
i

Intelligent Multimedia
Technology

An Approach to combine Agent
Technology with Virtual Environments

Zhisheng Huang, Anton Eliëns, and Cees Visser

Vrije Universiteit

Amsterdam, 2004

Contents

Preface xvii

Acknowledgments xix

Acronyms xxi

Part I Fundamentals

1 Introduction 1

2 Logic Programming 5
2.1 What is Prolog 5
2.2 Structure of Prolog 6
2.3 How Prolog works: Unification and Backtracking 8
2.4 Working on Lists 11
2.5 Built-in Predicates in Prolog 12

2.5.1 Arithmetic evaluation 12
2.5.2 Arithmetic comparison 13
2.5.3 Cut and Fail 13
Exercises 14

v

vi CONTENTS

3 Distributed Logic Programming 15
3.1 Object declarations 15
3.2 Statements 16
3.3 Examples 17

3.3.1 Hello World 17
3.3.2 File I/O 20
3.3.3 Buffer Producer and Consumer 21
Exercises 25

4 DLP and Virtual Worlds 27
4.1 VRML EAI and DLP 27
4.2 Design 3D Virtual Worlds for DLP 27
4.3 Loading 3D Virtual Worlds 30
4.4 VRML Predicates 31
4.5 Manipulating VRML worlds: Examples 32

4.5.1 title moving 33
4.5.2 Bus Driving 35
4.5.3 The Vector Library in DLP 39
4.5.4 Ball Kicking 41
4.5.5 Soccer Kicking with Goalkeeper 42
Exercises 44

Part II 3D Web Agents

5 Agents 47
5.1 Simple Reflex Agents 47
5.2 Decision-making Agents 48
5.3 BDI Agents 49
5.4 Extended BDI Agents 50
5.5 Main Features of Intelligent Agents 52

6 Web Agents 53
6.1 Introduction 53
6.2 Intelligent services on the web – an overview 54
6.3 Agents in virtual environments 55

6.3.1 Agents in 3D Community Server 55
6.3.2 Information retrieval in virtual environments

57

CONTENTS vii

6.3.3 Adaptive environments – presenting
information 58

6.3.4 Discussion 59
6.4 A taxonomy of web agents 60

6.4.1 3D-Server-Multiple-Agent 62
6.4.2 3D-Server-Single-Agent 62
6.4.3 3D-Client-Multiple-Agent 63
6.4.4 2D-Server-Multiple-Agent 64
6.4.5 3D-Client-Single-Agent 64
6.4.6 2D-Server-Single-Agent 66
6.4.7 2D-Client-Multiple-Agent 66
6.4.8 2D-Client-Single-Agent 66

6.5 Research issues 67
6.6 Conclusions 70

7 3D Web Agents in DLP 71
7.1 Implementation of 3D Web Agents 71
7.2 Soccer Playing Agents: An Example 72

7.2.1 General Consideration 72
7.2.2 Design of virtual worlds 73
7.2.3 Multiple Thread Control 76
7.2.4 Formalizing Behaviors Soccer Ball 78
7.2.5 Cognitive Models of Soccer Players 81
7.2.6 Controlling Goalkeepers 85
7.2.7 Behaviors of Soccer Player Users 86
7.2.8 Discussion 87

7.3 Dog World 88
7.3.1 Design the virtual world 88
7.3.2 Behavioral model of the dogs 89
7.3.3 Flock and Distributive Function 90
7.3.4 Implementation 91
7.3.5 Discussion 92
Exercises 93

8 Avatars Design 95
8.1 Avatars 95
8.2 H-anim 1.1 Specification 96
8.3 Creating H-anim Compliant Avatars 100
8.4 Avatar Authoring Tools 103

viii CONTENTS

8.4.1 Curious Labs Poser 4 103
8.4.2 Blaxxun Avatar Studio 103

8.5 Avatar Animation Control in DLP 106
Exercises 108

9 STEP : a Scripting Language for Embodied Agents 109
9.1 Motivation 109
9.2 Principles 110
9.3 Scripting Language STEP 112

9.3.1 Reference Systems 112
9.3.2 Primitive Actions and Composite

Operators 116
9.3.3 High-level Interaction Operators 117

9.4 Examples 117
9.4.1 Walk and its Variants 117
9.4.2 Run and its Deformation 119
9.4.3 Tai Chi 120
9.4.4 Interaction with Other Agents 122

9.5 XSTEP: the XML-encoded STEP 123
9.6 Implementation Issues 124

9.6.1 STEP Components 124
9.6.2 Parallelism and Synchronization 125
9.6.3 Rotation Interpolation 127

9.7 Conclusions 128

Part III Virtual Communities

10 Virtual Communities 133
10.1 Introduction 133
10.2 Living Worlds 134
10.3 Agent-based Virtual Community 134

11 DLP for Virtual Communities 137
11.1 DLP Networking Predicates 137
11.2 Distributed Communication 141
11.3 Example: VRML-based Multiple User Soccer

Game 145
11.3.1 Distributed Soccer Game Protocol 145

CONTENTS ix

11.3.2 Performance Improvement 147
11.3.3 Implementation 149
Exercises 155

12 Conclusions 157

Appendix A DLP Built-in Predicates 159

Appendix B Source Codes 177
B.1 Soccer Game: Single User/Multiple agents 177
B.2 Dog world 182

Appendix C 189

References 191

Glossary 197

Index 198

List of Figures

2.1 Search in Directed Graph 8

2.2 Search in Directed Graph 10

2.3 Backtracking 10

4.1 Screenshot of title moving 33

4.2 Initial Situation of Bus Driving 37

4.3 The initial rotation values 38

4.4 User turns to the right 38

4.5 User turns to the left 39

4.6 kicking ball to a position 43

5.1 Simple Reflex Agents 48

5.2 Decision-making Agents 49

5.3 Belief-Desire-Intention Agents 50

5.4 Extended-BDI Agents 51

6.1 Lattice of Web Agents 61

6.2 Configuration of 3D-server-multiple-agent 62
xi

xii LIST OF FIGURES

6.3 Configuration of 3D-server-single-agent 63

6.4 Configuration of 3D-client-multiple-agent 64

6.5 Configuration of 2D-server-multiple-agent 65

6.6 Configuration of 3D-client-single-agent 65

6.7 Configuration of 2D-server-single-agent 66

6.8 Configuration of 2D-client-multiple-agent 67

6.9 Configuration of 2D-client-single-agent 68

7.1 Screenshot of Soccer Playing Game 72

7.2 The Field of Play 74

7.3 Line-up phenomenon in Soccer Playing Game 88

7.4 Screenshot of the dogworld example 89

7.5 Flock and Distributive Function 90

8.1 A Standard Joints/Segment Diagram of H-anim
1.1 98

8.2 A Simple H-anim 1.1 Compliant Avatar 101

8.3 A H-anim 1.1 Compliant Avatar with Hairs and
Clothes 103

8.4 A Screenshot of Poser 4 104

8.5 A Screenshot of Avatar Studio 104

8.6 Soccer Player Avatar blue2 105

8.7 Texture of Soccer Player Avatar blue2 105

8.8 Facial Animation 107

9.1 Direction Reference for Humanoid 113

9.2 Combination of the Directions for Left Arm 114

9.3 Typical Joints for Humanoid 115

9.4 Walk 117

9.5 Poses of Run 119

9.6 Tai Chi 121

LIST OF FIGURES xiii

9.7 STEP and its interface with embodied agents 125

9.8 Processing Parallel Actions 126

11.1 virtual community based on server-client mode 141

11.2 Communication among Multiple Threads in DLP 143

11.3 Communication among Agents in DLP 144

11.4 Screenshot of Soccer Game with Multiple Users 146

B.1 The Field of Play 178

List of Tables

1.1 Relation between the functions and the approaches 3

6.1 Demonstrators of agent technology 69

11.1 Distributed Soccer Game Protocol 148

xv

Preface

This is a preface.

What You Should Already Know

This book assumes you have the following basic background:

• A general understanding of the Internet and the World Wide Web
WWW.

• A working knowledge of Virtual Reality Modeling Language VRML and
HyperText Markup Language HTML.

Some programming experience with the object-oriented language JAVA
and the logic programming language PROLOG, is useful, but not required.

Z. HUANG, A. ELIENS AND C. VISSER

Amsterdam, The Netherlands

xvii

Acknowledgments

To all these wonderful people We owe a deep sense of gratitude especially ...

Z. Huang, A. Eliëns, and C. Visser

xix

Acronyms

AI Artificial Intelligence

DLP Distributed Logic Programming Language

EAI External Authoring Interfaces

HTML Hyper Text Modeling Language

MAS Multiple Agent Systems

VRML Virtual Reality Modeling Language

VU Vrije University Amsterdam

WASP The project of Web Agent Support Programs

WWW World Wide Web

xxi

Part I

Fundamentals

1
Introduction

The World Wide Web (WWW) offers people extremely large amounts of in-
formation and data from all over the world. In a relatively short time, the
Web has become a de facto standard for the dissemination and retrieval of
information. Because so much information is available, the Web is expected
to be easy to use and offers attracting interfaces for information presentation
and retrieval. However, most existing web pages are text-based, with quite
limited functionalities of multimedia, like jpeg pictures, animated gif, sound
and video clips , etc. Enhancing the Web with multimedia capabilities is an
attempt to improve these interfaces.

The Virtual Reality Modelling Language (VRML) [ISO, 1997] has become
a standard tool to build 3D virtual worlds for the Web. Using VRML, infor-
mation can be presented more attractively in virtual environments. So-called
Virtual environments are refered to computer created scenes or environments
which provide the user with the sensation of ‘being inside’ as well as the
possibility to interact by using computers controlled input-output devices.
Networked virtual environments are refered to ones which can be accessed
over the computer network, in particular, the Web. In this book, we focus on
networked virtual environments. VRML is the most popular tool for creating
networked virtual environments. In the sequel, virtual worlds/virtual environ-
ments are generally used to refer to the VRML-based worlds/scenes/environments.

VRML preserves almost all the functionalities of the text-based Web. More-
over, it provides a convenient and powerful tool to build 3D virtual worlds.
VRML has been applied to applications which require powerful graphical in-
terfaces for the Web, like virtual galleries, multimedia presentations, scientific

1

2 INTRODUCTION

visualization, 3D object simulation and exhibition, chat arena, 3D games,
virtual communities, and e-commerce applications.

However, the current version of VRML, namely VRML’97, still has limited
capabilities for the development of 3D Web applications. In order to make
VRML more convenient and more powerful as a tool for the development of
Web applications, people expect the following improvements and enhance-
ments for 3D virtual worlds:

• Efficient Behavior Control. In order to control the dynamic behav-
ior of objects, VRML’97 provides facilities for Java script nodes and
ROUTE semantics. However, it is still difficult to program a sophisti-
cated scenario of dynamic objects by using these facilities. In order to
solve this problem, VRML offers an EAI (External Authoring Interface).
Java is a typical EAI language, because it is a standard programming
language for the development of Web applications. VRML EAI and
Java allow programmers to control 3D virtual worlds, more exactly, the
contents of a VRML browser window embedded in a web page from a
Java applet. EAI does this with a browser plug-in that allows embed-
ded objects in a web page to communicate with each other. Therefore,
in order to efficiently control the dynamic behaviors of the objects in
3D virtual worlds, VRML needs the Java EAI. We call that approach
VRML+JAVA..

• Multiple User Support. VRML’97 is designed for a single user
framework. However, a lot of Web applications require the support
for multiple users and shared events in virtual worlds; this way multi-
ple users can interact with each other and share the same virtual world
events. Supporting multiple users in virtual environments requires a
more sophisticated technology for processing messages in a network.
That appeals for the technology of 3D virtual communities. The
most popular tools for building virtual communities are currently Ac-
tiveworlds [ActiveWorld, 2000] and Blaxxun virtual community servers
[Blaxxun, 2000]. Both Activeworlds and Blaxxun virtual communities
use the VRML+JAVA approach.

• Convenience in navigation. Navigating in 3D virtual worlds is still
difficult. Users often feel lost in virtual worlds, and do not know where
and how to go. That applies for the development of 3D navigation as-
sistants. One of the examples of such navigation assistants is the agent
concept in Blaxxun virtual communities. The agents in the Blaxxun
community server may be programmed to have particular attributes
and to react to events in a particular way. As a remark, originally the
Blaxxun agents were called bots. In our opinion the functionality of
Blaxxun agents does not surpass that of simple bots, and we consider
the term agent to be a misnomer. Despite the large number of built-
in events and the rich repertoire of built-in actions, the Blaxxun agent

3

VRML VRML+JAVA VRML+JAVA+PROLOG

3D worlds yes yes yes

Multimedia yes yes yes

Dynamic Behaviors weak yes yes

Multiple Users yes yes

Navigation Guides weak yes

Intelligent Agents weak yes

Table 1.1 Relation between the functions and the approaches

platform in itself is rather limited in functionality, simply because event-
action patterns are not powerful enough to program complex behavior
that requires maintaining information over a period of time. More gen-
erally, by agent we mean one which can be programmed to conduct
complex behavior, and by intelligent agent we mean an agent that has
the capability of knowledge representation and knowledge manipula-
tion. We will discuss agents and agent technology in details in the
part II: 3D web agents. The logic programming language (PROLOG)
has become one of the most popular programming languages in artifi-
cial intelligence. Naturally, PROLOG is one of the best candidates for
the implementation of intelligent agents. We call the approach which
combines the VRML+Java EAI technology with logic programming the
VRML+JAVA+PROLOG approach.

• Intelligent agents. A navigation assistant is just one of the exam-
ples of intelligent agents. In order to offer more efficient and powerful
interfaces in 3D virtual worlds for the users, we need a lot of the func-
tionalities from intelligent agents. Some of the examples are:

– Information agent: An agent which can gather information over
the Web according to the user profiles;

– Presentation agent: An agent which knows how to present the
information more efficiently to the users;

All of those enhanced functionalities again require a more powerful ap-
proach which combines the technology of VRML+JAVA+PROLOG.

The summary of the relation between the functions and the approaches is
shown in Figure 1. In the figure, we use ”yes” to denote that the approach
can efficiently support the function, and use ”weak” to denote that although
the approach may support the function, it is not efficient.

4 INTRODUCTION

The distributed logic programming language (DLP) was first proposed
in 1992 by A. Eliëns. DLP supports the Blaxxun VRML client interface
library. Therefore, DLP is a programming language which supports the ap-
proach VRML+JAVA+PROLOG. Furthermore, our slogan in this book is:

V RML+ JAV A+ PROLOG = DLP + V RML

which states that Distributed logic programming in VRML virtual environ-
ments is the tool for the approach V RML+ JAV A+ PROLOG.

In this book, we introduce distributed logic programming and discuss how
we can use DLP to develop 3D virtual world application. In particular, we
investigate how DLP can be used to implement agents which use rules to
guide their behaviors in virtual environments. We have organized this book
into three parts:

• Part I: Fundamentals (Chapters 1-4). This part introduces the fun-
damental notions of the distributed logic programming for virtual envi-
ronments, including the introduction to the logic programming language
PROLOG, and the distributed logic programming language (DLP).

• Part II: 3D Web Agent (Chapters 5-9). Part II discusses how DLP can
be used to develop and implement 3D web agents for virtual environ-
ments. Chapter 5 is a brief introduction to the agent types and their
architectures. Chapter 6 overviews the notions of web agents and their
taxonomy. Chapter 7 investigates how DLP can be used to develop
3D web agents. Chapter 8 discusses the issue of avatar design, and
Chapter 9 introduces STEP , a scripting language for 3D web agents,
and XSTEP, the XML-encoded STEP , a markup language for 3D web
agents.

