
AN ARCHITECTURE FOR WEB AGENTS

Zhisheng Huang
Vrije University of Amsterdam

The Netherlands
Email: huang@cs.vu.nl

Anton Eliëns
Vrije University of Amsterdam

The Netherlands
Email: eliens@cs.vu.nl

Paul de Bra
Eindhoven University of Technology

The Netherlands
Email: debra@win.tue.nl

KEYWORDS
Intelligent agent, web agent, agent architecture

ABSTRACT

In this paper we propose an extended BDI architecture for
web agents. The architecture is general, it covers 2D web
agent with text based interfaces for retrieval services as
well as 3D web agents like avatar-embodied guides that
help visitors to navigate in virtual environments.
Furthermore, we define the primitives of sensor/effector
of web agents, and show how those different types of
web agents can be implemented, based on the general
architecture.

INTRODUCTION

Currently, there is a lot of interest and work in the area of
developing agents systems and applications that make use
of web technology, which ranges from intelligent
information agents, interface agents, to e-commerce
agents. One of the central issues is how we can develop a
general architecture for agents on the Web, so that no
matter what the application domains are, the infrastructure
can still be shared.

(Bell 1995) proposes a general architecture for intelligent
agents. The architecture is so general that no matter what
the application domains are, the kernel of the agent
systems is stable, and the components which have to be
specified are only the sensors and effectors of agent
systems.

Based on Bell's architecture, in this paper, we propose a
general architecture for web agents, which covers agents
that provide a text-based interface to for example
information retrieval services, as well as avatar-embodied
guides that help visitors to navigate in virtual
environments. Furthermore, we discuss the primitives of
sensor/effector of web agents, and how those different
types of web agents can be implemented, based on the
general architecture.

This research is part of a Dutch research project WASP,
for Web Agent Support Program. As part of this research
project we are developing PAMELA, a Personal Assistant
for Maintaining Electronic Archives. The architecture we
present in this paper is meant to serve in selecting a
suitable implementation in the WASP project.

A TAXONOMY OF WEB AGENT

Many types of web agents have been proposed in recent
years, which range from domain-dependent agents to
function-dependent agents. The natural questions related
to that phenomenon are: what are the relations among so
many different types of web agents? Are they redundant,
or overlapped? Is there any taxonomy to classify them? In
(Huang et al. 2000), we propose a taxonomy of web
agents. This section is a brief introduction to the
taxonomy of web agents. We consider the following three
dimensions of web agent types:

• 2D versus 3D
A 2D web agent is one which is aware of http, file, and
ftp protocols, whereas a 3D web agent is one which is
aware of not only those protocols, but also virtual reality
protocols. Typical 2D web agents provide a text-based
interface for information retrieval services. Typical 3D
web agents are avatar-embodied guides that help visitors
to navigate in virtual environments.

• Client versus server
As the names imply, a client web agent is on the client

side, whereas server web agent is on the server side. A
typical client web agent can serve as a personal
information assistant. A typical server web agent can
serve as the front-end of web servers to offer information
more intelligently.

• Singularity versus multiplicity
As the names imply, a single web agent would not

consider the interface with other web agents, whereas
multiple web agents would interact on each other.

There are different types of web agents based on those
three dimensions, which consists of a complexity lattice

of web agent types, which is shown in Figure 1. 3D-
server-multiple-agents are at the top of the complexity
hierarchy, whereas 2D-client-single-agents are at the
bottom. All the dimensions we consider for the taxonomy
are directly web-dependent. The dimension “2D-3D”
specifies the internet protocols agents have to be aware of,
the dimension “client-server” is concerned with internet
service modes agents have to offer, and the dimension
“singularity-multiplicity” determines agent communica-
tion languages. We do not consider the functional
dimension which are not directly relevant to the Web, like
cooperating agents, problem solving agents, and negotia-
tion agents, etc. We do not discuss the dimensions which
are domain dependent, like expertise seeking agents, e-
commerce agents, etc. However, our taxonomy does
cover most types of those agents. They are either 2D
agent or 3D agent, either client agent or server agent,
either single agent or multiplicity agent, or some of their
combinations. Different types of web agents suggest
different types of interaction modes with users and web
servers. See (Huang et al. 2000) for details.

Figure 1: Lattice of Web Agents

ARCHITECTURE FOR WEB AGENTS

(Bell 1995) proposes an architecture of intelligent agents,
shown in Figure 2. According to Bell, a reasoning agent is
situated in the real world and consists of two connected
modules; a high-level (symbolic) reasoning system (or
“mind”) and a low-level (procedural) action system (or
“body”). The symbolic reasoning system is composed of a
module for theoretical reasoning and a module for
practical reasoning.

