculations based on the Tomonaga-Luttinger model show that the 1d case
is dramatically different. In the TL model, the spectral function in the vicinity
of kF is [42–46]

A(k, ε) ∝ sgn ε
θ[ε2 − v(k − kF )2]

ε− v(k − kF )
[ε2 − v2(k − kF )2](K+K−1−2)/4. (2.30)
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2.3. Nonlinear Luttinger liquid theory

One finds sharp thresholds with one-sided power-law singularities at ε = ±v(k−
kF ) related to the strictly linear dispersion.

The non-zero value of the spectral function outside of the line ε = v(k − kF )
can be understood in perturbation theory by interpreting the spectral function
as the tunneling probability and considering the processes which may be at play.
In the presence of interactions a particle with energy ε > v|k − kF | may tunnel
into the system by exciting an additional particle-hole pair in the branch of left
movers in order to land on the right moving mass shell ε = v(k− kF ). Similarly,
a particle with energy ε < −v|k−kF | can tunnel out of the system by creating a
right moving hole and a left moving particle-hole pair. Hence, the tunneling of
a single particle into or out of the system creates three excitations, a particle or
hole on one branch and a particle-hole pair on the opposite branch.

This picture is easily extended to the case of non-linear dispersion for which
the bare mass shell of right movers is given by ξk = vF (k−kF )+(k−kF )2/(2m).
The hole mass shell still determines the threshold of the spectral function as
even in the presence of band curvature there is no way a single hole can give
up energy by exciting additional particle-hole excitations. The properties of the
ε > 0 domain on the other hand of the spectral function change drastically: the
threshold is no longer given by the particle mass shell but rather by the inverted
and transposed hole mass shell. The reason is that due to the dispersion non-
linearity a particle with energy below the mass shell can give up both excess
momentum and energy to an additional particle-hole pair landing on the mass
shell but closer to the Fermi point. The lowest energy configuration for ε > 0 and
kF < k3kF for example, consists of a single hole at momentum kF − k and two
particles at kF . Similar reasoning allows to sketch the full domain of support
of A(k, ε) by tracing the lowest energy net particle or hole configuration as a
function of momentum. It turns out that this always correspond to a single high-
energy particle or hole accompanied by additional particles and holes residing
at the Fermi points. One insight of nonlinear Luttinger liquid theory is that
the identification of such configurations extends beyond weak interactions and
this forms the basis of the new phenomenological theory based on the impurity
model.

Next, let us consider the dynamic structure factor (DSF) S(q, ω), measuring
the probability of exciting a density fluctuation with momentum q and energy
ω. The definition reads

S(q, ω) =

∫
dxdt ei(ωt−qx)〈ρ(x, t)ρ(0, 0)〉 (2.31)

or in terms of the Lehmann expansion

S(q, ω) =
1

2π

∑

α

|〈α|ρ†q|0〉|2δ(ω − Eα + E0) (2.32)

where ρ†q =
∑
k Ψ†k+qΨk. For a free model, the support of S(q, ω) for fixed

q can easily be determined by considering the particle-hole excitations on the
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2. One-dimensional quantum fluids

Figure 2.1: Illustration of the spectral function and the tunneling processes defin-
ing the domain of support. a) In the Tomonaga-Luttinger liquid the edges of
support are determined by the strigcly linear dispersion and coincide with the
mass shell for both particles and holes. A particle with energy ε and momen-
tum k within the cone ε > v|k − kF | can tunnel into the system by exciting a
particle-hole pair on the left moving branch. b) Nonlinear dispersion allows a
particle with energy below the mass shell to tunnel onto the mass shell by excit-
ing an addional particle-hole pair on the same branch. The domain of support
for particles with momentum kF < k < 3kF corresponds to the transposed and
inverted hole mass shell.

Fermi sea ground state. For 0 < q < kF the excitations that can be created by
ρ†q correspond to taking a single particle with momentum between kF − q and
kF from the Fermi sea and putting it outside with momentum between kF and
kF + q. The minimum and maximum of the domain of support ω∓ correspond
to the extrema of the excitation energy. For a dispersion ξk without infliction
points, such as for fermions in the continuum with quadratic dispersion relation

ξk = (k2 − k2
F )/2m, (2.33)

the thresholds correspond to a deep hole with momentum kF −q or a high-energy
particle with momentum kF + q. (Note that for example for lattice fermions, the
situation can be slightly more complicated, and there is a type of folding back
of the DSF.) In the case of free fermions with dispersion quadratic ξk, the DSF
can be exactly computed as

S(0)(q, ω) =
m

q
θ(q2/2m− |ω − vF q|). (2.34)

The width of the DSF, δω = q2/m, can be interpreted as the inverse lifetime of
density fluctuations. In the limit m→∞ the width of the box shrinks while its
height increases and one recovers the Luttinger liquid result, S(q, ω) ∝ qδ(ω −
vq), in line with the bosonization solution for which the eigenstates essentially
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2.3. Nonlinear Luttinger liquid theory

correspond to quantized density modes. Note that similarly in the q → 0 limit
the box-shape reproduces the δ function suggesting that the ‘collective’ density
modes correspond to the ‘correct’ quasiparticle excitations in 1d similar to the
‘single-particle’ quasiparticles measured by the spectral function in Fermi liquid
theory.

For the DSF, the edges of the domain of support are easily identified with cer-
tain configurations of particle-hole excitations, even in the noninteracting case.
The upper threshold ω+ corresponding to a high energy particle and a hole re-
siding at the Fermi point, while the lower threshold ω− corresponds to a hole
deep in the Fermi sea while the particle resides at the Fermi point. This suggests
again to treat this problem in terms of a high-energy impurity interacting with
the low-energy Luttinger liquid modes. We will see that this indeed transforms
the step edges into power-law singularities and that for repulsive interactions
the effective attraction between created particle and hole lead to a divergent
singularity at the lower threshold ω− (see Fig. 2.2).

Figure 2.2: The DSF for free fermions. The nonzero value corresponds to the
possibility to excite a particle-hole excitation with momentum q. The threshold
configurations corresponding to the edges of the domain of support are a hole
of momentum kF − q and a particle with momentum kF for the lower threshold
ω− and a particle at kF + k with a hole at kF for the uper threshold ω+. Inter-
actions will change the step edges into threshold singularities. The upper edge
corresponds to the transition to the multi-particle hole continuum for which the
DSF no longer needs to be zero. The lower threshold still represents a true edge
of the domain of support.
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2.3.2 The impurity model

We will now outline computations concerning threshold singularities of dynamic
response functions using an effective impurity model. The model

HMIM = HTL +Hd +Hint (2.35)

with

HTL =

∫
dx
v

2

[
(∂xϕL)2 + (∂xϕL)2

]
(2.36)

Hd =

∫
d xd†(ε− iu∂x)d (2.37)

Hint =

∫
dx

1√
2π

[κL∂xϕL − κRϕR] d†d (2.38)

takes into account all marginal operators for a mobile impurity interacting with
a Luttinger liquid for states with at most one impurity. One can argue in per-
turbation theory [13,47] that

κR,L ≈ Vk∓kF − V0 (2.39)

to first order in the interaction potential. Beyond weak interactions we should
find other means to fix the parameters but the mobile impurity model can be
promoted to a phenomenological theory for the thresholds of dynamic response
functions.

The unitary operator

U = exp

{
−i
∫
dx

1√
2π

[γLϕL − γRϕR]

}
(2.40)

decouples the low-energy modes from the impurity up to irrelevant operators
[48,49] if we identify

γR,L
2π

=
κR,L
u∓ v . (2.41)

One way of seeing this is by computing rotated fields d̄, ϕ̄R,L with

d̄ = U†dU = ei
√

1/2π[γLϕL−γRϕR]d (2.42)

∂xϕ̄R,L = U†∂xϕR,LU = ∂xϕR,L −
√

2πγR,Ld
†d (2.43)

and observing that

HMIM =
v

2

∫
dx
[
(∂xϕ̄L)2 + (∂xϕ̄R)2

]
+

∫
dx d̄†(ε− iu∂x)d̄. (2.44)

Physically, the parameters γR,L correspond to the scattering phase shift between
the high-energy impurity and the modes at the right and left Fermi momentum.
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2.3. Nonlinear Luttinger liquid theory

With the help of Eq. (2.44) the expression of correlations written in terms
of the d̄ and ϕ̄R,L fields becomes straightforward. The computation of dynamic
response functions in the vicinity of threshold singularities proceeds as follows:

1. Identify the threshold configuration of impurity and low-energy modes.

2. Project the physical operators, say Ψ or ρ accordingly onto low-energy and
impurity sub-bands in terms of the operators ψR,L and d.

3. Use bosonization and the rotation by the unitary operator U to express
the correlation in terms of d̄ and ϕ̄R,L and evaluate the expression.

As a concrete example, let us consider the DSF in the domain 0 < q < 2kF
for fermions in the continuum. The lower threshold corresponds to a deep hole
with momentum k = kF − q and a particle at the right Fermi point kF . In order
to compute the DSF we project the density operator therefore as

ρ(x, t)→ eiqxψR(x, t)d†(x, t) + h.c.. (2.45)

where d† is the annihilation operator for the hole (note that with these con-
ventions we have to identify ε = −ω−). This leads us to the express the DSF
according to

S(q, ω)〉 ∼
∫
dxdt eiωt〈ψR(x, t)d†(x, t)d(0, 0)ψ†R(0, 0)〉. (2.46)

The correlator is then written in terms of free bosonic and impurity fields as a
product, which after plugging in the Tomonaga-Luttinger correlator reads

〈d̄†(x, t)d̄(0, 0)〉
(

i

2π[x− vt]

)(√K
2 + 1√

K
+
γR
2π

)2 ( −i
2π[x+ vt]

)(√K
2 − 1√

K
+
γR
2π

)2

(2.47)

Using the impurity correlator 〈d̄(x, t)d†(0, 0)〉 = eiεtδ(x− ut) one finds result

S(q, ω > ω−) ∼
(

δω

ω − ω−

)µ0

(2.48)

with

µ0 = 1−
(√

K

2
+

1√
K

+
γR
2π

)2

+

(√
K

2
− 1√

K
+
γR
2π

)2

. (2.49)

To first order in the interaction this gives µ0 = 1 − (1 + γR/2π)2 − (γL/2π)2 ≈
γR/π ≈ 2(Vq − V0)m/|q|. In the general case the phase shifts γR,L should be
considered phenomenological parameteres to be fixed by independent means.
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2. One-dimensional quantum fluids

As another example computation, consider the spectral function at the hole
mass shell ξk for |k| < kF . The corresponding impurity configuration consists of
a single deep hole hence we project the fermionic operator as

Ψ(x, t)→ eikxd(x, t). (2.50)

The resulting expression for the spectral function is

A(k, ε) ∼
∫
dxdt eiεt〈d†(0, 0)d(x, t)〉 (2.51)

which evaluates to

A(k, ε < ξk) ∼
(

δε

ξk − ε

)µ0,−

, µ0,− = (γR/2π)2 + (γL/2π)2. (2.52)

Note that the exponent is now quadratic in the phaseshifts and hence second
order in the interaction.

The most tricky step in the calculation of the threshold exponents for other
values of momenta is the correct identification of the corresponding impurity
configuration and the projection of the physical operator, ρ(x, t) or Ψ(x, t), ac-
cordingly. For lower threshold of the DSF at momentum qn = 2nkF + q for in-
stance, the density operator should be projected as ρ ∼ e−iqnxψ†R[ψ†RψL]nd+h.c.
for instance, while at the lower threshold for the spectral function at momentum
kn = 2nkF + k one uses Ψ→ eiknx[ψ†LψR]d.

2.4 Conclusion
We have given a short overview of some models and methods important for the
theoretical study one-dimensional quantum liquids. Particular focus has been put
on the existence of quantum integrable models characterized by non-diffractive
scattering of excitations and effective-field-theory methods to compute static
correlations (Luttinger liquid theory) as well as the singular properties of dy-
namic response functions (nonlinear Luttinger liquid theory). Even within these
subjects, many important aspects have been left out. For example, fixing the
parameters of the effective field theory models is an important step in comparing
to experiment or numerics. We have also not discussed the representation of a
low-energy effective field theory in terms of fermionic quasi-particles constructed
by ‘reading the bosonization identity backwards’

ψ̃R,L ∼ e−i
√

2πϕR,L . (2.53)

We hope however to have given a gist of the different approaches, knowing that
excellent explanations exist in the literature, and to have provided enough of an
introduction into the topic to frame the research described in continuation of
this thesis.
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CHAPTER3
Boundary correlations in 1D

The end is nigh.

Man in Oxford Street

In this chapter we study the influence of reflective boundaries on time-dependent
correlations of one-dimensional quantum fluids at zero temperature beyond the
Luttinger liquid approximation. Our analysis is based on an extension of effec-
tive mobile impurity models for nonlinear Luttinger liquids to the case of open
boundary conditions. This chapter is an edited version of Phys. Rev. B 93
195129 (2016) [1].

3.1 Introduction

Striking properties in many-body quantum systems often emerge from the inter-
play between interactions and a constrained geometry. In a Fermi gas confined
to a single spatial dimension, for example, interactions lead to dramatically dif-
ferent spectral properties as compared to its higher dimensional counterparts
described by Fermi liquid theory [42–44,50].

The low-energy limit of one-dimensional (1D) Fermi gases is conventionally
treated within the Luttinger liquid (LL) framework [9]. Indispensable in this
respect is the exactly solvable Tomonaga-Luttinger (TL) model [32, 51], which
allows a nonperturbative treatment of interactions at the cost of an artificially
linearized dispersion relation for the constituent fermions. Using the technique
of bosonization, the model is solved in terms of bosonic collective modes corre-
sponding to quantized waves of density.

Static correlations and many thermodynamic properties are captured remark-
ably well by the Luttinger liquid approach. For many dynamic effects, however,
it is clear that band curvature needs to be taken into account. For example, the
relaxation of the bosonic sound modes, or the related width of the dynamical
structure factor (DSF), are not captured by Luttinger liquid theory, which pre-
dicts a delta function peak for the DSF. Attempts to treat the DSF broadening

33



3. Boundary correlations in 1D

in the bosonized theory, in which the dispersion curvature translates to interac-
tions between the modes diagonalizing the TL model, are hindered by on-shell
divergences in the perturbative expansion. Certain aspects of the DSF broad-
ening can nevertheless be captured in the bosonic basis [52–56]. An alternative
approach uses a reformulation of the TL model including a quadratic correction
to the dispersion in terms of fermionic quasiparticles. In the low-energy limit,
these turn out to be weakly interacting [47,57,58] restoring some of the elements
of Fermi liquid theory in one dimension. At high energies, insight into dynamic
response functions such as the DSF and the spectral function, and in particular
into the characteristic threshold singularities, can be obtained by mapping the
problem to a mobile impurity Hamiltonian. This approach hinges on the ob-
servation that the thresholds correspond to configurations of a high energy hole
or particle which can effectively be considered as separated from the low energy
subband, and that the threshold singularities emerge from the scattering of the
modes at the Fermi level on this impurity mode. This identifies the anoma-
lous correlation structure of 1D gases as an example of Anderson’s orthogonality
catastrophe [59] and links it to the physics of the x-ray edge singularity [48].
Many new results on dynamic correlations, in general and for specific models,
have been obtained this way [15, 47, 60–62, 62–70]. This bears relevance to e.g.
Coulomb drag experiments [53,71–75] as well as relaxation and transport [76–80].
Dispersion nonlinearity also greatly influences the propagation of a density bump
or dip, which would retain its shape when time-evolved under the linear theory
but relaxes by emitting shock waves in the nonlinear theory [81–83]. Closer to
the present work is the late-time dependence of correlations [84–86] which are re-
lated to the singularities in the frequency domain. Collectively, the extensions of
LL theory that include band curvature effects may be called nonlinear Luttinger
liquid (nLL) theory, but we will mainly be concerned with the mobile impurity
approach to correlations (see Ref. [13] for further details).

Motivated by these theoretical advances, we study the effect of reflective
boundaries on a 1D gas beyond the low-energy regime. Our work is also inspired
by studies of “boundary critical phenomena” [87–89] within the LL framework
that have unveiled remarkable effects, e.g., in the conductance of quantum wires
[90–92], screening of magnetic impurities [93], Friedel oscillations in charge and
spin densities [94–96], and oscillations in the entanglement entropy [97,98].

We focus on response functions which can be locally addressed—such as the
local density of states (LDOS) and autocorrelation functions—as these are ex-
pected to show the clearest bulk versus boundary contrast. Many studies have
addressed the LDOS for LLs with a boundary [99–108]. LL theory predicts a
characteristic power-law suppression (for repulsive interactions) of the LDOS at
the Fermi level with different bulk and boundary exponents which are nontriv-
ially but universally related [109, 110]. This has been verified using different
techniques [99,100,106,111] and is used as a consistency check in the experimen-
tal identification of LL physics [112,113].

Away from the Fermi level, no universal results are known. This pertains
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3.2. Green’s function for spinless fermions

both to general statements on the restricted energy range where the power-law
scaling is valid [100,106] and to details of the line shape at higher energies. Here,
we deal with the latter and argue that the nonanalyticities of, e.g., the LDOS
away from zero energy can be understood in the framework of nLL theory for
systems with open and periodic boundary conditions alike. The main application
of our theory is in describing the power-law decay of autocorrelation functions
in real time. We show that bulk and boundary exponents are governed by the
same parameters in the mobile impurity model and obey relations that depend
only on the Luttinger parameter. These relations provide a quantitative test
of the nLL theory. We perform this test by analyzing time-dependent density
matrix renormalization group (tDMRG) [114, 115] results for spin autocorrela-
tions of critical spin chains. The statement about boundary exponents applies
to integrable models in which the nonanalytic behavior at finite energies is not
susceptible to broadening due to three-body scattering processes [15, 47]. The
effects of integrability breaking are also investigated, both numerically and from
the perspective of the mobile impurity model. We find that for nonintegrable
models the finite-energy singularities in boundary autocorrelations are broadened
by decay processes associated with boundary operators in the mobile impurity
model. As a result, the boundary autocorrelation decays exponentially in time
in the nonintegrable case.

The remainder of this chapter is organized as follows. In Section 3.2, we
discuss the LDOS for spinless fermions as a first example of how dynamical
correlations in the vicinity of an open boundary differ from the result in the
bulk. In Section 3.3, we present the mobile impurity model used to calculate
the exponents in the LDOS near the boundary. In Section 3.4, we generalize our
approach to predict relations between bulk and boundary exponents of other dy-
namical correlation functions, including the case of spinful fermions. Section 3.5
addresses the question whether finite-energy singularities exist in nonitegrable
models. Our numerical results for the time decay of spin autocorrelation func-
tions are presented in Section 3.6. Finally, we offer some concluding remarks in
Section 6.7.

3.2 Green’s function for spinless fermions

We are interested in 1D systems on a half-line, where we impose the boundary
condition that all physical operators vanish at x = 0. Let us first discuss the
case of spinless fermions on a lattice. We define the (non-time-ordered) Green’s
function at position x as

G(t, x) = 〈{Ψ(x, t),Ψ†(x, 0)}〉, (3.1)

where Ψ(x) annihilates a spinless fermion at position x and the time evolution
Ψ(x, t) = eiHtΨ(x)e−iHt is governed by a local Hamiltonian H. The brack-
ets 〈. . .〉 denote the expectation value in the ground state of H. The Fourier
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3. Boundary correlations in 1D

transform to the frequency domain yields the LDOS

ρ(ω, x) =
1

2π

∫ ∞

−∞
dt eiωtG(t, x). (3.2)

The boundary case corresponds to the result for x = a, where a is the lattice
spacing for lattice models or the short-distance cutoff for continuum models. We
refer to the bulk case of G(t, x) as the regime x� a and vt < x, where v is the
velocity that sets the light cone for propagation of correlations in the many-body
system [116]. The latter condition allows one to neglect the effects of reflection
at the boundary, and is routinely employed in numerical simulations aimed at
capturing the long-time behavior in the thermodynamic limit [15,64,86,117].

As our point of departure, consider the free fermion model

H0 = −1

2

∑

x≥1

[Ψ†(x)Ψ (x+ 1) + h.c.]

=
∑

k

εkΨ†kΨk, (3.3)

where εk = − cos k, with k ∈ (0, π), is the free fermion dispersion and we set
a = 1. The single-particle eigenstates of H0 are created by

Ψ†k =

√
2

π

∑

x≥1

sin(kx)Ψ†(x). (3.4)

We focus on the case of half filling, in which the ground state is constructed
by occupying all states with 0 < k < π/2. In this case particle-hole symme-
try rules out Friedel oscillations [96] and the average density is homogeneous,
〈Ψ†(x)Ψ(x)〉 = 1/2. The Green’s function is given exactly by

G0(t, x) =
4

π

∫ π/2

0

dk sin2(kx) cos(εkt), (3.5)

and the LDOS is

ρ0(ω, x) =
2 sin2[x arccos(ω/ε0)]

π
√
ε20 − ω2

θ(ε0 − |ω|), (3.6)

where ε0 ≡ |εk=0| = 1.
The result for G0(t, x) is depicted in Fig. 3.1 (a). First we note that, for

any fixed position x, there is a clear change of behavior at the time scale t ∼
Trefl(x) = 2x/v (where v = 1 for free fermions). This corresponds to the time
for the light cone centered at x to reflect at the boundary and return to x. For
t < Trefl(x), G0(t, x) is independent of x (i.e. translationally invariant for fixed t
and x > vt/2) and the result is representative of the bulk autocorrelation. The
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Figure 3.1: (a) Green’s function G0(t, x) for free fermions in a semi-infinite
chain at half-filling [Eq. (3.5)], where x is the distance from the boundary.
The dashed line represents the reflection time Trefl(x) = 2x/v with v = 1. (b)
The deep hole configuration responsible for the oscillations at x = 0 related to
the singularities of the LDOS (Fig. 3.2). There is an equivalent high-energy
particle configuration, not depicted. The dashed circles indicate the projection
onto low-energy and impurity subbands important once interactions are taken
into account.

arrival of the boundary-reflected correlations makes G0(t, x) deviate from the
bulk case and become x-dependent for t > Trefl(x). After we take the Fourier
transform to the frequency domain, the reflection time scale implies that the
LDOS in Eq. (3.6) oscillates with period ∆ω(x) ∼ 2π/Trefl(x) = πv/x. In the
bulk case, the rapid oscillations in the frequency dependence of ρ0(ω, x� 1) are
averaged out by any finite frequency resolution [108]. In numerical simulations
of time evolution in the bulk, the usual procedure is to stop the simulation at
t < x/v (or before in case the maximum time is limited by various sources of
error [114,115]). This avoids the reflection at the boundary but at the same time
sets the finite frequency resolution.

Let us now discuss the time dependence of the Green’s function at the bound-
ary (x = 1) versus in the bulk (x � 1, vt < x). In both cases (see Fig. 3.2)
the Green’s function shows oscillations in the long-time decay which are not
predicted by the usual low-energy approximation of linearizing the dispersion
about kF = π/2 [9]. The explanation for the real-time oscillations is the same
for open or periodic boundary conditions; for the case of periodic boundary con-
ditions, see the reviews in Refs. [13, 84]. The oscillations stem from a saddle
point contribution to the integral in Eq. (3.5) with k ≈ 0 [in the hole term of
G0(t, x)] or k ≈ π (in the particle term). This contribution is associated with an
excitation with energy ε0, the maximum energy of a single-hole or single-particle
excitation [see Fig. 3.1 (b)]. We call this energy the band edge of the free
fermion dispersion. The propagator of the band edge mode decays more slowly
in time due to its vanishing group velocity. The importance of this finite-energy
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xend bulk

t t
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Figure 3.2: Noninteracting Green’s function G0(t, x) and LDOS ρ0(ω, x). The
curves on the left correspond to the chain end (x = 1), and the curves on the
right to a site in the bulk (x� 1).

contribution is manifested in the LDOS as a power-law singularity at ω = ±ε0
(see Fig. 3.2). Notice the clear difference between the bulk and the bound-
ary case: while in the bulk the LDOS has a van Hove singularity at the band
edge, ρ0(ω, x� 1) ∼ |ω ± ε0|−1/2, at the boundary one finds a square-root cusp
ρ0(ω, x = 1) ∼ |ω ± ε0|1/2.

One of the main achievements of the nLL theory is to incorporate the contri-
butions of finite-energy excitations in dynamical correlation functions for inter-
acting 1D systems with band curvature [13,84]. Our purpose here is to generalize
this approach to describe the dynamics in the vicinity of a boundary. For con-
creteness, we consider the model

H = H0 + V
∑

x≥1

n(x)n(x+ 1), (3.7)

where n(x) ≡ Ψ†(x)Ψ(x) in the density operator and we focus on the repulsive
regime V > 0. Importantly, the model in Eq. (3.7) is integrable and exactly
solvable by Bethe ansatz [24]. This guarantees that the band edge of elementary
excitations is still well defined in the interacting case. We postpone a detailed
discussion about integrability-breaking effects to Section 3.5.

Before outlining the derivation of the results for the interacting model (see
Section 3.3), we summarize some known results together with our findings for
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the Green’s function and LDOS. The calculation within the LL framework leads
to the well-known predictions [90,109,110]

GLL(t, x) ∼ 1/tα+1, (3.8)

ρ(ω ≈ 0, x) ∼ |ω|α, (3.9)

where the exponent α is different for x in the bulk than at the boundary (sub-
script “end”): αbulk = (K + K−1)/2 − 1 and αend = K−1 − 1, where K is the
Luttinger parameter (K = 1 for free fermions and K < 1 for repulsive inter-
actions). As mentioned above, the real-time oscillations are not predicted by
LL theory. It is known that taking into account the finite-energy contributions
within the nLL theory leads to the following contributions from the band-edge
excitation in the bulk:

Gosc(t, x� 1) ∼ e±iεt/tᾱbulk+1, (3.10)

ρ(ω ≈ ±ε, x� 1) ∼ |ω ∓ ε|ᾱbulk , (3.11)

where ε is the renormalized band edge in the interacting system and the bulk
exponent for the oscillating contribution is

ᾱbulk = −1/2 + γ2/(2π2K), (3.12)

with γ the phase shift of low-energy modes due to scattering off the high-energy
hole [for free fermions, γ = 0; the phase shift for the interacting model in Eq.
(3.7) will be specified in Section 3.3].

Our new result is that the oscillating contribution at the boundary is given
by

Gosc(t, x = 1) ∼ e±iεt/tᾱend+1, (3.13)

ρ(ω ≈ ±ε, x = 1) ∼ |ω ∓ ε|ᾱend , (3.14)

with the same band-edge frequency ε as in the bulk, but with a different exponent

ᾱend = 1/2 + γ2/(π2K). (3.15)

When the band-edge mode is the dominant finite-energy contribution to the
Green’s function, the asymptotic long-time decay of G(t, x) is well described by
a linear combination of the Luttinger liquid term in Eq. (3.8) and the oscillating
term in Eq. (3.10) or Eq. (3.13).

There are two noteworthy modifications in going from the bulk to the bound-
ary: (i) an extra factor of 1/t in the decay of Gosc(t, x); (ii) the doubling of the
O(γ2) orthogonality catastrophe correction to the exponent [9, 59]. Both are
recurrent in the exponents that will be discussed in Section 3.4. Furthermore,
while both exponents vary with interactions, Eqs. (3.12) and (3.15) imply the
relation

ᾱend − 2ᾱbulk = 3/2, (3.16)

which is independent of the nonuniversal phase shift γ.
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3.3 Mobile impurity model with open boundary
To derive the results above, we use the mode expansion that includes band-edge
excitations

Ψ(x) ∼ eikF xψR(x) + e−ikF xψL(x) + d†(x), (3.17)

where ψR,L denote the low-energy modes, d† creates a hole in the bottom of the
band (k ≈ 0), and all fields on the right-hand side are slowly varying on the scale
of the short-distance cutoff a.

A crucial assumption implicit in Eq. (3.17) is that we identify the excitations
governing the long-time decay in the interacting model as being “adiabatically
connected” with those in the noninteracting case, in the sense that they carry
the same quantum numbers and their dispersion relations vary smoothly as a
function of interaction strength. This condition can be verified explicitly for
integrable models, where one computes exact dispersion relations for the ele-
mentary excitations. We should also note that for lattice models such as Eq.
(3.7) the mode expansion must include a high-energy particle at the top of the
band, with k ≈ π [64]. In the particle-hole symmetric case the latter yields a
contribution equivalent to that of the deep hole with k ≈ 0, and we get the parti-
cle contribution in the LDOS simply by taking ω → −ω in the result for the hole
contribution. More generally, the high-energy spectrum of the interacting model
may include other particles and bound states, which can also be incorporated in
the mobile impurity model [15]; we shall address this question in Section 3.6.2.

In Eq. (3.17) we deliberately write the right and left movers separately, even
though they are coupled by the boundary conditions [92, 93]. The condition
Ψ(0) = 0 is satisfied if we impose

ψL(0) = −ψR(0), d(0) = 0. (3.18)

These relations can be checked straightforwardly in the noninteracting case using
the single-particle modes Ψk. The boundary condition on d(x) means that for
any boundary operator that involves the high-energy mode we must take d(a) ∼
a∂xd(0).

We bosonize the low-energy modes with the conventions

ψR,L ∼ e−i
√

2πφR,L , (3.19)

ψ†R,LψR,L ∼ ∓
1√
2π
∂xφR,L, (3.20)

where φR,L(x) are chiral bosonic fields that obey

[∂xφR,L(x), φR,L(x′)] = ±iδ(x− x′). (3.21)

A convenient way to treat the boundary conditions for the low-energy modes
is to use the folding trick [91, 92]: we include negative coordinates x < 0 and
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3.3. Mobile impurity model with open boundary

identify

ψL(x) ≡ −ψR(−x). (3.22)

For the bosonic fields, we use

φL(x) ≡ φR(−x) +
√
π/2. (3.23)

The effective Hamiltonian that describes the interaction between the band-
edge mode and the low-energy modes is the mobile impurity model

HMIM =

∫ ∞

−∞
dx

v

2
(∂xϕ)2 +

∫ ∞

0

dx d†
(
ε+

∂2
x

2M

)
d

+
vγ√
2πK

∫ ∞

0

dx d†d[∂xϕ(x) + ∂xϕ(−x)]. (3.24)

Here ϕ(x) is the chiral boson that diagonalizes the Luttinger model on the un-
folded line

ϕ(x) =
K−

1
2 +K

1
2

2
φR(x) +

K−
1
2 −K 1

2

2
φR(−x), (3.25)

which obeys [∂xϕ(x), ϕ(x′)] = i sgn(x)δ(x − x′). The parameters ε, −M and γ
are nonuniversal properties of the hole with k = 0 (which is treated as a mobile
impurity): its finite energy cost, effective mass and dimensionless coupling to
the low-energy modes, respectively. Note that the linear term in the dispersion
vanishes for the band-edge mode, which is why we have to take into account the
effective mass [see Fig. 3.1 (b)]. In models solvable by Bethe ansatz, ε and γ
are determined by the exact dispersion of single-hole excitations. The coupling
γ can be obtained from the so-called shift function [65, 118] and the finite size
spectrum [15] for periodic boundary conditions. In Galilean-invariant systems,
we can relate γ to the exact spectrum by using phenomenological relations [66].

The Hamiltonian in Eq. (3.24) contains only marginal operators. It can be
obtained from the mobile impurity model in the bulk [58] by applying the folding
trick. Remarkably, all boundary operators that perturb this Hamiltonian and
couple the d field to the bosonic modes are highly irrelevant, as they necessarily
involve the derivative ∂xd(0) (which by itself has scaling dimension 3/2). For the
moment we neglect the effect of all formally irrelevant boundary operators, but
return to this point in Section 3.5.

