
Teaching Software Engineering Through Game Design

Kajal Claypool
Computer Science Department

University of Massachusetts
1 University Avenue

Lowell, MA, USA

kajal@cs.uml.edu

Mark Claypool
Computer Science Department
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA, USA

claypool@cs.uml.edu

ABSTRACT
Many projects currently used in Software Engineering cur-
ricula lack both the “fun factor” needed to engage students,
as well as the practical realism of engineering projects that
include other computer science disciplines such as Software
Engineering, Networks, or Human Computer Interaction.
This paper reports on our endeavor to enhance interest and
retention in an existing Software Engineering curriculum
through the use of computer game-based projects. Specifi-
cally, a set of game-centric, project-based modules have been
developed that enable students to: (1) actively participate in
the different phases of the software lifecycle taking a single
project from requirement elicitation to testing and main-
tenance; (2) expose students to real issues in project and
team management over the course of a 2-semester project;
and at the same time (3) introduce students to the differ-
ent aspects of computer game design. Preliminary results
suggest the merits of our approach, showing improved class
participation and performance.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education,Computer Science Education;
D.2.0 [Software Engineering]: General

Keywords
Computer Games, Game Design, Game Engineering, Soft-
ware Engineering

1. INTRODUCTION
Software Engineering courses often teach about coding

and managing large projects – projects that integrate many
different Computer Science disciplines under one umbrella.
A good Software Engineering project should ideally bring
together not just basic software engineering principles, but
also knowledge and coding acquired in areas such as algo-
rithms, user interfaces, databases and networking. A good

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE ’05 June 27-29, 2005, Monte De Caparica, Portugal
Copyright 2005 ACM 1-59593-024-8/05/0006 ...$5.00.

project should also enable students to shift between low-
level tasks such as algorithm implementation to high-level
tasks such as system and object-oriented design.

Computer games provide a rich opportunity to bring these
ideals together in a traditional Software Engineering course.
Game development combines techniques from a wide spec-
trum of Computer Science including Software Engineering,
Graphics, Artificial Intelligence, Networking and Human Com-
puter Interaction. Game production requires and empha-
sizes the need for students to develop skill sets ranging from
high-level design techniques to low-level implementation. The
visual and interactive nature of computer games that at-
tracts millions of game players world-wide [6] can also deeply
engage student interest, and the end results are often clear-
cut and enjoyable. Moreover, while games often involve cre-
ating real-time simulations of an artificial world, the skills
and techniques used in its production are transferable to a
wide-range of simulations of other systems. On the economic
front, many students want to get jobs as game developers
and are thus further motivated by the prospect of develop-
ing a game. A completed computer game is an impressive
addition to a student portfolio for showing to potential em-
ployers, whatever the nature of the job, as it demonstrates
both a breadth of knowledge in many Computer Science
disciplines and an in-depth knowledge of basic Software En-
gineering principles and software lifecycles.

A primary goal of this work is to provide a better way of
teaching Software Engineering by developing a curriculum
that integrates computer game engineering with Software
Engineering in a project-based learning environment. A side
benefit of this work is to develop and implement a curricu-
lum that meets the demands and interests of the next gen-
eration of Software Engineers - the Game Engineers. Com-
puter games have become a major industry and are one of
the fastest growing application markets in the world. The
U.S computer and video game software sales exhibited a
doubling of industry software sales in 1996 to $7 billion in
2003 [6]. To manage the large projects that a major game
release requires, the gaming industry uses a mixture of tech-
niques and concepts borrowed from software development,
the movie industry, and traditional games. Although this
has been effective, as seen from the games on the market,
there is a growing concern within the gaming industry that a
developed design and engineering discipline is lacking [14, 3],
especially one developed to support multidisciplinary groups
that in practice create the games. The focus of this work
is on a curriculum that not only targets training game en-
gineers by exposing them to the fundamentals of Software

Engineering but also on applying Software Engineering skills
to address the challenge of game engineering.

This paper reports on progress towards the development
of a set of game-centric, project-based modules for Com-

puter Games in Software Engineering courses. From a Soft-
ware Engineering perspective, the specific goals of the game-
centric, project-based modules are: (1) to have students ac-
tively participate in the different phases of the software life-
cycle taking a single project from requirement elicitation to
testing and maintenance; and (2) to expose students to real
issues of project and team management over the course of
a 2-semester project. From a game engineering perspective,
the objectives of the enhanced Software Engineering curricu-
lum are to: (1) introduce students to the different aspects
of computer game design; and (2) help students develop the
skill sets necessary to identify common patterns in games to
enhance re-usability of game software.