Actions Perceptions

Figure 2: Bell's Agent Architecture
The theoretical reasoning module represents the agent's
beliefs, knowledge of, and reasoning about the world.
The reasoning done by this module includes standard
deductive reasoning as well as inductive, abductive, and
probabilistic reasoning. It also performs database-type
operations (lookup, update, addition, revision, deletion).
The practical reasoning module represents the agent's
reasoning about what it should do. The planning system
generates plans to achieve the agent's goals, schedules the
resulting actions for execution, passes them to the
procedural action system, and monitors their execution by
it. The procedural action system (or “body”) consists of
controllers, motion systems and perception systems. This
component represents the agent's physical capacities and
skills (“know how”). The controllers control and monitor
the sensors and the effectors and mediate between them
and the reasoning systems. They receive high-level action
commands from the practical reasoning system, expand
these to the appropriate level of detail, pass them to the
effectors systems for execution, and perform low-level
monitoring on them. They also pass perceptions
(symbolic descriptions of the environment based on
feedback from the sensors) to the theoretical reasoning
system. The “mind” and “body” function as co-routines
each of which is more or less active depending on the
environment, the processing (reasoning) resources
available, and the tasks at hand. This allows the agent to

3D-server-
multiple
web agent

3D-server-
single web
agent

3D-client-
multiple
web agent

2D-server-
multiple
web agent

3D-client-
single web
agent

2D-server-
single web
agent

2D-client-
multiple
web agent

2D-client-
singel web
agent

Symbolic Reasoning System (“Mind”)

Desires, Goals,
Plans, Intentions

Obligations

Practical
Reasoning

Theoretical
Reasoning

Beliefs
Knowledge

Controllers, Know how, Reactivity

Effectors Sensors

 Procedural Action System (“Body”)

Rational Agent

Real World

form long-term strategic plans to execute them and to
react to events.

Although a lot of agent architectures have been proposed
(Jennings et al. 1998), we select Bell’s agent architecture
as the point of the departure for the following reasons:

• Generality. Bell’s agent architecture is so general
that no matter what the application domains are, the
kernel of the agent systems is stable, and the
components which have to be defined are only the
sensors and effectors of agent systems. In particular,
no matter whether we are interested in the
development of a 2D web agent, or in that of a 3D
web agent, The kernel of the web agent would be the
same. The only difference between a 3D web agent
and a 2D web agent are the corresponding operators
of the sensors and the effectors.

• Flexibility. Although Bell’s agent architecture is
based on the popular Belief-Desire-Intention
architecture, i.e., so-called BDI architecure (Rao and
Georgeff 1991), it offer more elaborated conceptual
models of rational agents, which cover knowledge
maintenance and belief revisions in the theoretical
reasoning component, as well as planning and
scheduling in the practical reasoning component.
Moreover, the sophisticated models do not cause big
difficulties in the implementation, for the sub-
components can be dropped when we consider the
concrete implementation. We propose a simplified
architecture for web agents in this paper.

• Availability. A lot of formal theories have been
proposed based on BDI architecture (Jennings et al.
1998, Rao and Georgeff 1991). Bell’s architecture is
an extended BDI architecture. Furthermore, based on
Bell’s agent architecture, several theories have been
developed, including a formal theory of dynamic goal
hierarchies (Bell and Huang 1997), which investigate
how rational agents can pursue their goals and drop
their commitment rationally.

Considering the simplicity of the implementation, we
propose a general architecture for web agents, which is
shown in Figure 3, which is not only a simplified Bell’s
agent architecture but also an extended BDI architecture,
for it consists of Belief-Desire-Intention components, plus
sensor/effector components. We drop the component of
obligation in the architecture and make no distinction
between goals and intentions, and no distinction between
belief and knowledge, for the simplicity of the
implementation. However, those omitted components can
be easy to be recovered when they are needed. Currently
we use the Distributed Logic Programming language DLP
(Eliëns 1992) to implement the web agent PAMELA. In
the following, we define the operators of sensor/effector

in logic programming languages. An operator which
cannot be defined in terms of other operators is called a
primitive of sensor/effector.

The followings are some operators of the sensors for 2D
web agents. However note that the lists are not complete,
and some of them are not primitives.

• getURL(URL,Text): get the text of the URL;
• getValue(URL, Property,Value): get the value of the

property in URL.
• isValid(URL): check if the URL is valid;
• isPermissible(URL,Permission): check if the URL is

permissive for the web agent to read/write/ execution.

 Actions Perceptions

Figure 3: Architecture for Web Agents

The operators of the effectors are:
• setText(URL, String, NewString, NewURL): replace

String in URL with NewString, and save it as a
NewURL if the newURL is permissive for writing. If
URL and NewURL are the same, then adding the link
to the text without changing URL;

• setLink(URL, String, Link, NewURL): add the hyper
link to the string in URL, and save it as a NewURL.