Like in the bulk case, we can decouple the impurity mode by the unitary
transformation

U = exp

{
i

γ√
2πK

∫ ∞

0

dx [ϕ(x) + ϕ(−x)]d†d

}
. (3.26)

The fields transform as

ϕ̃(x) = Uϕ(x)U† = ϕ(x) +
γ

2
√

2πK
Fd(x), (3.27)

d̃(x) = Ud(x)U† = d(x)e
−i γ√

2πK
[ϕ(x)+ϕ(−x)]

, (3.28)
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where

Fd(x) =

∫ ∞

0

dy [sgn(x− y) + sgn(x+ y)]d†(y)d(y). (3.29)

Eq. (3.27) implies

∂xϕ̃(x) = ∂xϕ(x) +
γ√

2πK
d†(x)d(x). (3.30)

The Hamiltonian becomes noninteracting when written in terms of the trans-
formed fields

HMIM =

∫ ∞

−∞
dx

v

2
(∂xϕ̃)2 +

∫ ∞

0

dx d̃†
(
ε+

∂2
x

2M

)
d̃. (3.31)

The crucial point is that the representation of the fermion field now contains a
vertex operator:

Ψ(x) ∼ d†(x) ∼ d̃†(x)e−i
√

2πνΘ(x), (3.32)

where

Θ(x) = ϕ̃(x) + ϕ̃(−x), (3.33)

and

ν = γ2/(4π2K). (3.34)

After the unitary transformation, we can calculate correlations for the free
fields using standard methods. The Green’s function for the free d̃ must be
calculated with the proper mode expansion in terms of standing waves, d̃(x) =√

(2/π)
∫ k0

0
dk sin(kx)d̃k, where k0 � a−1 is the momentum cutoff of the impu-

rity sub-band. We obtain

〈d̃(x, t)d̃†(x, 0)〉 = e−iεt
√

−iM
2π(t+ i0)

[
1− ei2Mx2/(t+i0)

]
. (3.35)

In the bulk regime of Eq. (3.35), we neglect the rapidly oscillating factor ∝
ei2Mx2/t; in this case, the free impurity propagator decays as ∼ t−1/2. In the
boundary case, we expand for x ∼ a�

√
t/M and the free impurity propagator

decays as ∼ t−3/2. This faster decay is due to the vanishing of the wave function
at the boundary. It can also be understood by noting that at the boundary the
impurity correlator can be calculated as

〈d̃(a, t)d̃†(a, 0)〉 ∼ a2〈∂xd̃(0, t)∂xd̃
†(0, 0)〉, (3.36)
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3.3. Mobile impurity model with open boundary

and each spatial derivative amounts to an extra factor of t−1/2 due to the
quadratic dispersion of the band-edge mode.

In addition to the free impurity propagator, we have to consider the correlator
[92,93,109]

〈e±i
√

2πνΘ(x,t)e∓i
√

2πνΘ(x,0)〉 ∝
∣∣∣∣

x2

t2(4x2 − v2t2)

∣∣∣∣
ν

. (3.37)

Thus, in the bulk case (2x� vt) the correlator for the the vertex operator adds
a factor of ∼ t−2ν to the decay of the Green’s functions. In the boundary case,
the factor is ∼ t−4ν , a faster decay that stems from the correlation between ϕ̃(x)
and ϕ̃(−x) for x ∼ a (whereas these become uncorrelated right- and left-moving
bosons in the bulk). Putting the effects together leads to

Gosc(t, a) ∼ 〈d̃(a,±t)d̃†(a, 0)〉〈ei
√

2πνΘ(a,t)e−i
√

2πνΘ(a,0)〉
∼ e∓iεtt− 3

2−4ν , (3.38)

(where ± corresponds to particle/hole impurity) which is the result in Eqs. (3.10)
and (3.15).

The scaling dimension of the vertex operator e−i
√

2πνΘ can be related to a
phase shift of the low-energy modes due to scattering with the d hole, establishing
a connection with the orthogonality catastrophe [62]. For the integrable model
in Eq. (3.7), the exact phase shift is a simple function of the Luttinger parameter
[64]:

γ = π(1−K), (3.39)

where the exact Luttinger parameter is for 0 ≤ V ≤ 1

K =
π

2(π − arccosV )
. (3.40)

The renormalized band edge frequency is

ε =
π
√

1− V 2

2 arccosV
. (3.41)

The exact velocity of the low-energy modes and the effective mass of the impurity
are also known: v = M−1 = ε (in units where a = 1).

In the free fermion limit, a particle tunneling into or out of the system is
restricted to the free or occupied single-particle states. As is visible in Fig. 3.2
and Eq. (3.6) the LDOS is then identically zero outside of the bandwidth set by
the dispersion relation. Turning on interactions allows for tunnelling processes in
which the particle leaving or entering the system excites additional particle-hole
pairs. This leads to a small but nonzero value for the LDOS beyond the threshold
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3. Boundary correlations in 1D

energies. The effect can be included by carefully tracking the regulators in the
Luttinger liquid correlator

〈ei
√

2πνϕ(x,t)e−i
√

2πνϕ(x,0)〉 ∝ [i(vt− i0)]−ν (3.42)

and the impurity correlator in Eq. (3.35). At the boundary and around the
band-minumum, the LDOS can for instance be expressed as

ρ(ω ≈ −ε, a) ∼
∫ ∞

−∞
dt

ei(ω+ε)t

(vt+ i0)4ν(t− i0)
3
2

∼ [θ(ω + ε)− sin(4πν)θ(−ω − ε)]|ω + ε| 12 +4ν . (3.43)

We see that the shoulder ratio of the two-sided singularity is determined by an
interplay of both the impurity and the low-energy propagators. This is similar,
but slightly different than the two-sided singularities within the continuum of the
spectral function and the dynamic structure factor [15] for which the shoulder
ratio is determined by the exponents for right- and left-movers and the impurity
propagater is just a delta function.

3.4 Other correlation functions

The mobile impurity model in Eq. (3.24) can be used to calculate the expo-
nents in the long-time decay and finite-energy singularities of several dynamical
correlation functions [13]. The general recipe for U(1)-symmetric models is to
(i) identify the operator in the effective field theory that excites the band edge
mode and carries the correct quantum numbers; (ii) write the operator in terms
of free impurity and free bosons after the unitary transformation; and (iii) com-
pute the correlator using the folding trick in the boundary case. In this section
we apply this approach to calculate the exponents in the density autocorrelation
of spinless fermions, spin autocorrelations of spin chains, and the single-particle
Green’s function of spinful fermions.

3.4.1 Density-density correlation

Let us now consider the density autocorrelation

C(t, x) ≡ 〈n(x, t)n(x, 0)〉. (3.44)

Using the mode expansion in Eq. (3.17), we obtain the expression for the density
operator including high-energy excitations

n(x) =Ψ†(x)Ψ(x)

∼ψ†RψR + ψ†LψL + (ei2kF xψ†LψR + h.c.) (3.45)

+
[
(e−ikF xψ†R + eikF xψ†L)d† + h.c.

]
,

44



3.4. Other correlation functions

where kF = π/(2a) for the half-filled chain in the model of Eq. (3.7) and we
omitted operators that annihilate the ground state (a vacuum of d particles).
In the boundary case, ψL and ψR are identified according to Eq. (3.22). The
leading operator generated by the low-energy part of n(x) at the boundary is
∼ ∂xϕ(0), a dimension-one operator. As a result, the LL theory predicts the
decay 〈n(a, t)n(a, 0)〉 ∼ 1/t2. By contrast, in the bulk case the 2kF part of n(x)
has dimension K and gives rise to 〈n(x � a, t)n(x � a, 0)〉 ∼ 1/t2K as the
leading contribution for repulsive interactions [9]. In summary, the low-energy
term in the density autocorrelation is

CLL(t, x) ∼ t−β , (3.46)

with exponents

βend = 2, βbulk = 2K. (3.47)

On the other hand, the high-energy term in the mode expansion for the
density at the boundary yields

n(a) ∼d†(a)[e−ikF aψ†R(a)− eikF aψ†R(−a)] + h.c.

∼ sin(kFa)d†(a)ψ†R(a) + h.c.. (3.48)

After bosonizing and performing the unitary transformation, we find that the
high-energy term is given by

n(a) ∼d̃†(a) exp

[
i

√
π

2

(
1− γ/π√

K
+
√
K

)
ϕ(a)

]
×

× exp

[
i

√
π

2

(
1− γ/π√

K
−
√
K

)
ϕ(−a)

]
+ h.c. (3.49)

∼a∂xd̃†(0) exp

[
i
√

2π

(
1− γ/π√

K

)
ϕ(0)

]
+ h.c.,

where we kept the leading operator in the expansion of the slowly-varying fields.
From Eq. (3.49) it is straightforward to show that the autocorrelation function
contains a term oscillating with the frequency of the high-energy hole:

Cosc(t, x) ∼ e−iεtt−β̄ , (3.50)

with the boundary exponent

β̄end =
3

2
+

(1− γ/π)2

K
. (3.51)

This should be compared with the corresponding exponent in the bulk case [64]

β̄bulk =
1 +K

2
+

(1− γ/π)2

2K
. (3.52)
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3. Boundary correlations in 1D

Therefore, the exponents associated with the frequency-ε oscillating term in the
density autocorrelation obey the relation

2β̄bulk − β̄end = K − 1

2
. (3.53)

As mentioned in Section 3.3, in lattice models we also have to consider the
band-edge mode corresponding to a particle at the top of the band. In this case
the density operator contains an additional term that creates two high-energy
modes, namely a hole at k = 0 and a particle at k = π. In the noninteracting
bulk case of Hamiltonian (3.3), this term yields a contribution that behaves as
∼ e−i2ε0t/t, where the slow 1/t decay stems from the propagators of the high-
energy particle and hole. However, in the presence of a repulsive interaction
V > 0 the decay of this contribution changes to ∼ e−i2εt/t2 and decays faster
than the frequency-ε term for t � 1/(Ma2V 2) [64]. In the boundary case the
equivalent contribution is subdominant even in the noninteracting case, where it
becomes∼ e−i2ε0t/t3 due to the faster t−3/2 decay of the free impurity propagator
at the boundary. Therefore, the long-time decay of the density autocorrelation
C(t, x = a) is well described by a combination of the LL term in Eq. (3.46) and
the frequency-ε term in Eq. (3.50).

For the integrable model in Eq. (3.7), we can calculate the exponents β̄bulk/end

using Eqs. (3.39) and (3.40). We also note that the power-law decay of Cosc(t, x)
implies a finite-energy nonanalyticity in the Fourier transform

C(ω, x) ∼ |ω − ε|β̄−1. (3.54)

3.4.2 Spin autocorrelations

As an application of our theory to spin chains, we consider the spin-1/2 XXZ
model with an open boundary

HXXZ =
∑

j≥1

[
1

2
(S+
j S
−
j+1 + h.c.) + ∆Szj S

z
j+1

]
, (3.55)

where Sj is the spin operator on site j and ∆ is the anisotropy parameter. We
are interested in the long-time decay of the longitudinal (‖) and transverse (⊥)
spin autocorrelations

C‖(t, j) ≡〈Szj (t)Szj (0)〉, (3.56)

C⊥(t, j) ≡〈S+
j (t)S−j (0)〉. (3.57)

We focus on the critical regime 0 ≤ ∆ ≤ 1. Via a Jordan-Wigner transformation
[9]

Szj =Ψ†(j)Ψ(j)− 1

2
, (3.58)

S−j =(−1)jΨ(j)eiπ
∑
l<j Ψ†(l)Ψ(l), (3.59)
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3.4. Other correlation functions

the XXZ model is equivalent to the spinless fermion model in Eq. (3.7) with
interaction strength V = ∆. Thus, for ∆ = 0 (the XX chain) the model is equiv-
alent to free fermions and some time-dependent correlations can be calculated
exactly [119,120]. For 0 < ∆ ≤ 1 the LL approach predicts the asymptotic decay
of nonoscillating terms in the spin autocorrelations [93]:

C
‖
LL(t, j) ∼ t−β‖ , C⊥LL(t, j) ∼ t−β⊥ , (3.60)

with exponents

β
‖
end = 2, β

‖
bulk = 2K, (3.61)

β⊥end =
1

K
, β⊥bulk =

1

2K
, (3.62)

where the exact Luttinger parameter is given by Eq. (3.40) with V = ∆. Notice
that the exponents for transverse and longitudinal autocorrelations coincide at
the SU(2) point ∆ = 1, where K = 1/2.

The high-energy contributions to the spin operator can be obtained starting
from Eqs. (3.58) and (3.59) and employing the mode expansion for the fermionic
field in Eq. (3.17) [13]. In the bulk case, we find

Szj=x ∼ d̃†(x) exp

[
i

√
π

2

(
1 +K − γ/π√

K

)
ϕ(x)

]
(3.63)

× exp

[
i

√
π

2

(
1−K − γ/π√

K

)
ϕ(−x)

]
+ h.c.,

S−j=x ∼ d̃†(x) exp

[
−i
√
π

2

(
K + γ/π√

K

)
ϕ(x)

]

× exp

[
i

√
π

2

(
K − γ/π√

K

)
ϕ(−x)

]
. (3.64)

At the boundary, we obtain

Sz1 ∼ ∂xd̃
†(0) exp

[
−i
√

2π

(
1− γ/π√

K

)
ϕ(0)

]
+ h.c., (3.65)

S−1 ∼ ∂xd̃
†(0) exp

[
−i
√

2π

(
γ

π
√
K

)
ϕ(0)

]
. (3.66)

Calculating the correlators along the same lines as the previous examples, we
obtain the oscillating terms in the autocorrelations

C‖osc(t, j) ∼ e−iεtt−β̄
‖
, (3.67)

C⊥osc(t, j) ∼ e−iεtt−β̄
⊥
, (3.68)
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3. Boundary correlations in 1D

where

β̄
‖
end =

3

2
+

(1− γ/π)2

K
, (3.69)

β̄⊥end =
3

2
+

(γ/π)2

K
. (3.70)

We also present, for comparison, the previously known exponents in the bulk
[64,121]:

β̄
‖
bulk =

1 +K

2
+

(1− γ/π)2

2K
, (3.71)

β̄⊥bulk =
1 +K

2
+

(γ/π)2

2K
. (3.72)

The results for the longitudinal spin autocorrelation are the same as those for the
density autocorrelation derived in Section 3.4.1, as expected from the mapping
in Eq. (3.58). The bulk and boundary exponents for the spin autocorrelations
obey a relation equivalent to Eq. (3.53)

2β̄
⊥/‖
bulk − β̄

⊥/‖
end = K − 1

2
, (3.73)

which is independent of γ.
For the XXZ model we can simplify the result for the exponents using the

exact phase shift in Eq. (3.39). The bulk exponents become

β̄
‖
bulk = K +

1

2
, (3.74)

β̄⊥bulk = K +
1

2K
− 1

2
. (3.75)

Our new results for the boundary exponents are

β̄
‖
end =K +

3

2
, (3.76)

β̄⊥end =K +
1

K
− 1

2
. (3.77)

3.4.3 Green’s function for spinful fermions

We now consider interacting spin-1/2 fermions, as described by the Hubbard
model

H =−
∑

x≥1

∑

σ=↑,↓
[Ψ†σ(x)Ψσ(x+ 1) + h.c.]

+ U
∑

x≥1

n↑(x)n↓(x), (3.78)
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3.4. Other correlation functions

where U > 0 is the repulsive on-site interaction. Away from half-filling and in the
absence of an external magnetic field, the low-energy spectrum is described by
two bosonic fields corresponding to decoupled charge and spin collective modes.
Our purpose here is to illustrate the effects of spin-charge separation on finite-
energy contributions to time-dependent correlation functions. We focus on the
single-particle Green’s function

G↑(t, x) = 〈{Ψ↑(x, t),Ψ
†
↑(x, 0)}〉. (3.79)

In the case of spinful fermions, singular features of dynamic correlations can
in principle come from both spinon and holon impurities interacting with the low-
energy modes [68,69,122]. For repulsive interactions, the spin velocity is smaller
than the charge velocity [9], so the lower threshold of the spinon-holon continuum
is expected to correspond to a finite-energy spinon impurity rather than a holon.
Here we focus on the contribution from a single high-energy spinon to the Green’s
function and to the LDOS. It is implicitly assumed that the fermion-fermion
interactions are strong enough that there is a sizeable separation between the
spinon band edge and the holon band edge. Otherwise, weak interactions would
imply a small energy scale for spin-charge separation, making it difficult to resolve
the two contributions in real time or in the frequency domain.

We follow the construction in Ref. [122] to define the operators that create
finite-energy spinons coupled to low-energy charge and spin bosons, maintaining
the correct quantum numbers. Starting from bosonization expressions like

ψR,σ ∼ e−i
√

2πφRσ , (3.80)

we go to a spin and charge separated basis. The physical field is expanded in
right and left movers and written in terms of charge and spin degrees of freedom.
We will only need the right moving component for which the spinon part is
projected onto the impurity operator. This leads to the projection

Ψ↑ ∼ d†se−i
√
π( 1

2 Φ∗s− 1
2 Φ∗c+Θ∗c). (3.81)

Here Φ∗ν and Θ∗ν , with ν = c, s for charge or spin, respectively, are the conju-
gate bosonic fields that diagonalize the Hamiltonian at the Luther-Emery point
where spin and charge modes are exactly separated. The bosonic fields satisfy
[∂xΦ∗ν(x),Θ∗ν′(x

′)] = iδνν′δ(x− x′).
The impurity model is

HMIM =

∫ ∞

0

dx
∑

ν=c,s

vν
2

[
1

2Kν
(∂xΦ∗ν)

2
+ 2Kν (∂xΘ∗ν)

2

]

+

∫ ∞

0

dx d†s

(
εs +

∂2
x

2Ms

)
ds

+

∫ ∞

0

dx
∑

ν

vfν√
π
d†sds∂xΦ∗ν , (3.82)
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3. Boundary correlations in 1D

where vc,s are the charge and spin velocities, respectively, Kc,s are the Luttinger
parameters, εs and −Ms are the energy and effective mass of the high-energy
spinon, and fc,s are impurity-boson coupling constants. At the Luther-Emery
point with free holons and spinons [122], we have Kc = Ks = 1/2 and fc =
fs = 0. In contrast, SU(2)-symmetric models correspond to strongly interacting
spinons.

We decouple the impurity mode by the unitary transformation

U = exp

{
−i
∑

ν

Kνfν
vν
√
π

∫ ∞

0

dx d†sdsΘ
∗
ν

}
. (3.83)

We then implement the boundary conditions by the folding trick and diagonalize
the low-energy part of the Hamiltonian by a canonical transformation. We define

γν =
Kνfν
vν

. (3.84)

The final expression for the projection of the spinful fermion field operator is

Ψ↑(x) ∼ d̃†s(x) exp

{(
−
√

2Ks

4
+

γs

π
√

2Ks

)
ϕs(x)

+

(√
2Ks

4
+

γs

π
√

2Ks

)
ϕs(−x)

+

(
1

2
√

2Kc

+

√
2Kc

4
+

γc

π
√

2Kc

)
ϕc(x)

+

(
1

2
√

2Kc

−
√

2Kc

4
+

γc

π
√

2Kc

)
ϕc(−x)

}
. (3.85)

Here ϕc,s(x) represent the free low-energy charge and spin modes after decoupling

of the impurity and d̃†s creates the decoupled spinon mode.
The exponents for the corresponding oscillating contribution of G↑(t, x) are

easily read off from Eq. (3.85). Let us restrict ourselves to the SU(2) invariant
case appropriate for the Hubbard model at zero magnetic field. In this case
Ks = 1 and γs = −π/2. We obtain

G(t, x) ∼ e−iεstt−ν(s)

, (3.86)

with

ν
(s)
bulk = 1 +

Kc

4
+

1

4Kc

(
1 +

2γc
π

)2

, (3.87)

ν
(s)
end = 2 +

1

2Kc

(
1 +

2γc
π

)2

. (3.88)
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Figure 3.3: (a) Support of the single-fermion spectral function A(k, ω) for a
generic 1D model of interacting fermions with Fermi momentum kF . The solid
red line represents the lower threshold ω−(k), below which A(k, ω) vanishes.
The band edge frequency can be identified as ε = ω−(k = 0). (b) Support of the
dynamical structure factor S(q, ω).

The singular behavior of the LDOS is obtained by Fourier transformation as
before. We also obtain the relation

2ν
(s)
bulk − ν

(s)
end =

Kc

2
, (3.89)

which is independent of γc. It would be interesting to test this prediction numer-
ically and investigate the relative importance of the spinon and holon impurity
configuration for the autocorrelation and LDOS of the Hubbard model.

3.5 Role of integrability

Our results predict the exponents of autocorrelation functions at the boundary of
critical one-dimensional systems assuming that the long-time decay is described
by a power law. By Fourier transform, the same theory predicts the exponent of
the nonanalyticity at the finite energy ω = ε in the frequency domain. We expect
this to hold for integrable models, where one can calculate a well-defined band-
edge frequency from the renormalized dispersion relation (or dressed energy) for
the elementary excitations. Examples of integrable models with open boundary
conditions include the open XXZ chain [123,124] in Eq. (3.55) [or, equivalently,
its fermionic version in Eq. (3.7)] and the Hubbard model [125] in Eq. (3.78),
on which many of the previous studies of local spectral properties are based.

In generic, nonintegrable models, the persistence of a nonanalyticity inside
a multiparticle continuum is questionable. It has been argued that a finite-
energy singularity can be protected in 1D systems by conservation of quantum
numbers in high-energy bands [49]. However, the high-energy subband in our
effective mobile impurity model is defined by a projection of the band edge modes,
which carry the same quantum numbers as the low-energy modes. Thus, strictly
speaking there is no conservation law associated with the number of d particles.
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3. Boundary correlations in 1D

Nonetheless, we can argue that the band edge is still well defined for bulk
correlations in a semi-infinite system. In the bulk one can measure momentum-
resolved response functions, for instance the spectral function

A(k, ω) =
1

2π

∫ ∞

−∞
dt eiωt

∑

y

e−iky

× 〈{Ψ(x+ y, t),Ψ†(x, 0)}〉, (3.90)

or the dynamical structure factor

S(q, ω) =
1

2π

∫ ∞

−∞
dt
∑

y

e−iqy〈n(x+ y, t)n(x)〉. (3.91)

In momentum-resolved dynamical correlations, the spectral weight vanishes iden-
tically below a lower threshold [13] [see Fig. 3.3(a)]. This threshold is defined by
kinematic constraints and exists even for nonintegrable models. The mobile im-
purity model in the bulk then predicts a power-law singularity as the frequency
approaches the threshold from above. For instance, for the positive-frequency
part of the spectral function [15]:

A(k, ω) ∼ [ω − ω−(k)]−1+2ν , (3.92)

with ν defined in Eq. (3.34). The band edge frequency that governs the os-
cillations in local correlations can be identified from the spectrum as a local
maximum in the lower threshold, about which the threshold is approximately
parabolic. For the spectral function this happens for k ≈ 0:

ω−(k ≈ 0) ≈ ε− k2

2M
. (3.93)

In the dynamical structure factor, the band edge can be read off from the value
of the lower threshold at momentum q = kF , corresponding to the excitation
composed of a hole at k = 0 and a particle at the Fermi point k = kF [Fig.
3.3(b)].

The nonanalyticities in the local bulk correlations are related to the threshold
singularities of the momentum-resolved correlations by integration over momen-
tum. For instance, integrating the spectral function implies that the LDOS
behaves as

ρ(ω, x� a) =

∫ π/a

−π/a
dk A(k, ω)

∼
∫ k0

−k0
dk θ

(
ω − ε+

k2

2M

)

×
∣∣∣∣ω − ε+

k2

2M

∣∣∣∣
−1+2ν

∼ |ω − ε|− 1
2 +2ν . (3.94)
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Since the singularities in the momentum-resolved dynamic response cannot be
broadened, the power-law decay of autocorrelations in the bulk is a generic prop-
erty of critical 1D systems.

However, since momentum is not conserved in the presence of a boundary,
the above argument cannot be used to establish power-law decay of autocorrela-
tion functions at the boundary. From the field theory perspective, the difference
between bulk and boundary cases can be understood by analyzing the effects
of boundary operators that perturb the mobile impurity model in Eq. (3.24).
In the following we shall argue that, although formally irrelevant, boundary op-
erators introduce two important effects in nonintegrable models: (i) they may
renormalize the frequency of oscillations in the boundary autocorrelation, which
will then differ from the frequency in the bulk (only the latter being equal to
the band edge frequency ε); (ii) boundary operators that do not conserve the
number of particles in high-energy subbands may give rise to a decay rate for the
mobile impurity, which implies exponential decay of the boundary autocorrela-
tion in time and the associated broadening of the nonanalyticity in the frequency
domain.

For discussion purposes we will focus on the regime of weak interactions,
which can be analyzed by perturbation theory in the free fermion basis, but the
argument can be made more general by bosonizing the low-energy sector and the
main points carry through. If we are interested in the impurity decay, we can
furthermore safely neglect operators that involve the impurity field but do not
couple it to the low-energy modes—these will at most renormalize the impurity
dispersion.

As a simple example of a boundary operator respecting the symmetries and
boundary conditions, consider the impurity-number-conserving perturbation

∂H = g∂xd
†(0)∂xd(0)ψ†(0)ψ(0). (3.95)

Here we use ψ(x) = ψR(x) = −ψL(−x) to denote the low-energy modes of the
fermion field on the unfolded line. We will assume that ∂H is present in the
effective Hamiltonian and analyze its influence on the impurity propagator in
perturbation theory.

It is convenient to Fourier transform the time coordinate to make use of energy
conservation, but not the space coordinate. We can organize the diagrammatic
expansion of the time-ordered impurity propagator

Gd(x, x
′; t) = 〈Td(x, t)d†(x′, 0)〉 (3.96)

using the Dyson equation

Gd(x, x;ω) = G
(0)
d (x, x;ω)

+

∫
dx1

∫
dx2G

(0)
d (x, x2;ω)Σ(x2, x1;ω)Gd(x1, x;ω). (3.97)
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If we take only boundary operators into account, the self-energy Σ is purely local:

Σ(x2, x1;ω) = Σ(ω)δ(x1 − a)δ(x2 − a). (3.98)

The solution of the Dyson equation for x1 = x2 = a is

Gd(a, a;ω) =
1

[G
(0)
d (a, a;ω)]−1 − Σ(ω)

. (3.99)

It follows from Eq. (3.99) that the non-analyticity in the LDOS will be broadened
if the local self-energy Σ(a, a;ω) has a nonzero imaginary part at ω = ε.

For the continuation of this calculation, let us use the notation G(t) =
G(a, a; t) for boundary propagators. The free propagator for the d-particle at
the boundary is

G
(0)
d (t) =

(−iM)3/2

√
2π

θ(t)e−iεt

(t+ iη/v)3/2
, (3.100)

while for the low energy modes we have

G
(0)
LL(t) ≡ 〈Tψ(a, t)ψ†(a, 0)〉 = [2πi(vt− iη sgn t)]−1, (3.101)

where η is a short-distance cutoff and is related to the bandwidth of the impurity
and low-energy subbands.

The first order correction in the couplings constant g corresponds to a tadpole
diagram proportional to the density of low-energy modes at the boundary. It
will not induce the decay rate that we are after [rather, it is like a nonuniversal
renormalization of the coupling constant of the boundary operator ∂xd

†(0)∂xd(0),
which does not couple the impurity to the low-energy modes]. The second order
correction is given by the expression

δΣ(2)(ω) = −ig2

∫ ∞

−∞
dt eiωtG

(0)
LL(t)G

(0)
LL(−t)G(0)

d (t). (3.102)

The imaginary part is then obtained as

Im δΣ(2) = −
( g

2π

)2 M3/2

√
π

∫ ∞

−∞
dt

ei(ω−ε)t

(vt− iη)(vt+ iη)(t+ iη/v)3/2
. (3.103)

By power counting in the integral we see that

δΣ(2)(ω) ∝ |ε− ω|5/2, (3.104)

and hence the self energy vanishes on-shell, when ω = ε, so this correction will
not induce a finite decay rate

1

τ
= − Im Σ(ω = ε). (3.105)
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3.5. Role of integrability

The factor of ei(ω−ε)t in Eq. (3.103) is general for self-energy contributions gen-
erated by perturbations that conserve the number of d-particles. Therefore, the
decay rate must vanish to all orders if, for some reason, the irrelevant interactions
conserve the number of high-energy excitations [49].

To derive a nonzero decay rate, we will have to consider perturbations that do
not preserve the number of impurity modes and may contribute to the self-energy
for ω = ε. As stated before, this is a typical effect of the boundary breaking
translational invariance, since in the bulk kinematic constraints associated with
momentum and energy conservation prevent the decay of the band-edge mode.
Due to the U(1) symmetry (conservation of the total charge), the annihilation
(creation) of a high-energy hole entails the annihilation (creation) of a particle
in a low-energy state. A family of such boundary operators that are allowed by
symmetry and the boundary conditions are for example

∂Hn = gn∂xd(0)[ψ†(0)ψ(0)]nψ(0) + h.c.. (3.106)

The first nontrivial correction to the self-energy is of second order in the coupling
gn.The diagram corresponds to to a simple low-energy propagator dressed by n
particle-hole pairs,

δΣ(2)
n (ω) = −ig2

n

∫ ∞

−∞
dt eiωt[G

(0)
LL(t)]n+1[G

(0)
LL(−t)]n, (3.107)

leading to

Im δΣ(2)
n (ω) = − g2

n

(2πv)2n+1

∫ ∞

−∞
dt

teiωt

i(t2 + η2/v2)n+1
. (3.108)

Closing the contour in the upper half plane and picking up the pole at t = iη/v,
we obtain a cutoff-dependent decay rate

1

τ
∝ g2

ne
−εη/v. (3.109)

In contrast to the earlier case, we do find a possibly finite decay rate. We note
that εη/v ∼ O(1) if the short-distance is of the order of the lattice spacing a,
but εη/v � 1 if η � a.

Boundary operators like ∂Hn will in principle be generated from lower or-
der processes for a generic model when we integrate out the states outside of
our impurity and low-energy subbands in a renormalization group procedure.
Physically, we can think of these processes as the result of a cascade, or parti-
cle shower [20, 126], involving many intermediate states which are no longer in
the description. The number n of low-energy particle-hole pairs roughly reflects
the number of microscopic interaction processes and has to be sizeable (of the
order of ∼ vη−1ε−1) to accommodate for the excess energy. The coupling gn,
therefore, will scale with high powers of the microscopic interaction strength and
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3. Boundary correlations in 1D

thus will be very small for weak interactions leading to a negligible decay rate.
Stronger interactions, however, may show sizeable renormalization effects in the
decay rate and frequency shift of correlations at the boundary.

Coming back to integrability, we argue that the above corrections do not
occur for models with open boundary conditions solvable by Bethe ansatz. The
argument relies on the fact that the exact eigenstates of the model still define a
conserved impurity state corresponding to a hole in the quantum number con-
figuration of the ground state. This state is parametrized by a rapidity λ and
has well-defined energy given by the dressed energy function ε(λ). One can in
fact show, using the thermodynamic Bethe ansatz, that the spectrum is still de-
termined by the bulk dressed energy function by a similar type of folding trick
to the one we used for the low-energy theory [127]. Not only does this imply the
absence of a decay rate, also the impurity energy does not renormalize and the
same frequency should be observed in the autocorrelation in the bulk and at the
boundary. The “miracle” of integrability thus manifests itself as a fine tuning of
the coupling constants in the effective field theory, in this case the vanishing of
the couplings gn.

3.6 Numerical results for spin chains

In this section, the field theoretical prediction for the asymptotic behavior of
the autocorrelations C‖/⊥(t, j) are checked, numerically, for critical spin chains
with size L = 300 and open boundary conditions.1 We use the adaptive tDMRG
[114,128] keeping up to m = 300 (m = 450) states per block for the chains with
spin S = 1/2 (S = 1 and S = 3/2). The time evolution was performed with
the second order Suzuki-Trotter decomposition with time step 0.025 ≤ δt ≤ 0.3.
The discarded weight was typically about 10−8–10−12 during the time evolution.
The numerical error sources in the tDMRG have two origins:

1. The Trotter error, which is related with the order (n) of the Suzuki-Trotter
decomposition. For the order n, this error is of the order (δt)n+1.

2. The truncation error associated with the number of discard states.

These errors can be controlled by decreasing the time step (δt) and increasing
the number of states kept in the DMRG simulation.

We are interested in the long-time behavior of the longitudinal and transverse

spin autocorrelations at the end site, C
‖/⊥
end (t) = C‖/⊥(t, 1), and in the bulk,

C
‖/⊥
bulk(t) = C‖/⊥(t, L/2). As discussed in the Section 3.4.2, these autocorrelations

can be described by a combination of universal power laws predicted by the LL
theory and oscillating terms predicted by the nLL theory.