The first phase of our approach is near completion, result-
ing in an integration of computer game design with a Soft-
ware Engineering course. The modules for this course have
been implemented, along with additional course material in-
cluding syllabus, slides, projects, and other course materi-
als specific to game design in Software Engineering. Pre-
liminary evaluation suggests merits to our approach, with
increased enrollment, better student performance and in-
creased student participation in all aspects of the course.
As an additional contribution to the academic community,
all the modules produced are available on the Web.

The rest of this paper is laid out as follows: Section 2
presents the plan for integrating computer games into Soft-
ware Engineering; Section 3 outlines a sample set of projects
used in the course; Section 4 describes our progress thus far
and discusses preliminary results; and Section 5 summarizes
our conclusions and mentions possible future work.

2. MODULES
This section presents game-based project modules that

integrate computer games into an existing Software Engi-
neering curricula. The approach combines aspects of game
engineering with Software Engineering with the goal of pro-
viding a disciplined approach to engineering a game while
emphasizing core Software Engineering principles. We break
the course material down into a set of modules, where each
module represents a Software Engineering concept and in-
cludes a set of lecture slides, handouts, and where appropri-
ate projects. Detailed content and supporting material for
each module can be found online [2]. A single overarching
project, a computer game, with milestones corresponding
to the individual modules are developed to emphasize both
the overall Software Engineering of a large project and the
technical content of each module. A sample set of projects
is outlined in Section 3.

Module 1: Introduction. This module provides an over-
view of the general topics of software and game engineer-
ing, the Unified Modeling Language (UML) [4], and the
Eclipse [9] development environment. A key focus of this
module is in providing a common terminology for both soft-
ware and game engineering. Students are introduced to
UML as a key design technology and to the tool support
offered by Eclipse and its plugins.

Module 2: Development Lifecycles. This module pro-
vides an overview of the different software development life-
cycles and contrasts it to the game development lifecycle.
Topics in this module include the study of different soft-
ware process models, techniques for both static and dynamic
modeling, the study of game development models, and the
role of software process models in game development. Game
development models and the interaction of software devel-
opment models with game development models is an active
area of research in both academia and industry. The mate-
rial developed for this unit of the module thus uses published
research papers.

Module 3: Project and Team Management. This mod-
ule provides a formalization of project scheduling and team
management. This is a critical phase to ensure on-time de-
livery and provide essential risk management. Topics in
this module include project planning, effort estimation, risk
management, interaction between the development models
and introduction to tools for tracking project schedules and
teams. Although the fundamentals of this module are di-
rectly applicable to game engineering, it should be recog-
nized that the multi-disciplinary teams typical in game de-
velopment introduce a higher risk and require additional
time in team management.

Module 4: Requirement Elicitation. Requirements elic-
itation is the formal process that results in the specification
of the system that the client understands. In game engineer-
ing, a parallel to requirements elicitation is the development
of the game idea that goes on to become the Pitch document.
This module provides an overview of requirements elicitation
and game idea development. Topics covered as part of this
module are techniques for documenting elicitation, the def-
inition of meaningful play, storyboarding techniques to rep-
resent the game idea, the requirements elicitation and pitch
documents. Special emphasis has been made on the con-
solidation of these two processes into an integrated process
that uses adapted software engineering techniques to provide
a formalization of the game idea. The main output for this
module is the development of a Game Concept Worksheet

for the class project – a game being developed by individual
teams of 2 to 3 students. The worksheet combines the key
features of both a typical requirement elicitation document
and a game’s high pitch document.

Module 5: Introduction to Game Design. This mod-
ule provides in-depth exploration at the key elements of
game design [11] ranging from issues and guidelines for de-
veloping the game setting and game world, to storytelling
and narratives, to designing a rich game play environment
that preserves the internal economy of games and provides a
balanced game. Topics in this module segue into a discussion
of the common design patterns for different genre of games
providing a set of features and requirements typical for a
given genre. The main output for this module is the devel-
opment of a game prototype, based on the individual team’s
Game Concept Worksheet, using the Game Maker [10] game
prototyping tool.