• Part III: Virtual Communities (Chapters 10-12). Part III focuses on the
topics of virtual communities. Chapter 10 is an overview of the existing
approaches of virtual communities. Chapter 11 discusses how DLP can
be used to develop 3D virtual communities. Chapter 12 concludes this
book.

2
Logic Programming

This chapter is an introduction to logic programming languages, like Prolog.
In case you’re familiar with logic programming, you can skip this chapter.

2.1 WHAT IS PROLOG

Prolog, which stands for PROgramming in LOGic, is based on the mathemati-
cal notions of relations and logical inference. Rather different from imperative
programming languages, like C++, Java, etc., in which programmers have to
describe how to compute a solution procedurally, Prolog is a declarative lan-
guage, in which a program consists of a set of facts and logical relationships
(rules) which describe the relationships which hold for the given application.
Rather then running a program to obtain a solution, the user asks a question
(or alternatively called a query, or a goal). When asked a question, the infer-
ence engine of the language would search through the set of facts and rules
to find the answer.

In artificial intelligence, knowledge or beliefs are normally represented as
a set of rules and facts. Prolog is widely used in artificial intelligence appli-
cations, such as natural language processing, automated reasoning systems,
expert systems, and agent systems.

5

6 LOGIC PROGRAMMING

2.2 STRUCTURE OF PROLOG

A Prolog program consists of a set of facts, rules, and queries (goals). Rules
and facts in Prolog are called clauses.

• Fact. A fact states a property, like John is a boy, or a relation, like Jan
is a parent of John, which can be written in Prolog as follows:
boy(john).
parent(jan, john).

According to the conventions of Prolog, a variable should begin with
an upper case letter, whereas a constant should begin with lowercase
letter, or enclosed in single quotes. Therefore, we use lower-cased item
john to denote the name John above. If we want the name to start with
an upper case letter, we can write it as follows:

boy(’John’).
parent(’Jan’, ’John’).
In most logic programming languages, like DLP, the following two state-
ments are considered the same:

boy(john).
boy(’john’).

However, note that ′John′ and ′john′ are considered to be two differ-
ent constants in Prolog. A relation (or property), like parent(X,Y), is
called an atomic formula (or an atom for short). Therefore, a fact is an
atomic formula which ends with a full-stop ’.’. A relation (or property)
name is often called a predicate. A term is a variable, a constant, or a
compound term which is built from variables, constants, and structures.

• Rule. A rule states logical relations among relations or properties,
which consists of an antecedent and a conclusion like :

〈Conclusion〉 : −〈Antecedent〉.

The conclusion of a rule is sometime called head of rule, whereas the
antecedent is sometimes called body of rule. Example: the statement, if
X is a parent of Y and X is male, then X is the father of Y , is written
as :

father(X, Y):- parent(X,Y), male(X).

Note that there might exist more than one atomic formula in the an-
tecedent of a rule, however, only one atomic formula is allowed to appear
in the conclusion part of a rule.

STRUCTURE OF PROLOG 7

• Query. A query states a question, which begin with ”? -”, follows one
or several atomic formulas (which are separated by the comma ’,’). Ex-
ample: the question who is the father of John can be written as:

? -father(X,john).

One of main advantages of Prolog is the use of recursion. The following is
one of the examples:

Example 1 Search in Directed Graph. Figure 2.2 shows a directed graph.
We use successor(X,Y) to denote that the node Y is a successor of the node
X in the graph. We use path(X,Y) to denote that there exists a path from
the node X reaches the node Y . The problem can be formalized in Prolog as
follows:

successor(a,b).
successor(a,c).
successor(a,d).
successor(b,e).
successor(b,f).
successor(c,g).
successor(d,g).
successor(e,h).
successor(g,i).

path(X,Y):-
successor(X,Y).

path(X,Z):-
successor(X,Y),
path(Y,Z).

path(X,X).

To know which nodes are successor of node a, just make the query ? −
successor(a,X). Prolog would answer that X = b;X = c;X = d. The
followings are other examples of queries:

• ? − path(e, f): to ask if the node e can reach the node f ;

• ? −path(c,X): to ask which are nodes that can be reached from the node
c.

8 LOGIC PROGRAMMING

Fig. 2.1 Search in Directed Graph

2.3 HOW PROLOG WORKS: UNIFICATION AND BACKTRACKING

Prolog inference engine use a general deduction system to find solutions, which
concerns the following two main notions:

• Unification: Unification is to find a substitution that would make two
atomic formulae look the same. Sometimes the unification in Prolog
is called matching. The matching operation takes two terms and tries
to make them identical by instantiating the variables in both terms.
Matching, if it succeeds, results in the most general instantiation of
variable. For example, for the query ? − successor(a,X), the Prolog
inference engine searches the set of facts and rules to find a unification
of the conclusion of a rule (or a fact) and the query. The unification
of successor(a,X) and the fact successor(a, b) results in the solution:
X = b. The search procedure can be represented as a search tree, which
is shown in Figure 2.2. If the inference engine can find a unification
between the query and a fact, then it would result in a solution for the
query. If the inference engine can find a unification between the query
and a conclusion of a rule, then the current query would be replaced with
the (instanted) body of the rule. The inference engine would continue to
search for the solutions on the new queries. In order to find all solutions
of a query, the inference engine would search in all of the databases. In
the search, sometimes the Prolog engine cannot find any unification for
the current query. Thus, the engine has to backtrack.

• Backtracking: withdraws from the part of the current search path to
find other alternative path. For example, for the query ? − path(a, e),
the engine finds a unification between the query path(a, e) and the con-

HOW PROLOG WORKS: UNIFICATION AND BACKTRACKING 9

clusion path(X,Y) of the rule (p1), then the query is replaced with the
body of the rule (p1), namely, the new query becomes successor(a, e).
After searching for all of the database, the engine cannot find any unifi-
cation for the query successor(a, e). Thus, the engine has to go back one
step back to find a new unification for the old query path(a, e). Then,
the engine finds a unification between the query path(a, e) and the head
of the rule (p2). The current query would be successor(a, Y), path(Y, e)
after the instancing. The engine would continue to work on the current
query successor(a, Y), path(Y, e) to find the solutions. The whole search
procedures is shown as a search tree in Figure 2.3.

Prolog inference engine always processes the queries by the order from left
to right. For example, for the query successor(a, Y), path(Y, e), the engine
always tries to find the solution for successor(a, Y) first, then for path(Y, e).
That would often result in an infinite loop in the searching if the program is
not carefully written to avoid the problem. Therefore, every logic program
should be carefully designed to avoid infinite loops.

Example 2 A problem would lead to infinite loop

successor(a,b).
successor(a,c).
successor(a,d).
successor(b,e).
successor(b,f).
successor(c,g).
successor(d,g).
successor(e,h).
successor(g,i).

path(X,Y):-
successor(X,Y).

path(X,Z):-
path(X,Y),
successor(Y,Z).

path(X,X).

For the query path(X, e), Prolog would give the following answers:

X=b;
X=a;
......
Warning: out of stack.

The readers can draw a search tree on the example above to see why it
leads to an infinite loop.

10 LOGIC PROGRAMMING

Fig. 2.2 Search in Directed Graph

Fig. 2.3 Backtracking

WORKING ON LISTS 11

2.4 WORKING ON LISTS

In Prolog, lists are the basic data structure used to represent a set of data.
Here are some examples of lists:

• []: an empty list;

• [a]: a list with one element a;

• [X]: a list with one element X;

• [a, b]: a list with two elements a and b. Note that the order of elements
in a list is important. The list [a, b] is different from the list [b, a];

• [a, [a]]: a list with a as the first element, and the list [a] as the second
element;

• [a|Tail]: a list with a as the first element, and the other part of the
list is a list Tail. A unification between the list [a] and the list [a|Tail]
results in Tail = [];

• [Head|Tail]: a list with Head as its first element, and the other part of
the list is Tail. For instance, a unification between the list [a, b, c] and
[Head|Tail] would result in Head = a and Tail = [b, c];

• [a, b|X]: a list with a as the first element, b as the second element, and
the other part of list is X. For example, a unification between [a, b|X]
and [a, b] results in X = [], and unification of [a, b|X] and [a, b, c] results
in X = [c].

Here are some Prolog programs on lists:

Example 3 Element of a List.
member(X,List) states a relation in which X is an element of the list List:

member(X, [X|List]).
member(X, [Y|List]):-

member(X,List).

Example 4 Append.
append(List1, List2, List3) states a relation in which List3 is a list from ap-
pending List2 to List1, namely, List3 is the concatenation of List1 and List2.

append([],L,L).
append([H|L1],L2,[H|L3]):-

append(L1,L2,L3).

Example 5 Naive-reverse of a list.
naivereverse(List1, List2) states a relation in which List2 is a reversed list
of List1:

12 LOGIC PROGRAMMING

naive_reverse([], []).
naive_reverse([Head|Tail], List):-

naive_reverse(Tail, NewTail),
append(NewTail, [Head],List).

Example 6 Subset.
subset(List1, List2) states a relation in which all elements of List1 are ele-
ments of List2:

subset([], _).
subset([X|Y], Z):-

member(X, Z),
subset(Y, Z).

In the example above, the first statement can be written as subset([], X),
where X is an arbitrary variable. Note that the variable X occurs only once,
which is not used anywhere else. We can use the notation ’ ’ which denotes
an arbitrary variable in the statement. Thus, the statement is rewritten as
subset([], X), by which we can avoid the single occurrence of variables. Al-
though the single occurrence of variables do not harm the program, avoiding
single occurence of variables sometimes helps us to find the typos in programs.

2.5 BUILT-IN PREDICATES IN PROLOG

Prolog provides many built-in predicates. The following predicates are the
most useful ones. Refer to the appendix for the details of other built-in
predicates. For any variable X, we use +X to denote that X is an input
variable, namely, before the unification, it should be instanced. We use −X
to denote that X is an output variable, namely, before the unification, it
should be uninstantiated. Moreover, we use ?X to denote a variable which
can be an input variable, or an output variable. A predicate (or function) is
followed by a slash ’/’ and a number n denotes that it is an n-arity predicate
(or function).

2.5.1 Arithmetic evaluation

• ?Term is +Eval (evaluate expression)

• Basic Arithmetic functors

– ′ +′ /2: plus

– ′ −′ /2: minus

– ′ ∗′ /2: multiple

– ′/′/2 : divide

BUILT-IN PREDICATES IN PROLOG 13

Example 7 Length of a List.
length(List,N) states that the number of the elements in List is n:

length(L,N) :-
length(L, 0, N).

length([], N, N).
length([_|L], N0, NL):-

N1 is N0+1,
length(L, N1, NL),

2.5.2 Arithmetic comparison

• +Eval =:= +Eval (arithmetic equal)

• +Eval = \ = +Eval (arithmetic not equal)

• +Eval > +Eval (arithmetic greater than)

• +Eval >= +Eval (arithmetic greater than or equal)

• +Eval < +Eval (arithmetic less than)

• +Eval =< +Eval(arithmetic less than or equal)

Example 8 Sort of a Number List.
sort(List1, List2): List2 is sorted list of List1. For example, sort([3, 6, 2, 4], List2)
would result in List2 = [2, 3, 4, 6].

sort([],[])$.
sort([X],[X]).
sort([X|Y],Z):-

sort(Y,Y’),
insert(X,Y’,Z).

insert(X,[],[X]).
insert(X,[Y|Z],[X,Y|Z]):-

X=<Y.
insert(X, [Y|Z],[Y|Z’]):-

X>Y,
insert(X, Z, Z’).

2.5.3 Cut and Fail

As discussed before, Prolog has an internal inference engine to find solutions.
Although this inference mechanism is often sufficient to solve many problems,

14 LOGIC PROGRAMMING

we need additional facilities to direct the search path. Built-in predicates like
cut and fail are introduced to control the search space.

• Cut: The cut , written as ‘!’, is used to stop the backtracking if some-
thing fails beyond that point. For instance, the predicatememberchk(X,Y)
succeeds if the element X is a member of the list Y .

memberchk(X,[X|_]) :-
!.

memberchk(X,[_|Y]) :-
memberchk(X,Y).

The cut used in the first statement has the following meaning: whenever
the element is found in the list, it is not necessary to keep the previous
alternative solutions for backtracking.

• Fail: Fail is a built-in predicate which never succeeds, it starts back-
tracking to a previous choice point. Fail may be used to program infinite
loops, or in combination with ’ ! (cut) ’ causes a predicate to fail.

Exercises

2.1 Draw a search tree for the example 2 to show why it leads to an infinite
loop.

2.2 Implement the following relations in Prolog:
2.2.1. factorial(N,Fac) where Fac = N !.
2.2.2. sum(N,Sum) where Sum = 1 + 2 + 3 + ...+N .

2.3 Implement the following relations in Prolog:
2.3.1. prefix(List1, List2) states a relation in which List1 is a prefix of

List2, for example, prefix([a, b], [a, b, c, d]) holds;
2.3.2. suffix(List1, List2) states a relation in which List1 is a suffix of

List2, for example, suffix([b, c, d], [a, b, c, d]) holds;
2.3.3. intersection(List1, List2, List3): List3 is the intersection of the

set List1 and the set List2;
2.3.4. union(List1, List2, List3): List3 is the union of the set List1 and

the set List2.

3
Distributed Logic

Programming

Distributed Logic Programming combines logic programming, object oriented
programming and parallelism, which may be characterized by the pseudo-
equation

DLP = LP +OO + ||
The language DLP can be regarded as an extension of Prolog with object
declarations and statements for the creation of objects, communication be-
tween objects and the destructive assignment of values to non-logical instance
variables of objects.

3.1 OBJECT DECLARATIONS

Object declarations in DLP have the following form:

:- object name.
var variables.
clauses.
:- end_object name.

where object and end object are directives to delimit an object. Variables
declared by var are non-logical variables; they may be assigned values by a
special statement.

Objects act as prototypes in that new copies may be made by so-called new
statements. Such copies are called instances . Each instance has its private
copy of the non-logical variables of the declared object. In other words, non-
logical variables act as instance variables.

15

16 DISTRIBUTED LOGIC PROGRAMMING

Dynamically, a distinction is made between active objects and passive ob-
jects. Active objects must explicitly be created by a new statement. Syn-
tactically, the distinction between active and passive objects is reflected in
the occurrence of so-called constructor clauses in the declaration of active
objects. Constructor clauses are clauses of which the head has a predicate
name identical to the name of the object in which they occur. Constructor
clauses specify an object’s own activity. Other clauses in an object declaration
may be regarded as method clauses, specifying how a request to the object is
handled. Passive objects only have method clauses.

3.2 STATEMENTS

DLP extends Prolog with a number of statements for dealing with non-logical
variables, the creation of objects and the communication between objects.
These statements may occur as a goal in the body of a method.

Non-logical variables. For assigning a term t to a non-logical variable x
the statement

x:=t

is provided. Before the assignment takes place, the term t is simplified and
non-logical variables occurring in t are replaced by their current values. In
fact, such simplifications take place for each goal. DLP also supports arith-
metical simplification.

New expressions. For dynamically creating instances of objects the state-
ment

O := new(c)

is provided, where c is the name of a declared object. When evaluated as
a goal, a reference to the newly created object will be bound to the logical
variable O. For creating active objects the statement

O := new(c(t1, ..., tn))

must be used. The activity of the newly created object consists of evaluat-
ing the constructor goal c(t1, ..., tn), where c is the object name and t1, .../tn
denote the actual parameters. The constructor goal will be evaluated by the
constructor clauses.