1This work has been performed by F.B. Ramos and J.C. Xavier from Universidade Federal
de Uberlândia in Brazil.
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3.6. Numerical results for spin chains

3.6.1 Integrable spin-1/2 model

First, we consider the integrable spin-1/2 XXZ model in Eq. (3.55). According
to Eqs. (3.60), (3.67), and (3.68), the real parts of the autocorrelations behave
as

Re
[
C
‖
end(t)

]
=

A
‖
1

t2
+
A
‖
2 cos(Wt+ ϕ)

t
3
2 +ξ

, (3.110)

Re
[
C
‖
bulk(t)

]
=

B
‖
1

t2
+
B
‖
2

t2ξ
+
B
‖
3 cos(Wt+ ϕ)

t
1
2 +ξ

+
B
‖
4 cos(2Wt+ ϕ̃)

tζ
, (3.111)

Re
[
C⊥end(t)

]
=

A⊥1
t
1
ξ

+
A⊥2 cos(Wt+ ϕ)

tξ+
1
ξ− 1

2

, (3.112)

Re
[
C⊥bulk(t)

]
=

B⊥1
t

1
2ξ

+
B⊥2
t2

+
B⊥3 cos(Wt+ ϕ)

tξ+
1
2ξ− 1

2

. (3.113)

Here we have imposed the constraint that for the XXZ model the interaction
dependence of all exponents (bulk or boundary, low-energy or high-energy) can
be expressed in terms of a single parameter ξ. The theoretical prediction is ξ =
K = π

2(π−arccos ∆) . The frequency of the oscillating terms is predicted to be the

same for bulk and boundary autocorrelations, and is given by W = ε = π
√

1−∆2

2 arccos ∆ .
In Eq. (3.111) we included the oscillating term with frequency 2W which comes
from a hole at k = 0 and a particle at k = π [64]. The corresponding exponent is
predicted to be ζ = 1 for ∆ = 0 but ζ = 2 for 0 < ∆ < 1 and t� 1/∆2. In the
following we shall test the analytical predictions from the nLL theory by fitting
the tDMRG data to the expressions above.

Before presenting the fit results, let us consider the chain with ∆ = 0. At this
point, the autocorrelation C‖(t, j) is equivalent to the density autocorrelation for
free spinless fermion (see Section 3.2). It is straightforward to show that for even
size L

C‖(t, j) =


 2

L+ 1

L/2∑

m=1

sin2

(
mπj

L+ 1

)
eiεmt




2

, (3.114)

where εm = − cos
(
πm
L+1

)
. In Fig. 3.4, we present the differences between the

exact results of C
‖
end/bulk(t) and the tDMRG data obtained considering m = 200

and δt = 0.1. As we can see, the agreement is quite good. It is interesting to
note that the errors are of the order ∼ 10−4 − 10−6, which are smaller than the
errors due to the use of the second order Suzuki-Trotter decomposition, of order
(δt)3 = 10−3.

The results depicted in Fig. 3.4 show that we obtain accurate results for the

C
‖
end/bulk(t) with the tDMRG by using m = 200 and δt = 0.1. Away from the
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Figure 3.4: The differences between the real parts of the exact results [Eq.
(3.114)] and the tDMRG data for the autocorrelations C‖(t, j) for the spin-
1/2 XXZ chain with L = 300 and ∆ = 0. The bulk (end) case corresponds to
j = L/2 (j = 1). We use m = 200 DMRG states and time step δt = 0.1. We

multiply the results of C
‖
end(t) by 10−2 in order to see both data in the same

figure.

point ∆ = 0, we do not have exact results to compare with. In this case, we

compare the autocorrelations C
‖/⊥
end/bulk(t) for different values of m (m = 100,

m = 200 and m = 300) and time step δt (δt = 0.3, δt = 0.1, and δt = 0.025), in
order to estimate the numerical errors. Overall, we estimate that these errors are
at least one order of magnitude smaller than the values of the autocorrelations
acquired by tDMRG.

Some typical examples of the numerical data fitted to Eqs. (3.110)-(3.113)
are presented in Fig. 3.5 for the spin-1/2 XXZ chain with anisotropy ∆ = 0.6.
The parameters ξ and W obtained by this fitting procedure are given in Table
3.1 for some values of the anisotropy ∆. Overall, the parameters obtained are in
agreement with the theoretical prediction presented in the last column of Table
3.1. In the fitting procedure, the tDMRG data considered were in the range
15 < t < 80. We note that the parameter ξ changes slightly depending on the
time range used in the fit. One of the largest discrepancies found corresponds

to the parameter ξ obtained from C
‖
end(t) for ∆ = 0.8 (see Table 3.1). Although

this exponent (ξ = 0.459) differs slightly from the predicted (K = 0.6287), we
found a very good agreement of the fit of the tDMRG data to Eq. (3.110) if
we consider ξ = K fixed, as shown in Fig. (3.6). It is also interesting to note
that, even though for some values of ∆ the fitted value of ξ is not so close to the

predicted one, we found that |2β‖/⊥bulk − β
‖/⊥
end −K + 1/2| < 0.06, which is close to

zero in agreement with the relation predicted in Eq. (3.73).
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Figure 3.5: Real parts of the autocorrelations C
‖/⊥
end/bulk(t) vs. t for the spin-1/2

XXZ chain for ∆ = 0.6, L = 300, and m = 200. For the longitudinal [figures (a)
and (b)] and transverse [figures (c) and (d)] spin autocorrelations we use δt = 0.1
and δt = 0.025, respectively. The symbols are the tDMRG results and the solid
lines are fits to our data using Eqs. (3.110)-(3.113) (see text).

Table 3.1: The exponent ξ and the band edge frequency W for the autocor-

relations C
‖/⊥
end/bulk(t) for the spin-1/2 XXZ chain for some values of ∆. The

parameters ξ and W were obtained by fitting the tDMRG data to Eqs. (3.110)-
(3.113). The last column are the theoretical predictions for these parameters.

C
‖
end C

‖
bulk C⊥end C⊥bulk Exact

∆ = 0
ξ 0.992 1.006 0.943 0.981 1
W 1.002 1.000 1.000 1.002 1

∆ = 0.3
ξ 0.849 0.829 0.836 0.893 0.8375
W 1.182 1.183 1.184 1.186 1.1835

∆ = 0.6
ξ 0.677 0.678 0.711 0.595 0.7093
W 1.355 1.355 1.356 1.358 1.3551

∆ = 0.8
ξ 0.459 0.554 0.649 0.585 0.6287
W 1.466 1.465 1.467 1.468 1.4646
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Figure 3.6: Real part of the longitudinal spin autocorrelation C
‖
end(t) vs. t for

the spin-1/2 XXZ chain with anisotropy ∆ = 0.8 and system size L = 300. The
data were obtained using m = 200 DMRG states and time step δt = 0.1. We
fit the tDMRG data to Eq. (3.110) taking the parameter α to be either free or
fixed as α = K (see legend).

3.6.2 Effects of bound states and nearly flat bands

Before we start analyzing nonintegrable models, let us briefly describe some
situations where the predictions of Section 3.4.2 do not hold. As mentioned
in Section 3.3, our mobile impurity model assumes that a single type of high-
energy excitation (the deep hole) is sufficient to describe the oscillations in the
autocorrelation functions. This is equivalent to assuming that in the frequency
domain the dominant finite-energy nonanalyticity occurs at the band edge of
single-hole excitations. However, more generally dynamical correlation functions
may contain additional singularities at frequencies corresponding to bound states
which are absent in the noninteracting model. In this case, additional oscillating

components in the long-time decay of C
‖/⊥
end/bulk(t) can arise and decay more

slowly than the contribution considered in Eqs. (3.110)-(3.113). While bound
states can be incorporated in a more general mobile impurity model [15], in this
work we look for examples where the existence of bound states can be ruled out,
so we can test the bulk versus boundary behavior of the band edge contribution.

The signature of bound states can be observed in the longitudinal spin struc-
ture factor

S‖(q, ω) =
1

2π

∫ ∞

−∞
dt eiωt

∑

j

e−iqjC‖(t, j). (3.115)

60



3.6. Numerical results for spin chains

0 0.5 1 1.5 2 2.5
ω

0

4

8

12

S(
q=

0.
9π

,ω
) t=30

t=60
t=100

∆=-0.25 S=1/2(b)

Figure 3.7: (a) Longitudinal spin structure factor for the spin-1/2 XXZ chain
with anisotropy ∆ = −0.25 and system size L = 300. The data were obtained
using m = 200 and δt = 0.1. (b) Lines shapes of S(q = 0.9π, ω) obtained for
different maximum times.

It is known [64] that for the spin-1/2 XXZ chain with −1 < ∆ < 0, which
is in the critical regime but is equivalent to spinless fermions with attractive
interactions, S‖(q, ω) exhibits a narrow peak above the two-spinon continuum.
This peak can be interpreted within the effective field theory as a bound state
of a high-energy particle and a high-energy hole. Fig. 3.7 shows S‖(q, ω) for
∆ = −0.25. Although this bound state is inside a continuum of multiple particle-
hole pairs, we expect that for the integrable model the peak in the longitudinal
spin structure factor is not broadened by decay processes and is given by a delta
function, i.e., S‖(q, ω) ∼ δ (ω − Ωbs(q)), where Ωbs(q) is the dispersion relation
of the bound state. In our numerical results we observe that the peak has a
finite width because the frequency resolution is limited by the finite time in the
tDMRG data. However, as shown in Fig. 3.7(b), S‖(q, ω) becomes narrower as
the time increases. This is a strong evidence of the existence of a bound state in
the spectrum.

Another situation that limits the applicability of our mobile impurity model
is when the excitation spectrum contains particles with a large effective mass
M , i.e. in the presence of nearly flat bands. As discussed in Section 3.3, the
exponents of the oscillating terms hold for large times compared to the inverse of
the band curvature energy scale, in the regime t�Ma2. If the mass is large, the
asymptotic behavior will only be observed after extremely long times, beyond
the reach of the tDMRG method.

3.6.3 Higher-S spin chains

With the above limitations in mind, we turn to the study of autocorrelations in
nonintegrable models. In principle, a simple way to break the integrability of the
spin-1/2 XXZ chain (while preserving a gapless spectrum as well as U(1) and
discrete symmetries) is to add small next-nearest-neighbor exchange couplings,
e.g., δH ∼∑j S

z
j S

z
j+2. However, it is well known that the adaptive tDMRG only
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3. Boundary correlations in 1D

works efficiently for models with nearest-neighbor exchange couplings [129]. For
this reason, we study critical spin-S chains with S > 1/2 [130–133] as examples
of nonintegrable models. We consider the Hamiltonian

H =

L∑

j=1

[Sxj S
x
j+1 + Syj S

y
j+1 + ∆Szj S

z
j+1 +D(Szj )2], (3.116)

where Sj is the spin-S operators acting on site j, ∆ is the exchange anisotropy
and D is the single-ion anisotropy.

The expressions for spin-S operators within the low-energy effective field the-
ory can be obtained by noting that spin chains with S = n/2 can be represented
by n-leg ladders in the limit where strong rung couplings select the spin-S mul-
tiplet of the local spins 1/2 [132, 134]. For instance, for S = 1 we can write
Sj = σj + τ j , where σj and τ j are two spin-1/2 operators that commute with
each other, and use the Jordan-Wigner transformation [essentially two copies of
Eqs. (3.58) and (3.59)] to write σj and τ j in terms of two fermions, say Ψσ(j)
and Ψτ (j). The resulting fermionic model turns out to be strongly interacting
(and contain long-range interactions), but the low-energy sector can be treated
by bosonization and a renormalization group analysis [132,134]. A critical phase
with central charge c = 1 (analogous to the spin-1/2 XXZ model with |∆| < 1)
can be understood as the result of gapping out all branches of excitations except
for one remaining gapless mode.

Here, we go beyond the low-energy regime and apply the nLL theory to
investigate spin autocorrelations in the critical phase of model (3.116). Our
main goal is to test the predictions of Section 3.5, namely the frequency shift
and exponential decay of oscillating terms in the boundary autocorrelation for
nonintegrable models. In the bulk case, the mobile impurity model of the nLL
theory can be applied phenomenologically [13] after identifying the thresholds
of the spectrum in dynamical spin structure factors. Unlike the spin-1/2 XXZ
model, however, the coupling between the impurity and the low-energy modes is
not known exactly and is regarded as a phenomenological parameter.

As our first attempt of studying higher-S spin chains, we calculated the lon-
gitudinal spin structure factor for the model above with D = 0 for S = 1 and
S = 3/2. The results for two representative values of ∆ are shown in Fig. 3.8.
For both values of S we notice a nearly dispersionless threshold in the spectral
weight for q ≈ π. This behavior is characteristic of finite-energy excitations with
a large effective mass, which hinder the direct application of our theory since
they introduce a small band curvature energy scale.

Focusing on S = 1 chains, we proceed by modifying the parameters in Eq.
(3.116) so as to look for a regime with a larger curvature of the spectrum near
q = π. Remarkably, the gap in the spectrum of S‖(q ≈ π, ω) is consistent
with the low-energy theory for critical spin-1 chains since the staggered part
of the operator Szj excites massive modes [132, 134]. We consider the model
with exchange ansotropy ∆ = −0.1 and easy-axis single-ion anisotropy D = −1,
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Figure 3.8: (a) The longitudinal spin structure factor of the critical spin-S XXZ
chains. (b) Results for S = 1 and ∆ = −0.1 and (b) for S = 3/2 and ∆ = 0.3.

Figure 3.9: The longitudinal spin structure factor of the spin-1 XXZ chain with
single-ion anisotropy for ∆ = −0.1 and D = −1.

which lies in the critical phase [135]. Fig. 3.9 shows that in this case the lower
threshold of S‖(q, ω) has a smaller gap and larger band curvature at q = π. Note
also that there is no evidence for bound states in the spectrum of Fig. 3.9.

Next, we investigate the autocorrelation C‖(t, j) for the spin-1 chain with
∆ = −0.1 and D = −1. As discussed in Section 3.5, the sharp lower thresh-
old of S‖(q, ω) implies that the bulk autocorrelation exhibits power-law decay
of its oscillating components. Note that this argument does not depend on de-

tails of the mobile impurity model; the nonanalyticity in C
‖
bulk(t) follows from

integrating S‖(q, ω) over momentum in the vicinity of the lower threshold. The
frequencies of the oscillations can be read off from the spectrum of S‖(q, ω) as
the values of ω about which the lower threshold disperses parabolically. In the
examples with spin-1/2 chains, there was only one such frequency corresponding
to the band edge of single-hole excitations. By contrast, in Fig. 3.9 we observe
two frequencies that can be identified as “edges” of the support: W1 ≈ 1.5 (at
q ≈ 0.65π) and W2 ≈ 1.1 (at q ≈ π). Thus, we have fitted the tDMRG data
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Figure 3.10: Real part of the longitudinal spin autocorrelation C
‖
bulk(t) vs. t for

the spin-1 chain with ∆ = −0.1, D = −1 and L = 300. The data were obtained
using m = 350 and δt = 0.1. We fit the data to Eq. (3.117) and obtain the
frequencies W1 = 1.55 and W2 = 1.11 and exponents β1 = 1.57 and β2 = 1.76.

with the two-frequency formula

Re
[
C
‖
bulk(t)

]
=

B
‖
0

t2
+
B
‖
1 cos(W1t+ ϕ1)

tβ1

+
B
‖
2 cos(W2t+ ϕ2)

tβ2
. (3.117)

Note that in contrast with Eq. (3.111) here we include the nonoscillating term
∼ t−2, associated with the gapless q = 0 mode, but omit the term ∼ t−2K that
in the spin-1/2 case stems from q = π part of the operator Szj in the LL theory.
The result of the fit is shown in Fig. 3.10. Note that the frequencies obtained
are consistent with the edges of the spectrum observed in Fig. 3.9.

Finally, we analyze the behavior of the boundary autocorrelation C
‖
end(t) for

the spin-1 chain with ∆ = −0.1 and D = −1. For nonintegrable models our
effective field theory predicts that boundary operators introduce a nonuniversal
frequency shift and a decay rate for the high-energy mode. The numerical results
indicate that the data can be fitted with a single oscillating component. We have

fitted the tDMRG data for C
‖
end(t) to two functions:

f1(t) =
A1

t2
+
Apl

2 cos(W ′t+ ϕ1)

tβ
, (3.118)

versus

f2(t) =
A′1
t2

+Aexp
2 cos(W ′t+ ϕ2)e−γt. (3.119)

For both fit functions we find W ′ ≈ 1.75. This frequency is clearly different from
the band edge frequencies W1 and W2 obtained from fitting the bulk autocor-
relation and lies inside the continuum of S‖(q, ω) (see Fig. 3.9). This result is
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Figure 3.11: Real part of the longitudinal spin autocorrelation C
‖
end(t) vs. t for

the spin-1 chain with ∆ = −0.1, D = −1 and L = 300. The symbols are the
tDMRG results. The data were obtained using m = 350 and δt = 0.1.(a) Fit to
power-law decay in Eq. (3.118). (b) Fit to exponential decay in Eq. (3.119).

consistent with our prediction of a nonuniversal frequency shift for nonintegrable
models. Moreover, we can see in Fig. 3.11(a) that the best fit to Eq. (3.118)
for t > 15 overestimates the amplitude of the oscillations at larger times t & 45,
suggesting that the decay is faster than power law. In fact, the fit to an expo-
nential decay according to Eq. (3.119) with γ ≈ 0.059 yields better agreement
with the numerical data [see Fig. 3.11(b)]. Importantly, the fitted relaxation
time 1/γ ≈ 17 is smaller than the time scales reached by the tDMRG.

In order to observe a clear signature of the exponential decay of C
‖
end(t), it

is convenient to subtract off the nonoscillating t−2 term in the autocorrelation
function. This subtraction is important because the difference between power-law
and exponential decay of the oscillating component becomes more pronounced
at longer times, after which an exponentially decaying term would become less
significant than the 1/t2 or subleading power-law terms. As explained in Sec.
3.7, we can fix the nonuniversal prefactor A1 in Eq. (3.118) by relating it to
the prefactor of the uniform term in the static correlation 〈Sz1Szj 〉 ∼ 1/j2 for
j � 1. The numerical result for the boundary autocorrelation after subtracting
the nonoscillating term is shown in Fig. 3.12. It is clear that the amplitude of the
oscillations decays as a straight line on a log-linear scale. This result indicates an
exponential decay of the boundary autocorrelation in the nonintegrable model,
in agreement with our prediction.

3.7 Boundary-bulk spin correlation

In this section, we relate the prefactors of the nonoscillating terms of the time-
dependent boundary autocorrelation and of the static spin correlation.

Let us first consider the critical spin-1/2 XXZ chain with open boundary
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3. Boundary correlations in 1D
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Figure 3.12: (Color online) Same as Fig. 3.11, after subtracting the nonoscillating
term ∼ 1/t2. The prefactor A1 = 2.233 was obtained independently (see Sec.
3.7). The slope of the red line is ≈ −0.053.

conditions. We are going to show that the static spin correlation is given by

〈Sz1Szj=x〉 ≈ −
2
√
KA

π2x2
+
B(−1)x

x1+K
, (3.120)

where K is the Luttinger parameter. The prefactor A is nonuniversal and also
appears in the time-boundary autocorrelation

〈Sz1 (t)Sz1 (0)〉 ∼ − 4A2

π2v2t2
+ oscillating terms. (3.121)

Note that if we determine the prefactor A by fitting the numerical results for the
static correlation to Eq. (3.120), we can fix the prefactor of the nonoscillating
term in the time-dependent boundary autocorrelation.

We start with the low-energy representation for Szj at the boundary:

Sz1 ∼ Ψ†(1)Ψ(1)

∼ : ψ†R(1)ψR(1) : + : ψ†L(1)ψL(1) :

+eiπ[ψ†R(1)ψL(1) + h.c.]

= : ψ†R(1)ψR(1) : + : ψ†R(−1)ψR(−1) :

+[ψ†R(1)ψR(−1) + h.c.]

∼ 4 : ψ†R(0)ψR(0) :

∼ − 4√
2π
∂xφR(0). (3.122)

Next, we need to perform the Bogoliubov transformation:

φR(x) =
K

1
2 +K

1
2

2
ϕR(x)− K

1
2 −K 1

2

2
ϕR(−x). (3.123)
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3.7. Boundary-bulk spin correlation

In the interacting case, the boundary operator has a nonuniform prefactor be-
cause the expression in Eq. (3.122) mixes the staggered part of the density

operator ψ†RψL + h.c. (which has a nonuniversal prefactor when bosonized in

the interacting case) with the uniform part ψ†RψR + ψ†LψL (which does have a
universal prefactor). For this reason, in the general case we must write

Sz1 ∼ −
4A√
2π
∂xϕR(0), (3.124)

where A = 1 for free fermions, but A is nonuniversal in the interacting case.
Using Eq. (3.124) together with the bosonic propagator,

〈∂xϕR(x, t)∂xϕR(0, 0)〉 = − 1

2π(x− vt)2
, (3.125)

leads to the result in Eq. (3.121).
The spin operator in the bulk is given by

Szj=x ∼ Ψ†(x)Ψ(x)

∼ ψ†R(x)ψR(x) + ψ†L(x)ψL(x)

+(−1)x[ψ†R(x)ψL(x) + h.c.]

∼
√
K

2π
[∂xϕL(x)− ∂xϕR(x)]

+
(−1)x

2πη

[
ei
√

2πK[ϕR(x)−ϕL(x)] + h.c.
]
. (3.126)

Using the folding trick with

∂xϕL(x) = −∂xϕR(−x), (3.127)

we obtain

Szj ∼ −
√
K

2π
[∂xϕR(x) + ∂xϕR(−x)]

+B′(−1)x
[
ei
√

2πK[ϕR(−x)−ϕR(x)] + h.c.
]
, (3.128)

where B′ is nonuniversal.
Let us first focus on the uniform part in Eq. (3.128). The corresponding

term in the static correlation is

〈Sz1Szj 〉 ∼
2
√
KA

π
[〈∂xϕR(0)∂xϕR(x)〉+ (x→ −x)]

= −2
√
KA

π2x2
, (3.129)
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3. Boundary correlations in 1D

which is the first term on the rhs of Eq. (3.120).
Now consider the staggered part of the operator in Eq. (3.128). Since this

term has a nonuniversal prefactor which is independent of A, we shall focus on
deriving the exponent of the large-distance decay. The staggered term in the
correlation is

〈Sz1Szj 〉 ∼ (−1)x〈∂xϕR(0)ei
√

2πKϕR(−x)e−i
√

2πKϕR(x)〉.
(3.130)

This is a three-point function involving three primary fields. We use the operator
product expansion:

: ∂xϕR(0) : : ei
√

2πKϕR(−x) :

=

∞∑

n=0

(i
√

2πK)n

n!
: ∂xϕR(0) : : [ϕR(−x)]n :

∼
∞∑

n=1

(i
√

2πK)n

(n− 1)!
〈∂xϕR(0)ϕR(−x)〉 : [ϕR(−x)]n−1 :

= i
√

2πK〈∂xϕR(0)ϕR(−x)〉 : ei
√

2πKϕR(−x) :

=
i
√
K√

2πx
: ei
√

2πKϕR(−x) : . (3.131)

Thus, in the three-point function we obtain

〈∂xϕR(0)ei
√

2πKϕR(−x)e−i
√

2πKϕR(x)〉

∼ 1

x
〈ei
√

2πKϕR(−x)e−i
√

2πKϕR(x)〉

∼ 1

x

1

(2x)K
. (3.132)

It follows that the staggered term in the spin correlation behaves as

〈Sz1Szj 〉 ∼
(−1)x

x1+K
, (3.133)

which is the second term in Eq. (3.120).
For the spin-1 chain the uniform part of the spin operator in the bulk becomes

Szj ∼ −
√
K

π
[∂xϕR(x) + ∂xϕR(−x)]. (3.134)

Note the extra factor of
√

2 in comparison with Eq. (3.128), which comes from
combining the densities of two spinless fermions [132] (more generally, this proce-
dure introduces a factor of

√
2S for the spin-S operator). The Luttinger param-

eter in Eq. (3.134) is defined such that the Kosterlitz-Thouless transition to the
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3.8. Conclusion

gapped Haldane phase happens at K = 1 and K > 1 in the critical phase [132].
Moreover, for S = 1 the staggered part of Szj couples to gapped modes (recall the
spectrum is gapped at k = π). As a result, the staggered term in the static cor-
relation decays exponentially with the distance from the boundary. The results
for the autocorrelation and static correlation for S = 1 are

〈Sz1 (t)Sz1 (0)〉 ≈ − 4C2

π2v2t2
, (3.135)

〈Sz1Szj=x〉 ≈ −2
√

2KC

π2x2
, (3.136)

where the coefficient C is nonuniversal. The LL parameter K and the spin ve-
locity v can be determined independently by analyzing the finite-size corrections
of the lower energy states together with the machinery of the conformal field
theory [136], see for example Ref. [137]. We found for the spin-1 chain with
∆ = −0.1 and D = −1 the following values: K = 1.285 and v = 1.211. Using
these values and fitting the DMRG data of the static correlations to Eq. (3.136),
we found that C = 2.8423.

3.8 Conclusion

In conclusion, we have analyzed the effect of reflective boundary conditions
in one-dimensional quantum liquids on time-dependent correlations. We have
shown that one can generalize the effective impurity model of a high-energy mode
interacting with the low-energy subband (nonlinear Luttinger liquid theory) to
capture the dominant contributions to late-time asymptotes of autocorrelations
and predict the exponents of associated power-law singularities in the frequency
domain. This was used to compute, e.g., the autocorrelations in critical spin
chains and the local density of states at the band bottom in one-dimensional
interacting spinless fermions. The boundary exponents show a characteristic
doubling in their dependence on the phase shifts which implies relations between
the bulk an boundary exponents depending only on the Luttinger parameter
but not on the phase shifts. Generalizations of the method were used to derive
similar results for spinful models and different correlation functions.

Our results apply, mutatis mutandis, to the class of integrable models, but
they need caution when applied to the nonintegrable case. While the impu-
rity mode is effectively protected in the bulk by momentum conservation and
power-law behavior of correlations is generic at zero temperature, the breaking
of translational invariance at the boundary introduces the possibility of addi-
tional renormalization effects. We have discussed two observable consequences:
a shift in the impurity energy leading to a shift in the oscillation frequency in the
autocorrelation, and the possibility of decay of the impurity leading to exponen-
tial damping. These effects can be analysed within the impurity model approach
by studying boundary operators as perturbations. Based on the Bethe ansatz
solution for models with reflective boundary conditions, we argue that integrable
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3. Boundary correlations in 1D

models should be devoid of such effects and hence identical bulk and boundary
frequencies should be observed without exponential decay.

We performed a time-dependent density matrix renormalization group study
of both integrable and non-integrable spin chains to verify our predictions. For
the integrable case, we studied the XXZ spin-1/2 chain and the numerically
obtained correlations agree very well with the effective field theory predictions.
For the nonintegrable case we looked at spin chains of higher spin S > 1/2. We
did find evidence for a nonuniversal frequency shift in this case as well as an
exponential damping factor of the high-energy contribution to the correlation.
Detailed comparison with microscopic models highlights the properties of the
spectrum one should consider in formulating the effective impurity model. First
of all, one should take into account all contributions from band minima as well
as band maxima. Complications may arrise when the spectrum features bound
states which are a priori not taken into account in the impurity model and lead
to additional oscillating contributions, but the impurity model may in principle
be adjusted to account for these. Bound-state lifetimes are subject to similar
considerations concerning the integrable versus nonintegrable case as the high-
energy impurity modes. A second complication comes when one of the high-
energy bands becomes nearly flat, resulting in a very large time-scale before the
asymptotic behavior of the correlation is reached, which could possibly push it
beyond the times for which reliable numerical data can be obtained.

An experimental test of the oscillating, high-energy contribution to correla-
tions in real time would most likely involve the fabrication of an effective spin
model using cold atom systems, for which real-space and time-resolved correla-
tions can be imaged by many-body Ramsey interferometry [138]. To test our
bulk versus boundary predictions one can resort to an optical box-like poten-
tial [139,140] implementing the appropriate boundary condition.

It would be interesting to extend our results to more general boundary con-
ditions. In particular, in the context of integrable models we may distinguish
between integrable and nonintegrable boundary conditions. Moreover, one may
differentiate between diagonal and non-diagonal boundary conditions, the latter
of which corresponds to boundary conditions that do not conserve particle num-
ber in the fermionic picture [124, 141, 142]. The mobile impurity model, viewed
as a boundary field theory, in principle provides the flexibility to study all these
situations by choosing the appropriate boundary conditions as well as adding
boundary operators to account for possibly nontrivial boundary bound states.
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CHAPTER4
Absence of Luttinger physics in
golden chains on germanium

The most pitiful among men is he
who turns his dreams into silver
and gold.

Khalil Gibran (in Sand and Foam)

The search for Luttinger liquids in experiment is an interesting and ongoing
pursuit. In this chapter we discuss one of the systems that seemed to be a
promising candidate, namely self-organized atomic chains formed when gold is
evaporated on a germanium surface: Au/Ge(001).

Surface systems are interesting from an experimental point of view since they
are easy to probe and manipulate from the outside. There are powerful tech-
niques, like STM and ARPES, to extract information on the many-body quan-
tum dynamics. Alas, despite earlier findings seemingly establishing Luttinger
liquid physics, it appears that the observed behavior of Au/Ge(001) is not due
to one-dimensional electron dynamics but is probably an interplay of disorder
and strong interactions. The results of this chapter indicate that the coupling
between the atomic chains is non negligible, which is likely a generic problem
for atomic chains on surfaces for which coupling with the bulk and other chains
seems hard to prevent.

This chapter relies heavily on the experimental work in the groups of Harold
Zandvliet and Mark Golden in general, and of René Heimbuch and Nick de Jong
in particular. It was published in a joined paper Phys. Rev. B 93 235444
(2016) [2]. See for more experimental details the theses [143] and [144].

4.1 Introduction
With the tremendous experimental achievements in cold-atoms and nano-technology
research nowadays, the systems in the labs of experimentalists and the mathe-
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4. Absence of Luttinger physics in golden chains on germanium

matical models studied by theorists quickly converge. In the context of this
thesis, the realization of systems in the Luttinger liquid universality class are of
prime interest. Despite the universality of the Tomonaga-Luttinger model, es-
tablishing unambiguous realizations of Tomonaga-Luttinger liquid (TLL) physics
has proved challenging. In particular, the great desire to ‘see’ Luttinger liquids
must be tempered by the hard requirement that simpler explanations do not exist
(Occam’s razor). Up to now, carbon nanotubes [145, 146], organic crystals with
highly anisotropic bulk properties [147–149], and GaAs channels [150] are the
most credible examples of classes of materials able to display the exotic effects
associated to TLLs. Recently, self-assembled atomic nanowires on semiconductor
surfaces have attracted a lot of attention in particular Au-induced nanowires on
the Ge(001) surface. In Ref. [113] a compelling case was made for TLL behavior
in the Au/Ge(001) system. However, these observations have been challenged
immediately in a subsequent remark [151] and the discussion has continued in
subsequent publications (see Sec. 4.2). At the time this research was done the
situation was not yet settled.

The interpretation of the data on Au/Ge(001) in light of TLL theory is fueled
by some promising indications of one-dimensional physics: Upon evaporation of
Au on the Ge(001) surface (see experimental details in Sec. 4.3), clear chain-like
structures become visible in scanning tunneling microscopy (STM) maps of the
surface topography. Scanning tunneling spectroscopy (STS)—probing the local
density of states (LDOS)—moreover shows a clear dip at the Fermi level which
is a signature of Luttinger liquid, or at least non-Fermi liquid, physics. Angu-
lar resolved photo emission spectroscopy (ARPES), probing the hole spectral
function, showed electron pockets with a possibly linear Fermi surface and very
incoherent behavior near the Fermi level. The decisive argument for the TLL na-
ture of the electronic states of the Au/Ge(001) structures reported in Ref. [113]
is the universal scaling of the LDOS with both temperature and energy close
to the Fermi level, as predicted from the TL model and a consequence of the
conformal invariance of the Luttinger liquid fixed point.

Before we discuss the subsequent experimental findings, it is important to
note that from a theory point of view the observation of a TLL in a solid state
system like the Au/Ge(001) nanowires raises certain questions concerning insta-
bilities of the Luttinger liquid state. In particular the focus on a small energy
window near the Fermi level is likely to be problematic. As is well explained
in e.g. [9], one should worry about higher dimensional ordering due to weak
residual coupling at such low energies as well as about disorder and localization
effects for which one-dimensional systems are particularly susceptible. In Sec.
4.5.1 we present some estimates based on calculations in the literature using
renormalization group (RG) arguments.