Module 6: Requirement Analysis. Requirement analy-
sis results in a model of the system that aims to be correct,

complete, consistent, and unambiguous. In game develop-
ment, this phase corresponds to the process of game design.
While this module provides an overview of the traditional
requirement analysis phase, there is additional emphasis on
the integration of the key game elements, especially the
game prototype developed in the previous module, to drive
the requirement analysis. Topics covered as part of this
module include techniques to focus on the identification of
objects, their behavior, their relationships, their classifica-
tion, and their organization. Additionally, to accommodate
game design, extensions to the requirements analysis phase
are examined that accommodate the semiotics of a game
resulting in meaningful play [13]. The key output of this
module is the development of a modified Requirements Anal-

ysis Document – a Game Treatment Document that brings
together the key aspects of game design and requirements
analysis under one umbrella.

Module 7: System Design. System design is the trans-
formation of an analysis model into a system design model.
During system design, developers define the design goals of
the project and decompose the system into smaller subsys-
tems that can be realized by individual teams. This module
covers the basic steps of system design and provides adap-
tations to this process that take into account system as-
pects particular to the game development domain, such as
the typical subsystems common to most games. Topics in
this module include strategies for building the system, selec-
tion of the off-the-shelf components, as well as an in-depth
coverage of architectural patterns [1] that can be used as
guidelines for system decomposition. The materials devel-
oped for this module include a description of game genre
design patterns, a topic currently being researched by both
academia and industry [8, 12, 7]. The output of this module
is two-fold. One is the development of the System Design

Document that pays special attention to the identification of
design goals in the game domain, and the subsystem decom-
position and analysis that uses common game architectural
patterns and subsystems in mind. A second output is the
development of a prototype of a subsystem common to most
2D games.

Module 8: Object Design. Object design closes the gap
between the application objects and the off-the-shelf com-
ponents by identifying additional solution objects and refin-
ing existing objects. The identification of existing patterns
and components is central to this problem-solving process.
Topics in this module discuss these building blocks and the
activities related to them, provide an overview of object de-
sign and focus on reuse, that is the application of design pat-
terns [5], and discuss the techniques for identifying missing
interfaces and functionality. While an overview of the main
design patterns [5] is done, special emphasis is on the design
patterns that have been proven to be more useful for the
development of games. This module also provides coverage
of game design patterns [8, 12, 7] to help students identify
the collusion patterns and modular the rules for the arti-
ficial intelligence engine used in the game. Materials from
this module include a categorization and description of the
game design patterns. The output for this module is a com-
plete object design of a subsystem identified in the previous
module, with the emphasis to provide students with an op-
portunity to practice their skill sets for developing reusable

design based on commonly used design patterns. Students
also continue to refine and add to their prototype developed
in the previous module based on the object design conducted
in this phase.

Module 9: Implementation. This module introduces the
core of code development coupled with game programming.
Topics included in this module are mapping design to code,
which includes formal methods for mapping associations and
collections to code, programming platforms, the choice of
programming language for game development, the use of
multi-languages in game development, and techniques for
re-engineering, re-factoring and code optimization. Code
quality, code reuse and code refactoring are the special em-
phasis topics for this module. Students are exposed to the
idea of full and partial code reviews and on the utility of
coding standards. Output from this module is the develop-
ment of other subsystems in each team’s game. Based on the
principles of reusability and the set of subsystems common
to most games, each team develops a distinct subsystem as
a general component for a game. For example, every 2D
game requires a subsystem that can describe and load the
game map. The Map subsystem developed by one team is
utilized by all other teams in the class.

Module 10: Testing. Testing is the process of finding dif-
ferences between the expected behavior specified by system
models and the observed behavior of the implemented sys-
tem. This module introduces concepts of fault, erroneous
state, failure, and test, as well as the testing activities that
result in the plan, design, and execution of tests. Topics in
this module include functional testing techniques, selected
testing techniques for nonfunctional requirements such as
usability testing. To incorporate testing for games addi-
tional testing techniques are introduced to handle stress and
playability testing. Students are also introduced to JUnit,
a testing framework incorporated into the Eclipse develop-
ment environment that enables the description of test cases,
test suites, and provides an interface for the execution of the
test cases.

