
MANIPULATING VRML WORLDS: EXAMPLES 35

:-object titlemove0: [bcilib].

var count = 3000.

var increment = 0.15.

var url=’./title/title0.wrl’.

main :- text_area(Browser),

set_output(Browser),

loadURL(url),

sleep(3000),

move_title(count).

move_title(0):-!.

move_title(N):- N>0,

N1 is N-1,

getSFVec3f(myViewpoint,position, X,Y,Z),

Znew is Z - increment,

setSFVec3f(myViewpoint, position,X,Y,Znew),

sleep(150),

move_title(N1).

:-end_object titlemove0.

In order to let the format function in DLP programs to send its output to
the web browser, we use the following clauses to set a text area as the output
of the program:

text_area(Browser),

set_output(Browser),

However, note that if we set code=”dlpcons.class” in the html file, the
message window is not enabled in the browser, and the two lines above should
not be used in the program.

In the program, the viewpoint’s position is gradually moving to the negative
Z-direction by decreasing the Z value 0.15 meter each time. This is a simple
example that shows how to manipulate 3D objects to achieve animation in
virtual worlds.

4.5.2 Bus Driving

In this example, we design a bus driving program. Assume we have designed
a bus in a VRML world, whose url is:

./street1.wrl

36 DLP AND VIRTUAL WORLDS

Driving the bus implies setting the position and rotation of the bus according
to the user’s viewpoint. Moreover, the position and rotation of the bus should
be changed whenever the user’s viewpoint changes. Here is the bus driving
program, which first loads the url and moves the bus in front of the user, then
starts the driving procedure.

:-object wasp2 : [bcilib].

var url = ’./street/street5.wrl’.

var timelimit = 300.

main :-

text_area(Browser),

set_output(Browser),

format(’Loading street1 from ~w~n’, [url]),

loadURL(url),

format(’The bus1 is going to jump

in front of you in 5 seconds, ~ n’),

format(’then you can drive the bus

for ~w seconds ~ n’, [timelimit]),

delay(5000),

jump(bus1),

drive(bus1,timelimit).

jump(Object) :-

getSFVec3f(proxSensor,position,X,_Y,Z),

Z1 is Z-5,

setPosition(Object, X, 0.0 ,Z1).

drive(_,0):-!.

drive(Object,N) :- N>0, N1 is N-1,

format(’time left: ~w seconds~n’, [N]),

delay(1000),

getSFVec3f(proxSensor,position,X,_Y,Z),

getSFRotation(proxSensor,orientation,_X2,Y2,_Z2,R2),

setPosition(Object,X, 0.0 ,Z),

R3 is sign(Y2)*R2 + 1.571,

setRotation(Object,0.0,1.0,0.0,R3),

drive(Object,N1).

MANIPULATING VRML WORLDS: EXAMPLES 37

Fig. 4.2 Initial Situation of Bus Driving

:-end_object wasp2.

In the program, the jump rules will move the bus in front of the user, or more
exactly, the viewpoint of the virtual world. The drive rules move the bus, i.e.
the bus position and rotation are regularly updated according to the position
and orientation of the user’s viewpoint. The rotation of the bus is 90 degrees
different from the orientation of the user’s viewpoint. One of the difficulties
in this program is to obtain a correct rotation value for the bus, based on
the user’s current viewpoint orientation. First we consider the simplest case,
namely, the initial situation in which the user looks in the −Z direction and
the bus is positioned in the +X direction, as shown in Figure 4.5.2. It is easy
to see the relation between these two rotations if we have a look at Figure
4.5.2: R3 = 1.571. We want to obtain a general formula to calculate the
new bus rotation based on the viewpoint’s orientation (i.e. rotation), which
is shown in Figure 4.5.2 and Figure 4.5.2. Figure 4.5.2 shows the situation in
which the user turns to the right when navigating. Based on the right-hand
system of rotation calculations in VRML, the value of the user’s viewpoint
orientation is 〈0.0,−1.0, 0.0, R2〉. Thus, the bus rotation has to be set to
R3 = 1.57 − R2. Figure 4.5.2 shows the situation in which the user turns to
the left. The user’s viewpoint orientation is 〈0.0, 1.0, 0.0, R2〉. Therefore, R3
should be R2 + 1.57. The general formula which can be used to compute the
new rotation of the bus based on the user’s viewpoint orientation:

R3 = sign(Y 2) ∗R2 + 1.57.

where Y 2 is the Y-value of the user’s viewpoint orientation.

38 DLP AND VIRTUAL WORLDS

Fig. 4.3 The initial rotation values

Fig. 4.4 User turns to the right

MANIPULATING VRML WORLDS: EXAMPLES 39

Fig. 4.5 User turns to the left

4.5.3 The Vector Library in DLP

In the bus example above, we can see that the calculation of the correct rota-
tion values sometimes becomes a somewhat tricky task. We have to consider
different situations to create a general formula which covers all cases for the
calculation of the correct rotation value. Some knowledge of 3D graphics
mathematics is helpful to solve this kind of problems.