In the remainder of this chapter we first discuss in more detail the discussion
in the literature concerning the Au/Ge(001) system with a focus on the electronic
properties. Then, the joined experimental and theoretical effort is presented
that uses a combination of LEED, ARPES, STM/STS experiments done at the
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4.2. The Au/Ge(001) system

University of Amsterdam and the MESA+ institute of the University of Twente
augmented with theoretical considerations to provide a detailed picture of the
Au-induced electronic states.

4.2 The Au/Ge(001) system

The Au/Ge(001) system first appeared in the literature in [152] where it was
observed that nanowire-like objects of up to hundreds of nm long appear clearly
in STM topographic images with an inter-nanowire separation of 1.6 nm. It has
been extensively studied experimentally since. Here we focus on the results ob-
tained for the low temperature phase relevant for the possibility to find Luttinger
liquid signatures in the gold induced electronic states that can be observed to
appear when the ARPES data is compared to that of the clean Ge(001) surface.
(The discussed experimental signatures can be observed in the data presented in
Fig. 4.2 or in the cited publications.)

Low-energy electron diffraction (LEED) provides a direct probe of the sym-
metry of the surface and reveals a basic c(8 × 2) periodicity which is in line
with STM topography. An additional less pronounced quasi periodicity seen
on top of the nanowires—referred to as the VW structure—results in a (8 × 4)
superstructure [153–155] which is also visible in the LEED images as dimmer
spots.

A structure model of the surface was proposed in [152], but this is most
likely not correct. The chemical structure of the surface is still under debate
[152, 153, 156–161], but one structural model that fits most of the experimental
data is the giant missing row model [157]. This picture naturally explains that
the depth of the troughs between wires is larger than a single layer of atoms
[162], and also rationalizes the difference between the occupied and unoccupied
topographic images measured in STM [163]. In addition, the fact that the LDOS
observed in the troughs is larger than that on the wires themselves [164], and the
increased surface corrugation observed in SPA-LEED measurements [154] could
be explained by the giant missing row model, in which the top of the nanowires is
formed by Ge-Ge dimers, with the troughs consisting of Ge(111) facets covered
in Au trimers [157]. Density-functional theory [165–167] should in the end of
the day settle the debate on the structure of the Au/Ge(001) system. The
calculations in [163] predict, however, that the most simple version of the giant
missing row model is not energetically favorable. In its basic form it also does
not contain the VW superstructure [153–155,168] hence it is likely that the true
structure of Au/Ge(001) is a more complicated version of this model for example
in which the Au atoms are incorporated into the germanium structure [163].

For the discussion of the electronic states a complete understanding of the
atomic structure is not strictly necessary—we can interpret the spectral signa-
tures independently. As mentioned in the introduction, the experimental signa-
tures interpreted as TLL behavior in the Au/Ge(001) system have been subject
of controversy in the literature. In STS measurements of the LDOS, a TLL
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4. Absence of Luttinger physics in golden chains on germanium

Figure 4.1: Giant missing row model (taken from [157]) for the surface struc-
ture of Au/Ge(001). Certain crucial experimental findings are explained by this
structure model, but it probably needs refinement in order to faithfully represent
the true situation. For the discussion of the electronic properties pursued in the
current work, a definitive understanding of the structure model is not necessary.

system should show its face as a dip in the differential conductivity (propor-
tional to the LDOS according to standard STM theory [169]) around zero bias
following a characteristic power law [9, 46]. Moreover, this curve should exhibit
scaling behavior according to a universal dependence on the temperature and
energy away from EF . The exponent of the power law, α, is a measure of the
interaction strength between the electrons and should show different values for
TLL systems probed in the bulk or at the boundary 1D chains, but the values
are universally related through the Luttinger parameter K (see Ch. 3). On the
one hand, the expected power-law form of the measured density of states has
indeed been reported in both STS [113] and ARPES data [161, 170]. Further-
more, straight features in constant energy E(kx, ky) maps in ARPES [161, 170]
and linear conduction pathways observed in the troughs between the nanowires
in STM data [113, 158, 164] also seem to point towards the generation of Au-
induced electronic states that show significant dispersion only in one k-direction,
strengthening the case for a TLL state. On the other hand, this conclusion
has been disputed based on results of fully analogous experiments carried out
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by other groups on the same Au/Ge(001) system [151, 155, 171–174]. These
data are argued to be more consistent with the Au-induced surface states being
two-dimensional in nature [155, 171] and in fact with the direction of strongest
dispersion being perpendicular to the nanowire structures. Thus, experimentally
speaking, it is fair to say that the situation appears undecided.

4.3 Experiments, data and discussion

This section discusses the experiments done in Amsterdam and Twente on the
Au/Ge(001) system. Details on the sample preparation and the execution of
the experiments are left out (these can be found in [2] and [143, 144]). Instead
we focus on the data from the ARPES, STS/STM and LEED experiments, all
performed on consitently obtained samples providing us with a complete charac-
terization of the low-temperature Au-induced electronic states of the Au/Ge(001)
nanowires. The main focus will be on the ARPES data—a direct probe of the
hole spectral function for the electrons in the system—and what it tells us about
the relative orientation of the Fermi surface and the nanowire direction.

In Fig. 4.2 an overview of LEED, STM and ARPES data is presented showing
many of the features discussed in the previous section. The STM topography
[Fig. 4.2 (b)] shows clear long nanowire structures which occur in two, orthog-
onally oriented domains. The domain boundaries correspond to step edges in
the underlying Ge(001) surface and are a consistent feature of the samples [158].
The appearance of two orientations presents a challange in interpreting ARPES
data since the spot size of the photon beam is much larger than any single do-
main and the observed signal therefore represents an average of the two types of
domains. The LEED patterns also echo the occurence of the two domains and
corresponding reciprocal lattice vectors and Brillouin zones are illustrated in red
and blue [Fig. 4.2 (a)]. Also note the dimmer spots highlighted with orange ar-
rows corresponding to the (8×4) superstructure [153,154]. The depicted ARPES
data shows both constant energy maps at specific energies below the Fermi level
as well as fixed momentum cuts. The gold induced states are the four electron
pockets highlighted in yellow and these are the most important feature for the
lively TLL-inspired discussion of ARPES data on Au/Ge(001) [Fig. 4.2 (c)–
(g)] [153, 158, 161, 170, 171, 173]. Note that these Au-induced states appear at a
finite momentum offset with wavenumber k ≈ 0.2 Å−1 compared to the Γ point
kx,y = 0. As noted, the ARPES signal effectively averages over two domain
orientations and the four electron pockets are thus interpreted as consisting of
two opposing pairs with each pair corresponding to a different orientation. Pane
(c)–(f) also show a different band touching the Fermi level at the Γ point which
is referred to as a bulk-derived band and not bulk because this state is present
in the clean Ge(001) surface but displays essentially 2D and not 3D dispersion.1

The current interpretation is that this band correspond to an essentially two-

1The kz-dispersion direction of this band can be probed by changing the photon energy in
the ARPES setup and is shown to be essentially flat in this direction [2, 170].
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Figure 4.2: (a) Representative LEED image of the nanowire sample, recorded
with an electron beam energy of 23 eV, showing a clear, dual-domain c(8 × 2)
reconstruction. Two reciprocal surface unit cells are shown superimposed in blue
and red, and their respective first Brillouin zones are indicated below the LEED
image. (b) STM topograph of Au-induced nanowires on Ge(100), recorded at
room temperature. The unit cells from LEED data are superimposed in red and
light blue. (c-e) Constant energy maps—I(kx, ky)—measured using ARPES for
binding energies, EB of (c) 30 meV, (d) 60 meV and (e) 120 meV. (f) I(ky, E)
image, which is a cut along the light blue dashed line in panel (c). The orange
lines in panel (f) superpose the results of density functional theory calculations
for bulk Ge from Ref. [175]. (g) I(kx, E) image along the green dashed line in (c).
The yellow dotted lines in panels (d), (f) and (g) highlight low-lying Au-induced
electronic states. All ARPES data was taken with a photon energy of 21.2 eV
at a temperature of 20 K.
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dimensional subsurface state occuring for the clean Ge(001) and Au/Ge(001)
surface reconstructions alike, but some distance below the surface. This inter-
pretation is also motivated by work on the Ge(111)/metal surfaces [176]. It could
be the conduction channel inferred in transport experiments [177]. The presence
of this low energy subsurface state may be important for the interpretation of
the LDOS measurements later on.

4.3.1 The direction of electron dispersion

One of the main topics of debate [151, 178] has been the relative orientation of
the nanowire direction and the electron pockets in the ARPES data. As noted,
due to domain averaging, this is hard to infer from the ARPES data alone.
In [173], Nakatsuji et al. tackle this issue by doing ARPES on samples from Ge
wafers with a slight miscut leading to a majority of one of the domains. Their
argument was based on an extended Brillouin zone scheme and the signatures of
the primary electron pockets in higher Billouin zones. While the logic is sound
(and published before [113]) unfortunately the signal was so weak that the use
of second differentials of the data was necessary and the conclusions were still
disputed by the authors of [113, 178]. Our main goal is to provide compelling
evidence that indeed the direction of strongest dispersion is perpendicular to the
wires and to give a physical explanation for the odd shape of the electron pockets
from simple band theory.

The constant energy maps displayed in Figs. 4.2 (c)–(e) show that the Au-
induced electron pockets are obviously elongated, but there seems to be a de-
viation from the perfectly straight Fermi surface in one of the k-directions as
expected for an effectively one-dimensional system. A slight curvature in the
Fermi surfaces presents a lower bound on the energy scale for which the system
behaves one-dimensional [9] and therefore presents a possible tension with the
interpretation of the data as a TLL system based on power laws for the LDOS
at the Fermi surface. However, by itself it does not disproves the effective 1D
nature of the electronic state.

In Fig. 4.3, other constant energy ARPES maps for low-lying electronic states
is displayed (15 meV below the Fermi level), measured from the same high-quality
Au/Ge(001) nanowire sample as the data shown in Fig. 4.2. Despite the dual-
domain nature of the nanowire sample, the different geometry adopted in this
experiment (compared to Fig. 4.2) results in a strong asymmetry in the intensity
distribution between the two pairs of electron pockets. By a stroke of fortune,
this experiment is more sensitive to the domains with nanowires running in one of
the two possible orthogonal directions.2 This intensity asymmetry makes these

2In the experimental geometry relevant for Fig. 4.3, the Γ-K̄ direction of one of the sets of
surface nanowire domains is parallel to the entrance slit of the electron analyzer and antiparallel
to the majority polarization vector of the partially linearly polarised VUV radiation. This
results in favorable photoemission matrix elements for the nanowire states from one domain
orientation, while the states from the orthogonal nanowire domains are evidently significantly
suppressed.
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Figure 4.3: (a) ARPES I(kx, ky) map with EB = 15 meV, recorded in the
central portion the first surface Brillouin zone (SBZ). True-to-scale overlays of
the expected SBZs from the two orthogonal nanowire domains such as those seen
in STM (e.g. Fig. 1(a)) are shown using blue and red solid lines. It is clear that
in the experimental geometry used, the ARPES intensity is dominated by one
of the two nanowire domains. Panels (b) and (c) show a wide-k-range, constant
energy map recorded at a sample temperature of 16K for a binding energy of
30 meV. As the contrast in the experimental data falls off (but remains non-
zero) in higher Brillouin zones, the intensity scale shows the second differential
(with respect to the binding energy), with the raw data being shown in panel
(d). Superimposed on the two sets of identical experimental data in (b) and (c)
are SBZs for the two possible nanowire orientations shown in a repeated zone
scheme, with the green dots and x’s indicating equivalent points in the SBZ. The
blue/red arrows indicate the nanowire direction in each case. Panel (e) shows an
I(kx, E) cut through the raw data at the location in panel (b) indicated by the
blue dashed line. All ARPES data were taken with a photon energy of 21.2 eV
at a temperature of 20 K.
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data a good representation of the electronic structure of a single nanowire surface
domain. Of course it is a priori unclear which of the two domains is responsible
for the stronger signal. However, as the experiment has recorded data beyond
the first Brillouin zone, we can use the observed periodicity to determine the
Brillouin zone orientation which corresponds to the c(8 × 2) surface symmetry
of the nanowire structures. This tells us the relative orientation of the Fermi
surface and the nanowires. There are two scenarios:

1. The blue version of the Brillouin zone in Figs. 4.2 and 4.3 is correct. In
this case, the band bottom of the electron pockets in the first Brillouin
zone is not located at a high symmetry k-point such as the centre of an
edge or a corner. This would be unusual, but not impossible. In this
scenario, the Au-induced nanowire states would have the greatest velocity
for k along the nanowires. It could correspond to a quasi one-dimensional
state if the Fermi surface continues in a rain-gutter-like fashion beyond the
first Brioulline zone.

2. The red version of the Brillouin zone in Figs. 4.2 and 4.3 is correct. This
means that the band-bottom of the electron pocket is centred on the M̄ -
point of first Brillouin zone, i.e. the center of the long edge. In this scenario,
the Fermi surface of Au-induced bands would form closed contours and the
direction of greatest group velocity would be perpendicular to the nanowire
direction. This situation would lead to the inescapable conclusion that the
Au-induced states on Ge(001) are two-dimensional in nature.

Unlike earlier published ARPES data on Au/Ge(001) published [161, 170,
171, 173] Figs. 4.3 (b)–(d) show clear signal beyond the first Brillouin zone (in
Fig. 4.3 (d) raw data is shown, while (b) and (c) show second differentials to
enhance contrast). The apparent periodicity of the electron pockets—in total,
six horizontal streaks of intensity—immediately suggests that the red orientation
of the Brillouin zone (scenario 2) is correct and the observed electron pockets
have a two-dimensional nature. However, from the constant energy maps, which
gives an indication of the Fermi surface, this is not beyond doubt. Naively, we
could imagine the hole spectral function resemble a modulated rain gutter along
the kx direction in which the clearly visible band-bottom points [green dots in
Fig. 4.3 (b)] and the slightly less clear band bottom like points [yellow crosses in
Fig. 4.3 (b)] are equivalent, and the apparent difference in the constant energy
maps is due to lack of signal from the continuation of the Fermi surface due to
unknown causes. To clarify, Fig. 4.3 (e) shows a constant momentum cut along
the line connecting these points in order to display the band bottom energies
corresponding to these points. Although the signal at the possible band bottom
at kx ≈ −0.2 Å−1 is a little weak, the band bottom at this point seems to be
significantly less deep than at kx = 0.0 Å−1, which suggests that the points are
nonequivalent. Hence, additional evidence for scenario 2 is obtained. Actually,
considerations of symmetry really prevent the observed signal from corresponding
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Figure 4.4: Left: Illustration of tight-binding model and hoppin parameters.
Right: The resulting dispersion relation when only one of the hopping parameters
is taken nonzero in arbitrary units. The Billouin zone is depicted in black. The
axes show kx,y measured in Å−1. Putting t⊥1 > 0 naturally produces electron
pockets comparable to the AREPS data on Au/Ge(001).

to the blue orientation of the Brillouin zone and shows that one of the points
should correspond to a local maximum when the other is a local minimum unless
additional modulations are present (which do not show up in the data). This is
best understood by studying simple tight-binding models, as we shall do next.
It leads us to conclude that indeed the red orientation (scenario 2) is correct and
the state is unequivocally 2D.3

To put the band structure observed in ARPES on a more quantitative footing,
we formulate a minimal4 single-band tight-binding model based on the c(8× 2)
surface reconstruction. We start with the idealized lattice that corresponds to
the c(8 × 2) structure seen in LEED and STM topography. Physically, the
shortest-range hoppings should dominate and this is indeed what is found when
simulating the data.

We model the nanowire system as a two-dimensional lattice generated by the
Bravais lattice vectorsR± = (4ex±16ey)Å. We will use a pair of integers (n, j) to

label site j on nanowire n located atR = nR++j[R−+R+]. The operators c†σ,nj
(cσ,nj) create (annihilate) a fermion of spin σ =↑, ↓ on site (n, j) and satisfy the

canonical anti-commutation relations {cσ,nj , c†σ′,n′j′} = δσσ′δnn′δjj′ . The best
correspondence with the data is obtained by the model

H =
1

2

∑

n,j

t⊥1 (c†njcn+1 j + c†njcn+1 j−1) + t
‖
1c
†
njcnj+1 + t

‖
2c
†
njcnj+2 + h.c. (4.1)

3This conclusion is has also been drawn in an other synchrotron-based ARPES study of
Au/Ge(001) which appeared while we were writing our manuscript [179].

4Here, minimal means with the least number of non-zero hopping parameters.
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(where h.c. denotes the hermitian conjugate) with the parameters

t⊥1 ≈ 130 meV, t
‖
1 ≈ 65 meV, t

‖
2 ≈ −45 meV (4.2)

and a chemical potential of µ ≈ −134 meV (see Fig. 4.4 for an illustration of
the model). To fix the hopping parameters, we estimated the band bottom to
lie around 100–150 meV below EF and matched the dispersion relation

ε(kx, ky) = −µ+ 2t⊥1 cos(4kx) cos(16ky) + t
‖
1 cos(8kx) + t

‖
2 cos(16kx) (4.3)

to the data. The corresponding hole part of the dispersion relation is rendered
in 3D in Fig. 4.5 and the resulting Fermi surface is compared to the ARPES
data. We should note that the tight-binding approximation does not constitute
a microscopic model and even as a phenomenological model one knows it misses
out on important aspects such as interaction effects, disorder and other couplings.
Neglected effects can lead to strong renormalizations of the dispersion relation,
loss of coherence and so on, but what is accounted for properly by this model is
the surface symmetries which show up consistently in all measurements (LEED,
ARPES, STM). This allows one to formulate a family of easily solvable models
to explore the ramifications of these symmetries in the shape of the dispersion.
Although the true spectral function may be subject to renormalization effects and
broadening we argue that—by lack of ab initio theory at this point—studying
the tight-binding model presents the most effective means to settle the confusion
on the direction of the ARPES data compared to the nanowires and to gain a
better qualitative understanding of the Au-induced electronic states.

Note that t⊥1 is the dominant hopping in Eq. 4.2 with approximately t⊥1 ∼ 2t
‖
1,

in line with the conclusion that the direction of highest velocity is perpendicular
and not along the wires. This can be considered surprising both because of the
apparent conduction channels along the wire direction in STM/STS and because
the t⊥1 -hoppings correspond to a distance of approximately 1.6 nm in the model

while the t
‖
1-hopping corresponds to only ∼ 0.4 nm. Another oddity is the posi-

tive sign of the dominant hopping parameters as compared to the usual negative
sign found from typical s-wave overlaps. At the crude level of approximation
a tight-binding model offers it is impossible to draw any conclusions from this.
It would be interesting to see if a definitive understanding the surface recon-
struction [i.e. giant missing row or similar models] in combination with detailed
density functional theory calculations support these findings and can lead to a
better microscopic understanding in terms of the atom types (Au, Ge or both)
and orbitals responsible for the gold induced states.

It is important to note that in arriving at the above results we have considered
alternative lattices such as corresponding to the 8×4 super structure, and, more
importantly, very different values for the hopping parameters. In particular, we
have also considered hopping parameters which would be expected for the quasi
one-dimensional scenario, i.e. with the dominant hopping in the nanowire direc-
tion. The study of the dispersion relations boils down to considering different
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Figure 4.5: (a) E(kx, ky) rendering of the results of the tight-binding model (filled
states only) based on Eq. 4.3 with µ = −134 meV and hopping parameters given
in Eq. 4.2. Panels (b) and (c) compare constant energy surfaces in kx,ky taken
from the tight binding model at the energies of 0 and -10 meV in (a), with the
ARPES data (EB=15meV) taken from Fig. 2a.

superpositions of cosine functions in reciprocal space. Easy insight is obtained by
examining the allowed terms separately—in particular the ones with the longest
wave lengths, corresponding to the shortest range hoppings, as these determine
the coarse structure. An example of such explorations is depicted in Fig. 4.5
in the right pane where the different cosines are plotted as height maps when
only one of the allowed hoppings is taken to be nonzero. One finds that the
t⊥1 hopping naturally leads to closed elecetron pockets in reasonable correspon-
dence with the ARPES data. On the other hand a quasi 1D scenario could be

supported by dominant t
‖
2 hopping. This reproduces the correct ‘rain gutters’

but it would be physically surprising to have a next-nearest neighbor hopping to
be dominant. Finally, there is no term naturally accounting for the additional
modulations seen in ARPES in this case.

Two main points thus emerge from the analysis of the tight-binding model,

namely that t⊥1 ≈ 2t
‖
1, and that the Fermi surface forms a closed contour along

the kx-direction, not forming the modulated, yet continuous ‘tramlines’ that
would mark a quasi-1D phenomenology of a candidate TLL system. Thus, both
the raw ARPES data itself, as well as a simple yet relevant minimal model for
the band structure fail to support a 1D scenario for the Au-induced nanowires on
Ge(001). In terms of the E(kx, ky) eigenvalues, Occam’s razor points to the two-
dimensional character of the Au-induced nanowire states on Ge(001), despite the
fact that their topographic signature in STM images looks so one dimensional.
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Figure 4.6: (a) Topographic image (bias 1 V, current 0.2 nA) of nanowire sample
area for which the LDOS maps shown in (b)–(f) for different bias voltages were
measured (set-point 1V and 0.2 nA). On the right the uppermost scale-bar be-
longs to the topographic image in panel (a), and lower one belongs to the LDOS
maps shown in (b)–(f). All data were recorded at a temperature of 4.7 K.

4.3.2 Real-space structure of the electronic states

In this section we shift attention from momentum and energy resolved responses
by photo-emission of the nanowire system to real-space measurements using an
STM. Low temperature STM measurements carried out on identically-prepared
Au-induced nanowire samples is shown in Fig. 4.6 (a). In standard STM maps—
where bias voltage and target current is held fixed and the height is measured—
one should remember that the observed intensity always corresponds to a com-
bination of local electronic density of states and topographic structure of the
surface. To probe the density of states more directly, one can fix the height and
softly modulate the bias around some set set-point value Vbias while measuring
the current. The recorded dI/dV is proportional to the electronic LDOS of the
surface at E = eVbias.

In Fig. 4.6 (b)–(f) the same patch as in pane (a) is imaged using STS at
different biases. There are two noteworthy features:

1. At Vbias = −0.8 V we see straight conduction channels running parallel
to the wires. However, note that careful inspection shows that the high
intensity corresponds to the troughs, not the ridges, as first concluded in
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on Ge(001) measured at room temperature with a bias voltage of -1.5 V and
current set-point of 0.5 nA. Indicated in blue are the single-layer steps from
one terrace to the next. (b) dI/dV spectra representative of the nanowires (red
curve) and of the troughs between them (blue curve), extracted from a 20 nm ×
20 nm area in the bulk of a nanowire patch (T = 4.7 K; setpoint current of 0.2
nA at a bias of -0.1V).

Ref. [164].

2. At lower biases the dI/dV maps become more disordered and one could
even go as far as arguing that at zero bias a pearl-chain like structure of
high intensity spots arises running perpendicular to the wire direction.5

The data in Fig. 4.6 are very similar to the data of the detailed STM/STS
study in [155], where such features were used to argue against an interpretation
of the Au-induced states as one dimensional.

In light of the TLL discussion it is interesting to plot the bias dependence of
the dI/dV as a measure of the behavior of the LDOS close to Fermi level. Curves
representative for on-nanowire measurements (red) and for measurements on the
troughs between the nanowires (blue), are shown in Fig. 4.7 (b). Both in on-
wire and in-trough LDOS curves show a strong asymmetry between negative and
positive bias. This asymmetry is robust with respect to the junction resistance
and is also independent of the details of any fine structure in individual LDOS
curves. In our STS measurements, this asymmetry is always clearly visible, in-
dependent of the temperature, location on the surface, and independent of the

5The slight angle of the pearl-chain-like structures with respect to the direction normal to
the nanowires is comparable to the angle the VW reconstruction has in this direction [155],
suggesting a possible relation between this reconstruction and the enhanced LDOS patches.
In addition, we note that the so-called bridge atoms, observed in the troughs in topographic
images (see Fig. 3b of Ref. [180] for an example in Twente-grown samples), are also possible
candidates for the origin of these patches of higher LDOS. When summed over space, these
LDOS patches yield the LDOS peak observed at a bias of −0.1 eV in the trough-averaged STS
spectra shown in Fig. 4.7(b).
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tip condition. Consequently, the STS data shown in Fig. 4.7 (b) are fully repre-
sentative for tens of regions measured and thousands of individual dI/dV traces.
This asymmetry is relevant, because the TLL prediction is an electron-hole sym-
metric suppression of the DOS around the Fermi level. Thus, our STS data are
incompatible with the E/T scaling behavior reported in Ref. [113] according to
the TLL result

ν(E, T ) ∝ Tα cosh

(
E

2kBT

)
Γ

(
1 + α

2
+ i

E

2πkBT

)
. (4.4)

Unfortunately, high-resolution temperature dependent data of a narrow interval
around EF is not at our disposal. In light of the conclusion that the electronic
states represent an inherently two-dimensional system it would be interesting to
attempt an exact experimental reproduction of the universal scaling in [113].

The STS data presented here and in Ref. [155] lay bare a discrepancy with
those of Ref. [153] in which the straight features in the conductance were linked to
the electron pockets seen in ARPES. In past discussions of the dimensionality of
the nanowire-related electronic states, differences observed between the energies
of the possible 1D states in ARPES and STM data have been suggested to be
caused by a shift in the chemical potential, for instance induced by the differences
in doping levels of the different substrates used ( [181]). However, here we present
data taken with ARPES and STM/STS on identically-prepared samples, both
using the same batch of substrates from a single Ge(001) wafer. The ARPES data
(e.g. Fig. 4.2) enables to easily determine the position of the chemical potential,
and no significant shifts are observable between the ARPES data presented here
and analogous data reported using differently doped substrates in the literature
[161, 170, 171, 173]. Therefore differences in chemical potential or even variation
in the details of the sample preparation protocols cannot be used to argue that
the electronic states seen within 100 meV of the Fermi level in ARPES are 1D,
yet the differential conductance images in STS display essentially 2D patterns
when imaged in the same low energy region.

From the above, it is clear that the 1D-like conductance channels observed
by STS in the nanowire troughs at higher bias energies [e.g. Fig. 4.6(e,f)] do not
come from the low energy electron pockets observed with ARPES. The question
is then where do these straight conduction channels come from? Here we propose
two alternative explanations:

1. The ARPES data presented here show the presence of both Au-induced
surface states, and 2D states derived from the bulk germanium bands. In
Ref. [176] it was shown that for interfaces between various metals and
Ge(111), surface states and resonances are created with maxima in their
charge distributions lying between 5 and 10 layers below the surface. If the
situation for Ge(001) were to be similar, sub-surface, 2D Ge states could
exist, and, as the tops of the nanowires are at least several germanium
layers higher up than troughs between the nanowires [157, 162], the STS
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signal measured in the troughs would be much more likely to pick up a
contribution from these germanium subsurface states, thus yielding higher
conductance stripes running along the troughs. Put simply: such quasi-
2D, Ge subsurface states could ‘shine through’ in the troughs between the
nanowires. One can measure photon energy dependent ARPES data from
Au/Ge(001) and this shows that the electronic states up to as far as 1.8 eV
below EF are essentially independent of kz, and thus are of 2D character,
which would be consistent with the scenario sketched above.

2. Another possible explanation is also closely related to the high degree of
corrugation such Au/Ge(001) nanowire surfaces display. A system with
spatially inhomogeneous LDOS, but also at the same time strongly varying
height profile such as is the case here makes it all but impossible to decouple
height and LDOS information in the STS signal. All published work on this
system agrees that these samples possess features with a height difference
of several atomic layers spatially separated by only 1.6 nm. This is an
extremely challenging situation for STM/STS mapping using a real-life tip,
the extremity of which may be smaller than, of the same order, or larger
than the inter-nanowire trough size. This makes in particular the spatial
dependence of STS measurements6 highly dependent on the sharpness and
shape of the tip. Consider setting up an LDOS map with the tip set atop
a nanowire—here the choice of set-up bias voltage and current will really
set the height difference between the tip and the sample. However, when
the tip is set at a trough, the shortest distance from the sample to the tip
for a given set-point is less well defined—particularly if the tip apex and
the trough profile were to match (like a set of gears). In such a case, it is
easy to see how lateral tunnelling could also take place, boosting the final
dI/dV signal for reasons other than an enhanced LDOS at the bottom of
the trough itself.

This discussion serves to show that a degree of caution is required in the
interpretation of STS data from these systems, a caveat that does not apply to
the ‘remote probe’ of the occupied states provided by ARPES experiments.

The data on Au/Ge(001) reveal compelling evidence for a 2D character of
the nanowire-induced electron pockets visible in ARPES in par with the bulk-
derived Ge(001) states. Forced to consider the system as quasi 2D rather than
1D, we are left with the challenge of explaining the observations that lead to
the interpretation of Au/Ge(001) as hosts of a Tomonaga-Luttinger liquid in the
first place. In particular the observed power-law dip at the Fermi level of the
LDOS and its universal scaling with temperature are tricky to account by another
theory. Whether an alternative theory should reproduce the precise predictions
for a Luttinger liquid, or whether it should rather have similar features but can

6Please recall that the electron-hole asymmetry of the top and in-trough DOS curves from
STS was independent of tip conditions/sharpness.
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differ quantitatively depends on the certainty we have about the data being fit
precisely by the predicted curves. The asymmetry in the STS data suggests that
the correspondence with the TLL predictions is at least lost beyond a certain
energy window (as is expected for an effective low-energy theory). A thorough
assessment of the theoretical flexibility would benefit from a careful attempt to
reproduce the power-law universal scaling and bulk-boundary correspondence for
the exponent for the identical window of energies and temperatures used in [113].
Although a complete alternative theoretical characterization of the Au/Ge(001)
electronic states is beyond the scope of the present work, we will focus in the
next section on what we believe is the most viable explanation for the observed
dip in the LDOS and the incoherent signal in the ARPES data at the Fermi
level—clear non-Fermi liquid behavior.

4.4 Disorder in interacting electron systems
The interplay of disorder and interactions is known to be a general mechanism for
non-Fermi liquid behavior in electron systems. Experimentally, an expected sig-
nature is an anomalous suppression of the DOS pinned to the Fermi level—either
an anomalous (non-Fermi liquid) singular feature in the density of states known
as a zero-bias anomaly or a soft (power law) gap. In view of the Au/Ge(001)
system, the question is whether the suppression of the LDOS seen at the Fermi
level can be due to such an interaction-disorder induced zero-bias anomaly in-
stead of Luttinger liquid physics. Before we turn to this question, let us discuss
certain results for interacting disordered systems from the literature.

4.4.1 Mechanisms for suppression of the DOS

The underlying mechanism and shape of disorder-interaction induced suppression
of the DOS can differ wildly based on dimensionality, amount and type of disorder
and the strength and range of interactions. Here we will focus on certain results
from the literature for situations without magnetic or spin-orbit effects and the
two-dimensional case d = 2. Note the 2d disordered metals is a wildly debated
topic since the scaling theory of disorder predicts universal insulating behavior
but metallic behavior is sometimes found. We will focus exclusively on results
for the (local) density of states and do not claim to be exclusive in the following.
The aim is to provide some intuition and context for the Au/Ge(001) discussion.

For disordered interacting electron systems two classic effects are often dis-
cussed:

1. The Efros-Shklovskii Coulomb gap, for systems in the atomic (localized)
regime with Coulomb interactions.

2. The Altshuler-Aronov zero-bias anomaly for weak disorder and long-range
interactions in the metallic limit.

Before discussing these effects in somewhat greater detail, let us consider a sim-
plified argument useful to gain intuition on how the combination of interactions
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and disorder can lead to a suppression of the DOS.7

Consider the atomic limit of a disordered system described as a lattice of
localized states with random energies {εi}. This description should be valid for
states close to the Fermi level when there is Anderson localization. Consider
two of those sites with energies ε1, ε2 and assume some interaction in the system
that couples these states effectively by a potential V . Then in a mean-field
approximation

Hint = V c†1c1c
†
2c2 ∼ V [n2c

†
1c1 + n1c

†
2c2] (4.5)

where n1,2 is the occupation of site 1,2 in the ground state. One thus observes
that the interaction roughly leads to a renormalization of the energy levels ε1,2 →
ε1,2 + V n2,1 hence pushes the energy levels apart but only when one of states
was unoccupied and the other occupied, leading to a suppression of the DOS at
the Fermi level upon disorder averaging.