Method calls A method call is the evaluation of a goal by an object. To
call the method m of an object O with parameters t1, ..., tn the statement

O < −m(t1, ..., tn)

EXAMPLES 17

must be used. It is assumed that O is a logical variable bound to the ob-
ject to which the request is addressed. When such a goal is encountered,
object O is asked to evaluate the goal m(t1, ..., tn). If the object is willing
to accept the request then the result of evaluating m(t1, ..., tn) will be sent
back to the caller. After sending the first result, subsequent results will be
delivered whenever the caller tries to backtrack over the method call. If no
alternative solutions can be produced the call fails. Active objects must ex-
plicitly interrupt their own activity and state their willingness to accept a
method call by a statement of the form

accept(m1, ...,mn)

which indicates that a request for one of the methods m1, ...,mn will be ac-
cepted.

Inheritance An essential feature of the object oriented approach is the
use of inheritance to define the relations between objects. Inheritance may be
conveniently used to factor out the code common to a number of objects.

The declaration of an object name inheriting from an object base is:

:- object name : [base].
var variables.
clauses.
:- end_object name.

Multiple base objects are separated by ”,” in the declaration like:

: −object name : [base1, base2, ..., basen].

3.3 EXAMPLES

3.3.1 Hello World

The following is a simple DLP program, which only prints the text ’hello
world’.

:- object hello_world1.

main:-
format(’Hello, World ~n’).

:- end_object hello_world1.

Similar to Java, the predicate ’main’ is the starting point of an object. If the
program above is saved in a file ’helloworld1.pl’, we can use the command ’dlpc

18 DISTRIBUTED LOGIC PROGRAMMING

helloworld1.pl’ to compile the DLP program. Note that the file extension of a
PROLOG or DLP program is ’pl’. After compiling, we can use the command
’dlp hello world1’ to run the program. Note that we use the file name to
compile a DLP program file, however, we use the object name to run a DLP
program, for a program may consist of multiple objects.

The second ’hello world’ example prints 20 times the text ’Hello World’:

:- object hello_world2.

var count=0.

main:-
repeat,

format(’Hello World ~w ~n’,[count]),
++count,

count >= 20,
!.

:- end_object hello_world2.

The program above uses a non-logical variable ’count’ as a counter in a repeat
loop. If the goal ’count ≥ 20’ fails, the program will backtrack to the start
of the ’repeat’ loop until the condition ’count ≥ 20’ succeeds. The program
above looks more like a procedural Java program instead of a declarative
program. However, we can design a recursive program which behaves the
same but without using the non-logical variable and the ’repeat’ loop. We
leave it as an exercise.

In the following, we show an object which prints the text ’hello’, and an-
other object which prints the text ’world’.

:- object hello.

var count=0.

hello:-
repeat,
format(’hello ~w~n’,[count]),
sleep(500),
++count,

count >= 10,
!.

:- end_object hello.

:- object world.

EXAMPLES 19

var count=0.

world:-
repeat,
format(’world ~w~n’,[count]),
sleep(250),
++count,

count >= 10,
!.

:- end_object world.

:- object hello_world3.

main:-
_H := new(hello),
_W := new(world).

:- end_object hello_world3.

The object ’hello world3’ uses the ’new’ statement to create two threads. In
order to see that these two threads run independently, we specify different
’sleep’ times for each thread. The goal ’sleep(500)’ is used to delay the thread
for 500 milliseconds.

Observing the fact that the above-mentioned objects ’hello’ and ’world’
have the same program structure, we can implement a single object to achieve
the same result. Moreover, in the following, we want to design a ’hello world’
program in which multiple threads can share an independently running ’clock’
thread. The ’hello’ and ’world’ threads print their text until the clock counts
10 :

:- object clock.

var time = 0.

get_clock(T):-
T := time.

set_clock(T):-
time := T.

:- end_object clock.

:- object pulse.

20 DISTRIBUTED LOGIC PROGRAMMING

pulse :-
repeat,
sleep(1000),
clock <- get_clock(T),
T1 is T + 1,
clock <- set_clock(T1),

T1 > 10,
!.

:- end_object pulse.

:- object hello4.

hello4(Text):-
repeat,
clock <-get_clock(Time),
format(’~w ~w~ n’, [Text,Time]),
sleep(500),

Time >= 10,
!.

:- end_object hello4.

:- object hello_world4.

main:-
_C := new(pulse),
_H := new(hello4(hello)),
_W := new(hello4(world)).

:- end_object hello_world4.

The object ’clock’ provides the two methods get clock and set clock for getting
and setting the clock pulse counter. The object ’pulse’ simulates a clock by
incrementing a counter after each repeat step.

3.3.2 File I/O

This is an example of file I/O operations in DLP.

:- object pxfile.

var x, y, z.

EXAMPLES 21

wr_file(Args) :-
open(’tmptext.1’, write, Stream),
format(Stream, ’aap noot mies, args = ~w~ n’, [Args]),
nl(Stream),
put_char(Stream, a),
put_char(Stream, b),
put_char(Stream, c),
nl(Stream),
nl(Stream),
close(Stream).

rd_file(_) :-
open(’tmptext.1’, read, Istr),
open(’tmptext.2’, write, Ostr),

repeat,
get_char(Istr, Char),
write(Ostr, Char),

Char = end_of_file,
!,

nl(Ostr),
close(Istr),
close(Ostr).

main(Args) :-
wr_file(Args),
rd_file(Args).

:- end_object pxfile.

3.3.3 Buffer Producer and Consumer

DLP multi-threaded (bounded) buffer + producer + consumer example fea-
turing active objects, communication by rendez-vous, and non-logical vari-
ables. Execution starts at method main in object pxbuff. Method main redi-
rects the output of this program to a browser text area and creates three active
objects: active buffer , term consumer , and term producer . The invocations
of new/1 in main result in the creation of three independently running objects.
These objects will start their execution at the specified object constructors in
the corresponding new/1 goals :

:- object pxbuff.

22 DISTRIBUTED LOGIC PROGRAMMING

main :-
B := new(active_buffer(10)),
C := new(term_consumer(5,B)),
P := new(term_producer(5,B)).

:- end_object pxbuff.

When an active instance of a term producer object is created, execution
starts at the term producer object constructor. The constructor prints a
message and invokes method loop/2. The ’loop’ method executes N times and
sends a Prolog term (in this example an integer) to the active buffer thread,
referenced by the logical variable B by means of the goal ”B < −putterm(I)”
:

:- object term_producer.

term_producer(N,B) :-
format(’P ~w term_producer main/2 running~ n’, [this]),
loop(N,B).

loop(0,_) :-
format(’P ~w end of loop ...~ n’, [this]).

loop(I,B) :-
format(’P ~w sending ~w~ n’, [this, I]),
B <- put_term(I),
N is I-1,
loop(N,B).

:- end_object term_producer.

The creation of an active term consumer object in main/0 of object pxbuff
results in the execution of the term consumer/2 constructor. The constructor
outputs a message and starts loop/2. The loop/2 method executes N times
and retrieves its data from the active buffer thread by means of the ”B¡-
get term(T)” goal :

:- object term_consumer.

term_consumer(N,B) :-
format(’C ~w term_consumer main/2 running~ n’, [this]),
loop(N,B).

loop(0,_) :-

EXAMPLES 23

format(’C ~w end of loop ...~ n’, [this]).

loop(I,B) :-
B <- get_term(T),
format(’C ~w receiving ~w~ n’, [this, T]),
N is I-1,
loop(N,B).

:- end_object term_consumer.

Object active buffer contains four non-logical variables: head, tail, size,
and count. As opposed to logical (Prolog like) variables, non-logical vari-
ables can be updated destructively. Execution starts at the active buffer/1
object constructor. The constructor outputs a message and invokes loop/1.
Method loop/1 accepts either a put term/1 or get term/1 method invocation
request of an independently running term producer or term consumer object,
depending on the internal state of this active buffer object as specified by the
guards: in case the current number of data items in the buffer is less than size
or greater than zero, the first matching method request in the accept queue
will be accepted for execution by active buffer. If only one guard holds, the
corresponding method entry will be accepted. In case there is no matching
method request the thread will be blocked until such a method message ar-
rives. A term producer or term consumer thread will block until active buffer
accepts a particular method invocation request and has returned its answer.
When either a get term/1 or put term/1 method is accepted, the correspond-
ing method in active buffer will be executed : Method get term/1 retrieves
the first entry in the linked list and returns the corresponding term after
the non-logical variable head of the linked list has been updated. Method
put term/1 will store the term in the linked list and updates the non-logical
variable tail or both the head and the tail of the list. After a get term/1 or
put term/1 method ”rendez-vous”, loop/1 in active buffer prints the current
state (see out list/1) and starts the next loop iteration.

:- object active_buffer.

var head=null, tail=null, size=3, count=0.

active_buffer(N) :-
format(’B ~w active_buffer main/1 running~ n’, [this]),
loop(N).

loop(0) :-
format(’B ~w end of loop ...~ n’, [this]).

loop(I) :-

24 DISTRIBUTED LOGIC PROGRAMMING

accept(
put_term(P) <== [count < size],
get_term(G) <== [count > 0]
),

out_list(head),
N is I-1,
loop(N).

get_term(Term) :-
-- count,
head <- get_node_term(Term),
head <- get_node_next(Next),
head := Next,
format(’B ~w get term ~w~ n’, [this, Term]).

put_term(Term) :-
Node := new(buffer_node),
Node <- set_node_term(Term),
add_node(count, Node),
format(’B ~w put term ~w~ n’, [this, Term]),
++ count.

add_node(0, Node) :-
!,
head := Node,
tail := Node.

add_node(_, Node) :-
tail <- set_node_next(Node),
tail := Node.

out_list(Node) :-
format(’B~tcurrent nodes:~ n’),
out_list(0, Node).

out_list(Curr, _) :-
Curr = count, !,
format(’B~tend node list.~ n’).

out_list(I, Node) :-
N is I + 1,
Node <- get_node_term(Term),
Node <- get_node_next(Link),
format(’B~tnode no. ~w, term = ~w~ n’, [N, Term]),
out_list(N, Link).

EXERCISES 25

:- end_object active_buffer.

Object buffer node is a passive object (no constructor involved). It has
two non-logical variables: term and next. These variables are destructively
updated by the set node term/1 and set node next/1 methods, respectively.
Object buffer node is used by active buffer to construct a linked list of buffered
terms :

:- object buffer_node.

var term, next=null.

set_node_term(Term) :-
term := Term.

set_node_next(Next) :-
next := Next.

get_node_term(Term) :-
Term := term.

get_node_next(Next) :-
Next := next.

:- end_object buffer_node.

Exercises

3.1 Variants of the ’Hello World’ programs.
3.1.1. Design a program which has the same functionality as program

’hello world2’, however, without using a non-logical variable as a counter and
without using the predicate ’repeat’.

3.1.2. Design a progam in which a thread prints the text ’hello’ several
times, and another thread the text ’world’. The total number of output lines
should be about 20. Analyse the difficulties if we require the number of output
lines to be exactly 20, and suggest possible solutions.

4
DLP and Virtual Worlds

4.1 VRML EAI AND DLP

VRML EAI stands for the external authoring interface of the virtual reality
modeling language. The EAI allows developers to control the contents of
a VRML world. A VRML specification can be loaded in a browser by an
application, such as a Java applet. As mentioned, DLP programs are compiled
to Java classes, which can be used as Java applets in Web Browsers. DLP has
been extended with a VRML EAI library, called (bcilib). For instance, in the
DLP VRML library, the predicate getSFV ec3f(Object, F ield,X, Y, Z) gets
the SFV ec3f value (which consists of three float numbers X, Y , and Z) of
the Field of object Object, and setSFV ec3f(Object, F ield,X, Y, Z) assigns
X, Y , and Z values to the SFV ec3f F ield in Object, where Object refers to
an object in a 3D VRML world.

A DLP program can manipulate VRML virtual worlds by using the VRML
EAI library predicates. Before we introduce more details of the DLP VRML
predicates, we discuss first how to design VRML worlds that can be accessed
from DLP programs.

4.2 DESIGN 3D VIRTUAL WORLDS FOR DLP

3D virtual worlds are implemented in VRML and the VRML EAI predicates
refer to objects in the current virtual world which is loaded into a web browser.
Each VRML file contains a scene graph hierarchy which consists of VRML

27

28 DLP AND VIRTUAL WORLDS

nodes. Node statements may contain SFNode or MFNode field statements
that contain other node statements. Objects which can be manipulated by
DLP programs are nodes which have names defined by DEF statements in
VRML. We use DEF to define object names of VRML nodes, and use DLP
VRML predicates to manipulate the values of the fields of the defined nodes.

For example, the following specification defines a yellow cylinder in VRML.

#VRML V2.0 utf8

Transform {
translation 0 0 0
rotation 0 1 0 0
children [Shape {appearance Appearance {

material Material {diffuseColor 1.0 1.0 0.0}}
geometry Cylinder { height 2.0 radius 1.0}}]}

In order to manipulate the values of the field ’translation’ and the field
’rotation’ of the cylinder, we have to define a name for the node ’Transform’
as follows.

#VRML V2.0 utf8

DEF cylinder Transform {
translation 0 0 0
rotation 0 1 0 0
children [Shape {appearance Appearance {

material Material {diffuseColor 1.0 1.0 0.0}}
geometry Cylinder { height 2.0 radius 1.0}}]}

Note that we do not define the name of fields. More generally, we can
define a prototype of a partial hierarchy first, so we can use such a prototype
to create multiple instances of 3D objects. For example, the specification of
a bus whose position and orientation can be controlled by DLP programs,
consists of the following three steps:

1. Design a prototype for a bus;

2. Instantiate the bus prototype;

3. Use DEF to define the name of the bus.

The corresponding VRML description is as follows:

PROTO Bus [
exposedField SFVec3f translation 0 0 0
exposedField SFRotation rotation 0 1 0 0]

DESIGN 3D VIRTUAL WORLDS FOR DLP 29

{
Transform {

translation IS translation
rotation IS rotation
children [

......
]}}

Transform {children [DEF bus1 Bus {
translation -5 0 -1.5
rotation 0 1 0 0}] }

Thus, setSFV ec3f(bus1, translation, 15, 0,−1.5) sets bus1 to a new posi-
tion 〈−15, 0,−1.5〉. Similarly, we can use the same method to manipulate a
viewpoint in a VRML world, namely, we define a viewpoint first and then use
the viewpoint predicates

getV iewpointPosition(V iewpoint,X, Y, Z)

and
setV iewpointPosition(V iewpoint,X, Y, Z)

to set and get the values of a viewpoint that’s defined as:

DEF myviewpoint Viewpoint { position -10 1.75 0
orientation 0 1 0 -1.5708
set_bind TRUE}

Since VRML allows multiple viewpoints in a virtual world, we can only get
the field values of the initial viewpoint unless we use explicitly the correspond-
ing set-predicates. In the example above, calling getV iewpointPosition(myviewpoint,X, Y, Z),
gets the result X = −10.0, Y = 1.75, and Z = 0.0 no matter how the user
changes the viewpoint in the virtual world. In most applications, we want
to get the current position of the user’s viewpoint which may be changed by
using the keyboard or mouse for navigation. This can be done by adding a
proximity sensor to the virtual world:

DEF proxSensor ProximitySensor {center 0 0 0
size 1000 1000 1000
enabled TRUE
isActive TRUE}

Here we specify a proximity sensor with the size (1000× 1000× 1000). Of
course, the parameters should be changed for different applications. Getting
the position and the rotation of the proximity sensor means getting the current
values of the user’s viewpoint. Therefore, we can define the extended get-
viewpoint predicates as:

30 DLP AND VIRTUAL WORLDS

getViewpointPositionEx(_,X,Y,Z) :-
getSFVec3f(proxSensor,position,X,Y,Z).

getViewpointOrientationEx(_,X,Y,Z,R):-
getSFRotation(proxSensor,orientation,X,Y,Z,R).