DLP offers a vector library (vectorlib), which is useful for vector operations,
in particular, for rotation calculations. Refer to a 3D graphics textbook for a
general background of 3D mathematics. Several typical vectorlib predicates :

• vector cross product(+vector(X1, Y 1, Z1),+vector(X2, Y 2, Z2),
− vector(X,Y, Z),−R) : the vector 〈X,Y, Z〉, and the angle R are the
cross product and the angle of the vector 〈X1, Y 1, Z1〉 and the vector
〈X2, Y 2, Z2〉, (based on the right-hand rule).

• direction vector(+position(X1, Y 1, Z1),+position(X2, Y 2, Z2),
−vector(X,Y, Z)): 〈X,Y, Z〉 is the vector with starting point 〈X1, Y 1, Z1〉
and end point 〈X2, Y 2, Z2〉.

• vector rotation(vector(X1, Y 1, Z1), rotation(X,Y, Z,R),
vector(X2, Y 2, Z2)): the resulting vector of a vector 〈X1, Y 1, Z1〉 and
a rotation 〈X,Y, Z,R〉 is 〈X2, Y 2, Z2〉.

40 DLP AND VIRTUAL WORLDS

• position rotation(position(X1, Y 1, Z1), rotation(X,Y, Z,R),
position(X2, Y 2, Z2)): the resulting position of a position 〈X1, Y 1, Z1〉
and a rotation 〈X,Y, Z,R〉 is 〈X2, Y 2, Z2〉.

We can use the vectorlib predicates to compute the intended rotations in
the bus example as follows:

:-object wasp2v : [bcilib,vectorlib].

var url = ’./street/street5.wrl’.

var timelimit = 300.

......

drive(_,0):-!.

drive(Object,N) :-

N > 0,

N1 is N-1,

format(’time left: ~w seconds~n’, [N]),

delay(1000),

getSFVec3f(proxSensor,position,X,_Y,Z),

getSFRotation(proxSensor,orientation,X2,Y2,Z2,R2),

setPosition(Object,X, 0.0 ,Z),

vector_rotation(vector(0,0,-1), rotation(X2,Y2,Z2,R2), vector(X3,Y3,Z3)),

look_in_direction(Object,vector(1,0,0),vector(X3,Y3,Z3)),

drive(Object,N1).

look_in_direction(Object, InitVector,DesVector):-

vector_cross_product(InitVector,DesVector,vector(X,Y,Z),R),

setRotation(Object,X,Y,Z,R).

:-end_object wasp2v.

In order to use the vector library, we add the vectorlib to the header of
the program object. We define a new predicate look in direction which
sets the object with an initial direction InitV ector to a destination direc-
tion DesV ector by using the predicate vector cross product in the vector
library. We know that the user’s initial orientation is oriented to the negative
Z direction, namely, 〈0, 0,−1〉 by default. After rotation(X2, Y 2, Z2, R2),
the user looks in the direction vector(X3, Y 3, Z3), which can be calculated
by the predicate vector rotation in the vector library. The initial bus orien-
tation is vector(1, 0, 0). Therefore, during driving, the bus should keep the
same orientation as the user by calling the predicate look in direction. Note

MANIPULATING VRML WORLDS: EXAMPLES 41

that the predicate look in direction defined above can tell correct answers in
most cases, however, not always. Consider the case in which v1 = 〈0, 0, 1〉,
and v2 = 〈0, 0,−1〉. According to the definition of the cross product, v1 × v2
results in the zero vector. However, we cannot use the zero vector as an axis
of rotation. Try to improve the definition of the predicate look in direction
to avoid the problem. We leave it as an exercise.

4.5.4 Ball Kicking

Consider a simple soccer game, in which the user is the only player in the
game. If the user gets close enough to the soccer ball, the ball should move
to a new position according to the position difference between the player and
the ball. In the following program, we set the kickable distance to 2 meter.
Namely, if the distance between the user and the ball is smaller than 2 meter,
then the ball should be moved to a new position. We calculate a new position
of the ball based on the position difference. If the user is at the left side of the
ball, then the ball should move to the right; if the user is at the right of the
ball, then the ball should move to the left. In the program, we set the move
coefficient to 3: if the difference of the x parameter between the user and ball
is Xdif , then the new position of ball of the x parameter should be increased
by 3Xdif . The same for the difference of the y parameter. Figure 4.5.4
shows the relation between the initial position of the ball and the destination
position after kicking.