Efros and Shklovskii [183] used a more refined argument to show that when
we consider the Coulomb interaction V (R) = e2/(κR) in a 2D or 3D system, this
implies a vanishing of the density of states at the Fermi level by a power law with
exponents α = d− 1. Let us outline their argument: The effective Hamiltonian
can be written

H =
∑

i

εin̂i +
1

2

∑

i 6=j
Vij n̂in̂j . (4.6)

where Vij = e2/(κ|ri − rj |). The spectrum of H is easily constructed from the
single-particle energies εi and occupation numbers ni as

Ei = εi +
∑

j

Vijnj . (4.7)

Now imagine taking a particle from an occupied site i to an unoccupied site j.
The energy difference is

δE(i→ j) = Ej − Ei − Vij > 0 (4.8)

where the latter term accounts for attractive interaction between the created
particle and hole. This leads to the inequality

∆E = Ej − Ei > Vij (4.9)

for all the energies Ei, Ej where Ei lies below the Fermi level and Ej is above
the Fermi level. Consider only states in an energy interval of order ε around the
Fermi level. The density of states ν is related to the typical distance R between
sites as ν(EF )ε ∼ (L/R)d, since both sides represent the number of states N

7Adopted from the talk [182].
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(where ν(E) is the density of states at energy E and L is the linear dimension
of the system). A typical interaction energy for nearest sites is

Vij ∼
e2

κR
(4.10)

while Ej −Ei < 2ε. Then, up to unimportant numerical factors, Eq. (4.9) leads
to the inequality

ε > [ν(EF )ε]
1
d−1 . (4.11)

This is inconsistent for a finite ν(EF ) when we let ε go to zero. Hence, argued
Efros and Shklovskii, the density of states should vanish at the Fermi level.
Assuming that the bound in Eq. (4.11) is saturated and νE = |E − EF |α
essentially leads to the Efros-Shklovskii prediction

ν(E) ∼ |E − EF |d−1, (4.12)

although we must refer to Refs. [183, 184] for a more careful discussion of the
argument.

Note that the long range Coulomb interaction plays a crucial role in de-
riving Eq. (4.12). Hopping is completely neglected in this argument. To see
what it does, let us go back to the simple two-site model with localized levels
ε1,2. Hopping introduces an off-diagonal matrix element −t in the single-particle
Hamiltonian such that together with the mean-field interaction we could write
something like

Heff =

(
ε1 + n2V −t
−t ε2 + n1V

)
(4.13)

with energy levels

E± =
ε1 + ε2 + (n1 + n2)V ±

√
[ε1 − ε2 + (n1 − n2)V ]2 + t2

2
. (4.14)

In the absence of interactions, t leads to simple level separation which parallels
the formation of bands in periodic systems when we turn on hopping. Of course,
increasing t leads to delocalization of the states. The mean-field interaction
still seems to lead to a suppression of the DOS at the Fermi level, but when
the ground state starts consisting of delocalized states, the mean-field treatment
would introduce additional terms renormalizing the hopping and the situation
becomes much less clear. To handle this limit, i.e. the metallic regime, the model
based on localized states is better traded for calculations in the momentum basis.
This can be done in a field theoretical framework as first explored by Altshuler
and Aranov [185]. Treating the dynamically screened Coulomb interaction in
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disordered perturbation theory, the correction to the DOS was found to have a
strong singularity, which for d = 2 reads

δν = − 1

8π2~D
ln(|ω|τ0) ln(|ω|τ1). (4.15)

Here, D is the diffusion constant, τ0 is the elastic scattering time and τ1 =
τ0(Dκ2)2, where κ = 2πe2dn/dµ is the inverse screening length.

To establish the small ω dependence of the DOS one has to go beyond per-
turbation theory. A classic result by Finlelstein based on renormalization group
arguments predicts ν ∼ ω1/4. A comprehensive discussion [186] suggests that
this may be only accurate in a perfect metal state which has vanishing resistiv-
ity for which more generally a power law structure ν ∼ |ω|γ/2 can be expected.
For a normal metal, with finite resistivity, Ref. [186] predicts a linear Coulomb
gap ν ∼ |ω| for d = 2. Finally, for an insulator they find ν ∼ |ω|. Note that
this corresponds with the Efros-Shklovskii prediction a well as the normal metal
prediction, hence for a normal metal this is likely valid throughout the metal-
insulator transition. In Ref. [187], a finite temperature result is derived, also
under the assumption of finite resistivity. Other approaches, for example based
on the Keldysh technique [188] often end up using approximations for which the
small ω behavior of the DOS becomes unreliable. All treatments seem to agree
however on an intermediate frequency result of the form

ν(ω) ∼ ν0 exp
[
−r0

4
ln(|ω|τ0) ln(|ω|τ1)

]
(4.16)

in line with the perturbative Altshuler-Aronov result (4.15).
Having discussed the Efros-Shklovskii and Altshuler-Aronov effects in some

detail, we hope the reader agrees that on the one hand interactions and disorder
naturally lead to a suppression of the DOS at the Fermi level, possibly leading
to a soft gap or zero-bias anomaly, but on the other hand the theory seems
to leave space for the form of this suppression to vary. The assumptions on
which the theoretical results are based have to be checked in the situation at
hand. For example, both effects rely on the long-range Coulomb interactions. A
series of papers based on the Anderson-Hubbard model indicates that short range
interactions also lead to a zero-bias anomaly, although the authors claim that
the mechanism (driven by kinetic energy) is different [189–191]. Thus strongly
correlated materials may show different forms for the suppression of the DOS.
Also, anisotropy may lead to different predictions as is illustrated by a theory for
multi-wall carbon nanotubes [192] treated as a quasi-2d array of one-dimensional
systems finding power-law behavior for the LDOS.

4.4.2 The anomalous LDOS suppression in Au/Ge(001)

Now that we have discussed some background on the interplay of interactions
and diorder, we return to the remaining puzzle of the Au/Ge(001) system: the
incoherent nature of the electronic states close to the Fermi level seen in ARPES,
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and the observation of an anomalous suppression in the density of states at the
Fermi level in the STS data (see Fig. 4.7(b)). These observations are consistently
found in all published data on Au/Ge(001). On the one hand, the dip in the
LDOS at EF , and in particular the observation of its universal scaling with both
temperature and energy in Ref. [113] has formed the strongest argument in favour
of TLL physics in Au/Ge(001) nanowires. On the other hand, the ARPES data
presented here rule out TLL-physics for Au-induced nanowires on Ge(001), as
their electronic states within 100 meV of the Fermi level are unequivocally shown
to be 2D in character. This conclusion is also supported by the STS data from
identically-fabricated samples. Therefore, the issue of what else could give rise to
the marked departure of the spectral function and (local) density of states from
the regular metallic paradigm of the Fermi liquid is one that warrants discussion,
which we provide in the following from a theoretical point of view.

In Ref. [113] two other possible explanations are considered for the suppres-
sion of the density of states at the Fermi level besides TLL behaviour, namely a
Coulomb pseudogap and dynamical Coulomb blockade. The Coulomb blockade
is set aside since the experimentally obtained resistance of the tunnelling circuit
does not meet the theoretical requirements. We agree that this mechanism for
the zero-bias anomaly, which in its standard form relies on the impedance of the
tunnelling circuit, would certainly not explain the corresponding ARPES data.
We do regard the interplay of disorder and interactions as the most likely cause
for the observed data, a conclusion that echoes that made in Ref. [179]. In that
case, we should find out which of the mechanisms mentioned above is most likely
at play in Au/Ge(001), what discrepancies with the theory remain and how these
can be understood and solved.

In Ref. [113] the metallic Altshuler-Aronov anomaly [185] is discussed and
dismissed because it predicts exponential behavior close to the Fermi level [187,
193] which did not fit the data of Ref. [113]. The main problem with their
conclusion is that they only consider a system in one dimension, but in light of
the conclusions of this chapter one should of course use the predictions for a two-
dimensional system. For d = 2, the low-energy dependence of the DOS from the
Altshuler-Aronov anomaly has a linear dependence for low energies [186,187] as
discussed in the previous section. This is not really in correspondence with the
observed power-law exponent of Ref. [113] which they fit as α = 0.61. However,
as discussed, variations of the theory show that general power-law exponents
are also possible [186, 192]. For Au/Ge(001), an interesting approach could be
to take the simple band theory described in Sec. 4.3.1 as point of departure
and derive the corresponding Altshuler-Aronov result. As the odd shape of the
Fermi surface changes the non-interacting propagator, it is a non-trivial question
whether the result will be the same or whether power-law behavior will emerge.
Moreover, further differences may originate from the details of interaction effects,
which may be complicated by nontrivial screening effects.

In d = 2 also the Efros-Shklovskii Coulomb gap has a linear ν ∼ |ε| predic-
tion and as such seems to deviate from the power-law exponent stated in [113].
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Before dismissing a disordered isolating state in view of tunnelling experiments,
however, it is useful to note parallel discussions on universal scaling in trans-
port phenomena in organic conductors [194, 195]. In those systems, the con-
ductance is considered to be caused by hopping between localized states—which
corresponds to the conduction mechanism for disordered materials in the Efros-
Shklovskii class—and it has been shown that that transport in such systems
can give rise to universal scaling with temperature and bias, emulating the TLL
predictions [196, 197]. For Au/Ge(001), we regard an Altshuler-Aronov type ef-
fect more likely to underlie the suppression of the LDOS than an Efros-Shklovskii
type effect because an insulating phase seems harder unite with the ARPES data
that shows bands crossing the Fermi level, though be it somewhat incoherent in
nature.

A definitive answer on whether a disorder-based theory can predict all the
findings for the Au induced states in Au/Ge(001) is still an open question.

4.5 Stability of the Luttinger liquid state

In view of future searches for TLL physics at surfaces of solid-state systems
we remark here on the effects of finite chain lengths, higher dimensional cou-
pling and disorder which limit the temperature and energy window in which
TLL behavior may be observed. As experimental confirmation of TLL physics
often focuses on observations around the Fermi level, this presents a certain ten-
sion between theory and experiment. In particular, the low-energy response of
quasi one-dimensional systems may be dominated by weak magnetic or charge
density order in two or three dimensions, or may become Fermi-liquid-like. Neu-
tron scattering data on materials hosting quasi-1D spin systems are illustrative
in this respect. Inelastic neutron scattering experiments on the quantum spin-
ladder material (C5H12N2)CuBr4 [198] and the spin-1/2 Heisenberg chain ma-
terial CuSO45D2O [199] are well-described in terms of one-dimensional models,
which in the pure theory can be shown to be in a spin-Luttinger-liquid phase.
While the agreement to the experimental data above a certain threshold energy
is remarkable, the correspondence is lost below a threshold energy due to 3D
ordering. Another enlightening example comes from the phase diagram of cer-
tain transition metal compounds or Bechgaard salts, which show a multitude of
ordered phases at low temperatures and even Fermi-liquid-like behavior, while
at temperatures above the critical temperature—which can be as high as 100
K—one finds a TLL phase [9]. In fact, also Au/Ge(001) is known to exhibit
a high-temperature transition at 585 K. Above this temperature the nanowires
display a higher degree of 1D structural order, characterized by simple dimer
buckling, while below the STM images indicate a more glassy superstructure
with the characteristic VW shapes and the appearance of complex inter-chain
correlations [168]. The electronic conduction channels of a surface system like
Au/Ge(001) are therefore likely to suffer from similar instabilities towards 2D
or 3D ordering or will show a dimensional crossover at some energy scale, even
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if they were to host weakly coupled 1D conduction channels. A rough estimate
for such a scale may be determined from Renormalization Group arguments, as
done below. On a similar note, even in 1D system is the presence of disorder
will likely cause deviations from the clean theory below a certain energy scale:
one can show quite generally that gaussian disorder is a relevant perturbation
leading for repulsive interactions leading to a pinned charge density wave or ran-
dom antiferromagnetic phase [9, 200] and quasi-periodic disorder can lead to a
Mott-like metal-insulator transition, even at incommensurate fillings [201–203].

Assessing at which energy scales ordering effects will dominate is what we
will do next.

4.5.1 Renormalization Group arguments

Let us ignore for the moment the experimental data we presented in this chapter
and entertain the one-dimensional scenario for Au/Ge(001). We imagine that the
Fermi surface is approximately straight with the highest velocity of the electronic
states parallel to the wires. Our aim here is to estimate the temperature and
energy scales for the different transitions expected for a TLL in this case. The
temperature scales could be important for systems similar to Au/Ge(001) in
relation to higher dimensional coupling, and disorder can be obtained from RG
based arguments described in detail Ref. [9] and references therein. We outline
this reasoning here applied to the Au/Ge(001) nanowires.

The starting point is an infinite array of one-dimensional wires each described
as a TLL with charge and spin velocities vc and vs and Luttinger parameters
Kc and Ks. We assume spin-isotropic interactions, Ks = 1, and adhere to the
reported Kc ≈ 0.26 [113] .

For finite chain length L, quantization effects may obscure the TLL behavior
if the thermal length LT ∼ vc/T (in units such that ~ = kB = 1) becomes
comparable to L. In Au/Ge(001) the maximal nanowire length is approximately
L ∼ 100 nm. From the maximal dE/dk at the Fermi level in the ARPES data
which is of the order of 1–10 eV Åwe obtain a rough estimate for vc of the
order of 105–106 m/s. This leads to a temperature scale T of 1–10 meV or
10–100 K. In the conservative estimate of 10 K it is therefore conceivable that
finite-size quantization effects pose no limitations on the possible observation of
TLL physics in local observables such as the LDOS at the lowest experimentally
obtained temperature of order 5K.

Next, let us consider the higher dimensional coupling. As a perturbation
to the uncoupled wires, we consider the inter-chain hopping described by the
Hamiltonian

δH = t⊥
∑

<i,j>,σ

∫
dx
[
Ψ†iσ(x)Ψjσ(x) + h.c.

]
(4.17)

For the repulsive interaction Kc ≈ 0.26, we can neglect superconducting order
caused by Cooper-pair hopping. We do need to take density-density interaction
and spin-exchange into account which, if not present in the bare Hamiltonian,
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will be generated by second order processes from δHt⊥ . We can compactly write

δH = Jα
∑

<i,j>,σ

∫
dxSαi (x)Sαj (x) (4.18)

where Sαi (x) =
∑
σσ′ Ψiσ(x)τασσ′Ψσ′i(x). Here τ0 denotes the 2 × 2 identity

matrix and τ1,2,3 the Pauli spin-matrices. Assuming spin-rotation invariance,
the RG equations to lowest order are [9, 204]

dt⊥
dl

=
6−Kc −K−1

c

4
(4.19)

dJα
dl

= (1−Kc) Jα + t2⊥. (4.20)

Starting from small t⊥ and 1/3 < Kc < 1 we find that t⊥ grows quicker with
the RG flow than Jα, initially, and thus one expects to find the transition tem-
perature T1 for the dimensional crossover caused by δHt⊥ to occur before the
temperature of spin or charge ordering caused by δHJα . For 0 < Kc < 1/3,
δHJα always grows faster and hence T2 is likely to occur first in all cases. An es-
timate for T1 may be obtained by neglecting the renormalization for Kc and Jα.
The dimensional crossover is then expected when the renormalized t⊥ becomes
comparable to the band width t‖, which based on the band-bottom energy of
the Au/Ge(001) ARPES data we take to be of the order of 100 meV for dis-

cussion purposes. The crossover energy is estimated as T1 ∼ t‖(t⊥/t‖)ν
−1

, with
ν = (6−Kc −K−1

c )/6, which gives T1 ∼ t⊥ for the non-interacting case ν = 1.
Setting T1 = 10 K and Kc = 0.26 we obtain t⊥ ∼ 10 meV as the maximal
allowable inter-chain hopping, one tenth of the t‖ value.

Similar reasoning can in principle be applied to disorder, and estimates of
the localization length ξloc can be obtained [9, 200] from which a temperature
follows by setting LT ∼ ξloc. However, since there is no reliable estimate for the
disorder strength in Au/Ge(001), no quantitatively meaningful statement can be
made here at present.

4.6 Conclusions

An extensive experimental study of the Au/Ge(001) system has been performed
using LEED, ARPES and STM techniques. Based on these data and theoretical
considerations we are led to conclude that a one-dimensional scenario for the
Au induced electronic states in unattainable. Our high resolution ARPES data
clearly shows a dependence of the low-lying Au-induced electronic states on two
orthogonal directions in momentum. The observed k-space periodicity of the
ARPES data fixes irrefutably the orientation of the surface Brillouin zone with
respect to the nanowires, showing that the relevant bands have their highest
velocity perpendicular to the nanowires. Moreover, the observed periodicity in
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k-space cannot be matched with a quasi one-dimensional Fermi surface, and this
additionally underpins the form of the ARPES I(E, kx, ky) images which show
that this system supports two-dimensional states in which the low-lying electron
pockets form closed Fermi surfaces.

Considering a simple tight-binding model based on the c(8×2) reconstruction
as the relevant surface symmetry—consistent with observed LEED pattern, STM
data and ARPES data—we find that the qualitative features of the ARPES
data are reproduced quite naturally by short-range hoppings. This allowed the
hopping to be quantified along and perpendicular to the nanowires, and we found
that the latter is the larger, by a factor of two.

In keeping with this, the bias dependence of the spatial maps of the LDOS
from STS experiments agrees with a lack of 1D character for the low-lying, Au-
induced electron pockets observed in ARPES. The STS spectra measured in
the troughs show a broad peak around -0.1 V bias voltage, which we show to
be likely to be associated with enhanced LDOS patches observed in the maps.
These patches resemble pearl-chain-like structures oriented almost perpendicu-
lar to the nanowire direction and are most clearly resolved at the Fermi-level.
These observations from STS agree well with the conclusions from ARPES of
the dominance of electronic hopping perpendicular to the nanowire direction.

Taken together, all these findings prohibit the observation of one-dimensional
physics at low energies in these materials, and thus also exclude the existence
of a Tomonaga-Luttinger liquid in the nanowire samples. The density of states
close to the Fermi level observed in both tunneling data and the k-integrated
photoemission data is anomalously suppressed. As this cannot be connected
to TLL physics, it is most likely an Altshuler-Aronov-like effect, caused by the
interplay of disorder and interactions in a two-dimensional metal. Several the-
oretical studies indicate that the suppression of the tunneling density of states
could be explained this way but in fairness it should be stated that a quantitative
theoretical underpinning for Au/Ge(001) remains elusive at this point.
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CHAPTER5
Bragg pulses and Newton’s cradles

古池や蛙飛び込む水の 音

松尾 芭蕉

This chapter represents the transition in this thesis from equilibrium to non-
equilibrium problems. Like in the previous chapter we will deal with modelling
aspects of an experimentally relevant situation, although the experiment taking
center stage this time is a classic in the literature, namely the famous quantum
Newton’s cradle experiment performed in the group of David Weiss in 2006 [12].
We pursue a detailed modeling of a Bragg pulse, which was used in this ex-
periment to give a momentum kick to the atoms in opposing directions which
initiated long lasting oscillations in the optical trap. The lack of thermalization
in this system has been a driver for many theoretical efforts on out-of-equilibrium
physics and thermalization in closed quantum systems in recent years. Our focus
will be partly on studying microscopic properties of the Bragg pulse which could
give insights relevant for experiments and partly on constructing a mathematical
testing ground for approximate methods from equilibrium physics to see what
happens when they are applied beyond their naively expected domain of applica-
bility. This theme will be continued in the following two chapters of this thesis.
The work presented in this chapter is based on Phys. Rev. Lett. 116 225302
(2016).

5.1 Introduction
The study of many-body quantum physics has recently been transformed by
progress achieved in experiments on ultracold atoms [11]. The context of one-
dimensional (1D) bosonic gases provides a particularly fertile ground for in-
vestigating physics beyond traditional paradigms [205], with concepts such as
Luttinger liquids and integrability [9] playing a primary role.

One of the main probes of cold gases is Bragg spectroscopy [206–208], which
consists in applying a pulsed monochromatic laser grating onto the gas, thereby
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creating excitations at (multiples of) the recoil momentum q. In [209, 210], a
two-pulse sequence was optimized to populate the first ±q momentum satellites
of a Bose-Einstein condensate. The theoretical description of this sequence re-
lied on a two-state model where many-body dynamics were not included. In
1D however, many-body effects are inescapable. One of the fundamental models
in this context is the Lieb-Liniger gas [19] of δ-interacting bosons. This model
is relevant to the description of experiments [16], most prominently the quan-
tum Newton’s cradle experiment [12], in which a Bragg pulse is used to initiate
oscillations. Bragg spectroscopy has also recently been used to investigate corre-
lated 1D Bose gases of rubidium [211] and cesium [212], where heating resulting
from the Bragg pulse was measured and matched using linear response in the
Lieb-Liniger gas [213].

Our main objective is to model the effects of Bragg pulses for strongly cor-
related 1D Bose gases, from first principles, without approximation (so beyond
linear response), for experimentally relevant setups. We study instantaneous
pulses of varying amplitude A and wavevector q via their effect on physical ob-
servables: the time-dependent local density of the gas, and the experimentally
more accessible momentum distribution function (MDF). We will first focus on
the Tonks-Girardeau limit [214–216] of hard-core bosons both on a periodic in-
terval and in a harmonic trap [217–225], but also discuss certain finite interaction
effects.

5.2 Theoretical setup

A Bragg pulse is modeled as a one-body potential V (x, t) = V0 cos(qx − ωt)
coupling to the density ρ(x) = Ψ†(x)Ψ(x). Here Ψ†(x),Ψ(x) denote bosonic
creation and annihilation operators with canonical equal-time commutation re-
lations

[
Ψ(x), Ψ†(y)

]
= δ(x − y). The general case treats traveling waves per-

turbing the gas for a finite duration T0, but we will focus on the limit T0 → 0 and
moreover only consider a static grating of the gas by taking ω = 0. In this regime
the motion of the particles during the pulse can be neglected (the Raman-Nath
limit), and the perturbation is also known as a Kapitza-Dirac pulse [226, 227].
Taking the limit T0 → 0 while keeping A = V0T0 finite, the Bragg pulse operator
ÛB is given by

ÛB(q, A) = exp

(
− iA

∫
dx cos(qx)ρ(x)

)
, (5.1)

where we have set ~ = 1 as usual. The action of the instantaneous pulse on the
ground state |ψGS〉 generates the initial state of a quantum quench [228–230].
Typical experimental pulses [12, 211, 212, 231] correspond to Bragg momentum
q ∼ 2πρ0 and A ∼ 1, where ρ0 is the mean density.
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For the post-pulse time evolution we use the Lieb-Liniger model

HLL =−
N∑

i=1

1

2m

∂2

∂x2
i

+ 2c
∑

1≤i<j≤N
δ(xi − xj), (5.2)

with periodic boundary conditions (ring) or with an additional one-body poten-
tial modelling a harmonic trap, Vtrap(x) = 1

2mω
2x2. Most of the results based on

the Lieb-Liniger model which are presented here correspond to the hardcore or
Tonks-Girardeau (TG) limit corresponding to infinite interaction c→∞. We are
generally interested in the thermodynamic limit N,L → ∞ with N/L = ρ0 for
the ring. For the trap, this implies the scaling ω → 0 with ωN fixed. Presented
data is produced with m = 1.

As usual, we can use the a Jordan-Wigner string to map bosonic fields to
fermions

Ψ(x) = exp

(
iπ

∫ x

dy ρ(y)

)
ΨF (x) (5.3)

also known as the Fermi-Bose mapping [215]. On the level of the many-body
wavefunctions this leads to ψB(x; t) =

∏
1≤i<j≤N sgn(xi − xj)ψF (x; t), where

x = {xj}Nj=1 and ψF (x; t) is the usual Slater determinant of the free single-

particle wavefunctions, ψF (x; t) = detN [ψj(xi; t)] /
√
N !. In using the Fermi-

Bose mapping when modeling additional perturbations such as the application
of the Bragg pulse, note that we must switch to a fermionic representation in the
time-evolution operator as well. Since the Bragg pulse only couples to the density,
which is insensitive to particle statistics, the bosonic and fermionic representation
are identical in form.

Studying the time evolution after a Bragg pulse ÛB(q, A) can be considered
as a quantum-quench problem [230] with initial state

ψq,A = ÛB(q, A)|GS〉. (5.4)

In general, studying post-quench dynamics is a tough problem. In case the initial
quenched state can be expanded in the eigenbasis of the final Hamiltonian, i.e.
one knows the overlaps, the calculation becomes in principle doable although it
might remain intractable in practice. In the case of the Kapitza-Dirac limit the
overlaps of the initial state and the eigenstates are readily derived. We will come
back to the point of tractability when we discuss results.

The simplest way to find the many-body wavefunctions right after application
of the pulse is to consider the single-particle states in the fermionized model,
which obtain an additional phase according to

ψj(x; t = 0) =
1√
L
e−iA cos(qx)e−iλjx, (5.5)

99



5. Bragg pulses and Newton’s cradles

where the rapidities are λj correspond to the fermionic momentum. Note that
the Bragg momentum is quantized due to the periodic boundary conditions:
q = 2π

L nq with nq ∈ N.
Expanding Eq. (5.5) in plane waves, the time-dependence is easily obtained

and gives

ψj(x; t) =

∞∑

β=−∞

Iβ(−iA)√
L

e−i(λj+βq)xe−i(λj+βq)
2t/2m, (5.6)

with Iβ(z) the modified Bessel function of the first kind. This also immediately

provides the matrix elements of ÛB(q, A) as

〈λ|ÛB(q, A)|µ〉 = det

[(
Iλj−µk

q

(−iA)δ
(q)
λj ,µk

)

j,k

]
, (5.7)

where δ
(q)
µ,λ = δ(µ−λ)modq,0, as ÛB(q,A) is a single-body operator. From here, the

overlaps 〈λ|ÛB(q, A)|GS〉 important for specifying the post-quench initial state
can simply be read off.

A nice derivation of Eq. (5.7) can be performed in standard many-body
theory in the bosonic basis as well. By representing the many-particle states

|λ〉 =
1√
N !

∫
dNxψB(x|λ)Ψ†(x1) . . .Ψ†(xN )|0〉, (5.8)

with ψB(x|λ) =
∏
j<k sgn(xj − xk) det [exp(ixjλk)], to write

〈λ|ÛB(q, A)|µ〉 =
1

N !

∫
dNxdNx′ψ∗B(x|λ)ψB(x′|µ)

× e−iA
∑N
j=1 cos(qxj)〈0|Ψ†(xN ) . . .Ψ†(x1)Ψ(x′1) . . .Ψ(x′N )|0〉. (5.9)

Although this representation may look overly complicated, in fact one can use
that the variables xj , x

′
k act as dummy variables under the integral sign to reshuf-

fle terms, many of which turn out to be equal. For the TG eigenstates this leads
to a determinant of decoupled integrals of the form

1

L

∫ L

0

dx eix(λj−µk)−iA cos(qx) = Iλj−µk
q

(−iA)δ
(q)
λj ,µk

(5.10)

and hence to Eq. (5.7).
The important ingredient used in this derivation is that the commutation of

the density operator with the field operator can be done according to

Ψ(y)F [ρ(x)] = F [ρ(y) + δ(x− y)]Ψ(y) (5.11)
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for any function F , which in the end also underlies the single-particle equation
Eq. (5.5). The benefit of this latter derivation is that one could easily use the
full wavefunctions for Lieb-Liniger in the case c 6= 0 and find a representation for
the matrix elements of ÛB(q, A) which looks a bit simpler than the ones obtained
when sticking to purely first quantized language. However, we still have not been
able to evaluate the expression for general c.

5.3 Results
In relation to the quantum Newton’s cradle experiment, the momentum distri-
bution function is the most physically interesting result we have obtained from
a detailed modelling of the Bragg pulse, including a comparison of the trapped
and the periodic system. From a theoretical point of view, it is also interesting
to look at the steady state and results concerning the density profile in time
and density fluctuations in particular as they will serve as a test bed to compare
approximate theoretical approaches.

5.3.1 Steady state

States of the Lieb-Liniger model in the thermodynamic limit are best described
in terms of a density of rapidities ρ(λ). One way of fixing the density describing
the state in the late-time limit is by a generalized thermodynamic Bethe ansatz
procedure based on the expectation values of conserved quantities, or via the
quench action approach working directly with the thermodynamic limit of the
overlap coefficients [3, 232–234]. In both cases, one ends up extremizing a free
energy or action functional. The saddle point gives the desired density, which in
our case reads

ρsp
q,A(λ) =

1

2π

∑

α

|Jα(A)|2[θ(λ− αq + λF )− θ(λ− αq − λF )]. (5.12)

Note that this is a sum of copies of the ground state distribution ρGS(λ) =
(1/2π)[θ(λ+ λF )− θ(λ− λF )] displaced by multiples of the Bragg momentum q
(see Fig. 5.1).

5.3.2 Density profile

The expectation value of the density operator after the Bragg pulse in the ther-
modynamic limit is defined as

〈ρ̂(x, t)〉 = 〈ψq,A|Ψ†(x, t)Ψ(x, t)|ψq,A〉. (5.13)

We can compute this function in the TG limit in three equivalent ways: (i) using
the saddle point state and the Quench Action approach it is possible to perform
the full calculation in the bosonic basis; (ii) since the Fermi-Bose mapping leaves
the density Ψ†(x)Ψ(x) invariant, we can also work in the fermionic basis for which
the combined effects of the Bragg pulse and time-evolution are easily accounted
for; (iii) finally, we can treat the same problem in the Tomonaga-Luttinger model
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Figure 5.1: The saddle-point root density ρ = ρsp
q,A(λ) for different values of

A describing the steady state after the Bragg pulse in the TG limit. We used
q = 5π/2 and unit density.

by including a quadratic band curvature term. The nonlinear Luttinger liquid
(nLL) Hamiltonian is then given by

H
(0)
nLL =

∫
dx
∑

α

Ψ†α

[
−iαvF∂x −

1

2m
∂2
x

]
Ψα (5.14)

where α = R,L = +,−, vF = λF /m = πρ0/m and ΨR,L denotes the annihilation
operator of fermionic right- or left-mover fields.

The Hamiltonian in (5.14) can be obtained from the fermionic dual of the
Lieb-Liniger model in the TG limit by expanding the dispersion relation around
the Fermi points. The left and right movers simply correspond to positive and
negative momenta, but with momenta shifted by ∓kF . The ground state corre-
sponds to all k < 0 modes of ΨR occupied and all k > 0 modes of ΨL.

The interesting aspect of using the model in terms of left and right movers
is that there is a straightforward way to generalize to an interacting model. A
number of recent advances in the equilibrium theory for one-dimensional systems
show that the most relevant terms of a short range interaction can be accounted
for in a fashion similar to Fermi liquid theory by going to a quasi-particle basis.
The corresponding fermions Ψ̃R,L remain weakly interacting, and can to first
approximation be considered free with dynamics governed by the Hamiltonian
[58]

H
(0)
nLL =

∫
dx
∑

α

Ψ̃†α

[
−iαvs∂x −

1

2m∗
∂2
x

]
Ψ̃α. (5.15)

Here vs and m∗ correspond to the renormalized dispersion (dressed energy) of ex-
citations at the Fermi point in the equilibrium Lieb-Liniger model. The relation
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between the fermionic quasi-particles and the bare fermions is given by

Ψα(x) = Fα(x)Ψ̃α, (5.16)

Fα(x) = e
−2πi

∫ x dy{[1− 1
2
√
K
−
√
K
2

]
ρ̃α(y)+

[
1

2
√
K
−
√
K
2

]
ρ̃−α(y)

}
.

Together, Eq. (5.15) and (5.16) can be used to compute dynamical correlations
at zero temperature in the vicinity of the Fermi points for general gapless one-
dimensional systems which is one of the successes of the past years in the study
of one-dimensional systems beyond the Luttinger liquid paradigm.

All three computations of 〈ρ̂(x, t)〉 (bosonic, fermionic and nonlinear Lut-
tinger liquid) are instructive, but we will focus on the nLL result as it is by far
the most surprising in the present out-of-equilibrium context of the Bragg pulse.
On the technical level, the calculations using the Fermi-Bose mapping or the
Quench Action approach are similar and can be used to verify the result in the
TG limit.