3. EXAMPLE PROJECTS
This section briefly describes a sample set of projects that

were developed to support the game-based project modules
presented in Section 2. The projects all build upon each
other as part of a working computer game. Project writeups
and some project samples can be found online [2].

Project 1: Tools Background. Students are given a
range of Java exercises to be coded in Eclipse in order to
provide exposure to Eclipse and to increase proficiency with
Java. Students also work through the Maze Game Tutorial,
available with Game Maker [10], and extend the maze game
minimally to demonstrate their grasp of basic Game Maker
features.

Project 2: The Game Pitch. Students form a team of
two to three students and elect a team manager that sched-
ules meetings and sets up the project schedule. Each team
develops a Game Pitch document describing the game idea
and makes an initial sales pitch for their game.

Project 3: The Game Treatment. Based on the pitch,
each team defines an initial Game Treatment document as
part of requirement elicitation that describes the features
of the game, including the game challenges, modes of play,
character avatars, events and levels. The treatment also
identifies non-functional requirements for the game, includ-
ing character representation, and audio and visual elements.
More traditional software engineering requirements such as
the usability, reliability, and supportability of the game soft-
ware are also described.

Project 4: The Game Prototype. From the treatment,
each team categorizes their game’s functional requirements
into sets of core, required and desired features. Students then
implement a prototype of their game using Game Maker
based on the core requirements.

Project 5: Requirement Analysis. Each team constructs
both an object model as well as a dynamic model based on
the game prototype. Versions of the game interface are de-
veloped, as well as screen mockups and navigational paths.

Project 6: System Design. Each team identifies three
key design goals for their game and decomposes their game
system into smaller subsystems based on these goals. As
part of this decomposition, students select an architecture
style that can be applied to their overall game system design.
The outcome of this project is the System Design document
written based on a provided template.

Project 7: Object Design. Each team builds a detailed
design of the TileMapRenderer – a subsystem that loads and
renders a 2D map – based on object design principles. The
outcome of this project is a UML class diagram representing
the design of the subsystem.

Project 8: Implementation. Each team member imple-
ments a randomly assigned sub-module from the TileMapRen-
derer subsystem. In addition to the code for the working
sub-module, each student provides a JUnit-conforming test
harness and test case suite.

Project 9: Integration and Testing. Students integrate
their individual sub-modules to construct, and subsequently
test, the TileMapRenderer subsystem. The outcome is a
working subsystem, together with a JUnit conforming test
harness and test suite.

4. PRELIMINARY RESULTS
Game design has been fully integrated a Fall 2004 Soft-

ware Engineering course (91.411 Software Engineering I), at
the University of Massachusetts, Lowell. This integration in-
cludes design and implementation of modules for the course,
as well as other supporting material such as syllabus, slides,
projects, tools, and text book selections.

Preliminary evaluation has been done comparing the im-
pact of the new game design modules on Software Engineer-
ing compared with traditional Software Engineering as rep-
resented by previous course offerings. Objective measures
of performance include enrollment, class dropout rate, and
exam scores. These quantitative measures are supplemented
by subjective comments on the game-specific modules.

Table 4 depicts a summary of the objective results, where
“Traditional SE” represents results from the previous offer-
ing of 91.411 Software Engineering I (Fall 2003) and “Game-
Enhanced SE” represents preliminary results from the cur-
rent, game-enhanced offering of 91.411 Software Engineering
I (Fall 2004).

Traditional SE Game-Enhanced SE

Enrollment 7 22
Drop-outs 2 1

Average GPA 3.14 3.45
A’s 2 12
B’s 4 8
C’s 1 2

The enrollment for the game-enhanced Software Engineer-
ing course is significantly higher than the enrollment for
the traditional Software Engineering course, as well as other
elective courses offered at the same time (8 being the aver-
age enrollment for all elective courses in Fall 2004). Before
the course was offered, the intent to focus the Software En-
gineering projects on computer games was made known to
potential students and a preliminary syllabus was available
for students to peruse before enrolling in the class.

The breakdown of grades for students in the game-enhanced
Software Engineering course is significantly different com-
pared to the breakdown of grades in the traditional Soft-
ware Engineering course, with the game-enhanced Software
Engineering course having a higher distribution of A grades.
These grades reflect significantly better student understand-
ing of class material and noticeable improvements in the
software engineering quality of the projects.