4.3 LOADING 3D VIRTUAL WORLDS

3D virtual worlds have to be loaded in a web browser for program manipula-
tion, which can be done as follows:

1. Virtual worlds embedded in html files:

<html>
<title> DLP-BCI example 1</title>
<body bgcolor=white>
<embed src="vrml/root.wrl" width="100%" height="80%">
<applet codebase="classes/" archive="dlpsys.jar"
code="dlpbrow.class" width=600 height=300 MAYSCRIPT>
<param name="mayscript" value="true">
<param name="cols" value="60">
<param name="rows" value="10">
<param name="object" value="example1">
</applet>

</body>
</html>

Where root.wrl is the initial VRML file which is stored in the directory
”./vrml”, DLP classes directory is ”./classes”, archive=”dlpsys.jar”
means that the DLP system library is ”dlpsys.jar”, code=”dlpbrow.class”
says that DLP is initialized by the class ’dlpbrow’, which creates a
text area in the browser that serves as a message output window for
DLP. The statements < param name = ”cols” value = ”60” > and
< param name = ”rows” value = ”10” > define the columns and rows
of the text area. If ’dlpbrow.class’ is replaced by another class ’dlp-
cons.class’, this message window does not appear in the browser and
all messages will be forwarded to the browser’s built-in Java console.
MAYSCRIPT states that java scripts are enabled. < param name =
”object” value = ”example1” > states that the DLP program which
manipulates the virtual worlds is ”example1”.

2. Load virtual worlds for manipulation, by using the DLP VRML pred-
icate loadURL(URL). For example, loadURL(”example1.wrl”) loads
the virtual world ”example1.wrl” into the web browser.

VRML PREDICATES 31

4.4 VRML PREDICATES

We call VRML predicates which can be used for getting values get-predicates,
and predicates for setting values set-predicates. The DLP VRML library
(bcilib) offers a complete collection of get/set-predicates for all field types in
VRML. Here are some VRML predicates from the DLP VRML EAI library:

• Single Field Predicates

– getSFBool(+Object,+Field,−Bool)
– setSFBool(+Object,+Field,+Bool)

– getSFF loat(+Object,+Field,−Float)
– setSFF loat(+Object,+Field,+Float)

– getSFInt32(+Object,+Field,−Int32)

– setSFInt32(+Object,+Field,+Int32)

– getSFString(+Object,+Field,−Atom)

– setSFString(+Object,+Field,+Atom)

– getSFT ime(+Object,+Field,−Time)
– setSFT ime(+Object,+Field,+Time)

– getSFColor(+Object,+Field,−R,−G,−B)

– setSFColor(+Object,+Field,+R,+G,+B)

– getSFV ec2f(+Object,+Field,−X,−Y)

– setSFV ec2f(+Object,+Field,+X,+Y)

– getSFV ec3f(+Object,+Field,−X,−Y,−Z)

– setSFV ec3f(+Object,+Field,+X,+Y,+Z)

For instance, setSFV ec3f(OtherV iewpointNode, position,X, Y, Z) sets
the position of another viewpoint node with values X,Y, Z, and
getSFV ec3f(OtherV iewpointNode, position,X, Y, Z) returns the posi-
tion of the other viewpoint node in the variables X,Y , and Z respec-
tively.

• Multi Field Predicates

– getMFFloat(+Object,+Field,−FloatList)
– setMFFloat(+Object,+Field,+FloatList)

– getMFInt32(+Object,+Field,−IntegerList)
– setMFInt32(+Object,+Field,+IntegerList)

– getMFString(+Object,+Field,−AtomList)
– setMFString(+Object,+Field,+AtomList)

32 DLP AND VIRTUAL WORLDS

– getMFColor(+Object,+Field,−RGBList)
– setMFColor(+Object,+Field,+RGBList)

where RGBList = [[R1, G1, B1], [R2, G2, B2],]

– getMFV ec2f(+Object,+Field,−XY List)
– setMFV ec2f(+Object,+Field,+XY List)

– getMFV ec3f(+Object,+Field,−XY ZList)
– setMFV ec3f(+Object,+Field,+XY ZList)
XY List = [[X1, Y 1], [X2, Y 2],]
XY ZList = [[X1, Y 1, Z1], [X2, Y 2, Z2],]

• Agent / Object Coordinates

– getPosition(+Object,−X,−Y,−Z)

– setPosition(+Object,+X,+Y,+Z)

– getRotation(+Object,−X,−Y,−Z,−R)

– setRotation(+Object,+X,+Y,+Z,+R)

– getV iewpointPosition(+V iewpoint,−X,−Y,−Z)

– setV iewpointPosition(+V iewpoint,+X,+Y,+Z)

– getV iewpointOrientation(+V iewpoint,−X,−Y,−Z,−R)

– setV iewpointOrientation(+V iewpoint,+X,+Y,+Z,+R)

In the VRML EAI library, the viewpoint predicates above manipulate a
node ′V iewpoint′, the default name of the viewpoint. However, in order
to manipulate other viewpoints with non-default names, we can use generic
predicates, like

getSFV ec3f(V iewpoint, position,X, Y, Z)

and
setSFV ec3f(V iewpoint, position,X, Y, Z).

Note that DLP programs which want to use VRML predicates to manip-
ulate 3D objects should make the DLP VRML library bcilib available for it.
This can be done by inheritance. Namely, the first line of DLP programs
should be like:

:-object objectname : [bcilib].

4.5 MANIPULATING VRML WORLDS: EXAMPLES

In this section, we discuss how we can use DLP VRML predicates to control
the contents of virtual worlds by a number of examples.

MANIPULATING VRML WORLDS: EXAMPLES 33

Fig. 4.1 Screenshot of title moving

4.5.1 title moving

In this subsection, we discuss several examples to achieve the effect of title
moving, like those at the beginning of TV programs and movies. A screenshot
is shown in Figure 4.5.1.

First we use VRML to design a virtual world in which there is a tunnel,
i.e., a big cylinder with no bottom, and with the texture ’star1.jpg’ as its
background to simulate a star sky. Moreover, we also specify several texts
which are located at the tunnel, and a music file ’mozart38.wav’ to add sound.
The 3D virtual world can be specified as follows in a file ’title0.wrl’.

#VRML V2.0 utf8

Background {skyColor [0.0 0.0 1.0] groundColor [0.0 0.0 1.0]}

DEF myViewpoint Viewpoint { position 0 3 6 orientation 0 1 0 0}

Transform { translation 0 3 0 rotation 1 0 0 1.57
children [Transform {translation 0 0 0
rotation 0 1 0 0
children Shape {appearance Appearance {
texture ImageTexture { url "star1.jpg" repeatS TRUE repeatT TRUE }
textureTransform TextureTransform {scale 30 10}
material Material {diffuseColor 0.0 0.0 1.0

emissiveColor 1.0 1.0 1.0}}
geometry Cylinder { height 2000 radius 2.5 top TRUE bottom FALSE}}
}]}

Transform {translation -2 3 50 scale 0.3 0.3 0.3
children [Shape {appearance Appearance {

34 DLP AND VIRTUAL WORLDS

material Material {diffuseColor 1 1 0
emissiveColor 1 0 0}}}

Text { string "Intelligent Multimedia Technology" }] }

Transform {translation -2 3 30 scale 0.3 0.3 0.3
children [Shape {appearance Appearance {

material Material {diffuseColor 1 1 0
emissiveColor 1 0 0}}}

Text { string "Distributed Logic Programming" }] }

Transform {translation -2 3 10 scale 0.3 0.3 0.3
children [Shape {appearance Appearance {

material Material {diffuseColor 1 1 0
emissiveColor 1 0 0}}}

Text { string "VRML+JAVA+PROLOG" }] }

Transform {translation -2 3 -10 scale 0.3 0.3 0.3
children [Shape {appearance Appearance {

material Material {diffuseColor 1 1 0
emissiveColor 1 0 0}}}

Text { string "Multimedia Authoring" }] }

Transform {translation -2 3 -30 scale 0.3 0.3 0.3
children [Shape {appearance Appearance {

material Material {diffuseColor 1 1 0
emissiveColor 1 0 0}}}

Text { string "Thank You Very Much!" }] }

Sound {maxBack 2000 maxFront 2000
minFront 1000 minBack 1000
intensity 20 source AudioClip { loop TRUE
url ["mozart38.wav"]}}

In order to achieve an animation effect, we design a DLP program so that the
viewpoint can be changed regularly. Thus, we add a defined name ’myView-
point’ to define the viewpoint in the virtual world. The DLP program ’title-
move0.pl’ is shown below:

MANIPULATING VRML WORLDS: EXAMPLES 35

:-object titlemove0: [bcilib].

var count = 3000.
var increment = 0.15.
var url=’./title/title0.wrl’.

main :- text_area(Browser),
set_output(Browser),

loadURL(url),
sleep(3000),
move_title(count).

move_title(0):-!.

move_title(N):- N>0,
N1 is N-1,
getSFVec3f(myViewpoint,position, X,Y,Z),
Znew is Z - increment,
setSFVec3f(myViewpoint, position,X,Y,Znew),
sleep(150),
move_title(N1).

:-end_object titlemove0.

In order to let the format function in DLP programs to send its output to
the web browser, we use the following clauses to set a text area as the output
of the program:

text_area(Browser),
set_output(Browser),

However, note that if we set code=”dlpcons.class” in the html file, the
message window is not enabled in the browser, and the two lines above should
not be used in the program.

In the program, the viewpoint’s position is gradually moving to the negative
Z-direction by decreasing the Z value 0.15 meter each time. This is a simple
example that shows how to manipulate 3D objects to achieve animation in
virtual worlds.

4.5.2 Bus Driving

In this example, we design a bus driving program. Assume we have designed
a bus in a VRML world, whose url is:

./street1.wrl

36 DLP AND VIRTUAL WORLDS

Driving the bus implies setting the position and rotation of the bus according
to the user’s viewpoint. Moreover, the position and rotation of the bus should
be changed whenever the user’s viewpoint changes. Here is the bus driving
program, which first loads the url and moves the bus in front of the user, then
starts the driving procedure.

:-object wasp2 : [bcilib].

var url = ’./street/street5.wrl’.

var timelimit = 300.

main :-
text_area(Browser),
set_output(Browser),
format(’Loading street1 from ~w~n’, [url]),
loadURL(url),
format(’The bus1 is going to jump

in front of you in 5 seconds, ~ n’),
format(’then you can drive the bus

for ~w seconds ~ n’, [timelimit]),
delay(5000),
jump(bus1),
drive(bus1,timelimit).

jump(Object) :-
getSFVec3f(proxSensor,position,X,_Y,Z),
Z1 is Z-5,
setPosition(Object, X, 0.0 ,Z1).

drive(_,0):-!.

drive(Object,N) :- N>0, N1 is N-1,
format(’time left: ~w seconds~n’, [N]),
delay(1000),
getSFVec3f(proxSensor,position,X,_Y,Z),
getSFRotation(proxSensor,orientation,_X2,Y2,_Z2,R2),
setPosition(Object,X, 0.0 ,Z),
R3 is sign(Y2)*R2 + 1.571,
setRotation(Object,0.0,1.0,0.0,R3),
drive(Object,N1).

MANIPULATING VRML WORLDS: EXAMPLES 37

Fig. 4.2 Initial Situation of Bus Driving

:-end_object wasp2.

In the program, the jump rules will move the bus in front of the user, or more
exactly, the viewpoint of the virtual world. The drive rules move the bus, i.e.
the bus position and rotation are regularly updated according to the position
and orientation of the user’s viewpoint. The rotation of the bus is 90 degrees
different from the orientation of the user’s viewpoint. One of the difficulties
in this program is to obtain a correct rotation value for the bus, based on
the user’s current viewpoint orientation. First we consider the simplest case,
namely, the initial situation in which the user looks in the −Z direction and
the bus is positioned in the +X direction, as shown in Figure 4.5.2. It is easy
to see the relation between these two rotations if we have a look at Figure
4.5.2: R3 = 1.571. We want to obtain a general formula to calculate the
new bus rotation based on the viewpoint’s orientation (i.e. rotation), which
is shown in Figure 4.5.2 and Figure 4.5.2. Figure 4.5.2 shows the situation in
which the user turns to the right when navigating. Based on the right-hand
system of rotation calculations in VRML, the value of the user’s viewpoint
orientation is 〈0.0,−1.0, 0.0, R2〉. Thus, the bus rotation has to be set to
R3 = 1.57 − R2. Figure 4.5.2 shows the situation in which the user turns to
the left. The user’s viewpoint orientation is 〈0.0, 1.0, 0.0, R2〉. Therefore, R3
should be R2 + 1.57. The general formula which can be used to compute the
new rotation of the bus based on the user’s viewpoint orientation:

R3 = sign(Y 2) ∗R2 + 1.57.

where Y 2 is the Y-value of the user’s viewpoint orientation.

38 DLP AND VIRTUAL WORLDS

Fig. 4.3 The initial rotation values

Fig. 4.4 User turns to the right

MANIPULATING VRML WORLDS: EXAMPLES 39

Fig. 4.5 User turns to the left

4.5.3 The Vector Library in DLP

In the bus example above, we can see that the calculation of the correct rota-
tion values sometimes becomes a somewhat tricky task. We have to consider
different situations to create a general formula which covers all cases for the
calculation of the correct rotation value. Some knowledge of 3D graphics
mathematics is helpful to solve this kind of problems.

DLP offers a vector library (vectorlib), which is useful for vector operations,
in particular, for rotation calculations. Refer to a 3D graphics textbook for a
general background of 3D mathematics. Several typical vectorlib predicates :

• vector cross product(+vector(X1, Y 1, Z1),+vector(X2, Y 2, Z2),
− vector(X,Y, Z),−R) : the vector 〈X,Y, Z〉, and the angle R are the
cross product and the angle of the vector 〈X1, Y 1, Z1〉 and the vector
〈X2, Y 2, Z2〉, (based on the right-hand rule).

• direction vector(+position(X1, Y 1, Z1),+position(X2, Y 2, Z2),
−vector(X,Y, Z)): 〈X,Y, Z〉 is the vector with starting point 〈X1, Y 1, Z1〉
and end point 〈X2, Y 2, Z2〉.

• vector rotation(vector(X1, Y 1, Z1), rotation(X,Y, Z,R),
vector(X2, Y 2, Z2)): the resulting vector of a vector 〈X1, Y 1, Z1〉 and
a rotation 〈X,Y, Z,R〉 is 〈X2, Y 2, Z2〉.

40 DLP AND VIRTUAL WORLDS

• position rotation(position(X1, Y 1, Z1), rotation(X,Y, Z,R),
position(X2, Y 2, Z2)): the resulting position of a position 〈X1, Y 1, Z1〉
and a rotation 〈X,Y, Z,R〉 is 〈X2, Y 2, Z2〉.

We can use the vectorlib predicates to compute the intended rotations in
the bus example as follows:

:-object wasp2v : [bcilib,vectorlib].

var url = ’./street/street5.wrl’.

var timelimit = 300.

......

drive(_,0):-!.

drive(Object,N) :-
N > 0,
N1 is N-1,
format(’time left: ~w seconds~n’, [N]),
delay(1000),
getSFVec3f(proxSensor,position,X,_Y,Z),
getSFRotation(proxSensor,orientation,X2,Y2,Z2,R2),
setPosition(Object,X, 0.0 ,Z),
vector_rotation(vector(0,0,-1), rotation(X2,Y2,Z2,R2), vector(X3,Y3,Z3)),
look_in_direction(Object,vector(1,0,0),vector(X3,Y3,Z3)),
drive(Object,N1).

look_in_direction(Object, InitVector,DesVector):-
vector_cross_product(InitVector,DesVector,vector(X,Y,Z),R),
setRotation(Object,X,Y,Z,R).

:-end_object wasp2v.