In the nLL theory, the slowly fluctuating components of the density operator
can be expressed as [235]

Ψ†Ψ ∼ ρ0 + [ρR + ρL]

∼ ρ0 +
√
K[ρ̃R + ρ̃L]. (5.17)

We will use this as an identity both in the unitary operator implementing the
Bragg pulse as in the density as observable for which we want to compute the
expectation value. The computation splits into separate contributions from the
right and the left movers. Let us focus on the right movers.

One has the following behavior for the modes

Û†BΨ̃R,kÛB =
∑

β

Iβ(−i
√
KA)Ψ̃R,k−βq (5.18)

This leads in the thermodynamic limit to

〈0|Û†BΨ̃†R(x, t)Ψ̃R(x, t)ÛB |0〉 =
∑

β 6=0

Jβ

(
−2
√
KA sin

βq2t

2m∗

)
e−iβq[x−vst]

2πiβqt/m∗
(5.19)

where we used the quasi-particle dispersion for the right movers

ξ̃R,k = vk +
k2

2m∗
(5.20)

and Graf’s summation formula [236]. Here |0〉 denotes the ground state in the ap-
propriate model. Combining Eq. (5.19) with a similar expression for left movers
in the thermodynamic limit we arrive at

〈ρ̂(x, t)〉nLL = ρ0+
√
K
∑

β 6=0

Jβ

(
−2
√
KA sin

βq2t

2m∗

)
cos(βqx)

sin(βqvst)

πβqt/m∗
. (5.21)
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In the equilibrium case and the computation of dynamical correlations, the use
of Eq. (5.15) is justified by Renormalization Group arguments. Here, there is no
such justification. It is all the more surprising that the exact result is recovered in
the TG limit. Because of this and since Eq. (5.15) does include the most relevant
terms of a general interacting model, we expect that there will be a range of q
and A for which Eq. (5.21) is a good approximation. The importance here is
that this would hold beyond the Lieb-Liniger model. A more detailed discussion
will feature in future work. Notice that the result in a linear Luttinger liquid
calculation 〈ρ̂(x, t)〉LuttLiq = ρ0−KAq cos(qx) sin(qvst)/π, which can be obtained
by taking the limit 1/m∗ = 0 in Eq. (5.21), only captures the behavior for very
short times and gives unphysical results for intermediate to late times.
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Figure 5.2: Time evolution of the density in a trap, computed with: the FB
mapping for N = 50 particles (a), the exact result on a ring with an LDA
accounting for the trap (b). The difference between the two results is shown
in panel (c). The Bragg pulse parameters are set to A = 1.5 and q = π with
ω = 10/N .

Let us shift attention to another approximate method often employed in
equilibrium physics, namely the local density approximation (LDA) which, for
the gas in a parabolic trap, amounts to replacing the value for the mean density
by a space dependent value corresponding to the ground-state density profile in
the trap. In the present case, we can use a similar approach out of equilibrium
and replace the mean density in the result (5.21) exact in the TG limit by the
space dependent density in the trap. It turns out that this approximation is
considerably improved when one introduces the classical harmonic motion of the
density profile in accordance with the exact t = 0 MDF Eq. (5.33) and in fact
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leads to a surprisingly accurate reproduction of finite-size in-trap simulations
obtained using the Fermi-Bose mapping, as we discuss next.

In the thermodynamic limit the ground state density profile in a harmonic
trap is given by

ρGS(x) = 〈ρ̂(x)〉GS =
1

π

√
mNω −m2ω2x2. (5.22)

Writing ρ(x, t; ρ0) for the function in Eq. (5.21) for a gas with mean density ρ0

in the TG limit K = 1, vs = πn/m, m∗ = m, our result for the improved LDA
in the trap reads

ρLDA(x, t) =
∑

l

Jl(A)2ρ

(
x− lq

ωm
sin(ωt), t; ρGS(x− lq

ωm
sin(ωt))

)
. (5.23)

Fig. 5.2 shows this function compared to the FB mapping results. It appears that
this way of applying the LDA leads to pretty accurate predictions in this case, in
particular for the region where the density is large which has the smallest gradi-
ents. The discrepancy of the LDA with the exact simulation is initially larges at
the edges of the cloud of atoms which has diverging gradient, as expected, and
then propagates inwards towards the center of the cloud.

5.3.3 Momentum distribution function

The momentum distribution function (MDF) 〈〉n̂(k, t)〉 after the Bragg pulse can
be defined as the Fourier transform of the one-body density matrix, which due
to the breaking of translational invariance by the pulse, leads to the expression

〈n̂(k, t)〉 =

∫
dxdy ei(x−y)k〈ψq,A|Ψ†(x, t)Ψ(y, t)|ψq,A〉 (5.24)

Thanks to Eq. (5.11, the one-body density matrix at t = 0 (after the Bragg
pulse) is readily computed as

〈Û†B(q,A)Ψ†(x)Ψ(y)ÛB(q,A)〉 = 〈Ψ†(x)Ψ(y)〉e−i2A sin(q x−y2 ) sin(q x+y2 ). (5.25)

Since the latter equality follows strictly from the commutation relations of the
Bose fields with the density it holds irrespective of interaction or geometry. For
the case of the ring geometry, the associated MDF is

〈n̂(k, t = 0)〉 =
1

L

∫ L

0

dξeikξI0 (i2A sin(qξ/2)) 〈Ψ†(ξ)Ψ(0)〉 (5.26)

where we defined ξ = x− y and used the integral

1

L

∫ L

0

dye−i2A sin(qξ/2) sin(qy+qξ/2) = I0 (i2A sin(qξ/2)) (5.27)
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Figure 5.3: The initial MDF (t = 0) for A = 1.5, q = 3π and different values of
the interaction strength c. The finite-c interactions cause a decrease of the width
of the satellites but do not influence their relative heights.

under the assumption that qL/2π is integer. Using the convolution theorem we
obtain

〈n̂(k, t = 0)〉 =
∑

k′

f(k′)〈n̂(k − k′)〉GS (5.28)

where

f(k) =
1

L

∫ L

0

dxeikxI0(i2A sin(qx/2)) (5.29)

and 〈n̂(k)〉GS is the MDF of the ground state.
Using the expansion I0(z) =

∑∞
n=0( 1

4z
2)n/(n!)2 one finds

I0(i2A sin(qx/2)) =

∞∑

n=0

(−1)n

(n!)2
A2n sin2n(qx/2)

=

∞∑

n=0

n∑

l=−n

(−1)n+l(2n)!

(n!)2(n− l)!(n+ l)!

(
A

2

)2n

eilqx (5.30)

where we used the binomium to expand in plane waves.
The order of the sums can now be interchanged. Defining the coefficients

cl(A) =

∞∑

n=|l|

(−1)n+l(2n)!

(n!)2(n− l)!(n+ l)!

(
A

2

)2n

(5.31)
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we obtain f(k) =
∑
l clδk,lq. The coefficients cl(A) can in fact be resummed and

expressed in terms of a Besselfunction

cl(A) = Jl(A)2. (5.32)

The t = 0 post-pulse MDF can therefore be exactly expressed in terms of the
MDF before the pulse 〈n̂(k)〉GS as

〈n̂(k, t = 0)〉 =

∞∑

l=−∞
Jl(A)2〈n̂(k + lq)〉GS . (5.33)

Note that this result holds for arbitrary interaction strength c with 〈n̂(k)〉GS the
appropriate ground state MDF. The result is plotted in Fig. 5.3 for different val-
ues of c. The influence of the finite interactions resides solely in the groundstate
MDF 〈n̂(k+ ql)〉GS, leading to a decreasing width of the peaks as one goes from
the hard-core limit (c → ∞) to the BEC limit (c → 0). In contrast, Eq. (5.33)
shows that their relative heights are completely determined by the value of A.
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Figure 5.4: Time evolution of the MDF after a Bragg pulse with q = 3π and
A = 1.4, computed with the QA approach (left half) and the FB mapping (right
half). Because the FB mapping treats a finite system (N = 50) the momenta
are quantized, causing less pronounced peaks for short times. All other results
are in excellent agreement with the QA computations.

The full time evolution of the MDF can also be studied using the quench
action approach or the FB mapping [3, 237]. The relaxation of the sharp t = 0
peaks to the ghost shaped features well known from the Newton’s cradle exper-
iment on very short time scales is probably the most relevant relation between
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the experimental setup of David Weiss and the present theoretical investigations.
The excellent correspondence of quench action and FB results is an indication
of the quality of the finite size results using the FB mapping endowing trust
in the conclusions reached which are particularly relevant for the case with an
harmonic trap which at present is beyond reach for the quench action approach.

In Fig. 5.5 the result for the in-trap dynamics of both the MDF and the
density is presented computed with the FB mapping. The perfect recurrences are
an artifact of expected to diminish for finite interactions. The most remarkable
aspect is the large difference of the relaxation time-scale due to dephasing, which
is very short, as compared to the essentially classical oscillatory dynamics of the
gas due to the harmonic trap, which is given by much larger period determined
by the trapping frequency ω.

Figure 5.5: The time evolution of the density (left) and MDF (right) in the trap,
computed with the FB mapping for N = 50, ω = 10/N , A = 1.5 and q = 3π.

5.4 Conclusion
We provide detailed modeling of the Bragg pulse used in quantum Newton’s
cradle-like settings or in Bragg spectroscopy experiments for strongly repulsive
bosons in one dimension. We reconstruct the post-pulse time evolution and
study the time-dependent local density profile and momentum distribution by a
combination of exact and approximate techniques. Our results display a clear
separation of timescales between rapid and trap-insensitive relaxation immedi-
ately after the pulse, followed by slow in-trap periodic behaviour. The time
evolution of the density profile in the TG limit on the ring can be exactly re-
produced by a computation based on nonlinear Luttinger liquid theory while
when supplemented with an appropriate local density approximation this leads
to quite accurate predictions for this function in the trap.
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CHAPTER6
On the Moses sea

The waters were divided.

Exodus 14:21

In the last chapter we have discussed a Bragg pulse in the Lieb-Liniger model,
mimicking as close as possible an experimental situation. The steady state in
the long-time limit was shown to correspond to a distribution of particle rapidi-
ties similar to several copies of Fermi seas separated by multiples of the Bragg
momentum q. A microscopic picture of this state would however reveal that,
different from a true Fermi sea, the filling of the quantum numbers does not cor-
respond to completely filled blocks. Instead, the Bragg pulse generates a huge
superposition in which a representative state would feature filled and empty
quantum number slots in some ratio set by the coefficients Jβ(A)2 with a lot
of ‘room’ to microscopically reorder the quantum numbers, and hence a huge
entropy.

Here we consider an artificial set of states corresponding to a scenario where
the copies of the Fermi seas could somehow be cooled separately in which case we
would arrive at a zero-entropy version of the Bragg pulsed steady state described
in the last chapter. These states can be constructed in terms of the Bethe
ansatz solution of the model as consecutive intervals of filled and empty quantum
numbers. They resemble the ground-state Fermi sea in having sharply defined
Fermi momenta and vanishing thermodynamic entropy.

The material in this chapter represents the work published in Phys. Rev. A
89, 033637 (2014) and SciPost Physics 1 (1), 008 (2016).

6.1 Introduction

Much of our understanding of 1d systems stems from the existence of robust non-
perturbative methods developed over the last decades. First and foremost, the
concept of the Tomonaga-Luttinger liquid [30,31] and the technique of bosoniza-
tion [9, 36, 238, 239] have provided the consistent framework for describing the
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universal low-energy physics of these systems. On the other hand, the existence
of isolated examples of exactly-solvable 1d models [24] whose wavefunctions can
be obtained from Bethe Ansatz [240] has opened up the door to many nonper-
turbative computations of physical properties of representative systems.

One seldom-exploited characteristic of the Bethe Ansatz is that, in marked
contrast to bosonization, it provides exact wavefunctions for any state in the
Hilbert space, irrespective of its energy. Besides allowing to consider e.g. finite-
temperature thermodynamics of exactly-solvable models, this fact also opens the
door to the investigation of many more general issues going beyond conventional
equilibrium physics.

Our aim here is to consider a relatively simple class of states in two integrable
models—namely in a gas of repulsive bosons described by the Lieb-Liniger model
and in the XXZ spin chain—which, while being highly excited, share many prop-
erties with the ground state: They have vanishing thermodynamic entropy and
show quantum critical correlations that can be studied by adjusting effective-
field-theory methods to this situation [4, 5, 241]. The same holds for the entan-
glement entropy [242].

The theoretical construction of the states we want to consider is easy: split the
ground-state Fermi sea into separate blocks and translate each block’s quantum
numbers by some number of slots. In view of this ‘splitting’ of the Ferm sea, and
in analogy with Dirac and Fermi seas, we will refer to such states as a Moses sea.

The experimental fabrication of a Moses sea could well be excruciatingly
difficult. It is intriguing in this light that experiments in cold atoms have shown
that domain-wall melting of a one-dimensional Mott insulator leads to sharp
quasi-condensate peaks in the momentum distribution at finite momenta in the
late-time limit [243] similar to what we find for a Moses sea (see Sec. 6.5.4). The
initial state studied in the experiment also has zero entropy but the relation to
Moses seas of the late-time steady state has yet to be established.

If a Moses sea is created in out-of-equilibrium settings one would expect it
to be ultimately unstable against external perturbations, but, being eigenstates
of a physically meaningful Hamiltonian, their lifetimes can in principle be ex-
tremely large if perturbations are weak. They therefore realize another instance
of ‘metastable criticality’ [244] in interacting gases.

The persistence of ground-state properties in the class of Moses sea states can
be regarded in the light of generalized Gibbs ensembles (GGEs), as these states
can alternatively be viewed as the zero temperature limit of a GGE and thus a
ground state of the generalized Hamiltonian constructed as some superposition
of additional local conserved charges. It is not clear however to which extend
such generalized Hamiltonians describe physical systems. In Lieb-Liniger for
instance, expressing the conserved charges in terms of physical operators is highly
nontrivial and leads to expressions which cannot be written as simple integrals of
Hamiltonian densities [245]. On the other hand, one can obtain certain physically
sensible models for integrable spin ladders which have Moses seas as ground
state [246,247].
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We will henceforth not be bothered by questions related to the physical re-
alization of these states but consider them purely as a theoretically interesting
class generalizing the ground state. Still, it is important to note that we will ad-
here to the physical Lieb-Liniger or XXZ Hamiltonian to define time-evolution,
which makes the study of dynamical correlations qualitatively different from
cases where these states would appear as the ground state of some more general
Hamiltonian.

6.2 Definitions
To introduce our definitions and notations we give a coarse review of the two
models under consideration followed by the construction of Moses seas. See
[4, 5, 24] for further details.

6.3 Models

To start, consider the Lieb-Liniger Hamiltonian [19,248] (with ~ = 2m = 1)

H =

∫ L

0

dx[∂xΨ†(x)∂xΨ(x) + cΨ†(x)Ψ†(x)Ψ(x)Ψ(x)]. (6.1)

Eigenstates are completely characterized by the two-particle scattering phase
θ(λ) = 2 arctan(λ/c), thanks to the magic of diffractionless scattering in quantum
integrable models [21]. Similarly, the XXZ model

H = J

L∑

j=1

[
Sxj S

x
j+1 + Syj S

y
j+1 + ∆

(
Szj S

z
j+1 −

1

4

)
− hSzj

]
, (6.2)

which we will consider in the critical regime 0 ≤ ∆ ≤ 1, allows for a construction
of the complete set of wave functions in terms of θ(λ) = 2 arctan[tanh(λ)/ tan(ζ)]
for ∆ = cos(ζ) ∈ (0, 1) or θ(λ) = 2 arctan(λ) for ∆ = 1. We put J = 1 such that
the ground state has anti-ferromagnetic correlations.

Let us agree to label the lattice indices j in XXZ with a continuum variable
x to align the notations for the Lieb-Liniger and XXZ models. In terms of the
appropriate phase shift and appropriate parametrization of the single-particle
momenta in terms of rapidities, the full N body wave functions can be written
as

χN ({xj}Nj=1|{λj}Nj=1) ∝
N∏

j>k

sgn(xj − xk)

×
∑

P∈SN
(−1)[P ]e

i
2

∑
j>k sgn(xj−xk)θ(λPj−λPk )ei

∑
j p0(λPj )xj , (6.3)

where p0(λ) = λ for Lieb-Liniger and p0(λ) = 2 arctan[tanh(λ)/ tan(ζ/2)] or
p0(λ) = 2 arctan(2λ) for XXZ with 0 < ∆ < 1 and ∆ = 1 respectively. Here
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P ∈ SN denotes a permutation on N symbols and (−1)[P ] is its sign. Note that
all momenta are measured mod 2π on the lattice.

In Lieb-Liniger there is a natural choice of vacuum state |0〉 which is used to
construct the N particle sectors according to

∣∣{λj}Nj=1

〉
=

∫ N∏

j=1

dxj χN ({xj}Nj=1|{λj}Nj=1)

N∏

j=1

Ψ†(xj)|0〉. (6.4)

In XXZ we choose the fully polarized state |⇓〉 = ⊗Lx=1|↓〉x as pseudo vacuum
and we identify the N particle states with the sector of magnetization M =
N − L/2 constructed according to [249,250]

∣∣{λj}Nj=1

〉
=

∫ N∏

j=1

dxj χN ({xj}Nj=1|{λj}Nj=1)

N∏

j=1

S+
xj |⇓〉. (6.5)

Imposing (anti-)periodic boundary conditions depending on whether N is even
(odd) leads to consistency conditions on the rapidities known as the Bethe equa-
tions:

p0(λj)L = 2πIj −
N∑

l=1

θ(λj − λl) (6.6)

where Ij are integers or half-odd integers depending on whether N is odd or
even.

The construction of Bethe states (6.3) and the Bethe equations (6.6) in prin-
ciple represent the full information needed to solve the model, either Lieb-Liniger
or XXZ, exactly: use the Bethe equations to find the set of rapidities and then
construct the full wave functions that in principle contain the information to any
physical question one may ask. Yet, the road to computing for example physical
correlation functions is far from paved from here on but still has many practical
and fundamental hurdles awaiting.

First, let us quickly comment on the differences between solutions to the
Bethe equations in XXZ and Lieb-Liniger. While for Lieb-Liniger with c > 0
all solutions to the Bethe to the Bethe equations are real and a state can be
declared uniquely by specifying N of the allowed quantum numbers Ij , in XXZ
the rapidities λj may take on complex values and can organize in so called string
solutions [23]. We will restrict our focus to states with only real rapidities for
the construction of Moses seas, but string states may appear in the computation
of correlations as intermediate states of the matrix element summations. In
XXZ the allowed set of quantum numbers that may lead to real rapidities is
constrained to lie within a finite symmetric interval |Ij | < I∞ bounded by the
value I∞ = (L−N)/2− ζ(L/2−N)/π for 0 < ∆ < 1 and I∞(L−N + 1)/2 for
∆ = 1. The ground state for XXZ still has only real rapidities and corresponds
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to choosing a symmetric configuration of quantum numbers,

IGSj = (1−N)/2 + j, j = 1, . . . , N (6.7)

as it does for Lieb-Liniger.
The energy and momentum of eigenstates are simply sums of single-particle

contributions

P =

N∑

j=1

p0(λj) E =

N∑

j=1

ε0(λj) (6.8)

where the bare energy function is ε0(λ) = λ2 for Lieb-Liniger and ε0(λ) =
−2 sin2(ζ)/[cosh(2λ)− cos(ζ)] for 0 < ∆ < 1 and ε0(λ) = −2/(1 + 4λ2).

In Lieb-Liniger, the so-called Tonks-Girardeau limit c→∞ [215,251] simpli-
fies the system considerably, reducing it to a gas of impenetrable bosons which
is equivalent to free fermions up to particle statistics. Similarly, ∆→ 0 in XXZ
makes the spin chain equivalent to free lattice fermions. The effect of particle
statistics can be formally accounted for by employing a Jordan-Wigner string to
map between the corresponding bosonic and fermionic creation and annihilation
operators. We will use these limit later on as a separate check of our results as
well as to construct an appropriate effective field theory.

6.3.1 Moses sea

Both in the XXZ model and in Lieb-Liniger, a Moses sea is defined by declaring
intervals of occupied quantum numbers (no holes) and leaving all other quan-
tum numbers unoccupied. The simplest non-groundstate case has two intervals
[I1L, I1R] and [I2L, I2R], which is the case we will put most emphasis on, while in
general we can consider n intervals [I1L, I1R], . . . , [InL, InR]. In the case of XXZ
we will assume that there is enough ‘room’ in the available slots for the quantum
numbers corresponding to real rapidities.

Let us establish some notations. We will use indices i, j, k, . . . = 1, 2, . . . , n
to denote the n ‘seas’ (usually n = 2) and indices a, b, c, · · · = L,R to denote
the left or right edge of a sea. The declaration of the numbers {Iia} or, rather
yet, the associated ‘Fermi momenta’ {kiaL} with kia = (2π/L)Iia will be used
to specify the state. The Fermi momenta will be kept fixed when taking the
thermodynamic limit N,L→∞, N/L = ρ0. The Iia are taken half-way between
occupied and empty slots such that the filled quantum numbers of sea j are
{IjL+1/2, . . . , IjR−1/2}. The extremal quantum numbers Iia are mapped by the
Bethe equations to the quasi-momenta λia which, for Lieb-Liniger, become equal
to kia in the Tonks-Girardeau limit. It is useful to define kF =

∑
ia sakia = πρ0

with sR/L = ±1. Fig. 6.1 illustrates the construction.
Some immediate facts concerning Moses seas are that their energy is thermo-

dynamically large above that of the ground state, and their momentum distri-
bution will be peaked around nonzero momenta (namely at momenta dictated
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6. On the Moses sea

Figure 6.1: Illustration of quantum number configuration for the ground state
Fermi sea (top) and Moses sea (bottom).

by the size of and distance between the Fermi pockets), unlike the ground state
case. Moreover, the fact that these states have zero entropy maximizes quantum
effects in observables such as correlation functions.

Such Moses seas were previously considered in [252] for mean field studies
and in [241] where their local two and three body correlations were calculated
(similar correlations were computed in [253,254] using the method of [255]). As
argued in [241], the momentum kick caricatures the effects of the Bragg pulse
performed in [12], but in view of our findings in Ch. 5 we know that the zero
entropy nature is markedly different.

6.4 Correlations from integrability
The structure of dynamic correlations in one dimensional systems display sharp
thresholds closely related to the excitation spectrum of particle, hole or particle-
hole excitations. The splitting of the Fermi sea is clearly visible in the structure
of the excitation spectrum.

Let us consider Lieb-Liniger for illustration. As compared to the ground
state, there are now more branches of particle (Type I) and hole (Type II) ex-
citations leading to a very characteristic single particle-hole continuum. Due to
the vacancies for quantum numbers in between the seas, part of the spectrum
is shifted to the negative energy domain, leaving an excluded area for a range
of positive energy and momentum values as compared to the ground-state case.
This is illustrated for the Tonks-Girardeau case in Fig. 6.11, where the types of
excitations that correspond to the different parts of the spectrum are also indi-
cated. When more than a single particle-hole are considered, another difference
shows up as compared to the ground state, namely that because of the negative
energy branch the spectrum will become completely gapless.

Table 6.1: Levels of saturation of the f-sum rule for the DSF computations
presented in Fig. 6.2.

c = 1 c = 4 c = 16 c = 64
k = π 99.3% 99.2% 99.6% 99.7%
k = 2π 98.1% 97.0% 98.6% 98.9%
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6.4. Correlations from integrability

Figure 6.2: The dynamical structure factor S(k, ω) in Lieb-Liniger for Moses
sea with c = 1, 4, 16, 64 computed using ABACUS.

The particle-hole continuum dictates the outlines of the dynamical structure
factor (DSF), defined as

S(k, ω) =

∫ ∞

−∞
dt

∫ L

0

dxeiωt−ikx〈ρ(x, t)ρ(0, 0)〉

=
2π

L

∑

α

|〈{kia}|ρk|α〉|2δ(ω − Eα + E0), (6.9)

where |{kia}〉 symbolizes the Moses sea, α labels a complete set of eigenstates
with energies Eα, and ρ(x) = Ψ†(x)Ψ(x) is the density operator. We have
used the ABACUS routine [26] to evaluate the DSF numerically (see Fig. 6.2),
generalizing the ground state computations in [256]. Just like in the case of the
ground state, the single particle-hole continuum is visible in the DSF marked by
thresholds and displaying the dominant correlation weight.

For small interactions the system becomes more and more like two coupled
BECs as can also be seen from the solution of the extremal rapidities that collapse
onto each other when c→ 0. The DSF is then extremely sharply peaked at low
energy and at a momentum corresponding to the distance between the internal
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Figure 6.3: Longitudinal structure factor Szz(q, ω) in XXZ for N = 200 and
M = 50 computed by summing matrix elements obtained from algebraic Bethe
Ansatz for ∆ = 1/10, 1/2, 1. The parameter s = 0, 2, 6, 12 the shift of the
quantum numbers such that the separation between seas is 2s slots.

edges of the two seas. On the other hand, for very large interactions, the DSF
becomes essentially energy-independent.

For XXZ, the quantity corresponding to the boson DSF is the longitudinal
structure factor defined as

Szz(q, ω) =
1

L

L∑

x,y

e−iq(x−y)

∫ ∞

−∞
dt eiωt〈Sz(x, t)Sz(y, 0)〉, (6.10)

In Fig. 6.9 results for an asymmetric configuration are shown. The effects
of ‘unbalancing’ the Fermi pockets is quite easily visualized by following the
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Figure 6.4: Transverse dynamical structure factor S−+(q, ω) at N = 200,
M = 50, ∆ = 1 computed from summations of matrix elements obtained from
algebraic Bethe ansatz. From left to right, the momentum shifts in the quantum
numbers are s = 0, 2, 6, 12. The corresponding sum rule saturations of the data
are listed in Tab. 6.2.

changes in the dispersion lines. All features of the DSF mentioned above survive
imposing such an asymmetry with minimal change.

The quality of the computations is evaluated with sumrules. For the DSF,
the f-sumrule

∫∞
−∞ ωS(k, ω)dω2π = N

L k
2 was used. Saturation levels at two repre-

sentative momenta for all data sets presented in Fig. 6.2 are given in Tab. 6.1.
Lower momenta are saturated better than the percentages given. For XXZ sum-
rule saturation values are given in Tab. 6.2.
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Figure 6.5: Transverse dynamical structure factor S+−(q, ω) at N = 200,
M = 50, ∆ = 1

10 computed from summations of matrix elements obtained from
algebraic Bethe ansatz. From left to right, the momentum shifts in the quantum
numbers are s = 0, 2, 6, 12. The corresponding sum rule saturations of the data
are listed in Tab. 6.2.

6.5 Effective field theory for static correlations

The construction of an effective field theory (a multi-component Tomonaga-
Luttinger model) for Moses seas in Lieb-Liniger and XXZ proceeds by repre-
senting the model in terms of fermions by a Jordan-Wigner transformation and
taking the continuum limit if need be.
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6.5. Effective field theory for static correlations

s Szz S−+ S+−

∆ = 1
10 0 99.50% 99.50% 98.74%

2 99.50% 98.52% 91.49%

6 99.50% 97.73% 89.18%

12 99.16% 95.27% 85.47%

∆ = 1
2 0 99.50% 99.50% 98.97%

2 98.73% 99.49% 94.42%

6 98.05% 99.90% 90.85%

12 98.00% 98.16% 88.61%

∆ = 1 0 99.38% 99.50% 94.40%

2 98.04% 99.50% 89.45%

6 98.00% 99.12% 87.57%

12 97.80% 98.80% 86.55%

∆ = 1 6l, 18r 95.67% 98.01%

Table 6.2: Sum rule saturations for all data obtained from the ABACUS algo-
rithm at N = 200 and M = 50 for various values of the anisotropy and the
momentum shift in the Fermi seas. The bottom row shows the saturations for
an asymmetric shift of the quantum numbers.

6.5.1 Multi-component Tomonaga-Luttinger model

For Lieb-Liniger, we use the Jordan-Wigner transformation

Ψ(x) = cos

(
iπ

∫ x

dy ρ(y)

)
ΨF (x) (6.11)

representing the Bose field in terms of fermions ΨF (x) in the continuum. The
use of the cosine rather then an exponential for the Jordan-Wigner string conve-
niently implements the correct symmetry properties upon bosonization. This
fermionization of the Lieb-Liniger model leads to the dual Cheon-Shigehara
model [257,258] wavefunctions of which can be obtained by an anti-symmetrization
procedure. The interaction potential characterizing this model can be thought of
as V (x) = −δ′′(x)/(m2c). The TG limit c → ∞ corresponding to free fermions
will be the starting point of the construction.

For XXZ, one first maps the model to spinless fermions on a lattice by the
Jordan-Wigner transformation

S−j → (−1)j cos


π

∑

l<j

nl


 c†j , Szj →

1

2
− nj (6.12)

with nj = c†jcj . The Hamiltonian then reads (neglecting chemical potential terms
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6. On the Moses sea

and with J = 1)

H =

N∑

j=1

[
−1

2

(
c†jcj+1 + c†j+1cj

)
+ ∆njnj+1

]
. (6.13)

To arrive at the same starting point as in the case of Lieb-Liniger, we will take
the continuum limit in writing ΨF (x) = cx and base the construction on the XX
point ∆ = 0 corresponding to free fermions. The fermionized XXZ Hamiltonian
is then diagonal in momentum space with a dispersion relation ε0(k) = −J cos(k)
while Lieb-Liniger has ε0(k) = k2/2m. If we agree to measure distances in units
of the inverse mean density ρ−1

0 in Lieb-Liniger and the lattice spacing a (so far
taken to be unity) in XXZ, subsequent steps in the construction and the results
become identical in form for the two models.

To construct a Moses sea we must specify Fermi points kia which we identify
with the fermionic momenta. We then introduce a branch of chiral fermions ψia
for each i = 1, . . . , n, a = L,R and obtain an effective model at the free fermion
point by expanding the dispersion relation for ΨF (x) around the points kia and
taking this as the dispersion εia(k) for ψia. In computations we identify

ΨF (x) ∼
∑

ia

eikiaxψia. (6.14)

This is essentially a mode expansion and the fields ψia can be considered slowly
varying and represent the modes of ΨF (x) close to the momenta kia which will
be most important for correlations. In the next step we switch on interactions
but we linearize the dispersion relation such that the effective Hamiltonian can
be written

HTL =

∫
dx


∑

ia

sav
0
iaψ
†
ia(−i∂x)ψia +

∑

ia,jb

gia,jbρiaρjb


 (6.15)

where ρia = ψ†iaψia is the density of species ia, gia,jb are effective g-ology-like
interaction parameters, v0

ia = ∂kε
0(kia) are the ‘Fermi velocities’ correspond-

ing to the bare, cosine dispersion of the XX model. Here and throughout the
chapter normal ordering is left implicit. The Hamiltonian (6.15) constitutes a
multi-component Tomonaga-Luttinger model [46, 259, 260]. Note that we de-
fine the velocity by taking the derivative of the dispersion to the right, also at
left Fermi points. The combination sav

0
ia would be positive in equilibrium and

corresponding to the Fermi velocity, however, it may be negative in our out-of-
equilibrium context. For Moses seas, the validity of Hamiltonian (6.15) beyond
weak interactions cannot be justified by renormalization group arguments in the
usual sense since we are describing a high-energy state. Still, the approximations
here made rely on the idea that we keep the most important terms for the long
range physics determined by the modes that are ‘close’ to the Fermi points kia,
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6.5. Effective field theory for static correlations

which is done by keeping operators of scaling dimension ≤ 2. We will adhere to
the equilibrium terminology and call these marginal while terms of higher scaling
dimension are called irrelevant.

Note that when we fix the quantum number configuration but vary the in-
teraction c or ∆, the kia remain fixed. This is most easily seen by realizing that
the momentum of an excitations can always be obtained from adding the filled
quantum numbers the momentum of adding removing a particle at the Iia point
therefore always leads to a momentum difference of kia when starting from a
Moses sea. We thus observe that a kind of generalized Luttinger’s theorem fixes
the kia independent of interactions. Note that this conservation is a many-body
effect away from the free fermion limit: it results of the backflow of the rapidi-
ties in the Moses sea upon creating the excitation. The individual rapidities vary
when we change the interaction, generally making the edges a Fermi sea coming
closer together when we increase fermionic attraction. For c→ 0 in Lieb-Liniger
for example, two seas will have their left and right fermi points resulting in a
BEC-like quasi-condensate with but at condensed around two momenta. See Fig.
6.6 for an illustration of the Tomonaga-Luttinger construction and this effect.