Surveys conducted during the course have provided us
with subjective comments on the modules, primarily in the
form of free-form comments. Here a small excerpt of some
of the comments are provided that summarize some of the
opinions voiced in the use of game-enhanced modules for
Software Engineering:

“Doing game projects is really exciting, my friends
are envious and want to take this. When are you
offering this course next?”

“This course is sweet! Our group is already think-
ing about other games that we can develop after
the course is done.”

“The game software engineering course was a
good experience for me. It made the learning of
the somewhat dry material :-) much more fun!”

5. CONCLUSIONS AND FUTURE WORK
There is a growing demand for robust, re-usable software

that merges interdisciplinary Computer Science topics. This
demand drives the need for effective methods of teaching of
Software Engineering to tomorrow’s application developers.
The growing popularity of computer games coupled with the
Computer Science sophistication required to build today’s
entertainment applications, presents and opportunity to use
computer games as a means to better train Software Engi-
neers. Game-centric, project-based modules can be used to
illustrate all aspects of the software lifecycle, tapping into a
broad range of Computer Science disciplines as is required to

build modern applications while enticing students to grasp
and apply Software Engineering to such disciplines by using
games as a powerful motivator.

This paper presents initial work towards the goal of more
effective Software Engineering education, describing some
details of the implementation of a game-centric Software
Engineering course. The focus has been on modules that
allow for a hands-on practice of Software Engineering the-
ory, where the sum of the modules culminates in a working
computer game that clearly illustrates successful Software
Engineering and provides students with particular satisfac-
tion.

Preliminary evaluation suggests the merits of the approach.
In the initial offering, class enrollment was up, drop-outs
were down, grades had noticeably improved, and subjective
survey comments from students suggested a greater interest
in Software Engineering as a whole.

Future work includes more extensive evaluation, includ-
ing qualitative and long-term evaluation. One hypothesis
is that a project class which engages students will motivate
them in other Computer Science courses. Measuring student
grades in Computer Science pre-class and post-class could
determine if the game-centric Software Engineering class en-
gaged students sufficiently to improve their performance in
later classes.

Future work could be to explore other opportunities for
game-enhanced versions of other CS courses, with the in-
tention to motivate and thereby improving the CS educa-
tion of undergraduate students. Such game-enhancement
could happen horizontally, by making game-centric versions
of other senior level courses such as Artificial Intelligence
or Computer Networks. Or, game-enhancement could be
spread vertically, motivating students in early introductory
courses right up through senior level courses.

6. REFERENCES
[1] F. Buschmann, R. Meunier, H. Rohnert,

P. Sommerlad, and M. Stal. Pattern Oriented Software

Architecture, Volume 1: A System of Patterns. John
Wiley and Sons, 1996.

[2] K. Claypool and M. Claypool.
http://www.cs.uml.edu/∼kajal/research/pubs/-
itisce05-SE-Games.

[3] G. Costikyan. I have no words and i must design. In
Conference Proceedings of Computer Games and

Digital Cultures, pages 9–33, 2002.

[4] M. Fowler and K. Scott. UML Distilled Second Edition

”A Brief Guide to the Standard Object Modeling

Language. Addison-Wesley, 2000.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1995.

[6] IDSA. Essential facts about computer and video game
industry - 2003 sales, demographics and usage data.
http://www.idsa.com, 2003.

[7] B. Kreimeier. The case for game design patterns.
http://www.gamasutra.com/features/20020313/-
kreimeier 01.htm.

[8] S. Lundgren and S. Bjork. Game mechanics:
Describing computer-augmented games in terms of
interaction. In Proceedings of TIDSE, Nov. 2003.

[9] I. Object Technology International. Eclipse Platform
Technology Overview. http://www.eclipse.org, 2003.

[10] M. Overmars. Game Maker.
http://www.cs.uu.nl/people/markov/gmaker/, 2004.

[11] A. Rollings and E. Adams. On Game Design. New
Riders Publishing, 2003.

[12] S. L. S. Bjork and J. Holopainen. Game design
patterns. In Proceedings of Digital Games Research,
Nov. 2003.

[13] K. Salen and E. Zimmerman. Rules of Play - Game

Design Fundamentals. MIT Press, 2004.

[14] W. Spector. Remodeling RPGs for the new
millennium. http://www.gamasutra.com/features/-
game design/19990115/remodeling 01.htm, Jan.
1999.