In order to use the vector library, we add the vectorlib to the header of
the program object. We define a new predicate look in direction which
sets the object with an initial direction InitV ector to a destination direc-
tion DesV ector by using the predicate vector cross product in the vector
library. We know that the user’s initial orientation is oriented to the negative
Z direction, namely, 〈0, 0,−1〉 by default. After rotation(X2, Y 2, Z2, R2),
the user looks in the direction vector(X3, Y 3, Z3), which can be calculated
by the predicate vector rotation in the vector library. The initial bus orien-
tation is vector(1, 0, 0). Therefore, during driving, the bus should keep the
same orientation as the user by calling the predicate look in direction. Note

MANIPULATING VRML WORLDS: EXAMPLES 41

that the predicate look in direction defined above can tell correct answers in
most cases, however, not always. Consider the case in which v1 = 〈0, 0, 1〉,
and v2 = 〈0, 0,−1〉. According to the definition of the cross product, v1 × v2
results in the zero vector. However, we cannot use the zero vector as an axis
of rotation. Try to improve the definition of the predicate look in direction
to avoid the problem. We leave it as an exercise.

4.5.4 Ball Kicking

Consider a simple soccer game, in which the user is the only player in the
game. If the user gets close enough to the soccer ball, the ball should move
to a new position according to the position difference between the player and
the ball. In the following program, we set the kickable distance to 2 meter.
Namely, if the distance between the user and the ball is smaller than 2 meter,
then the ball should be moved to a new position. We calculate a new position
of the ball based on the position difference. If the user is at the left side of the
ball, then the ball should move to the right; if the user is at the right of the
ball, then the ball should move to the left. In the program, we set the move
coefficient to 3: if the difference of the x parameter between the user and ball
is Xdif , then the new position of ball of the x parameter should be increased
by 3Xdif . The same for the difference of the y parameter. Figure 4.5.4
shows the relation between the initial position of the ball and the destination
position after kicking.

:-object wasp3 : [bcilib].

var url = ’./soccer/soccer1b.wrl’.

var timelimit = 300.

main :-
text_area(Browser),
set_output(Browser),

format(’Load the game ...~n’),
loadURL(url),

format(’the game will start in 5 seconds,~n’),
format(’note that the total playing time

period is ~w seconds,~n’, [timelimit]),
delay(5000),
format(’the game startup,~n’),
play_ball(me, ball).

42 DLP AND VIRTUAL WORLDS

play_ball(Agent, Ball) :-
-- timelimit,
timelimit > 0, !,
format(’time left: ~w seconds~n’, [timelimit]),
delay(800),
near_ball_then_kick(Agent, Ball),
play_ball(Agent, Ball).

play_ball(_, _).

near_ball_then_kick(Agent, Ball):-
getViewpointPositionEx(Agent,X,_Y,Z),
getPosition(Ball,X1,Y1,Z1),
Xdif is X1-X,
Zdif is Z1-Z,
Dist is sqrt(Xdif*Xdif + Zdif*Zdif),
Dist < 5, !,
X2 is Xdif*3,
Z2 is Zdif*3,
X3 is X2 + X1,
Z3 is Z2 + Z1,
setPosition(Ball,X3,Y1,Z3).

near_ball_then_kick(_, _).

getViewpointPositionEx(_,X,Y,Z) :-
getSFVec3f(proxSensor,position,X,Y,Z).

getViewpointOrientationEx(_,X,Y,Z,R):-
getSFRotation(proxSensor,orientation,X,Y,Z,R).

:-end_object wasp3.

4.5.5 Soccer Kicking with Goalkeeper

We can extend the example of ball kicking above by adding a goalkeeper to it,
in such a way that the goalkeeper always looks at the ball and can check the
position of the ball. If the ball is near the goalkeeper, say, within a distance of
3 meter, then the goalkeeper can move the ball to a new position. We use the
vector library for the calculation of the rotation in the predicate look at ball,
which simplifies the problem:

......

MANIPULATING VRML WORLDS: EXAMPLES 43

Fig. 4.6 kicking ball to a position

play_ball(Agent, Ball) :-
-- timelimit,
timelimit > 0, !,
format(’time left: ~w seconds~n’, [timelimit]),
delay(800),
look_at_ball(goalKeeper1,Ball),
near_ball_then_kick(Agent, Ball),
play_ball(Agent, Ball).

......

near_ball_then_kick(Agent, Ball):-
......
setPosition(Ball,X3,Y1,Z3),
checkBallPosition(Ball,X3,Y1,Z3).

checkBallPosition(Ball, X, Y, Z):-
getPosition(goalKeeper1,X1,_Y1,Z1),
Xdif is X-X1,
Zdif is Z-Z1,
Dist is sqrt(Xdif*Xdif + Zdif*Zdif),
Dist < 3, !,
X2 is X - 5,

44 DLP AND VIRTUAL WORLDS

setPosition(Ball,X2,Y,Z).

checkBallPosition(_,_,_,_).

look_at_ball(Player,Ball):-
getPosition(Player,X,_Y,Z),
getPosition(Ball, X1,_Y1,Z1),
direction_vector(position(X,0,Z), position(X1,0,Z1), vector(X2,Y2,Z2)),
look_in_direction(Player,vector(0,0,1),vector(X2,Y2,Z2)).

In the definiton of the predicate look at ball, we first obtain the positions of
the player and the ball. We are not interested in the Y-parameters for the
calculation of the rotations, because the player should not look down to the
ball by rotating the whole body. This should be achieved by rotating the
player’s head. Based on the two positions, we can calculate the destination
orientation of the player which can look at the ball by calling the predicate
direction vector in the vector library. We know that the initial orientation of
an avatar is in the positive Z direction by default. Therefore, looking at the
ball can be realized by calling the predicate look in direction.

Exercises

4.1 Variants of the title-moving.
4.1.1. Design a DLP program to implement a rolling text, namely, the

text moves in the positive Y-direction.
4.1.2. Design a DLP program to implement moving titles in which the

texts and the colors of the titles are changed regularly, using the following
facts:

title_text(1, ’Intelligent Multimedia Technology’, red):-!.
title_text(2, ’Moving Title Example’, yellow):-!.
title_text(3, ’Changing Texts and Colors’, green):-!.
......

4.2 Improve the example of ball kicking so that the soccer ball continuously
moves to a new position. It should not simply jump to the new position.

4.3 Design a DLP program to control the bus moving so that it can move
along a route which is defined by a set of facts.

4.4 Improve the example of bus driving so that the user can start and stop
the bus engine. Namely, the bus moves only after the engine starts, and the
bus does not move if the engine stops.

4.5 Change the definition of the predicate look in direction to avoid the
zero vector as an axis of rotation.

Part II

3D Web Agents

5
Agents

The term ”agents” are used by different people for different meanings. There
is no real agreement on the definition of agent is. However, in general, agents
are used to mean entities which can be programmed to conduct complex be-
havior. These complex behaviors can be understood as a sequence of actions
which can be taken by agents. Therefore, an agent is anything that can be
viewed as perceiving its environment through sensors and acting upon that
environment through effectors, according to [Russell and Norvig, 1995]. For
software agents, the environment is the platform of software systems. The sen-
sors are something which can get the information from the platform, whereas
the effectors are something which can change the status of its environment.
For web agents, i.e., software agents which are designed for web applications,
the environment is World Wide Web. The sensors are something that can be
used to get information from the Web, whereas the effectors are something
that can be used to set information on the Web.

In the following, we will discuss the types of agents: simple reflex agents,
decision-making agents, BDI agents, and extended BDI agents.

5.1 SIMPLE REFLEX AGENTS

[Russell and Norvig, 1995] offers a nice description on simple reflex agents.
Simple reflex agents consist of only two components: sensors and effectors.
The sensors perceive what the environment is like now, and then the effectors

47

48 AGENTS

Environment

Agent

Effectors

?

Sensors

6

�

Fig. 5.1 Simple Reflex Agents

would take actions which correspond the agent’s perception. The architecture
of simple reflex agent is shown in figure 5.1.

Simple reflex agents have no components to reason about the perception
and have no capability to know what the world is like under complicated
circumstances. Moreover, simple reflex agents have no components to reason
about actions and make complex decisions to take actions. They just simply
perform stimulus-response behaviors.

5.2 DECISION-MAKING AGENTS

Different from simple reflex agents, decision-making agents have a component
for decision making, which is shown in Figure 5.2. According to the traditional
decision theories [Freach, 1988], rational agents would follow the following
procedure to make decisions for their actions. The rational agents would
consider a set of action alternatives (which are available with respect to the
present situation). Each action alternative corresponds to an outcome state.
The agents have preferences among these outcomes. The intended action
alternative is the one which correspnds with the most preferred outcome.

Therefore, decision-making agents can be considered to have the following
cognitive loop: sensing-thinking-acting. By sensing, the agents would know

BDI AGENTS 49

Environment

Agent

Effectors

?

Sensors

6

Decision-Making Component

6
?

Fig. 5.2 Decision-making Agents

what the world is like now by using the sensors, thus the agents would know
which action alternatives are available with respect to the current situation.
By thinking, the agents would evaluate all of the outcomes which correspond
considered alternatives, and then select the most preferred one. By acting,
the agents would take the intended action by using their effectors.

5.3 BDI AGENTS

Decision-making agents still behave like complex stimulus-response agents. It
is hard to say that they are really autonomous, for they lack a motivated
component: goals, or desires. BDI Agents are based on cognitive models with
the following mental attitudes: Beliefs, Desires, and Intentions. The architec-
ture of a BDI agent is shown in Figure 5.3, which is motivated from both the
traditional decision theories and the symbolic reasoning of cognitive science.
[Rao and Georgeff, 1991, Rao and Georgeff, 1991] The BDI architecture ac-
tually is a general decision making model, for it is with symbolic reasoning.
Therefore, BDI agents can be considered as an extension of decision making
agents.

The BDI agents have the following cognitive procedure: the perceived infor-
mation from the sensors are (partially) transferred into agents’ beliefs. Thus,

50 AGENTS

Environment

Agent

Effectors

?

Sensors

6

BDI Component

Intentions Beliefs

Desires

Effectors

6
?

Fig. 5.3 Belief-Desire-Intention Agents

the agents are able to reason about the worlds, and know which action al-
ternatives are available with respect to the current situations. Moreover,
agents’ beliefs have the information about the relations between the action
alternatives and their outcomes. Furthermore, the agents’ desires contain the
information on the agents’ preferences on these outcomes. The agents are
able to deliberate about those actions, and decide which actions would be
intended. The intended actions consist of the agents’ intentions. Then, the
agents are able to use their effectors to take the intended actions.

5.4 EXTENDED BDI AGENTS

In [Bell, 1995], Bell proposes an extened BDI architecture of rational agents,
which is shown in the figure 5.4. According to Bell’s architecture, a reasoning
agent is situated in the real world and consists of two connected modules; a
high-level (symbolic) reasoning system (or “mind”) and a low-level (procedu-
ral) action system (or “body”). The symbolic reasoning system is composed
of a module for theoretical reasoning and a module for practical reasoning.

The theoretical reasoning module represents the agent’s beliefs, knowledge
of, and reasoning about the world. The reasoning done by this module in-
cludes standard deductive reasoning (traditionally called “theorem proving”)

EXTENDED BDI AGENTS 51

Effectors

?

Controllers, Know how, Reactivity

?6 ?6

Sensors

6

Practical

Reasoning

?

Theoretical

Reasoning

6

-�

�
�

�
�

�
�

�
�Desires, Goals

Plans, Intentions,

Obligations

6 6

Beliefs,

Knowledge that

Real World

Rational Agent

Symbolic Reasoning System (“Mind”)

Actions Perceptions

Procedural Action System (“Body”)

Fig. 5.4 Extended-BDI Agents

as well as inductive, abductive, and probabilistic reasoning. It also performs
database-type operations (lookup, update, addition, revision, deletion). The
practical reasoning module represents the agent’s reasoning about what it
should do; and is discussed further in [Bell, 1995]. The planning system gen-
erates plans to achieve the agent’s goals, schedules the resulting actions for
execution, passes them to the procedural action system, and monitors their
execution by it. The procedural action system (or “body”) may consist of
controllers, motion systems and perception systems. This component repre-
sents the agent’s physical capacities and skills (“know how”). The controllers
control and monitor the sensors and the effectors and mediate between them
and the reasoning systems. They receive high-level action commands from
the practical reasoning system, expand these to the appropriate level of de-
tail, pass them to the effectors systems for execution, and perform low-level
monitoring on them. They also pass perceptions (symbolic descriptions of the
environment based on feedback from the sensors) to the theoretical reasoning
system. The “mind” and “body” function as co-routines each of which is
more or less active depending on the environment, the processing (reasoning)
resources available, and the tasks at hand. This allows the agent to form
long-term strategic plans to execute them and to react to events.

52 AGENTS

5.5 MAIN FEATURES OF INTELLIGENT AGENTS

As mentioned above, there is no real agreement on the definition of agents.
However, in this book, we adopt the agent characterization given in [Jennings et al., 1998].
Namely, agents have the following main features:

• autonomy: the system should be able to act without the direct interven-
tion of others and should have control over its own actions and internal
state.

• responsiveness: Agents should perceive their environment and respond
in a timely fashion to changes that occur in it.

• pro-activity: Agents should not simply act in response to their envi-
ronment. They should be able to exhibit opportunistic, goal-directed
behavior and make the initiative where appropriate.

• socialness: Agents should be able to interact, when they deem appropri-
ate, with other artificial agents and humans in order to complete their
own problem solving and to help others with their activities.

These characteristics, obviously, are strongly metaphorical, and are meant
to stress the need for flexible, adaptive approaches to provide assistance to
the user.

6
Web Agents

6.1 INTRODUCTION

Currently there are many research and development efforts going on with re-
spect to agent technology on the Web. Many types of web agents have been
proposed in recent years, which range from domain-dependent agents, like e-
commerce agents[Liu and Ye, 2001], information gathering agents[Knoblock, 1997,
Klusch, 1999, Klusch et al, 2003], and intelligent virtual agents[de Antonio, et al., 2001],
to function-dependent agents, like negotiation agents[Beer, 1999], co-operating
agents[Roth, 1999], problem solving agents. The natural questions related to
that phenomenon are: what are the relations among so many different types
of web agents? Are they redundant or overlapping? Is there a taxonomy to
classify them?

In [Huang et al., 2000], a taxonomy of web agents has been proposed, which
encompasses agents that provide a text-based interface to, for example, infor-
mation retrieval services, as well as avatar-embodied guides that help visitors
to navigate in virtual environments. The taxonomy must be regarded as an
instrument to delineate targets for research and the realization of prototype
applications that demonstrate the usefulness of agent-based intelligence on the
Web. In addition, the agent-taxonomy can be deployed to establish the impli-
cations that particular target applications have on the software architecture
and computational resources.

53

54 WEB AGENTS

6.2 INTELLIGENT SERVICES ON THE WEB – AN OVERVIEW

Due to the exponential growth of the Web and the information it provides,
finding relevant information has become more and more difficult. In partic-
ular, browsing is in many cases no longer appropriate for the user search-
ing for specific information. It is our view that, in the near future, access
to the Web will increasingly be mediated by intelligent helper applications,
software agents, that assist the user in finding relevant and interesting infor-
mation. As testified by a large body of literature, including [Caglayan, 1997,
Cheong, 1996, Negroponte, 1995, Maes, 1997], this view is shared by many
authors and developers.

During the first years of the Web it was feasible to create a fairly complete
subject index of the whole World Wide Web. Yahoo was probably the most
prominent one. Besides such subject indexes there were search engines that
provided full text search on virtually the whole Web. Neither approach has
proved sufficient. In order to better serve users, Web “portals” have emerged,
combining searching and browsing, and most indexes and search engines now
offer this combined access to information. Moreover, several sites are begin-
ning to offer personalized portals that can be customized by the user and that
may even adapt to the user’s interests automatically. It is this personalization
that is the step that moves portals from being general information services
towards personal agents that point users towards relevant information and
that hide stuff that is outside the user’s field of interest.