Figure 6.6: The multi-component Tomonaga-Luttinger liquid construction for
Moses seas (here in Lieb-Liniger). The c = ∞ limit corresponding to free
fermions is the starting point (left). Tuning to the free boson limit c = 0 the
system becomes more BEC-like (right). The right and left velocities of the two
seas will converge but each sea will maintain a definite mean momentum.

In order to compute correlations, we bosonize the chiral fermions according
to

ψia ∼
1√
2π
e−i
√

2πφia , ρia = − sa√
2π
∂xφia (6.16)

(where sR,L = ±1). The Hamiltonian then becomes quadratic in terms of the
bosonic fields and can be diagonalized by a Bogoliubov transformation:

φia =
∑

jb

Uia,jbϕjb. (6.17)

This results in the diagonal form of the effective Hamiltonian

HTL =
∑

ia

savia
2π

∫
dx (∂xϕia)2 (6.18)
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6. On the Moses sea

where the velocities via are now related to the dressed dispersion of the XXZ
model with ∆ 6= 0 of Lieb-Liniger with c 6=∞. While the interaction parameters
gia,jb cannot be reliably obtained, the Bogoliubov parameters Uia,jb—which also
determine the exponents of physical correlation functions—are related to finite-
size energy contributions when we extend the filled quantum number blocks by
Nia particles at Fermi point kia. The correction δE = E[{Nia}]−E[{0}] is then
to order 1/N given by

δE =
∑

ia

εiaNia +
∑

ia,jb,kc

π

L
scvkcUia,kcUjb,kcNiaNjb. (6.19)

Here Nia is the number of added (or removed when Nia < 0) particles corre-
sponding to chiral species ψia and εia = ε(kia) is the energy associated to Fermi
point kia. Eq. (6.19) gives a relation between the Uia,jb and the finite-size energy
differences upon addition or removal of a particle at the Fermi points kia, kjb.
Thanks to the properties of the matrix Uia,jb, this relation can in fact be inverted
and leads to a way to determine Uia,jb and via directly from these finite-size cor-
rections. The Uia,jb generalizes the universal compressibility parameter K used
in equilibrium situations, in which case we have

Uab =

(
1

2
√
K

+ 1
2

√
K 1

2
√
K
− 1

2

√
K

1
2
√
K
− 1

2

√
K 1

2
√
K

+ 1
2

√
K

)
(6.20)

We have tossed the index for the seas in this case and a, b = R,L denote the
Fermi points kR,L = ±kF . Note that there is only one effective parameter in
stead of two—which would be expected for a 2×2 matrix with the quasi-unitarity
condition. In general, a symmetric combination of seas as one would obtain for
any parity invariant state leads to such a reduction of the number of parameters
determining the Bogoliubov transformation as detailed in Sec. 6.5.2.

The Bogoliubov parameters Uia,jb have a beautiful interpretation in terms
of the phase shifts of the modes at Fermi point kia upon addition of a particle
at Fermi point kjb. This can be argued upon refermionization of the effective
Tomonaga-Luttinger theory and can be made precise in terms of the shift func-
tion F (λ|λ′) describing the change of the rapidities when the system is excited.
In the thermodynamic limit the shift function is determined by the integral equa-
tion

F (λ|λ′)−
∑

j

∫ λj2

λj1

dµ

2π
K(λ− µ)F (µ|λ′) =

θ(λ− λ′)
2π

(6.21)

with K(λ) = θ′(λ). The relation to the Bogoliubov parameters is then

Uia,jb = δia,jb − sbF (λjb|λia), (6.22)

which can be shown by comparing the finite size corrections to the energy. A
derivation of this relation will be presented in Ch. 7. In equilibrium it is known
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6.5. Effective field theory for static correlations

[261] and the shift function plays an important role in going beyond the Luttinger
liquid approximation in computing dynamic correlation functions [65,118].

6.5.2 Parity symmetric case

In the case of a symmetric configuration of n seas corresponding to parity in-
variant states, we can reduce the number of independent Bogoliubov parameters
by a factor two. In this case, we have −kiL = kn+1−iR and −viL = vn+1−iR
and in general that the system is symmetric under simultaneously exchanging
i ↔ n + 1 − i and L ↔ R. It is then convenient to combine the fields at Fermi
points at opposite momenta and define

φi =
1√
2

(φiL − φn+1−iR), θi =
1√
2

(φiL + φn+1−iR). (6.23)

with inverse transformation

φiL =
1√
2

(θi + φi), φn+1−iR =
1√
2

(θi − φi). (6.24)

The Hamiltonian for the multi-component TL model can then be written as

HTL =
∑

i

v0
i

2

∫
dx[(∂xφi)

2+(∂xθi)
2]+

∑

ij

∫
dx

1

2π
[g+
ij∂xφi∂xφj+g−ij∂xθi∂xθj ]

(6.25)

with v0
i = v0

n+1−iR and g±ij = giLjL ± gn+1−iRjL.
In order to respect the canonical commutation relations and diagonalize HTL

we introduce new fields according to

φi =
∑

j

Uijϕj , θi =
∑

j

[U−1]jiϑj (6.26)

where the Uij are related to the Bogoliubov parameters Uia,jb as

Uij = UiLjL − UiLn+1−jR (6.27)

by virtue of the symmetry Uia,jb = Un+1−iā,n+1−jb̄. The effective Hamiltonian
takes the familiar diagonal form

HTL =
∑

i

vi
2

∫
dx
[
(∂xϕi)

2 + (∂xϑi)
2
]
. (6.28)

The matrix Uij is straightforwardly obtained from calculations in finite size and
finite particle number from corrections to the energy upon creating particle-
number or current excitations

δE =
∑

i

πvi
2L





∑

j

[U−1]ij∆Nj




2

+


∑

j

Uji∆Jj




2

 . (6.29)
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6. On the Moses sea

Here

∆Ni = Nn+1−iR +NiL, ∆Ji = Nn+1−iR −NiL (6.30)

in terms of the numbers Nia of particles added at Fermi point kia.

6.5.3 Asymptotes of correlations

Physical correlations generally translate into (products of) two-point functions of
vertex operators in bosonized language, which in our conventions are evaluated
according to

〈eiα
√

2πϕia(x)e−iα
√

2πϕia(0)〉 = (sai/x)
α2

. (6.31)

Here, x is measured in units of the lattice spacing in XXZ or the inverse density
ρ−1

0 in Lieb-Liniger.
Asymptotes of correlation functions are now obtained by applying the ap-

propriate Jordan-Wigner transformation and, in XXZ, the continuum limit to
translate the correlation we want to compute to an expression in terms of the
fermionic field ΨF . We then use the mode expansion to write it in terms of
the chiral fermions ψia after which we can use the bosonization identities to ex-
press the physical operators in terms of the bosonic fields φia, or better yet, in
terms of the free fields ϕia by using the Bogoliubov transformation. This leads
to expressions for correlations of the form (6.31) with the Uia,jb determining the
exponents—or derivations of it.

For example, the density operator in Lieb-Liniger is

ρ(x) = ρ0 +
∑

ia

ρia(x) +
∑

ia6=jb
e−i(kia−kjb)xψ†ia(x)ψjb(x). (6.32)

The density-density correlation function

S(x) =
〈ρ(x)ρ(0)〉

ρ2
0

(6.33)

can easily be be obtained from the multicomponent Tomonaga-Luttinger model
as

S(x) = 1−
∑
ia,jb,kc sasbUia,kcUjb,kc

4π2(ρ0x)2
(6.34)

+
∑

ia6=jb

Aia,jb
4π2

(−1)δab(1−δij) cos((kia − kjb)x)

(
1

ρ0x

)µia,jb

with

µia,jb =
∑

kc

(Uia,kc − Ujb,kc)2. (6.35)
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6.5. Effective field theory for static correlations

In the Tonks-Girardeau limit, Uia,jb = δia,jb and Aia,jb = 1, the above expression
reduces to the exact result for any configuration of the Fermi seas with edges
{k1L, k1R, k2L, k2R} as can be confirmed by an exact calculation.

The Aia,jb are nonuniversal prefactors, giving the amplitude of the fluctuating
terms (corresponding to Umklapp-like excitations). It was recently shown that
the nonuniversal prefactors in Luttinger liquid correlations can be obtained from
the finite size scaling of matrix elements [40, 41]. This logic can be carried over
to the present context. In leading order, the matrix elements satisfy the scaling
relation

|〈ia, jb|ρ|{kia}〉|2
ρ2

0

=
Aia,jb
4π2

(
2π

ρ0L

)µia,jb
(6.36)

where |{kia}〉 denotes the Moses sea and |ia, jb〉 the state obtained after creating
an ‘Umklapp’ excitation transferring a particle from the ia to the jb branch or
vice versa (see [40,41] for the detailed explanations).

By the same logic as used above, the prediction for the real space longitudinal
correlation from the multi-component Tomonaga-Luttinger model is

〈Sz(x)Sz(0)〉TL = s2
z −

∑
ia,jb,kc sasbUia,kcUjb,kc

4π2x2

+
∑

ia 6=jb

Aia,jb
4π2

(−1)δab(1−δij) cos[(kia − kjb)x]

(
1

x

)µia,jb
(6.37)

The non-universal prefactors Aia,jb behave as 1 +O(∆) in this case.
The comparison of these results with the data obtained from ABACUS is

presented in Fig 6.7. To fix the prefactors Aia,jb we obtained the scaling numer-
ically by explicitly evaluating the relevant matrix elements for increasing system
size (see Fig. 6.8). The Tomonaga-Luttinger result with independently obtained
prefactors yields a completely parameter-free fit for the correlations away from
the Tonks-Girardeau or ∆ = 0 regime. In addition, the exponents are obtained
efficiently from the scaling of the prefactors, providing an independent check on
the parameters determined from finite size corrections to the spectrum or a dif-
ferent route to obtaining the correlation exponents. To fit the finite size data,
we make the substitution x→ L

π sin(πx/L). There is excellent agreement for all
distances larger than a fraction of the system length (Fig. 6.7).

For the computation of one-body correlations, such as the spectral function
in Lieb-Liniger or transversal spin correlations, one should be careful to take
particle statistics into account. To illustrate, let us study the one-body reduced
density matrix in Lieb-Liniger

g1(x) =
〈Ψ†(x)Ψ(0)〉

ρ0
(6.38)

which is related to the hole spectral function and is the Fourier transform of the
momentum distribution functions.
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6. On the Moses sea

In order to obtain g1(x) we bosonize the fermions and neglect the fast fluc-
tuating terms of the density operator under the integral in the Jordan-Wigner
string.

Ψ(x) ∼ 1√
8π

∑

ia

∑

ε=±1

ei(kia+εkF )xe−i
√

2π
∑
kc(εsc/2+δia,kc)φkc(x). (6.39)

which leads to the one-body function

g1(x) =
∑

ia,ε

Bia,ε
2π

(−1)δsa,εe−ikia,εx
(

1

ρ0x

)µia,ε
. (6.40)

with

µia,ε =
∑

kc


∑

jb

(ε/2 + saδia,kc)Ujb,kc




2

. (6.41)

with the notation kia,ε ≡ kia + εkF .
Similar reasoning gives asymptotes for the transversal spin correlations in

XXZ as

〈S∓(x)S±(0)〉TL =
∑

ia

∑

ε=±1

Bia,ε
2π

(−1)δsa,εe−ikia,εx
(

1

x

)µia,ε
(6.42)

where kia,ε = kia + επM/N . The non-universal prefactors Bia,ε in Eq. (6.40)
have to be obtained independently from

|〈ia, ε|Ψ|M〉|2
ρ0

=
Bia,ε
2π

(
2π

ρ0L

)µia,ε
, (6.43)

according to a procedure similar to that described above for the DSF (see also
Fig. 6.8).

6.5.4 Momentum distribution function

The momentum distribution function (MDF) is defined as the Fourier transform
of the static one-body function:

n(k) =

∫ L

0

dx eikx〈Ψ†(x)Ψ(0)〉. (6.44)

Let us begin by discussing the impenetrable limit, which illustrates some generic
features and can be treated analytically following the work of Lenard [262]. This
calculation can also be done for states different from the ground state and we used
the result in the form given in [25]. In Fig. 6.10, the momentum distribution
for different configurations of the Fermi seas is given in the Tonks-Girardeau

126



6.5. Effective field theory for static correlations
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Figure 6.7: Comparison of effective Tomonaga-Luttinger (TL) theory and inte-
grabitily result for 〈Sz(x)Sz(0)〉 in XXZ (left) and S(x) = 〈ρ(x)ρ(0)〉〉 in Lieb-
Liniger (right). Solid lines are TL result. The correspondence is accurate even
for small differences: Note that for Lieb-Liniger only a fraction of the system
size is displayed from whereon the correspondence is essentially perfect.

limit. In this limit we see four peaks in the momentum distribution. If the
Fermi momenta are given by {k1L, k1R, k2L, k2R} then the peaks are located at
{k1L+kF , k1R−kF , k2L+kF , k2R−kF }, where kF =

∑
ia sakia = πρ0. The outer

Fermi edges thus give rise to the inner peaks in the momentum distribution, and
inner Fermi edges to the outer peaks. Moving the two seas closer to each other,
we see that the outer peak becomes smaller and the inner peak becomes larger
and closer to zero. If the Fermi seas are far away from each other the peaks
become equally large. The limit of the two Fermi seas far away from each other
is thus completely different from two non-interacting Fermi seas. In the latter
case one would just have two peaks and not four.

The MDF for generic values of the interaction parameter c is computed us-
ing ABACUS again using an adaptation of the ground state algorithm used
in [263]. For finite values of c, the outer peak of the momentum distribution
becomes smaller and the inner peak larger, since reducing the repulsive inter-
actions makes the system more like a decoupled BEC, whose MDF would have
two isolated delta peaks. Already for c . 10, the momentum distribution shows
only two distinguishable momentum peaks instead of four. One can thus view
the internal peaks as ‘BEC’-driven, and the outer ones as ‘interaction’-driven.
It is an interesting challenge for experiments to try to create a state sufficiently
similar to a Moses state in a tight toroidal trap [264] such that the interaction-
driven peaks in the MDF are visible, thereby demonstrating that the system is in
a highly correlated quantum state, similar to the phase correlations in spatially
split one-dimensional Bose gases [265].

Results for n(k) in Lieb-Liniger can be derived from the expression for g1(x)
in Eq. (6.40), which are valid momenta in a small interval around kia,ε. The
result reads

n(k − kia,ε) ∼ |k − kia,ε|µia,ε−1. (6.45)
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6. On the Moses sea

Figure 6.8: Prefactors for static correlation functions for a Moses sea state in
Lieb-Liniger (left) and XXZ (right).

In the limit of infinite repulsion this becomes

µc=∞ia,ε = 1 +
n

2
+ εsa, (6.46)

where n is the total number of seas.
Note that we can understand the position of the peaks at kia,ε from the

Tomonaga-Luttinger model and the Jordan-Wigner transformation: The sign ε
in the Jordan-Wigner string shifts the momenta kia by kF to either the left or
right. It absorbs the mismatch of the quantum number lattices in the Bethe
Ansatz solution for even and odd numbers of particles—it corresponds to the
choice of moving all occupied quantum numbers by a half to the left or to the
right after removing a single particle from the system.

The prefactors (see Fig. 6.8) and the exponents both show the relative im-
portance of the contributions with εsa = −1: these have a much larger contri-
bution and decay more slowly. Indeed, this clarifies appearance of four peaks at
{k1L + kF , k1R − kF , k2L + kF , k2R − kF } (in stead of eight) in the momentum
distribution function that were mentioned above. The power law at zero mo-
mentum for a gas of bosons in the ground state is obtained from reduction to
the conventional Tomonaga-Luttinger liquid, i.e. with Ua,b given by Eq. (6.20).
This leads to the well-known result [266]

n(k) ∼ kµ0−1 with µ0 =
1

2K
. (6.47)

Choosing sia = 1, ε = −1 in Eq. (6.46) indeed gives the correct result µc=∞0 = 1/2
for the Tonks-Girardeau ground state (K = 1).
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racy to the Tomonaga-Luttinger predictions as the symmetric case. Sum rule
saturation of the ABACUS data is given in Tab. 6.2.

At large momenta, the MDF decays as 1/k4 as expected from the logic of
Tan’s contact [267]. We have also directly verified this from the small-x expansion
of g1(x) in the Tonks-Girardeau limit.

6.6 Effective field theory for dynamic correla-
tions

The fact that the zero-entropy states we are considering are far from equilibrium
is not visible when we restrict attention to the static correlations, which would
be the same if this state was obtained as the ground state of a different Hamilto-
nian. In order to make the out-of-equilibrium nature apparent we have to probe
the energies of ‘excitations’, i.e. modifications of the Moses sea by creating addi-
tional particles and holes which may now have both positive and negative energy
differences with respect to the reference state. A physically meaningful way to
probe the energy landscape is by computing time-dependent correlations which
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6. On the Moses sea

can in principle be related to observable quantities. These are already encoded
in the dynamical structure factors computed with ABACUS and can be obtained
by Fourier transformation.

Recent years have witnessed a revolutionary advancements in understanding
of dynamical correlations in critical one-dimensional systems from the perspec-
tive of both effective field theory methods and integrability [1, 13, 15, 47, 56–58,
60–70, 84–86, 122, 268–273]. The threshold behavior of many dynamical corre-
lations in energy and momentum space can be understood in terms of specific
configurations of particle and hole excitations. These lead to a scattering phase
shift of the modes close to the Fermi energy which is identified as the cause of
the characteristic power-law singularities by means of Anderson’s orthogonality
catastrophe. This threshold behavior, which also determines the asymptotic be-
havior of the correlations in real space and time, is then described by an effective
model in which the high energy particle or hole excitation is treated as a mobile
impurity interacting with the low-energy modes.

We generalize this mobile impurity approach to the present out-of-equilibrium
context by extending our multi-component Tomonaga-Luttinger model to include
the appropriate impurity configurations and interactions. To be specific, we will
compute the spin autocorrelation

C(t) = 〈Szj (t)Szj (0)〉 = 〈Ψ†(t)Ψ(t)Ψ†(0)Ψ(0)〉, (6.48)

where Ψ(t) = Ψ(x = 0, t) denotes the Jordan-Wigner fermion and we used
translational invariance. By imagining to obtain C(t) as a Fourier transform
in (k, ω)-space taking the k-integral first, one can argue that as a function of
ω singular behavior stems from the ‘Fermi points’ and points where the edge
of support has a tangent with vanishing velocity. This identifies the important
impurity configurations for this function as corresponding to a particle or hole
with vanishing velocity, i.e. either at the bottom or the top of the band. Let us
assume that the Moses state leaves the corresponding quantum numbers unoccu-
pied, which is valid for a symmetric configuration with an even number of seas.
This means that there are only high-energy particle impurities. We will use an
index γ = 0, 1 to label the particle at the bottom/top of the band respectively.
The mobile impurity model becomes

HMIM =

∫
dx

[∑

ia

savia
2

(∂xϕia)2 +
∑

γ

d†γ

(
εγ −

∂2
x

2mγ

)
dγ

−
∑

ia,γ

saκia,γ√
2π

d†γdγ∂xϕia


 . (6.49)

Note that the last term is just a density-density interaction between the impurity
modes and the chiral fermions parametrized by the coupling constants κia,γ ,
while the first two terms correspond to the impurity dispersions and the TL
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6.6. Effective field theory for dynamic correlations

modes. In the small ∆ limit all parameters in HMIM can be obtained from H in
Eq. (6.13) as in Sec. 6.6.1. In general they can be obtained from integrability.

The impurity modes are decoupled from the Tomonaga-Luttinger model up
to irrelevant operators by the unitary transformation

U = exp



i
∫
dx
∑

ia,γ

κia,γ

savia
√

2π
d†γdγϕia



 . (6.50)

The effect is that correlators of the TL model are still computed in the same
way, but the impurity operator obtains an extra vertex operator in terms of the
bosonic modes

d→ d exp

{
−i
∑

ia

κγ,ia

savia
√

2π
ϕia

}
. (6.51)

The logic is identical to the ground state case, and this also suggests that we
can identify the parameter κia,γ/via as the phase shift at the Fermi points upon
creating the impurity according to [65,118]

κia,γ
via

= −2πF (λia|λγ). (6.52)

For the computation of the autocorrelation C(t), the crucial observation is now
that the asymptotic behavior, determined by the behavior around a few singular
points of the longitudinal structure factor, is well captured by certain correlations
computable using the Hamiltonian HMIM. In marked contrast to the equilibrium
case, the TL model does not account for zero-energy states only, and therefore
even the contributions to Eq. (6.48) that do not involve the impurity will display
the energy difference of the Fermi points leading to fluctuating terms

ei(εia−εjb)t〈ψ†ia(t)ψjb(t)ψ
†
jb(0)ψia(0)〉 (6.53)

where εia is the energy associated to Fermi point kia. The TL contributions sum
up to an expression similar to the static correlation in Eq. (6.37). The impurity
contributions are of the form

ei(εia−εγ)t〈ψ†ia(t)dγ(t)d†γ(0)ψia(0)〉. (6.54)

Using the impurity correlator

〈dγ(t)d†γ(0)〉 =

∫
dk

2π
e
−i k2

2mγ =

√
mγ

2πit
(6.55)
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we find the result

C(t) ∼ s2
0 −

∑

ia,jb,kc

sasbUia,kcUjb,kc
4πv2

kct
2

+
∑

ia,jb

Aia,jb cos(εia−εjb)
4π2

∏

kc

(
1

iscvkct

)[Uia,kc−Ujb,kc]2

+
∑

ia,γ

A′ia,γe
i(εia−εγ)t

2π

√
mγ

2πit

∏

kc

(
1

iscvkct

)[Uia,kc+
κia,γ

2πscvkc
]2

. (6.56)

The prefactor A′ia,γ = 1 + O(∆) can in principle be obtained from finite-size
scaling of matrix elements similar to Aia,jb but with the Umklapp state replaced
by the appropriate impurity state [41]. We have checked this expression for the
autocorrelation against Fourier transformed ABACUS data for small values of
∆, and find that it converges to the exact result on quite short time scales for
a configuration when the Fermi points kia are well away from the band top and
bottom at kγ = 0, π (Fig. 6.12), but the correspondence for short to moderate
times becomes noticeably worse when we decrease the separation between the
two seas. This could be a finite size effect since the number of states in between
the impurity mode and the Fermi edges becomes small, but rather we believe
that the correlation is not well-captured by the impurity model in that case as
a clear separation in sub-bands becomes questionable.

When the current mobile-impurity approach works well, this tells us that the
time-dependent correlation is determined by the modes very close to the Fermi
points kia which correspond to particle-hole excitations involving only the quan-
tum numbers close to the edges of the two Fermi seas. The role of the spectrum
at the Fermi points and of the impurity is two-fold: (i) The energy differences de-
termine the frequencies of fluctuations. (ii) The Fermi velocities via and impurity
mass mγ change the prefactor of the separate terms. Note that the decay of the
correlation on the other hand is determined by energy independent data, namely
by the appropriate phase shifts and Anderson’s orthogonality catastrophe, very
similar to the equilibrium case.

6.6.1 Perturbative expressions for parameters in XXZ

We conclude this section by a discussion of perturbative results for the effective
field theory parameters for XXZ. These are conveniently obtained by deriving
the effective Hamiltonian to first order in the interaction in taking the continuum
limit and are often useful as a check on numeric results.

Starting from the Hamiltonian of spinless fermions Eq. (6.13) on the lattice
we use the mode expansion

Ψ(x) ∼
∑

ia

eikiaxψia(x) +
∑

γ

eikγxdγ(x) (6.57)
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and bosonize the chiral fermions. The kinetic term leads to the velocities for the
chiral fermions v0

ia = J sin(kia) and the impurity parameters in the noninteract-
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ing limit ε0γ = ∓J and m0
γ = ±J . The interaction term

Hint =
∑

x

J∆n(x)n(x+ 1) (6.58)

renormalizes these values. By plugging in the bosonization identities, normal
ordering and neglecting irrelevant terms we get the first order in ∆ expressions

gia,jb = J∆

{∑
ld cos(kia − kld), (ia = jb)

1− cos(kia − kjb), (ia 6= jb).
(6.59)

These give

Uia,jb = δia,jb − [1− δia,jb]
J∆

π

sb[1− cos(kia − kjb)]
v0
ia − v0

jb

. (6.60)

Next, we focus on the terms from the interaction involving the impurity.
This leads to a density-density interaction of the impurity modes with the chiral
fermions with parameters

κia,γ = 2J∆[1− cos(kia − kγ)]. (6.61)

There is also a first order correction to the impurity energy appearing from Eq.
(6.58) from the terms proportional to d†d (after normal ordering), which is

εγ=0,1 = ∓J
(

1∓ 2n0∆ +
∑

ia

∆

π
sa sin(kia)

)
. (6.62)

This corresponds to the Hartree-Fock correction

δεγ =
∑

i

∫ kiR

kiL

dk

2π
[V (0)− V (kγ − k)] (6.63)

with V (q) = 2J∆ cos(q), which corresponds to the interaction potential in Eq.
(6.58): Hint = 1

2L

∑
q V (q)nqn−q.

The non-universal prefactors can also be obtained perturbatively using the
methods discussed in Ref. [40], but we have not done this calculation.

6.7 Conclusion
In conclusion, we have presented results on correlations Moses seas in two in-
tegrable models, namely the Lieb-Liniger model of interacting bosons and the
XXZ spin chain. Moses seas are zero-entropy states generalizing the ground
state. These could show up as ground states of generalized Hamiltonians, how-
ever, in our investigations we take the well-known physical Hamiltonians to de-
termine time evolution and thus consider Moses seas as an interesting class of
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out-of-equilibrium states. The distinctive features, which may serve for iden-
tification in experiment, can be understood by adapting the familiar ground
state reasoning. By making the appropriate adjustments to equilibrium tech-
niques based on the Tomonaga-Luttinger model many aspects can furthermore
be understood in great detail and with quantitative agreement once a handful of
parameters is fixed from integrability. Static correlations cannot tell whether we
consider Moses seas as ground states of generalized Hamiltonians or as sincere
out-of-equilibrium states. This difference is noticeable in the time-dependence of
correlation functions, and we made the initial steps towards studying such cor-
relations by techniques from nonlinear Luttinger liquid theory. It appears that
the mobile impurity model is able of reproducing asymptotes of time-dependent
correlations in a similar fashion to the equilibrium case but a more careful check
of interaction effects should be performed. Nevertheless, it is quite enlighten-
ing to put the equilibrium techniques often associated to renormalization group
arguments to the test in this setting extending their application.

Although we have focused on purely vanishing entropy density, we may con-
sider thermal-like dressings to the split seas. In the Tomonaga-Luttinger de-
scription, finite temperatures are treated by a simple functional replacement for
the fundamental correlators. On the side of integrability, recent work has shown
that finite temperature correlators are also numerically accessible, at least for the
Lieb-Liniger model [213]. How the correspondence between integrability results
and the field theory works out in split-sea configurations at finite temperature
remains to be investigated.
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CHAPTER7
General finite-size effects

We must accept finite
disappointment, but never lose
infinite hope.

Martin Luther King, Jr.

We present a general derivation of the spectrum of excitations for gapless
states of zero entropy density in Bethe ansatz solvable models. Our formalism
is valid for an arbitrary choice of bare energy function which is relevant to situ-
ations where the Hamiltonian for time evolution differs from the Hamiltonian in
a (generalized) Gibbs ensemble, i.e. out of equilibrium. The energy of particle
and hole excitations, as measured with the time-evolution Hamiltonian, is shown
to include additional contributions stemming from the shifts of the Fermi points
that may now have finite energy. The finite-size effects are also derived and the
connection with conformal field theory discussed. The critical exponents can still
be obtained from the finite-size spectrum, however the velocity occurring here
differs from the one in the constant Casimir term. The derivation highlights the
importance of the phase shifts at the Fermi points for the critical exponents of
asymptotes of correlations. We generalize certain results known for the ground
state and discuss the relation to the dressed charge (matrix). Finally, we discuss
the finite-size corrections in the presence of an additional particle or hole which
are important for dynamical correlation functions.

7.1 Introduction

The combination of Bethe ansatz (BA) and conformal field theory (CFT) is a
strong set of tools in the study of quantum mechanical systems in one space di-
mension. To get insight into the correlations, a routinely employed technique is
to compute general expressions for correlation asymptotes from CFT, fixing the
critical exponents from the finite size spectrum compared to the BA solution.
This works well for static correlations by taking the ground state as a refer-
ence state [24,39], while for time-dependent correlations also contributions from
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certain impurity configurations should be included [13, 15, 274]. This set of ap-
proaches thus provide a rather complete picture of (asymptotics of) equilibrium
correlations in one-dimensional systems.

One of the outstanding benefits of the BA solution is the description it pro-
vides of the full Hilbert space and the possibility to study out-of-equilibrium
states. The exact solvability can be attributed to the existence of an infinite
collection of local charges Q̂n commuting with the Hamiltonian H,

[H, Q̂n] = 0, n ∈ N. (7.1)

Out-of-equilibrium problems have attracted a lot of attention recently regarding
the question when and how unitary quantum systems do or do not thermalize.
Important in this respect is the idea that correlations at late times can be com-
puted in a generalized Gibbs ensemble (GGE) [229, 275] defined not just by the
Hamiltonian, but rather by all [276,277] conserved (quasi) local quantities

ρ̂GGE = Z−1
GGE exp{−

∑

n

βnQ̂n}. (7.2)

Equivalently, correlations can be computed on a single representative eigenstate
which can be determined by reasonings paralleling (generalizing) the thermody-
namic Bethe ansatz (gTBA) or by the Quench Action (QA) method [232–234,
276–292]. In the latter, one constructs a free-energy functional straight from the
overlaps of the initial state with the eigenstates of the time evolution Hamiltonian
H [232, 234]. The GGE reasoning underscores the double role the Hamiltonian
has in equilibrium quantum mechanics in determining both the statistical en-
semble as well as the time evolution. Out of equilibrium, these two roles are
separated, at least in the presence of nontrivial local conserved quantities.

A simple class of out-of-equilibrium states in BA solvable models corresponds
to the zero-temperature equivalent of a GGE with nonmonotonic effective bare
free energy (in gTBA language: driving function). Such states can be specified by
consecutive blocks of filled quantum numbers in the Bethe ansatz solution, and
in many ways resemble the ground-state Fermi sea or a simple boosted version
of it, although now it combines several of such Fermi-sea blocks with different
mean momentum. It has been shown that even in such cases, the description
of correlation asymptotics is provided by multiple CFTs and that the finite-size
corrections to the spectrum can again be used to obtain the critical exponents
provided that the appropriate GGE energy function εGGE(λ) is used [293].

The point here is to draw attention to a slightly uncanny feature of the
standard derivation of the finite-size spectrum from Bethe ansatz [24, 39, 293],
namely that it requires the dressed energy function to vanish for excitations at
the Fermi points. This is done in equilibrium by substracting the appropriate
chemical potential. In other words, this requirement naturally follows when we
use the Hamiltonian that defines the statistical ensemble in a grand canonical
or GGE sense to measure energies, but out of equilibrium, one may question
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7.2. Bethe ansatz and finite-size corrections

the naturalness of this assumption. In particular, when discussing dynamical
correlations it is important to use the time-evolution Hamiltonian to measure
energies. This suggests that one should be able to derive the relation between
critical exponents and the finite-size spectrum for states of zero entropy density
using H—or any combination of the conserved quantities for that matter—and
the corresponding energy function, also when this is not in line with the statistical
ensemble. This has indeed been verified numerically in studies of dynamical
correlations in out-of-equilibrium zero entropy states in the Lieb-Liniger and
XXZ models [4, 5].

We therefore revisit the derivation of the energy of zero-entropy states and
excitations in the limit of large system size and show that many of the well known
relations between the spectrum and CFT hold for arbitray energy functions, but
with essential modifications. In terms of applications, the simplest example of
such a situation occurs when we choose to measure energies with respect to a
different chemical potential while still fixing a certain filling in a microcanonical
sense. This would of course change the energy of excitations, but should not
change the physics in an essential way. Another simple application is that of
a boosted state observed in the lab frame. We however here present a general
treatment, applicable to any (multiply) split Fermi sea in an integrable model.