According to our taxonomy of web agents, 3D web agents
subsume 2D ones. Thus, all of the primitives of
sensor/effector of 2D web agents are also valid for 3D
web agents. Moreover, 3D web agents have their own

Desires,
 Intentions

Practical
Reasoning

Theoretical
Reasoning

Beliefs

Controllers, Know how, Reactivity

Effectors Sensors

 Procedural Action System (“Body”)

Symbolic Reasoning System (“Mind”)

Web Agent

Web

primitives of the sensor/effector to process virtual
environments. Virtual reality modeling language (ISO
1997) is a standard tool for virtual environments over the
Web. Therefore, 3D web agents have the following
primitives of the sensors. Please refer to VRML
documents (ISO 1997) for the details of positions,
orientations, rotations and viewpoints.

• getViewpointPosition(Agent, X, Y, Z): get the agent’s
viewpoint position;

• getViewpointOrientation(Agent, X,Y,Z,R): get the
agent’s viewpoint orientation;

• getPosition(Object,X,Y,Z): get object’s position;
• getRotation(Object,X,Y,Z,R):get object’s rotation.

The primitives of the effectors for 3D web agent are:

• loadURL(URL); load a VRML world;
• setViewpointPosition(Agent,X,Y,Z): set the agent’s

viewpoint position;
• setViewpointOrientation(Agent, X,Y,Z,R): set the

agent’s viewpoint orientation;
• setPosition(Object,X,Y,Z): set object’s position;
• setRotation(Object,X,Y,Z,R): set object’s rotation.

All of the primitives are valid for single web agents. For
multiple web agent systems, we have the following
primitives of sensor/effector, which are inspired from the
agent communication language KQML. (Labrou and
Finin 1994).

• getAgentProperty(Agent, Property, Value): get the
value of the agent’s property;

• getReply(Agent, Topics, Message): reply to the agent
with the message of the topics.

• ask(Agent, Topics): ask the agent to reply on the
topics;

• tell(Agent, Topics, Message): tell the agent the
message on the topics.

All of web agents can be considered as client web agents.
For server web agents, the primitives of sensor/effector
are as follows:
• ifRequested(Host,Requirement): check if a service

requirement is sent from a host;
• reply(Host,Requirement,Message): reply the host

with the message on the requirement.

CASE STUDIES

In this section, we study several cases of the applications,
by which we want to show how those primitives of
sensor/effector can be used to define the behaviors of the
web agents.

Scenario One: (2D web agent for archive update and
maintenance) The user, Harry, is a conference organizer.
He has a text file of the conference programme, in which
there is a list of the speakers and the titles of their
presentations. Harry wants the web agent PAMELA to
help him to transfer the programme into a real html file,
namely, try to link the speaker’s homepage address to all
of the names of the speakers, and add the links of the
papers to the titles of the presentations. In particular,
Harry has to advise the web agent PAMELA to do the
followings:

• All of the papers now locate at the directory
“C:/conference” locally;

• Check all the files in the directory, find the title of the
file, and make the link to the title of the programme;

• Find the speaker's email address in the file; and then
try to find the speaker's homepage address on the
Web according to their email addresses. To simplify
it, just try to guess the address of the homepage from
the e-mail address by the following: if the email
address is USER@DOMAIN, then the possible
homepage address is: www.DOMAIN/~USER; if it
is valid, then update it, if it is not valid, just simply
use the email address as the hyperlink, namely, the
link “mailto:USER@ DOMAIN”.

Here is the part of the formalization of the scenario:

Beliefs:
addLinktoTitle(Programme, URL):-
getValue(URL,‘‘title",Title),
setLink(Programme,Title, URL, Programme).

guessHomepage(EmailAddress,HomepageAddress):-
eq(EmailAddress,USER+@+Domain),
eq(HomepageAddress, “www.”+Domain+”/~”+USER),
isValid(HomeAddress).

guessHomepage(EmailAddress,HomepageAddress):-
eq(EmailAddress,USER+@+Domain),
eq(GuessedHomepageAddress,”www.”+Domain+”/~
“+USER), NOT isValid(GuessedHomeAddress,),
eq(HomepageAddress,”mailto:"+EmailAddress).

addHomepagetoName(Programme,Speaker):-
getEmailAddress(Speaker,EmailAddress),
guessHomepageAddress(EmailAddress,
HomepageAddress),isValid(HomepageAddress),
setLink(Programme,Speaker,HomepageAddress,
Programe).

getEmailAddress(Speaker,EmailAddresss):-
conferencepaper(URL),getValue(URL,

“author", Author),eq(Author,Speaker),
getValue(URL,``email",EmailAddress).