A similar evolution exists in other areas like e-commerce. Personalized
agents offer buying suggestions. Some can even automatically buy products
at the best price or other conditions. Adaptive learning systems help users in
studying a subject of a course by showing which pages to read in which order
in order to reach that objective. More about adaptive systems can be found
in [Brusilovsky, 1996].

User assistance may involve intelligent desktop support (such as the in-
famous paper clip), information filtering and storage (to augment search en-
gines), the delegation of tasks (such as responding to email, or setting a shared
agenda), and the maintenance of user preferences and profiles (for example to
make a proper selection of musical material).

Clearly all these applications benefit from a metaphor that stresses some
kind of situated intelligence, that is software processes that can interact with
other such processes (and humans) and that may be adapted to the individual
user’s needs and preferences.

Many of the Internet/Web applications involving agents, make use of the
agent-metaphor only. In our opinion, such applications could benefit from
employing actual agent technology, instead of merely using the metaphor.
In Section 6.5 we will briefly outline what needs to be done to make such
technology available to internet-based services. Here we will merely indicate
the possible scope of applications which can deploy agent technology on the
Web.

AGENTS IN VIRTUAL ENVIRONMENTS 55

In [Jennings et al., 1998] an overview is given of agent research and ap-
plications developed with agent technology. When we restrict ourselves to
Web-related agent applications, we encounter information management, e-
commerce and entertainment as the most dominant application areas.

We first distinguish between a variety of tasks in this application domain
where agents could be deployed:

• information retrieval – to collect and filter information

• information presentation – to present the information in an understand-
able way

• intelligent navigation – to enable the selection of relevant information

In order to realize such functionality in a Web-based context, a framework
of agent technology is needed. Apart from the programming aspects, such a
framework must allow for a declarative description of agent-behavior based on
user preferences, including the cooperative behavior of software agents, that
is how they interact with other agents.

In Section 6.5 we will indicate the research issues involved in developing
such a framework. In particular, we will concentrate on the realization of such
agents in the context of virtual environments, which (as we will argue in Sec-
tion 6.4) imposes additional constraints and leads to additional requirements
such a framework must satisfy.

6.3 AGENTS IN VIRTUAL ENVIRONMENTS

Virtual environments, in particular 3D virtual worlds, are becoming a realistic
architecture for providing services on the Web. 3D worlds offer more possi-
bilities for presenting large information spaces in an attractive way than 2D
presentations. As a consequence, agent-mediated services need an adequate
representation in such environments. In this section, we will establish what
possible function agents have in virtual environments, by briefly looking at the
history of agent manifestations in such an environment, and by exploring how
agent technology can be deployed in virtual multi-user communities for help-
ing visitors in information retrieval tasks and navigation. In this section we
will explore how agent technology may play a role in general-purpose virtual
environments.

6.3.1 Agents in 3D Community Server

In many (3D) virtual environments, when entering the world, or a particular
space, the visitor is welcomed by some ’officer’ or guide. In most cases the wel-
come is reflected in the chat panel, announcing the new visitor to the other vis-
itors. Examples of such guides can be found in AlphaWorld [AlphaWorld, 1999]

56 WEB AGENTS

and environments created with Blaxxun Community Server technology [Blaxxun, 2000].
The Blaxxun Community Server is a platform for creating virtual environ-
ments. Apart from the server, which maintains information about the state
of the community and the whereabouts of its visitors, virtual worlds are de-
fined using VRML-defined 3D worlds.

When entering the community, members or visitors may choose for 3D chat
mode, which means that they find themselves in a virtual environment in 3D
space, surrounded by objects, and possibly by other visitors and the agent or
guide that belongs to that particular space.

The Blaxxun Community Server does provide support for agents. Agents
in the Blaxxun Community Server may be programmed to have particular
attributes and to react to events in a particular way. As a remark, originally
the Blaxxun agents were called bots. In our opinion the functionality of
Blaxxun agents indeed does not surpass that of simple bots and we consider
the term agent to be less appropriate. Nevertheless, it is interesting to look
in more detail how the behavior of Blaxxun agents can be defined, and to
explore how we may enhance the behavior of these agents in such a way that
we can speak of ’intelligent agents’.

The Blaxxun agent can be programmed using an event-based scripting
language. An agent or bot script consists of four sections:

1. robot definition – to define the robots nickname and choose a graphical
representation

2. reaction definition – to define patterns of events and actions

3. session definition – to indicate to which scenes and which server the bot
belongs

4. start session statements – for initializing specific sessions

The robot definition section allows for a rich repertoire of attributes, including
roles, experience, interests and even a business card.

Reactions are defined by indicating an event or event pattern and a cor-
responding action. The Blaxxun platform offers a rich set of built-in events,
which includes both events coming from the chat channel as well as 3D events
which occur in the associated 3D world. Actions include simple utterings,
which appear in the chat channel as text, as well as movements of the avatar,
which may beam to any desired spot in the world. Also timed actions are
possible, which occur in response to a timer event, so that the bot or guide
can periodically undertake some action.

Despite the large number of built-in events and the rich repertoire of built-
in actions, the Blaxxun agent platform in itself is rather limited in functional-
ity, simply because event-action patterns are not powerful enough to program
complex behavior that requires maintaining information over a period of time.

Fortunately, there is a way out. That is, the Blaxxun agent platform also
offers a C++ API which allows the developer to augment the functionality of

AGENTS IN VIRTUAL ENVIRONMENTS 57

a simple bot. This puts the burden on the shoulder of the developers, who
are faced with the task of creating their own platform for intelligent agents in
virtual environments. Still, it offers a presentation and interaction basis that
may make the development of a complete “agent support system” somewhat
easier.

6.3.2 Information retrieval in virtual environments

When the question arises what possible use agents may have in virtual envi-
ronments, we may think of information retrieval along the lines as indicated
in section 6.2 as one possible and interesting example.

Basically, the information retrieval problem in virtual environments con-
sists of detecting containment relations between worlds, and gathering infor-
mation about the objects in that world, which includes geometric shapes as
well as text, image and sound objects.

We may approach this problem in three radically different ways:

• using black-box feature detectors

• meta information

• incremental knowledge gathering

Black-box feature detectors Feature detectors are a common means in multi-
media database systems to obtain information about particular media items,
such as images and audio in order to establish a measure of similarity between
such media objects.

Despite problems with respect to selecting a relevant set of features and
assigning proper weights in determining the similarity of media objects, fea-
ture detectors are effective when dealing with binary encoded material such
as images and audio. When considering the material virtual environments are
made of, however, we must note that much of the contents of virtual worlds
is programmed content, that is the result of algorithmically generated geome-
tries. Apart from that, it is hard to see how to obtain information about a
world from a purely geometric description. In our opinion, feature detectors
may be useful to inspect parts of the content of virtual worlds, in particular
image or movie textures and sound objects. This information may then be
used to augment the information obtained about a virtual world using any of
the alternative approaches.

Meta information Meta information is an effective way to allow searching for
media content. Instead of describing content by intrinsic features of the media
object, meta information is used to indicate properties of media objects that
can often not be extracted from the media object itself. See [Watson, 1996].
As an example consider an audio recording of an aria. Information concerning
the composer and singer is most conveniently stored as meta data, although

58 WEB AGENTS

it would in principle not be impossible to extract such information algorith-
mically.

Meta information in virtual environments would mean additional descrip-
tive information that describe the content or context of a particular world.
In VRML/X3D, we can use the WorldInfo node to provide such information.
Also it is conceivable to generate such information dynamically, based on user
ratings.

Incremental knowledge gathering As noted before, a problem with virtual en-
vironments is that they are often generated in an algorithmic fashion, using
information stored in a database. Moreover, the geometric information con-
tained in a VRML/X3D file is not what makes the world interesting to a user.
Rather, the interactive facilities provided by such worlds, and the navigation
behavior of (other) users are what we are interested in. So, instead of a static
analysis of virtual worlds, we believe that a more incremental approach is
desirable, an approach where the navigational behavior of the individual user
contributes to what we may call the collective awareness of a world. In other
words, when we record the navigational behavior of a user and store the fea-
tures of the world that are relevant to this user in a database, other users
may profit from this information and query the database to be guided to the
locations of interest.

6.3.3 Adaptive environments – presenting information

Given support for information retrieval in virtual environments, the question
arises how to present this information to the user. One possibility, although
not very appealing, would be a list of alternatives. For example, when the
user asks for locations where there is information about, let’s say patterns in
object-oriented programming, a list of links to such information sources may
be presented, as is common for most search engines. Then selecting a link
might result in being ported to a world containing such information or any
other location on the Web.

Alternatively, and more appealing, one may generate a virtual world that
contains the answers to the query located in 3D. A clear advantage of gener-
ating a world in response to a query is that the topological properties of the
world can be employed to sort the information according to some criterion of
relevance.

Clearly, we have to distinguish between queries that concern information
that is present within a world, queries that concern related worlds (that is
worlds that are accessible from the world from which the query is posed),
and queries that concern material that lies outside of the world (such as the
request to locate paintings of the 17th century painted in a particular style).
In the first two cases a direct transfer to a location of interest might take place,
provided the location is available. In the latter case, we can only resort to
generating a world based on the information that is found. Note that taking

AGENTS IN VIRTUAL ENVIRONMENTS 59

this approach to the extreme would mean to generate worlds based on the
interest of visitors from the start.

Whatever approach is chosen for presenting the results from a query, the
amount of information presented to the user is usually overwhelming. So, in
addition to a world which contains that information, it is desirable to have a
guide or agent that shows the user around, that is gives information about the
results, indicates its relevance and transports the user (in a quite literal sense)
to the area of interest. Such an agent could be augmented with information
concerning the user’s interests, (knowledge) background and preferences.

6.3.4 Discussion

Despite the availability of virtual worlds, we must remark that the notion
of virtual worlds itself is somewhat elusive. Restricting ourselves to (3D)
multi-user virtual communities we may distinguish between (e)commercial
environments, educational environments or environments offering a mixture
of commerce and entertainment.

With regard to these environments we observe that

• many environments are rather static,

• most worlds are far less immersive than desirable,

• interaction facilities are generally poor, and

• navigation is often a problematic issue.

Coming back to the question what use agents might have in virtual envi-
ronments, we may take this list to develop a program of research to tackle the
issues involved.

Dynamically generated worlds Virtual worlds may be generated based on a
user’s profile, to contain the information that corresponds with that profile in
accord with the style preferences indicated by the user.

Immersiveness The lack of immersiveness is to a large part due to for exam-
ple chat windows and property menus, in other words 2D gadgets that are
needed for customization and interaction. Although agent technology has no
contribution to make in this respect, it is conceivable that the user’s avatar
is made more intelligent and is augmented with features that makes the ad-
ditional gadgets obsolete, for example text balloons for displaying chat and
instruments for customization.

Interaction Experience shows that navigation and interaction are difficult (for
the average user), simply because 3D interfaces are more complex than their
2D counterparts. To aid the user in learning how to use a world effectively,

60 WEB AGENTS

we can think of helper agents that show the user how interaction and the
manipulation of objects takes place.

Navigation Due to the inherent visual complexity of (3D) virtual environ-
ments, navigation remains a problematic issue. Fixed viewpoint animations
do exist, but are not sufficient to direct the user to locations of interest.
Instead, we should consider navigation by query, possibly augmented with
intelligent guides that accompany the visitor on touring the world.

6.4 A TAXONOMY OF WEB AGENTS

Different aspects of applications and configurations suggest different types
of web agents. In this section, a taxonomy of web agents is discussed. With
respect to the choice of dimensions, we must remark that even though our tax-
onomy has a bias towards the deployment of agents in virtual environments,
the taxonomy is valid with respect to Web-based services in general.

We consider the following three dimensions of web agent types.

1. 2D versus 3D
A 2D web agent is one which is aware of HTTP, file, and FTP protocols,
whereas a 3D web agent is one which is aware of not only these protocols,
but also virtual reality protocols. Typical 2D web agents provide a text-
based interface, for example, information retrieval services. Typical 3D
web agents are avatar-embodied guides that help visitors to navigate in
virtual environments.

2. Client versus server
As the names imply, a client web agent is on the client side, whereas
a server web agent is on the server side. A typical client web agent
can serve as a personal information assistant. A typical server web
agent can serve as the front-end of web servers to offer information
more intelligently.

3. Singularity versus multiplicity
As the names imply, a single web agent would not consider the interface
with other web agents, whereas multiple web agents would interact with
each other.

There are different types of web agents based on these three dimensions,
which consists of a complexity lattice of web agent types, which is shown in
Figure 6.1. 3D-server-multiple-agent is on the top of the complexity hier-
archy, whereas a 2D-client-single-agent is at the bottom. These dimensions
are not exhaustive. In particular, in this book, we do not consider the di-

A TAXONOMY OF WEB AGENTS 61

3D-server-multiple-agent

3D-server-single-agent 3D-client-multiple-agent 2D-server-multiple-agent

3D-client-single-agent 2D-server-single-agent 2D-client-multiple-agent

2D-client-single-agent

PPPPPPPPPP

PPPPPPPPPP

PPPPPPPPPP

PPPPPPPPPP

����������

����������

����������

����������

Fig. 6.1 Lattice of Web Agents

mension ”stationariness versus mobility”1. However, the combinations based
on the dimension ”stationariness versus mobility” can be generalized accord-
ingly, based on the current taxonomy. All the dimensions we consider for the
taxonomy are directly web-dependent. The dimension ”2D-3D” specifies the
internet protocols agents have to be aware of, the dimension ”client-server”
is concerned with internet service modes agents have to offer, and the dimen-
sion ”singularity-multiplicity” involves agent communication languages. We
do not consider the functional dimension which are not directly relevant to the
Web, like cooperating agents, problem solving agents, and negotiation agents.
We do not discuss the dimensions which are domain dependent, like expertise
seeking agents, and e-commerce agents. However, our taxonomy does cover
most types of those agents. They are either 2D agent or 3D agent, either
client agent or server agent, either single agent or multiple agent, or some of
their combinations. Different types of web agents suggest different types of
interaction modes with users and web servers. We discuss them in detail in
the following section.

1A stationary agent is one that executes only upon the agent platform where it begins
executing and is reliant upon it, whereas a mobile agent is one that is not reliant upon
the agent platform where it began executing and can subsequently transport itself between
agent platforms[FIPA, 1999].

62 WEB AGENTS

Virtual Reality Server

Web Agent
Web Agent

Web Agent

Web Browser

User

Web Browser

User

Web Browser

User

Fig. 6.2 Configuration of 3D-server-multiple-agent

6.4.1 3D-Server-Multiple-Agent

The configuration of 3D-server-multiple-agent on the Web is shown in Figure
6.4.1. The agents are part of virtual reality servers, more exactly, virtual
community servers, for they interact with multiple users and agents. Users
communicate with virtual reality servers via web browsers. The agents in-
teract with each other in the virtual reality server, and communicate with
web users. As agents in virtual reality, they are normally embodied by their
avatars.

As discussed in Section 6.3, these kinds of web agents have a great deal
of application potentials, which range from avatar-embodied guides that help
visitors in information retrieval tasks and navigation in virtual environments,
e-commerce shopping assistant agents in 3D-virtual shops, to intelligent agents
in multi-player computer games.

6.4.2 3D-Server-Single-Agent

3D-server-single-agents and their relationship with servers and users are shown
in Figure 6.3, where agents serve as the front-end of the servers. Users do not
directly communicate with servers, but with the intelligent web agent which

A TAXONOMY OF WEB AGENTS 63

Virtual Reality Server

Web Agent

Web Browser

User

Web Browser

HH
HHH

HHH
HH

User

Web Browser

��
���

���
��

User

Fig. 6.3 Configuration of 3D-server-single-agent

is located on the server side. In other words, the agent may be regarded as a
portal through which the server is accessed.