7.2 Bethe ansatz and finite-size corrections
To be specific, consider the repulsive Lieb-Liniger model defined by the Hamil-
tonian

H =

∫
dx
[
∂xΨ†(x)∂xΨ(x) + cΨ†(x)Ψ†(x)Ψ(x)Ψ(x)

]
, c > 0. (7.3)

The coordinate Bethe ansatz provides exact expressions for all eigenstates |{λj}〉
of the system with N particles in a box of size L in terms of the rapidities λj
satisfying the Bethe equations [24]

Lp0(λj) +

N∑

k=1

θ(λj − λk) = 2πIj . (7.4)

Here p0(λ) = λ is the bare momentum of particles and θ(λ) = 2 arctan(λ/c)
is the two-particle scattering phase and Ij are (half-odd) integers depending on
whether N is (even) odd. All states are classified by specifying N filled quantum
numbers Ij . The momentum and energy of a state are

P =
∑

j

2π

L
Ij =

∑

j

p0(λj), E =
∑

j

ε0(λj) (7.5)

with ε0(λ) = λ2. Note that the energy does not include a chemical potential
term and is really the eigenvalue of the operator H. The conserved charges Q̂n
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of the Lieb-Liniger model can be taken to represent the monomials in the Bethe
basis

Q̃|{λj}〉 = Qn|{λj}〉, Qn =
∑

j

λ2
j (7.6)

such that Q0 = N , Q1 = P and Q2 = E. Using the conserved charges we can in
principle construct a Hamiltonian for any bare energy function ε0(λ) =

∑
n βnλ

n

by matching the βn in the GGE.
Let us now consider a state |{kia}〉 which corresponds to n disjoint Fermi

seas specified by left and right Fermi momenta,

kia, a = R,L, i = 1, . . . , n. (7.7)

These determine intervals of filled quantum numbers between extrema Iia =
(2π)−1Lkia. We take the Iia to lie halfway between allowed quantum-number
slots such that the filled quantum numbers correspond to

{Ij} =

n⋃

i=1

{IiL + 1/2, IiL + 3/2, . . . , IiR − 1/2}. (7.8)

To take the thermodynamic limit N,L → ∞ with N/L fixed, we introduce the
rapidity density

ρ(λj) =
1

L(λj+1 − λj)
. (7.9)

Using the Euler-Maclaurin formula, one can show that to order 1/L the density
satisfies

ρ(λ) =
p′0(λ)

2π
+
∑

i

∫ λiR

λiL

dν

2π
K(λ− ν)ρ(ν) +

1

24L2

∑

ia

saK
′(λ− λia)

2πρ(λia)
(7.10)

where K(λ) = θ′(λ) and we introduced sR,L = ±1, and λia as the image of Iia
in rapidity space under the Bethe equations. The energy similarly becomes (to
order 1/L)

E = L
∑

i

∫ λiR

λiL

dλ ε0(λ)ρ(λ)− 1

24L

∑

ia

saε
′
0(λ)

ρ(λia)
. (7.11)

The remainder of this chapter is largely concerned with the analysis of these
expressions.

We note that the solutions to other integrable models follow similar lines
with appropriate definitions of the functions θ(λ), p0(λ) and ε0(λ). For the XXZ
model for instance,

H =

L∑

j=1

[
Sxj S

x
j+1 + Syj S

y
j+1 + ∆(Szj S

z
j+1 − 1/4)

]
(7.12)
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with ∆ = cos ζ ∈ (−1, 1), we have

p0(λ) = 2 arctan

[
tanh(λ)

tan(ζ/2)

]
, θ(λ) = 2 arctan

[
tanh(λ)

tan(ζ)

]
(7.13)

and

ε0(λ) =
−2 sin2 ζ

cosh(2λ)− cos ζ
. (7.14)

A complicating factor in XXZ is that solutions to the Bethe equations can be
complex. Using the string hypothesis the reasoning can easily be generalized to
these string states, but for simplicity we will assume that quantum numbers and
parameters are chosen such that we deal with real rapidities. As is often the case
in BA solvable models, the specific definitions do not matter much in the later
derivations, but the relations between the functions do. This also means that
ε0(λ) can be chosen essentially at will.

7.3 The energy of zero-entropy states

Our first task is the evaluation of Eqs. (7.10) and (7.11). This follows standard
practice [24,293], but we include it for completeness. We expand the solution to
Eq. (7.10) in powers of 1/L as

ρ(λ) = ρ∞(λ) +
∑

ia

saρia(λ)

24L2ρ∞(λia)
(7.15)

which results in the defining integral equations

ρ∞(λ) =
p′0(λ)

2π
+
∑

i

∫ λiR

λiL

dν

2π
K(λ− ν)ρ∞(ν), (7.16)

ρia(λ) =
K ′(λ− λia)

2π
+
∑

i

∫ λiR

λiL

dν

2π
K(λ− ν)ρia(ν). (7.17)

The equation for ρ(λ) is the straightforward generalization of the standard Lieb
equation [19]. The second equation shows that ρia(λ) is related to the two-
parameter function L(λ|λ′) defined by

L(λ|λ′) =
K(λ− λ′)

2π
+
∑

i

∫ λiR

λiL

dν

2π
K(λ− ν)L(ν|λ′). (7.18)

Eq. (7.18) shows that, considered as integration kernels on the domain specified

by the Fermi rapidities λia, the operator ̂(1 + L) is the inverse of ̂(1− K
2π ). Using

this fact we obtain

E = L
∑

i

∫ λiR

λiL

dλε0(λ)ρ∞(λ)−
∑

ia

saε
′(λia)

24Lρ∞(λia)
(7.19)
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to order 1/L, where the function ε(λ) is defined by the integral equation

ε(λ) = ε0(λ) +
∑

i

∫ λiR

λiL

dν

2π
K(λ− ν)ε(λ). (7.20)

This definition is the direct analogue of the dressed energy function in equilibrium
settings which specifies the energy of the single particle and hole excitations on
the ground state, but, as we will see later, this is not the case anymore. The
true single particle dispersion, which we will denote by ε̃(λ), will in fact pick up
additional contributions from the Fermi points λia due to their nonzero energy.

CFT predicts a universal 1/L energy correction in terms of the velocities of
right and left moving modes of the form in Eq. (7.19). However, here the velocity

via =
ε′(λia)

2πρ∞(λia)
(7.21)

differs from the dynamic velocity ṽia from the dispersion ε̃(λ) which governs the
propagation of correlations.

From here on we will drop the subscript ∞ and denote by ρ(λ) the density
in the thermodynamic limit.

7.4 The shift function

As it turns out, the shift function F (λ|λ′) determined by the integral equation

F (λ|λ′) =
θ(λ− λ′)

2π
+
∑

i

∫ λiR

λiL

dν

2π
K(λ− ν)F (ν|λ′) (7.22)

plays an important role. Its definition can be obtained by considering a particle-
hole excitation with rapidity λp for the particle and λh for the hole, as is discussed
in standard textbooks [24]. Denoting λj for the solution of the Bethe equations

for the state |{kia}〉 and λ̃j for the excited state, we can define the shift function
for the particle-hole excitation as

F (λj |λp, λh) =
λj − λ̃j
λj+1 − λj

. (7.23)

From the Bethe equations one can show that F (λ|λp, λh) = F (λ|λp) − F (λ|λh)
with definitions according to (7.22).

In this section we collect various results on the shift function for zero entropy
states which are quite useful. Especially for the case of the ground state this is
all known, but a discussion of the generality seems unavailable in the literature
or is at least hard to find.

Since ∂λ′θ(λ− λ′) = −K(λ− λ′) we easily see that

∂λ′F (λ|λ′) = −L(λ|λ′). (7.24)
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7.4. The shift function

It is worth noting that L(λ|λ′) = L(λ′|λ), but

∂λF (λ|λ′) = L(λ|λ′)−
∑

ia

saL(λ|λia)F (λia|λ′) (7.25)

which follows from Eq. (7.22) by using a partial integration. Another, very
useful, relation is

F (λ|λ′) + F (λ′|λ) =
∑

ia

saF (λia|λ)F (λia|λ′). (7.26)

This in particular implies

∑

kc

[δia,kc − scF (λkc|λia)][δjb,kc − sbF (λkc|λjb)] = δia,jb (7.27)

hence we have found a matrix-inverse pair

Uia,jb = δia,jb − sbF (λjb|λia), [U−1]ia,jb = δia,jb − sbF (λia|λjb). (7.28)

Finally,

∑

ia

saF (λ|λia)F (λ′|λia) =
∑

ia

saF (λia|λ)F (λia|λ′). (7.29)

Strictly speaking, the function F (λ|λ′) does not encode the shift of rapidi-
ties when a single particle or hole is created in bosonic models such as Lieb-
Liniger and XXZ due to the 1/2 shift in the quantum number lattice when we
change particle-number parity. Rather, F (λ|λ′) represents the phase shifts in the
fermionic dual which is the Cheon-Shigehara model [257,258] for Lieb-Liniger and
spinless lattice fermions for XXZ.

Using the conventions that adding a particle shifts the occupied quantum
numbers to the left while adding a hole shifts them to the right, we can define
the bosonic shift function

FB(λ|λ′) =
θ(λ− λ′)− π

2π
+
∑

i

∫ λiR

λiL

dν

2π
K(λ− ν)FB(ν|λ′). (7.30)

The relation between F (λ|λ′) and FB(λ|λ′) may be expressed as

FB(λ|λ′) = F (λ|λ′)− 1

2
Z(λ) (7.31)

where Z(λ) is the analogue of the dressed charge

Z(λ) = 1 +
∑

i

∫ λiR

λiL

dν

2π
K(λ− ν)Z(ν) (7.32)
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which is related to critical exponents in the case of the ground state, but a
similar interpretation is not present in the general case. Note that derivatives
with respect to λ or λ′ of F (λ|λ′) and FB(λ|λ′) coincide.

From hereon we will implicitly assume that we deal with the fermionic version
of the models. This makes the connection with the (fermionic) effective field
theory most transparent. The difference is only important for single particle or
hole excitations.

7.5 Energy and momentum of excitations

In order to determine the single-particle dispersion function, let us consider again
a particle-hole excitation on top of the state |{kia}〉 with particle rapidity λp and

hole rapidity λh. Let λj and λ̃j again denote the solution to the Bethe equations
before and after excitation. The energy difference

∆E(λp, λh) = ε0(λp)− ε0(λh) +
∑

j

[ε0(λ̃j)− ε0(λj)] (7.33)

can be expressed in the thermodynamic limit as

∆E(λp, λh) = ε̃(λp)− ε̃(λh) (7.34)

with

ε̃(λ) = ε0(λ)−
∑

i

∫ λiR

λiL

dν ε′0(ν)F (ν|λ). (7.35)

By a partial integration we obtain

ε̃(λ) = ε0(λ)−
∑

ia

saε0(λia)F (λia|λ) +
∑

i

∫ λiR

λiL

dν ε0(ν)∂νF (ν|λ) (7.36)

from where Eq. (7.25) expresses the actual single-particle dispersion as

ε̃(λ) = ε(λ)−
∑

ia

saε(λia)F (λia|λ). (7.37)

Note that this indeed differs from ε(λ) when ε(λia) 6= 0 and we have nontrivial
backflow F (λia|λ) 6= 0.

The momentum of a particle is defined by the equation

k(λ) = p0(λ)−
∑

i

∫ λiR

λiL

dν p′0(ν)F (ν|λ) (7.38)

from which it is easy to see that k′(λ) = 2πρ(λ) as in the equilibrium case.
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Of particular interest is the energy and velocity of particles close to the Fermi
points kia. We note that Eqs. (7.37) and (7.27) imply

ε̃(λia) =
∑

jb

[δia,jb − sbF (λjb|λia)]ε(λjb), (7.39)

ε(λia) =
∑

jb

[δia,jb − sbF (λia|λjb)]ε̃(λjb). (7.40)

The Fermi velocity for the Fermi point kia is defined as

ṽia =
∂ε

∂k

∣∣∣∣
k=kia

=
ε̃′(λia)

2πρ(λia)
. (7.41)

The relation between ε(λ) and ε̃(λ) can also be expressed as

ε(λ) = ε̃(λ)−
∑

ia

saε̃(λia)F (λ|λia). (7.42)

7.6 Finite-size spectrum and critical exponents

Now that we have established the energy of zero-entropy states to order 1/L [Eq.
(7.11)] and the energy of particle and hole excitations in the thermodynamic limit
[Eq. (7.37)] we will ask the usual question: what is the change in energy upon
adding or removing particles very close to the Fermi points Iia? Let us consider
a state defined by Iia → Iia + saNia, i.e. Nia denotes the number of particles
added or removed at the Fermi point kia.

In terms of the quantum numbers

Ni = L

∫ λiR

λiL

dλ ρ(λ), Di = L

{∫ λiL

−∞
−
∫ ∞

λiR

}
dλ ρ(λ) (7.43)

we have

Nia =
∆Ni + sa∆Di

2
(7.44)

where ∆Ni, ∆Di denotes the change inNi, Di . We can also express the variation
of the state in terms of the change in the Fermi rapidities λjb → λjb + δλjb. The
definitions in Eq. (7.43) allow us to compute the Jacobian

∂Nia
∂λjb

= saL

{
ρ(λia)δia,jb +

1

2

∫ ∞

−∞
dλ sasgn(λia − λ)

dρ

dλjb
(λ)

}
. (7.45)

Using that

∂ρ

∂λjb
(λ) = sbρ(λjb)L(λjb|λ) = −sbρ(λjb)∂λF (λjb|λ) (7.46)
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and a partial integration one finds

∂Nia
∂λjb

= Lsbρ(λjb)[δia,jb − saF (λjb|λia)]. (7.47)

We recognize the matrix [U−1]jb,ia from Eq. (7.28), which immediately gives

∂λia
∂Njb

=
1

Lsaρ(λia)
[δia,jb − saF (λia|λjb)] (7.48)

and therefore we can express

δλia =
∑

jb

δia,jb − saF (λia|λjb)
Lsaρ(λia)

Njb. (7.49)

Since the Fermi momenta are directly related to the numbers Iia, the change in
Fermi momentum is

δkia =
LsaNia

2π
(7.50)

which can also be obtained from the definition of k(λ) in Eq. (7.38). Hence also
the relations

∂kia
∂λjb

= [δia,jb − sbF (λjb|λia)]2πρ(λjb), (7.51)

∂λia
∂kjb

=
1

2πρ(λia)
[δia,jb − sbF (λia|λjb)] (7.52)

are valid.
Let us consider corrections to the energy E in Eq. (7.11) to order 1/L when

kia → kia + δkia. We express

δE =
∑

ia

∂E

∂λia
δλia +

1

2

∑

ia,jb

∂2E

∂λia∂λjb
δλiaδλjb (7.53)

or equivalently

δE =
∑

ia

∂E

∂kia
δkia +

1

2

∑

ia,jb

∂2E

∂kia∂kjb
δkiaδkjb. (7.54)

Note that these corrections can only come from the extensive contribution to E
since δλia and δkia are of order 1/L.

From Eq. (7.11) and (7.40) we obtain

∂E

∂λia
= Lsaρ(λia)ε(λia) =

∑

jb

Lsaρ(λia)[δia,jb − sbF (λia|λjb)]ε̃(λjb) (7.55)
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which together with Eqs. (7.52) shows

∂E

∂kia
=
saL

2π
ε̃(λia) (7.56)

so that

δE(1) =
∑

ia

∂E

∂kia
δkia =

∑

ia

ε̃(λia)Nia (7.57)

(where we have introduced the notation δE(n) for the order L−n term in δE).
Next, consider the second order correction

δE(2) =
1

2

∑

ia,jb

∂E

∂kia∂kjb
δkiaδkjb. (7.58)

From Eq. (7.35) we find that

∂ε̃

∂λjb
(λ) = −sbε′0(λjb)F (λjb|λ)−

∑

i

∫ λiR

λiL

dν ε′0(ν)
∂F

∂λjb
(ν|λ), (7.59)

which together with

∂F

∂λjb
(λ|λ′) = sbL(λ|λjb)F (λjb|λ′) (7.60)

can be used to show that

∂ε̃

∂λjb
(λ) = −sbε̃′(λjb)F (λjb|λ). (7.61)

For the derivation it is useful to note

ε′(λ) = ε′0(λ) +
∑

i

∫ λiR

λiL

dν ∂λL(λ|ν)ε0(ν), (7.62)

ε̃′(λ) = ε′(λ) +
∑

ia

saε(λia)L(λia|λ). (7.63)

Computing

∂

∂λjb

(
∂E

∂kia

)
=
saL

2π
[δia,jb − sbF (λjb|λia)]ε̃′(λjb) (7.64)

we thus find

δE(2) =
1

2

∑

ia,jb,kc

∂λkc
∂kjb

∂

∂λkc

(
∂E

∂kia

)
(7.65)

=
1

L

∑

ia,jb,kc

ε̃′(λkc)
2ρ(λkc)

[δia,kc − scF (λkc|λia)] (7.66)

× [δjb,kc − scF (λkc|λjb)]NiaNjb.
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Now, it is easy to also incorporate the number of particle-hole excitations corre-
sponding to a total number of mementum quanta nia close to the Fermi point
kia and arrive at the general result for the spectrum

δE =
∑

ia

ε̃(λia)Nia +
2π

L

∑

ia

saṽia


nia +

1

2


∑

jb

Ujb,iaNjb.




2

 (7.67)

This is valid for general zero-entropy states |{kia}〉 and general energy functions
ε0(λ) with

Uia,jb = δia,jb − sbF (λia|λjb), [U−1]ia,jb = sasbUjb,ia. (7.68)

Note that the velocity saṽia can be negative in the current setup.
The matrix Uia,jb is identified with the matrix of the Bogoliubov transfor-

mation diagonalizing the multi-component Tomonaga-Luttinger Hamiltonian de-
scribing the state [5] (see Ch. 6). These parameters determine the exponents of
critical correlations, i.e. the conformal dimensions of scaling fields in the lan-
guage of CFT.

7.7 The symmetric case
In the case of a symmetric quantum number configuration, IiL = −In+1−iR, we
have the equalities

ṽiL = −ṽn+1−iR and Uia,jb = Un+1−iā,n+1−jb̄ (7.69)

(with L̄ = R and R̄ = L). Define the matrices

Zij = UiR,jR − Un+1−iL,jR = δij − F (λjR|λiR) + F (λjR|λn+1−iL),
(7.70)

Yij = UiR,jR + Un+1−iL,jR = δij − F (λjR|λiR)− F (λjR|λn+1−iL).
(7.71)

Using that in the symmetric case F (−λ|−λ′) = −F (λ|λ′) and λiL = −λn+1−iR,
Eq. (7.26) gives

∑

k

ZikYjk = δij (7.72)

and so Z−1 = Y T which is closely related to the general relation [U−1]ia,jb =
sasbUjb,ia.

The finite-size correction to the energy can then be written as

δE =
∑

i

ε̃iÑi +
2π

L

∑

i

ṽi
2





∑

j

[Z−1]ijÑj




2

+


∑

j

ZjiD̃j




2

 (7.73)
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where ε̃i = ε̃(λiR), ṽi = ṽiR and

Ñi = NiR +Nn+1−iL, D̃i = NiR −Nn+1−iL. (7.74)

We can write

Zij = δij +

∫ λiR

λn+1−iL

dν F (λjR|ν). (7.75)

We can also obtain this matrix from as Zij = ξij(λjR) where ξij(λ) is defined by

ξij(λ) = δij +
∑

k

∫ λiR

λn+1−iL

dν

2π
K(λ− ν)ξkj(ν) (7.76)

which is straightforward to derive using the relation ∂λ′F (λ|λ′) = −L(λ|λ′) from
Eq. (7.75). Hence, in the symmetric case we reach the same conclusion as
Ref. [293], namely that the critical exponents can equivalently be expressed in
terms of a dressed charge matrix ξij(λ) similar to models solvable by nested
Bethe ansatz [28,247,294–302].

7.8 Impurity configurations
Let us consider an impurity configuration defined by one hole with λh in, or one
particle with λp outside of one of the Fermi-sea blocks and ask again what the
spectrum of excitations at the Fermi points is to order 1/L. Here, the energy
of the state |{kia}〉 still serves as the reference. We restrict the analysis to the
particle case, as the case of a hole just introduces appropriate minus signs. Note
that we assume to work in the fermionic dual here such that F (λ|λ′) encodes the
shift of rapidities for a single-particle excitation.

In the case of an impurity we have to go back to the derivation of for the root
density in Sec. 7.3 to order 1/L2. From the Bethe equations we find

ρ(λ) =
p′0(λ)

2π
+
∑

i

∫ λiR

λiL

dν

2π
K(λ−ν)ρ(ν)+

K(λ− λp)
2πL

+
1

24L2

∑

ia

saK
′(λ− λia)

2πρ(λia)

(7.77)

in this case. The solution for ρ(λ) thus has an extra contribution due to the
impurity

ρ(λ) = ρ∞(λ) +
ρimp(λ|λp)

L
+
∑

ia

ρia(λ)

24L2ρ∞(λia)
(7.78)

where clearly

ρimp(λ|λp) = L(λ|λp). (7.79)
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Going back to the definitions of Ni and Di, we find that

Ni = nimp
i +L

∫ λiR

λiL

dλ ρ∞(λ), Di = dimp
i +L

{∫ λiL

−∞
−
∫ ∞

λiR

}
dλ ρ∞(λ) (7.80)

with

nimp
i =

∫ λiR

λiL

dλL(λ|λp) = −F (λiR|λp) + F (λiL|λp), (7.81)

dimp
i =

{∫ λiL

−∞
−
∫ ∞

λiR

}
dλL(λ|λp) = −F (λiR|λp)− F (λiR|λp). (7.82)

Considering the energy difference of the state |{kia}〉 and the state defined by
the addition of particles at the Fermi points according to the numbers {Nia} and
the additional particle impurity with quantum number Ip leads to

δE = ε̃(λp) +
∑

ia

ε̃(λia)[Nia − nimp
ia ]

+
2π

L

∑

ia

saṽia


nia +

1

2


∑

jb

Ujb,ia[Njb − nimp
jb ]




2

 (7.83)

with

nimp
ia =

nimp
i + sad

imp
i

2
= −saF (λia|λp) (7.84)

which follows by the same reasoning as leading up to Eq. (7.67) but using Eq.
(7.80).

A hole impurity just replaces F (λia|λp) → −F (λia|λh). The generalization
to multiple impurities is straightforward.

7.9 Conclusion
We have considered the energy of excitations on states of zero entropy density
in the Lieb-Liniger and other Bethe ansatz solvable models. These states can
be considered as the zero-temperature limit of a statistical ensemble defined by
a generalized Hamiltonian in the spirit of the GGE. We explicitly allowed the
energies to be measured with a different Hamiltonian which generically would
correspond to the physical Hamiltonian of the model. We have shown that the
dispersion function is not necessarily determined by a single integral equation,
but includes contributions from the generalized Fermi points that may have finite
energy in the situation under consideration. We derived a generalization of the
expression for finite-size corrections to the spectrum. This derivation is valid
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for arbitrary bare energy functions ε0(λ) constructed from the eigenvalues of
local charges on the Bethe basis and also for arbitrary configurations of Fermi
seas. The energy corrections related to addition or subtraction of particles at
the generalized Fermi points, which are directly related to critical exponents, are
expressed in terms of the shift function and only for a symmetric configuration
can this be expressed in terms of a dressed charge matrix. Similar expressions
are derived in the presence of an additional particle and hole impurity.

Our results are interesting in the light of recent developments in the corre-
spondence between Bethe ansatz solvable models and effective field theory meth-
ods. The characteristic power-law behavior of correlations well known from the
correspondence with CFT can be interpreted in terms of the Anderson orthogo-
nality catastrophe due to the phase shift of the modes at the Fermi points. While
for static correlations one only considers Umklapp-like configurations, time de-
pendent correlations include additional contributions from certain impurity con-
figurations, but the logic in both cases is remarkably similar. The point is that
the power law exponents are completely determined by the phase shifts (static
data) while the characteristic frequencies of oscillations in space and time are
determined by the momentum and energy differences of the reference state with
the Umklapp or impurity excitation respectively. Our work suggests that this
decomposition of effects can be extended to out-of-equilibrium correlations of
zero-entropy states and the power-law exponents depend only on the scattering
data of the theory and are Hamiltonian independent.
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Conclusion

We have discussed the time-dependence of correlations of one-dimensional sys-
tems with a boundary, the absence of Luttinger liquid physics in the Au/Ge(001)
atomic chains, Bragg pulses in atomic systems and the class of Moses sea states in
Bethe ansatz solvable models. The underlying questions were sometimes fueled
directly by experimental results, other times the motivation was purely theoret-
ical, but for each topic it was a combination of insights from different models
and techniques that allowed us to gain an understanding of the physics at play.
The interplay of intergrability and effective-field-theory methods in particular
provides a rich and effective set of tools to address a variety of questions. Un-
doubtably, these will reveal more surprising features of one-dimensional physics
in times to come.

To conclude, let us speculate on some of the future directions of this re-
search. First of all, not all questions in nonlinear Luttinger liquid theory are
completely settled. We have barely touched upon the universal predictions based
on refermionizing the most important dimension-three operators leading to an
effective theory of free quasi-particles with quadratic dispersion. This has led
to a universal expression of the spectral function A(k, ε) beyond the Luttinger
liquid approximation valid in the limit k → kF [58] which can be related to the
Panlevé IV differential equation [303]. One can show that the dimension-three
interaction term that is neglected in the quasi-particle Hamiltonian contributes
to the phase shifts at higher order in k − kF , hence these, and terms of higher
dimension, can be neglected to first approximation for generic systems with non-
linear dispersions. This is however no longer valid once the quadratic dispersion
term vanishes as is the case for systems with particle-hole symmetry. In this
case one has to take into account dimension-four operators as lowest non-trivial
order. It is not yet clear whether universal results for the spectral function or
dynamic structure factor can be derived using this theory. It would however be
interesting to do so as these would be directly applicable to spin systems in zero
field and to the spin sector of electronic systems.

The last few years have seen huge progress in understanding quantum systems
out of equilibrium and the mechanisms and properties of equilibration. Tradi-
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tionally, effective-field-theory methods are thought to be applicable mainly to
describe the low-energy limit of equilibrium systems. Nonlinear Luttinger liquid
theory highlights the subtleties that may arrise in naively applyiing field-theory
methods but also how field theory can be amazingly effective even beyond the
low-energy domain. In the final chapters we have even explored applications
of field-theory methods to genuine out-of-equilibrium states. We expect more
results to be possible to obtain. In particular, the identification saddle-point
contributions in the computations of certain correlations seems to align well
with the method of the quench action.

In the experimental search for Luttinger liquid systems it seems to us that
atomic chains on surfaces are likely to suffer from difficulties exhibiting Luttinger
liquid physics as the Au/Ge(001). The problem of isolating the interesting elec-
tronic states from the substrate is likely to be a tough challange. Whether
this can ever be at all in surface systems (either in Au/Ge or using altogether
other substances) remains an open question. The outlook is perhaps somewhat
pessimistic: as we have seen, in order for the most interesting effects of one-
dimensional physics to emerge, it is necessary to have a clear separation of var-
ious energy scales which represents a prohibitively difficult challenge for these
setups.

Lastly, one can address the question whether the insights gained in 1d could
be transported to higher dimensions. One possibility might be to look at ex-
tending the ideas associated to impurity Hamiltonians to these more generic
situations—the origin of impurity problems such as the the X-ray edge singu-
larity and Kondo effects in fact already illustrates this. Although none of the
nonperturbative 1d results could be directly translated to these cases, one might
nonetheless find inspiration from the idea of using high-energy/momentum im-
purities to formulate new forms of perturbative expansions.
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Au-chains grown on ge(100): A detailed spa-leed study. Surface Science,
632(0):64 – 70, 2015.

[155] Jewook Park, Kan Nakatsuji, Tae-Hwan Kim, Sun Kyu Song, Fumio Ko-
mori, and Han Woong Yeom. Absence of luttinger liquid behavior in au-ge
wires: A high-resolution scanning tunneling microscopy and spectroscopy
study. Phys. Rev. B, 90:165410, Oct 2014.

[156] J. Wang, M. Li, and E. I. Altman. Scanning tunneling microscopy study of
au growth on ge(0 0 1): Bulk migration, self-organization, and clustering.
Surf. Sci., 596(1-3):126–143, 2005.

168



8.0. BIBLIOGRAPHY

[157] Arie van Houselt, Marinus Fischer, Bene Poelsema, and Harold J. W. Zand-
vliet. Giant missing row reconstruction of au on ge(001). Phys. Rev. B,
78:233410, 2008.
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Caux, Anne Stunault, Rønnow, and Henrik M. Fractional spinon exci-
tations in the quantum heisenberg antiferromagnetic chain. Nat Phys, 9,
2013.

[200] T. Giamarchi and H. J. Schulz. Anderson localization and interactions in
one-dimensional metals. Phys. Rev. B, 37(325), 1988.

[201] Eugene B. Kolomeisky. Universal jumps of conductance at the metal-
insulator transition in one dimension. Phys. Rev. B, 47:6193–6196, Mar
1993.

[202] Julien Vidal, Dominique Mouhanna, and Thierry Giamarchi. Correlated
fermions in a one-dimensional quasiperiodic potential. Phys. Rev. Lett.,
83:3908–3911, Nov 1999.

[203] Kazuo Hida. Quasiperiodic hubbard chains. Phys. Rev. Lett., 86:1331–
1334, Feb 2001.

172



8.0. BIBLIOGRAPHY

[204] Daniel Boies, C. Bourbonnais, and A. M. S. Tremblay. One-particle
and two-particle instability of coupled luttinger liquids. Phys. Rev. Lett.,
74:968–971, Feb 1995.

[205] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol. One
dimensional bosons: From condensed matter systems to ultracold gases.
Rev. Mod. Phys., 83:1405–1466, Dec 2011.

[206] Peter J. Martin, Bruce G. Oldaker, Andrew H. Miklich, and David E.
Pritchard. Bragg scattering of atoms from a standing light wave. Phys.
Rev. Lett., 60:515–518, Feb 1988.

[207] J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, D. E.
Pritchard, and W. Ketterle. Bragg spectroscopy of a bose-einstein con-
densate. Phys. Rev. Lett., 82:4569–4573, Jun 1999.

[208] R. Ozeri, N. Katz, J. Steinhauer, and N. Davidson. Colloquium : Bulk
Bogoliubov excitations in a Bose-Einstein condensate. Rev. Mod. Phys.,
77:187–205, Apr 2005.

[209] Ying-Ju Wang, Dana Z. Anderson, Victor M. Bright, Eric A. Cor-
nell, Quentin Diot, Tetsuo Kishimoto, Mara Prentiss, R. A. Saravanan,
Stephen R. Segal, and Saijun Wu. Atom Michelson Interferometer on a
Chip Using a Bose-Einstein Condensate. Phys. Rev. Lett., 94:090405, Mar
2005.

[210] Saijun Wu, Ying-Ju Wang, Quentin Diot, and Mara Prentiss. Splitting
matter waves using an optimized standing-wave light-pulse sequence. Phys.
Rev. A, 71:043602, Apr 2005.

[211] N. Fabbri, M. Panfil, D. Clément, L. Fallani, M. Inguscio, C. Fort, and
J.-S. Caux. Dynamical structure factor of one-dimensional bose gases:
Experimental signatures of beyond-luttinger-liquid physics. Phys. Rev. A,
91:043617, Apr 2015.

[212] F. Meinert, M. Panfil, M. J. Mark, K. Lauber, J.-S. Caux, and H.-C.
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[233] Jorn Mossel and Jean-Sébastien Caux. Generalized tba and generalized
gibbs. Journal of Physics A: Mathematical and Theoretical, 45(25):255001,
2012.
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[247] AA Zvyagin, A Klümper, and J Zittartz. Integrable correlated electron
model with next-nearest-neighbour interactions. The European Physical
Journal B-Condensed Matter and Complex Systems, 19(1):25–36, 2001.

[248] E. H. Lieb. Exact Analysis of an Interacting Bose Gas. II. The Excitation
Spectrum. Phys. Rev., 130(4):1616–1624, 1963.

[249] W. Heisenberg. Zur Theorie des Ferromagnetismus. Z. Phys., 49:619, 1928.

[250] R. Orbach. Linear antiferromagnetic chain with anisotropic coupling. Phys.
Rev., 112(2):309–316, 1958.

[251] Belén Paredes, Artur Widera, Valentin Murg, Olaf Mandel, Simon Fölling,
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