Intentions(Goals):
updateProgramme(“C:/conference/programme.htm").

Desires:
updateProgramme(“C:/conference/programme.htm").

It seems that we can simply use a single logic program
(with extended sensor and effector primitives) to fulfill
the task. A natural question is why we need the
complicated BDI architecture. One of the main reasons is:
if the web agent is implemented in that way, that would
mean that whenever the web agent gets a goal from the
user, like updateProgramme, she has to execute it
immediately. An intelligent web agent would not simply
behave like that. Just considering a situation in which you
ask your secretary to task a task, she would promise you
to do that, however, it is not necessary for her to fulfill the
task immediately, unless the task is urgent and the
deadline is coming soon. She can have her own desires
and preferences. She knows how to schedule the tasks and
fulfill the tasks in due time. A web agent is designed with
the extended BDI architecture would behave more
intelligently. The web agent would commit herself to
fulfill the task, however, she may drop the commitment
under some special situations, for instance, there are
more important tasks for her to do, or the programme file
is not available because of some unexpected reasons.
Therefore, we need a more sophisticated architecture for
Web agents so that the web agents have a powerful
practical reasoning component for planing and scheduling
the tasks, and they can decide their commitments or drop
some of them under certain conditions.

Scenario Two: (3D web agents for soccer playing) We
have implemented a soccer game, in which 3D web
agents are the players. A demonstration version of the
WASP soccer game is now available from the WASP
project web site: www.cs.vu.nl/~huang/wasp. Based on
the primitives of sensor/effector proposed above, we can
define a lot of extended actions, like run-and-trace,
shooting, passing, for the soccer playing agents. See
(Huang et al. 2001) for details. 3D web agents in WASP
soccer games show significantly intelligent behaviors.

Just see the following simple example, in which we define
the action “look-at-ball” in terms of the primitives of
sensor/effector proposed in this paper, by using the
Distributed Logic Programming Language DLP:

look_at_ball(Player,Ball) :-
getPosition(Player, X,_,Z),
getPosition(Ball, X1,_,Z1), X \== X1,!,

R is atan((Z1-Z)/(X-X1)) - sign(X-X1)*1.57,
setRotation(Player,0.0, 1.0, 0.0, R).

CONCLUSIONS

Based on Bell's agent architecture, in this paper we have
proposed an extended BDI architecture for web agents.
We have shown that the architecture is general and it
covers different types of web agents and their
applications. We are developing PAMELA, a Personal
Assistant for maintaining Electronic Archives, based on
the extended BDI architecture, by using Distributed logic
programming language DLP. As one issue of further
work, we will investigate the complete specifications of
sensor/effector.

REFERENCES

Bell, J. 1995. “A Planning Theory of Practical Rationality”.
Proceedings of AAAI’95 Fall Symposium on Rational
Agency. 1-4.

Bell, J. and Huang, Z. 1997. “Dynamic goal hierarchies”,
Intelligent Agent Systems, Theoretical and Practical Issues,
LNAI 1209. Springer. 88-103.

Bell, J. and Huang, Z. 1999. “Dynamic Belief Hierarchies”,
Formal Theories of Agents, LNAI 1760. Springer. 20-35.

Eliëns, A. 1992. DLP, a Language for Distributed Logic
Programming. Wiley.

Huang, Z.; Eliëns, A.; van Ballegooij, A.; and de Bra, P. 2000.
“A Taxonomy of Web Agents”. Proceedings of the 11th
International Workshop on Database and Expert Systems
Applications, IEEE Computer Society. 765-769.

Huang, Z.; Eliëns, A.; and Visser, C. 2001.
“Programmability of Intelligent Agent Avatars”,
Research report. Department of Computer Science,
Vrije University of Amsterdam.

ISO. 1997. VRML97: The Virtual Reality Modeling Language.
ISO/IEC. 14772-1, 1997.

Jennings, N.R.; Sycara, S.; and Wooldridge, M. 1998. “A
Roadmap of Agent Research and Development”,
Autonomous Agents and Multi-Agent Systems I. Kluwer,
275-306.

Labrou, Y. and Finin, T. 1994. “A Semantics Approach for
KQML – a general purpose communication language for
software agents”, Proceedings of the 3rd International
Conference on Information and Knowledge Management,
ACM Press.

Rao, A. and Georgeff, M. 1991. “Modeling rational agents
within a BDI-architecture”, Proceedings of the 2nd

International Conference on Principles of Knowledge
Representation and Reasoning, Morgan Kaufmann
Publishers. 473-484.