That kind of web agents can intelligently offer or create personalized virtual
environments for users, based on users’ queries or requests.

6.4.3 3D-Client-Multiple-Agent

The relation among 3D-client-multiple-agent, virtual reality server, and web
users is shown in Figure 6.4. The agents are located at the client side, normally
serve as users’ personal information assistants. Virtual reality servers may
have their own web agents. Web users communicate with servers or other
users (or agents) either via web browsers or directly via web agents. Other
users may also have their own web agents, which are omitted in the figure for
reasons of simplicity. This type of web agent is particularly useful in the 3D
chat arena, in which the agents can serve as intelligent personal assistant to
help users in information gathering, and interface with other intelligent web
agents.

64 WEB AGENTS

Virtual Reality Server

Web Browser

User

Web Agent
��

���

Web Agent
������������

Web Browser

Other User

Fig. 6.4 Configuration of 3D-client-multiple-agent

6.4.4 2D-Server-Multiple-Agent

The configuration of 2D-server-multiple-agents is shown in Figure 6.5. Sim-
ilar to its 3D counterparts, these kinds of web agents are a component of
web servers. They can offer users a text-based or image-based interface for
navigation. One useful application is to serve as an intelligent e-commerce
sales-bot to offer more user-friendly and more intelligent services. This type
of web agents can display intelligent behavior in text-based internet games,
like MUD games [MUD, 2000].

6.4.5 3D-Client-Single-Agent

3D-client-single-agent is a simplified 3D-client-multiple-agent. Its relation
with other web components is like the situation shown in Figure 6.4, ex-
cept that there is only one agent available. Similar to their multiple-agent
counterparts, this type of web agent normally serve as a personal information
assistant in virtual environments.

A TAXONOMY OF WEB AGENTS 65

Web Server

Web Agent
Web Agent

Web Agent

Web Browser

User

Web Browser

User

Web Browser

User

Fig. 6.5 Configuration of 2D-server-multiple-agent

Virtual Reality Server

Web Browser

User

Web Agent
�

���
�

Web Browser

Other User

Fig. 6.6 Configuration of 3D-client-single-agent

66 WEB AGENTS

Web Server

Web Agent

Web Browser

User

Web Browser

HH
HHH

HHH
HH

User

Web Browser

��
���

���
��

User

Fig. 6.7 Configuration of 2D-server-single-agent

6.4.6 2D-Server-Single-Agent

2D-server-single-agent, which is a restriction of the 3D-server-single agent,
could alternatively be called intelligent web server. These kinds of agents
normally reside at the front end of an http server to offer users more person-
alized messages. They can serve more efficiently and more intelligently if they
are supported by powerful inference engines.

6.4.7 2D-Client-Multiple-Agent

The configuration of 2D-client-multiple-agent is analogous to the 3D-client-
multiple-agent which is shown in Figure 6.4, apart from the more powerful
user interface and display properties of the latter. One useful application
of them is to act as an internet chat agent. They help users to record and
analysis chat messages, to gather information and interact with other users
or agents when requested.

6.4.8 2D-Client-Single-Agent

2D-client-single-agents may simply be called personal (text-based)-information
assistants. Its relation with servers and users is analogous to the situation

RESEARCH ISSUES 67

Web Server

Web Browser

User

Web Agent
��

���

Web Agent
������������

Web Browser

Other User

Fig. 6.8 Configuration of 2D-client-multiple-agent

shown in Figure 6.4, except that there is only one agent, which only has a 2D
manifestation. Although they are among the simplest form of web agents, as
they lack the facilities to interact with other web agents, they can still fulfill
many interesting and useful tasks, like gathering information on request.

6.5 RESEARCH ISSUES

With the taxonomy as outlined in the previous section, we are able to indicate
the research issues involved in developing an intelligent web agent (IWA).

The primary requirements IWA must fulfill may be summarized as follows:

• autonomous and on-demand search capabilities

• (user- and system) modifiable user preferences, and

• (multimedia) presentation facilities

Evidently, with regard to our taxonomy, we have a choice of where to put the
functionality, i.e. either on the client-side or server-side, whether we support a
2D (text) interface or an embodiment in 3D, and whether we realize IWA as a
single agent or as a multi-agent system. Each of these choices has ramifications

68 WEB AGENTS

Web Server

Web Browser

User

Web Agent
��

���

Web Browser

Other User

Fig. 6.9 Configuration of 2D-client-single-agent

with respect to the effort of developing the application as well as the resources
needed for deploying it.

Nevertheless, irrespective of a particular choice, the following aspects play
a role in developing Web-aware agents, or for that matter, a framework for
developing such agents:

• generic agent software components

• user interface components for managing agents

• communication primitives for agent communication

Where we position the application in our lattice of possible agent applications
will, however, affect the complexity of the components mentioned above. For
example, developing 3D-client-multiple agents will require advanced interface
components, as well as powerful communication primitives.

To deal with the complexities involved in developing a range of agent ap-
plications, the language DLP is designed to aim at providing support on the
level of the software architecture. Architectural support for agent applications
must, in our view, include

• an agent-based programming language

• a high-level API for Web-aware applications

RESEARCH ISSUES 69

type 3D platform

lexicon search 2D-*-server agent

information gathering 2D-*-server agent/server

information presentation 3D-*-* client/server

information visualisation 3D-*-client client/server

navigation 3D-single-server agent/server

brokering *-*-* agent

Table 6.1 Demonstrators of agent technology

• an object-based framework for distributed agent applications

• tools for agent-based information retrieval and management

Actually, in order to offer more than the agent metaphor as a guideline for
developing applications, DLP is designed to deploy that kind of the agent-
oriented programming languages supporting the primitives needed for express-
ing both the reasoning and the domain or context in which this reasoning takes
place.

Demonstrators for agents in virtual environments Developing agent-technology
for virtual environments is a challenging task, but probably an endeavor that
is doomed to fail when one does not focus on target applications or demon-
strators that deliver some useful service that can be tested in practice. To
conclude our discussion of research issues, we will briefly present a list of
possible target applications that may serve as the agenda for further research.

Figure 6.1 presents a number of possible applications of agent-technology
in virtual environments, with an indication of the agent types involved. An
asterisk (*) is used as a wildcard to indicate where each of the alternatives
is possible. As an example, for information visualisation, we will very likely
need an agent that operates at the client-side, even though it uses other agents
that operate at the server-side. As another example, to define a brokering
service that allows visitors to come in contact with another visitor or service,
any choice in the agent lattice given in Section 6.4 is conceivable. However,
when providing navigation services, the range of alternatives is limited to
one, namely 3D-single-server agents, although also in this case a multi-agent
solution would be conceivable as well.

To realize such a target applications, significant endeavor is required to
model the services that are provided and for embedding these services in an
intelligent multimedia platform in a more or less seamless way. As indicated in
Section 6.3.1, we strive for the realization of immersive virtual environments,

70 WEB AGENTS

which means that the structure and presentation of a virtual world must
not be disrupted because of the availability of some service, no matter how
useful it may be. To find a seamless integration between intelligent (agent-
based) services and 3D virtual worlds may, in other words, be taken as the
presupposition of our research, if not a research goal in itself.

6.6 CONCLUSIONS

In this chapter we have discussed a taxonomy of Web agents. The taxonomy
was geared towards the deployment of agents in virtual environments. Par-
ticularly, the agent-lattice resulting from the taxonomy implies an ordering
on conceivable agents along the dimensions 2D or 3D presentation, single or
multi-agent support, and client or server-side residence. This taxonomy has
been applied to indicate research issues and the ramifications target appli-
cations have with respect to a platform for realizing intelligent services in a
virtual environment.

7
3D Web Agents in DLP

7.1 IMPLEMENTATION OF 3D WEB AGENTS

In this chapter, we show how DLP can be used to implement 3D web agents.
We discuss the problem by showing two typical examples of multiple 3D web
agents: a soccer game and the simulation of a dog world. Programming 3D
web agents usually involves the following main issues:

• Agent model: How DLP can be used to implement 3D web agents for
different agent architectures, like simple reflex agents, decision making
agents, BDI agents, etc. Simple reflex agents are simple in the sense that
they are not powerful enough for complex tasks, like soccer game agents.
The implementation of extended BDI agents involves a lot of technical
details how the mental attitude components should be manipulated. In
this chapter, we will start with an example based on an decision making
agent model, and then discuss how the agents based on the BDI model
can be implemented in DLP.

• Multiple Agent Management: For virtual environments, multiple
agents are usually needed to fulfill complex tasks. Therefore, we have to
deal with the following problems: How multiple agents can be created
and how they can interact with each other by using DLP. In this chapter,
we focus on the problem of non-distributed multiple agent systems, i.e.
agents re located on the same computer. In the chapter 11, we will
discuss how DLP can be used to deal with distributed multiple agent
systems.

71

72 3D WEB AGENTS IN DLP

Fig. 7.1 Screenshot of Soccer Playing Game

• Formalizing Dynamic Worlds: 3D virtual worlds usually consist of
two kinds of data: a static part, for example the geometrical data of
a soccer field and soccer ball in a soccer game, and a dynamic part,
describing the dynamic behavior of a soccer ball. The static component
of virtual worlds is usually created by VRML. The dynamic parts are
more efficiently controlled by DLP. Here, we consider how DLP can be
used to formalize the dynamic behavior of virtual worlds.

• Cognitive Model: In order to make decisions in virtual worlds, the
agents should have some minimal knowledge about the virtual world
they are located in and the scenarios the agents may play, which lead to
the construction of cognitive models for 3D web agents. In the example
of soccer games, the soccer playing agents need to know which actions
should be taken under particular conditions.

7.2 SOCCER PLAYING AGENTS: AN EXAMPLE

We take the soccer playing game as an example, because soccer playing is a
game that typically requires prompt reactivity and complex interaction be-
tween the multiple agents in a system.

7.2.1 General Consideration

We will design a soccer game for the Web, namely, a soccer game that can
be played in web browsers, like Netscape communicator or Microsoft Internet
Explorer. We consider two teams in the game, red and blue, and each team
has ten players and one goalkeeper. The players and goalkeepers will be im-
plemented as 3D web agents. Considering the problem of performance, we
may reduce the numbers of players in the game. Four players and one goal-
keeper in each team are normally enough to show interesting game scenarios.
Being one of the players, the user can use the keyboard or mouse to play the
game. A screenshot of the soccer playing game is shown in Figure7.1:

SOCCER PLAYING AGENTS: AN EXAMPLE 73

In this chapter we consider only a game in which all agents are located at
the same computer, namely, a non-distributed system. Therefore, only one
user is allowed to join the game. In Chapter 11, we will describe a soccer
game with multiple users, that is, a distributed soccer game.

7.2.2 Design of virtual worlds

Before we start to design 3D soccer playing agents, we should design 3D
virtual worlds for the soccer games by using VRML. The 3D virtual worlds of
the soccer games consists of the following parts: a soccer field, a soccer ball,
two goal gates, and twenty-two soccer player avatars. Moreover, in order to
show the game score, we also need two score plates which locate each side of
the soccer field.

Figure7.2 shows a field with a length of 100 meter and a width of 64 meter.
This field is a gif file ”field1.gif”, therefore the field can be designed in VRML
as follows:

Transform {
translation 0 0 0

children [
Shape {
appearance Appearance {
texture ImageTexture { url "field1.gif" }
textureTransform TextureTransform {scale 1 1}
}
geometry Box {size 100 .2 64}

}
]

The soccer balls are spherical objects with a radius of 18 cm. First we
design a prototype of soccer balls with the fields translation and rotation as
follows:

PROTO Ball [
exposedField SFVec3f translation 0 0 0
exposedField SFRotation rotation 0 1 0 0

]
{
Transform { translation IS translation

rotation IS rotation
children [
Transform {
translation 0 0 0

children [
Shape {

74 3D WEB AGENTS IN DLP

Fig. 7.2 The Field of Play

appearance Appearance {material Material
{diffuseColor .9 .9 .9
emissiveColor .9 .9 .9}
texture ImageTexture { url "ball1.gif" }
textureTransform TextureTransform {scale 2 2}

}
geometry Sphere {radius .18}
}

] }
] } }

Then, we define a concrete soccer ball with the name ”ball”, which is
located at the center of the field 〈0, .25, 0〉, its default position 1:

Transform {
children [
DEF ball Ball

{ translation 0 .25 0
rotation 0 1 0 0
}

] }

1We make the y-dimension of the ball position a little bit higher, so that we can see it
better.

SOCCER PLAYING AGENTS: AN EXAMPLE 75

Similarly we can define the prototype of goal gates with translation and
rotation fields as follows. However, we will omit some details:

PROTO Gate [
exposedField SFVec3f translation 0 0 0
exposedField SFRotation rotation 0 1 0 0]

{
Transform { translation IS translation

rotation IS rotation
children [

......
] } }

Furthermore, we define two concrete goal gates: leftgate and rightgate, which
are at the positions 〈−49, 0, 0〉 and 〈49, 0, 0〉:

Transform {
children [DEF leftGate Gate

{translation -49 0 0
rotation 0 1 0 1.5708

}] }

Transform {
children [DEF rightGate Gate

{ translation 49 0 0
rotation 0 1 0 -1.5708

}] }

Moreover, we need twenty-two soccer player avatars for the games. The
prototype of player avatars can be designed with different complexities, which
may range from a simple object like a box, to more complicated humanoids
with facial expressions and body gestures. We will discuss the issues of avatar
design in the next chapter. In this chapter, we just assume that the avatars
can be designed with the following main fields:

• position: to set the position of the avatar.

• rotation: to set the rotation of the avatar.

• nickname: to give a hint to the name of the avatar.

• whichChoice: to indicate whether or not the avatar should appear in
the virtual world, which is convenient to add or delete any avatars from
the scene. If whichChoice is -1, the avatar does not appear in the scene.
This is useful for a multi-user version of the soccer game; when a new
user joins the game, we can set the field ”whichChoice” of its avatar to
1, and set the field value to -1 when a user quits the game.

76 3D WEB AGENTS IN DLP

• picturefile: to set the clothes and the appearance of the avatar. For
instance, any player in the team red should wear red clothes with a
player number. The appearance can be designed in a picture file.

The prototype of player avatars is designed as follows:

PROTO Sportman [
exposedField SFVec3f position
exposedField SFRotation rotation
exposedField SFInt32 whichChoice
exposedField SFString nickname
exposedField MFString picturefile

]
{......}

The following VRML code defines a goalkeeper and a player:

Transform {
children [DEF goalKeeper1 Sportman

{rotation 0 1 0 -1.5708
whichChoice -1
position 48 1.8 0
picturefile ["sportmanblue1.jpg"]
nickname "blue1"

}] }

Transform {
children [DEF blue9 Sportman

{
rotation 0 1 0 -1.5708
whichChoice -1
position 35 1.8 4
picturefile ["sportmanblue9.jpg"]
nickname "blue9"

}] }

In order to let a user join the game, we also need to add facilities in the virtual
worlds to get and set the user’s viewpoint position and orientation, like we
discussed in Chapter 4.

7.2.3 Multiple Thread Control

Now, we are ready to desig the DLP part. The 3D soccer game is a concurrent
system, which involves the dynamic activities of the soccer ball and the soccer
player agents. For its realization we use the multi-threaded object facilities of
DLP.

SOCCER PLAYING AGENTS: AN EXAMPLE 77

First of all, we define a game clock to control the time of the game as
follows:

:- object game_clock.
var time_left = 5000.

get_time(Time) :-
Time := time_left.

set_time(Time) :-
time_left := Time.