:-object wasp3 : [bcilib].

var url = ’./soccer/soccer1b.wrl’.

var timelimit = 300.

main :-

text_area(Browser),

set_output(Browser),

format(’Load the game ...~n’),

loadURL(url),

format(’the game will start in 5 seconds,~n’),

format(’note that the total playing time

period is ~w seconds,~n’, [timelimit]),

delay(5000),

format(’the game startup,~n’),

play_ball(me, ball).

42 DLP AND VIRTUAL WORLDS

play_ball(Agent, Ball) :-

-- timelimit,

timelimit > 0, !,

format(’time left: ~w seconds~n’, [timelimit]),

delay(800),

near_ball_then_kick(Agent, Ball),

play_ball(Agent, Ball).

play_ball(_, _).

near_ball_then_kick(Agent, Ball):-

getViewpointPositionEx(Agent,X,_Y,Z),

getPosition(Ball,X1,Y1,Z1),

Xdif is X1-X,

Zdif is Z1-Z,

Dist is sqrt(Xdif*Xdif + Zdif*Zdif),

Dist < 5, !,

X2 is Xdif*3,

Z2 is Zdif*3,

X3 is X2 + X1,

Z3 is Z2 + Z1,

setPosition(Ball,X3,Y1,Z3).

near_ball_then_kick(_, _).

getViewpointPositionEx(_,X,Y,Z) :-

getSFVec3f(proxSensor,position,X,Y,Z).

getViewpointOrientationEx(_,X,Y,Z,R):-

getSFRotation(proxSensor,orientation,X,Y,Z,R).

:-end_object wasp3.

4.5.5 Soccer Kicking with Goalkeeper

We can extend the example of ball kicking above by adding a goalkeeper to it,
in such a way that the goalkeeper always looks at the ball and can check the
position of the ball. If the ball is near the goalkeeper, say, within a distance of
3 meter, then the goalkeeper can move the ball to a new position. We use the
vector library for the calculation of the rotation in the predicate look at ball,
which simplifies the problem:

......

MANIPULATING VRML WORLDS: EXAMPLES 43

Fig. 4.6 kicking ball to a position

play_ball(Agent, Ball) :-

-- timelimit,

timelimit > 0, !,

format(’time left: ~w seconds~n’, [timelimit]),

delay(800),

look_at_ball(goalKeeper1,Ball),

near_ball_then_kick(Agent, Ball),

play_ball(Agent, Ball).

......

near_ball_then_kick(Agent, Ball):-

......

setPosition(Ball,X3,Y1,Z3),

checkBallPosition(Ball,X3,Y1,Z3).

checkBallPosition(Ball, X, Y, Z):-

getPosition(goalKeeper1,X1,_Y1,Z1),

Xdif is X-X1,

Zdif is Z-Z1,

Dist is sqrt(Xdif*Xdif + Zdif*Zdif),

Dist < 3, !,

X2 is X - 5,

44 DLP AND VIRTUAL WORLDS

setPosition(Ball,X2,Y,Z).

checkBallPosition(_,_,_,_).

look_at_ball(Player,Ball):-

getPosition(Player,X,_Y,Z),

getPosition(Ball, X1,_Y1,Z1),

direction_vector(position(X,0,Z), position(X1,0,Z1), vector(X2,Y2,Z2)),

look_in_direction(Player,vector(0,0,1),vector(X2,Y2,Z2)).

In the definiton of the predicate look at ball, we first obtain the positions of
the player and the ball. We are not interested in the Y-parameters for the
calculation of the rotations, because the player should not look down to the
ball by rotating the whole body. This should be achieved by rotating the
player’s head. Based on the two positions, we can calculate the destination
orientation of the player which can look at the ball by calling the predicate
direction vector in the vector library. We know that the initial orientation of
an avatar is in the positive Z direction by default. Therefore, looking at the
ball can be realized by calling the predicate look in direction.

Exercises

4.1 Variants of the title-moving.

4.1.1. Design a DLP program to implement a rolling text, namely, the
text moves in the positive Y-direction.

4.1.2. Design a DLP program to implement moving titles in which the
texts and the colors of the titles are changed regularly, using the following
facts:

title_text(1, ’Intelligent Multimedia Technology’, red):-!.

title_text(2, ’Moving Title Example’, yellow):-!.

title_text(3, ’Changing Texts and Colors’, green):-!.

......

4.2 Improve the example of ball kicking so that the soccer ball continuously
moves to a new position. It should not simply jump to the new position.

4.3 Design a DLP program to control the bus moving so that it can move
along a route which is defined by a set of facts.

4.4 Improve the example of bus driving so that the user can start and stop
the bus engine. Namely, the bus moves only after the engine starts, and the
bus does not move if the engine stops.

4.5 Change the definition of the predicate look in direction to avoid the
zero vector as an axis of rotation.