:- end_object game_clock.

:- object clock_pulse.

clock_pulse(Clock) :-
repeat,
sleep(1000),
Clock <- get_time(Time),
Left is Time - 1,
Clock <- set_time(Left),

Left < 1,
!.

:- end_object clock_pulse.

We set the total time of the game to 5000 seconds. The object clock-pulse
repeatedly sets the game time, i.e., after sleeping 1000 milliseconds. The game
clock object has the functions gettime and settime, which can be called by
any other object to get the current game time.

The soccer players can be classified into the following three kinds of agents:

• goalkeeper: An agent whose active area is around the goal gate of its
team;

• soccerPlayer: An autonomous agent which plays one of the following
roles: forward, middle fielder, and defender.

• soccerPlayerUser: An agent (more exactly, just an object), which
represents the user.

Suppose that we have designed the DLP objects to control the dynamic
activities of the soccer ball, goalkeeper, soccerPlayer, and soccerPlayerUser,
which will be discussed in the next sections, multi-threading for the soccer
game can be implemented as follows:

78 3D WEB AGENTS IN DLP

:- object waspsoccer : [bcilib].

var url = ’soccer.wrl’.

main :-
text_area(Browser),
set_output(Browser),

format(’Load the game ... ~ n’),
loadURL(url),
Clock := new(game_clock),

_Pulse := new(clock_pulse(Clock)),

Clock <- get_time(TimeLeft),
format(’the game will start in 5 seconds,~ n’),
format(’the total playing time is ~w seconds,~ n’, [TimeLeft]),
delay(5000),

format(’game startup,~ n’),
_ball := new(ball(ball, Clock)),
_GoalKeeper1 := new(goalKeeper(goalKeeper1, Clock)),
_GoalKeeper2 := new(goalKeeper(goalKeeper2, Clock)),
_UserMe := new(soccerPlayerUser(me_red10, Clock)),
_Blue9 := new(soccerPlayer(blue9, Clock)),
_Blue8 := new(soccerPlayer(blue8, Clock)),
_Blue7 := new(soccerPlayer(blue7, Clock)),
_Red2 := new(soccerPlayer(red2, Clock)),
_Red3 := new(soccerPlayer(red3, Clock)),
_Blue11 := new(soccerPlayer(blue11, Clock)),
_Red11 := new(soccerPlayer(red11, Clock)).

:- end_object waspsoccer.

The 3D virtual world ”soccer.wrl” is loaded into the scene first, then we wait
for five second to start the game. Furthermore, we use the method ”new”
to create new threads which control the behaviors of the soccer ball, two
goalkeepers, one soccerPlayerUser, and seven soccerPlayer agents respectively.
Note that each thread has its own information about the game clock.

7.2.4 Formalizing Behaviors Soccer Ball

In virtual worlds, we consider a three dimensional coordinate system, in which
each point is represented by a vector, like 〈x, y, z〉.

Suppose that a soccer ball is kicked from an initial point 〈x0, y0, z0〉 with
initial velocity v = 〈vx, vy, vz〉 meter/second. The acceleration due to gravity

SOCCER PLAYING AGENTS: AN EXAMPLE 79

is in the negative y-direction and there is no acceleration in the x-direction
and z-direction. We have the following equations:

(1) x = x0 + vx ∗ t
(2) y = y0 + vy ∗ t− 1/2 ∗ g ∗ t2
(3) z = z0 + vz ∗ t

where t is the time parameter, and g is the acceleration of a body dropped
near the surface of the Earth. We take g = 9.8. Suppose that the soccer ball is
kicked from the ground with a static start. The total time Ttotal of the soccer
ball taken from being kicked to falling back on the ground can be calculated
from the equation (2), by letting y = 0 and y0 = 0. Thus, Ttotal = vy/4.9.
The behavior of the soccer ball kicked with static start can be expressed in
DLP as follows.

kickedwithStaticStart(Ball,X0,Y0,Z0,Vx,Vy,Vz,UpdateDelay):-
Ttotal is Vy/4.9,
steps := 1,
repeat,

delay(UpdateDelay),
T is steps*UpdateDelay,
X is X0+ Vx*T,
Y is Y0+ Vy*T-4.9*T*T,
Z is Z0+ Vz*T,
setPosition(Ball,X,Y,Z),
++steps,

steps > Ttotal//UpdateDelay,
!.

The predicate kickedwithStaticStart requires the information of the kick
force vector 〈V x, V y, V z〉. However, it is much easier to get the information
of the agent’s rotation along the XZ plane, which leads to a new predicate
kickedwithStaticStartRF which is based on the information of the agent’s
rotation, the force in the direction the agent faces, i.e. a force in the XZ plane,
and a force in the Y-dimension.

kickedwithStaticStartRF(Ball,Field,X,Y,Z,R1,F1,Vy):-
Vx is F1 * cos(R1),
Vz is F1 * sin(R1),
kickedwithStaticStart(Ball,Field,X,Y,Z,

Vx,Vy,Vz,ballSleepTime).

Thus, the object ”soccer ball” can be formalized in DLP as follows:

:- object ball : [bcilib].

var steps.

80 3D WEB AGENTS IN DLP

var xmax = 50.0.
var xmin = -50.0.
var zmax = 32.0.
var zmin = -32.0.

var ballSleepTime=300.

ball(Name,Clock) :-
set_field(Name, lock, free),
format(’~w thread active.~ n’,[Name]),
activity(Name,Clock).

activity(Name,Clock) :-
repeat,

sleep(5000),
Clock <-get_time(TimeLeft),
format(’ ~w seconds left for the game.~ n’, [TimeLeft]),
getPosition(Name,X,Y,Z),
setValidBallPosition(Name,X,Y,Z),

TimeLeft < 1,
format(’The game is over!!!~ n’),
game_score <- showGameScore,
!.

lock(Name) :-
get_field_event(Name, lock, _dont_care_).

unlock(Name) :-
set_field(Name, lock, free).

validMinMax(V0, Vmin, Vmax, VN) :-
askValid_Min(V0, Vmin, V1),
askValid_Max(V1, Vmax, VN).

askValid_Min(X, Xmin, Xval) :-
X < Xmin,
!,
Xval = Xmin.

askValid_Min(X,_Xmin, Xval) :-
Xval = X.

askValid_Max(X, Xmax, Xval) :-
X > Xmax,

SOCCER PLAYING AGENTS: AN EXAMPLE 81

!,
Xval = Xmax.

askValid_Max(X,_Xmax, Xval) :-
Xval = X.

setValidBallPosition(_Ball,X,_Y,Z):-
X =< xmax,
X >= xmin,
Z =< zmax,
Z >= zmin,
!.

setValidBallPosition(Ball, X, Y, Z) :-
validMinMax(X, xmin, xmax, Xnew),
validMinMax(Z, zmin, zmax, Znew),
setPosition(Ball, Xnew,Y,Znew).

......

:- end_object ball.

The thread for the soccer ball is executes the following tasks:

1. regularly checks the game clock.

2. regularly checks the validity of the position of the soccer ball. If the ball
is kicked outside the field, the position of the ball should be set back to
a proper position inside the field.

3. offer a kick predicate for players.

4. lock and unlock the status of the soccer ball to avoid strange behaviors
of multiple kicks at the same time. In the chapter describing a multi-
user version of the soccer game, we will see a more efficient approach to
the problem of multiple kicks.

7.2.5 Cognitive Models of Soccer Players

In the current version of the soccer game, we do not require that agents know
all the rules of the soccer game, like penalty kick, free kick, corner kick, etc
[FIFA, 2001].

The agents in the soccer game use a simple cognitive model of the soccer
game, in which the agents consider the information about several critical
distances, then make a decision to kick. The considered critical distances are:

82 3D WEB AGENTS IN DLP

• ball distance: the distance between the ball and player.

• goal distance: the distance between the player and goal gate.

• kickable ball distance: the agent can directly kick the ball.

• kickable goal distance: the agent can kick the ball to the goal.

• runnable distance: the agent can run to the ball.

• passable distance: the agent can pass the ball to a team-mate.

We are now going to design the player agents, based on a decision-making
model. Namely, each player agent has the following cognitive loop: sensing–
thinking-acting. When sensing, agents use their sensors to get the necessary
information about the current situation. The main information that’s gath-
ered: the agent’s own position, the soccer ball’s position, and the goal gate’s
position. During the stage of thinking, agents have to reason about other
players’ positions and roles, and decide how to react. Thinking results in
a set of intended actions. By acting, agents use their effectors to take the
intended actions.

A general framework of the soccer playing agents based on decision-making
models can be programmed in DLP as follows:

:- object soccerPlayer : [bcilib].

soccerPlayer(Name, Clock) :-
setSFInt32(Name,whichChoice, 0),
format(’~w thread active.~ n’, [Name]),
activity(Name,Clock).

activity(Name,Clock) :-
repeat,

sleep(2000),

SOCCER PLAYING AGENTS: AN EXAMPLE 83

Clock <- get_time(TimeLeft),
format(’ player ~w thread ~w seconds left~ n’,

[Name,TimeLeft]),
getPositionInformation(Name,ball,X,Y,Z,Xball,Yball,Zball,

Dist,Xgoal,Zgoal,DistGoal),
findHowtoReact(Name,ball,X,Y,Z,Xball,Yball,Zball,Dist,

Xgoal,Zgoal,DistGoal,Action),
format(’player ~w action: ~w ~ n’,[Name,Action]),
doAction(Action,Name,ball,X,Y,Z,Xball,Yball,Zball,Dist,

Xgoal,Zgoal,DistGoal),
TimeLeft < 1,
quitGame(Name),
!.

......

:- end_object soccerPlayer.

At the beginning of a soccer player agent thread, the avatar should be set to
appear in the scene. Then, it should gather the information about the agent’s
own position 〈X,Y, Z〉, the ball’s position 〈Xball, Y ball, Zball〉, the position
of the goal gate 〈Xgoal, Y goal, Zgoal〉, and calculate the distance from the
agent to the ball and the gate. Since the y-position of the goal gate is never
changed, it is not used for the calculation of the goal distance, i.e. we do not
need the value of the y-position. After getting the necessary information, the
agents should figure out how to react, and then do the actions.

To simplify the decision-making procedure, we can carefully design the
procedure, so that the agents need not to evaluate the outcomes of actions
but but only have to focus on the actions themselves. For example, we consider
only the following actions: shooting, passing, run-to-ball and move-to-default-
position.

• shooting: the ball is kicked to the gate.

• passing: two consecutive kicks are done by two players of the same team.

• run-to-ball: as the name implies, run to the ball.

• move-to-default-position: move around the agent’s active area.

We can design the decision-making procedure in such a way that there is
only one possible action with respect to a particular situation. Suppose that
the ball distance is Dist and the goal distance is DistGoal, the decison tree
based on the simplified model can be as follows:

If the ball is kickable (i.e, close enough to kick), and the gate is close
enough, then do shooting; if the ball is kickable, but the gate is too far, then
try to pass the ball to a teammate; if the ball is not kickable, and the ball is

84 3D WEB AGENTS IN DLP

located within the agent’s active area, then run to the ball until it is kickable;
if the ball is not kickable, and the ball is not located within the agent’s active
area, then move around in the agent’s active area.

The procedure can be programmed in DLP as follows:

findHowtoReact(_,Ball,_,_,_,_,_,_,Dist,_,_,Dist1,shooting):-
Dist =< kickableDistance,
Dist1 =< kickableGoalDistance,
!.

findHowtoReact(_,_,Ball,_,_,_,_,_,_,Dist,_,_,Dist1,passing):-
Dist =< kickableDistance,
Dist1 > kickableGoalDistance,
!.

findHowtoReact(Player,_,_,_,_,X1,_,_,Dist,_,_,_,run_to_ball):-
Dist > kickableDistance,
getFieldAreaInformation(Player,_,_,FieldMin,FieldMax),
FieldMin =< X1,
FieldMax >= X1,
!.

findHowtoReact(Player,_,_,_,_,X1,_,_,Dist,_,_,_,move_around):-
Dist > kickableDistance,
getFieldAreaInformation(Player,_,_,FieldMin,_),
X1 < FieldMin,
!.

findHowtoReact(Player,_,_,_,_,X1,_,_,Dist,_,_,_,move_around):-
Dist > kickableDistance,
getFieldAreaInformation(Player,_,_,_,FieldMax),
X1 > FieldMax,
!.

Taking actions can be simple, or complicated, which depends on the situ-
ation. For example, shooting can be programmed in DLP as follows:

doAction(shooting,Player,Ball,_,_,_,X1,Y1,Z1,_,
Xgoal,Zgoal,DistGoal) :-

ball <- isUnlocked(Ball),
ball <- lock(Ball),
kick_ball_to_position(Ball,X1,Y1,Z1,
Xgoal,0.0,Zgoal,DistGoal),

ball <- unlock(Ball),
!.

SOCCER PLAYING AGENTS: AN EXAMPLE 85

Namely, first check if the ball is unlocked, if yes, then lock the ball, then
kick the ball to the gate, then unlock the ball. However, just like most soccer
players in real life, they cannot fully control the soccer ball to kick it into
the gate, which usually involve some degree of uncertainty. Therefore, in the
following, we introduce a random number to change the behavior of kick-ball-
to-position:

kickBalltoDirection(Player,Ball,X,_,_,X1,Y1,Z1,X2,_,Z2):-
check(Ball,position(X1,Y1,Z1)),
look_at_position(Player,X2,Z2),
getRotation(Player,_,_,_,R),
getCorrectKickRotation(X,X1,R,R1),
KickBallForceY is kickBallForceY + random*10.0,
ball <- kickedwithStaticStartRF(Ball,translation,X1,Y1,Z1,
R1,kickBallForce,KickBallForceY).

The action ”passing” is more complicated, for it needs to find a proper
teammate to pass the ball. An intuitive idea is to pass the ball to the nearest
teammate. However, that would be expensive computationally. (Why? we
leave it as an exercise.) Therefore, we need an efficient solution to reason
about the teammate’s position and roles to find a suitable teammate to pass
the ball to. Again, we leave the problem as an exercise.

7.2.6 Controlling Goalkeepers

The behavior of the goalkeeper agent is almost the same as the soccer player
agent, namely, they should have the same cognitive loop. However, the goal-
keepers should have a set of different actions. For example, a goalkeeper never
considers the action ”shooting”. They have different decision trees.

It is convenient to require the goalkeepers to check regularly whether or
not a new game score should be added. If a goalkeeper finds that the ball is
already inside the gate, he should add one more score to his opponent team,
then throw the ball to one of his teammates, or run to the ball, then kick
the ball. The action ”run-then-kick” can be simply programmed in DLP as
follows:

doAction(run_then_kick, GoalKeeper,Ball,_X,Y,_Z,X1,Y1,Z1,_):-
format(’~w action: run_then_kick.~ n’,

[GoalKeeper]),
setSFVec3f(GoalKeeper,position,X1,Y,Z1),
ballThrowPosition(GoalKeeper,_,X3,Z3),
look_at_position(GoalKeeper,X3,Z3),
getRotation(GoalKeeper,_,_,_,R),
R1 is R - 1.5708,
ball <- kickedwithStaticStartRF(Ball,translation,X1,Y1,Z1,R1,

kickBallForce,kickBallForceY),

86 3D WEB AGENTS IN DLP

!.

7.2.7 Behaviors of Soccer Player Users

Different from the soccer player agents and the goalkeeper agents, the be-
haviors of the object ”Soccer Player User” are rather simple. They need no
cognitive model for the game. They do not make autonomous decisions. The
main task for them is to check whether or not the user is near enough to be
able to kick the ball. If yes, then move the ball to an appropriate position.
The main framework of the ”soccer player user” object can be as follows:

:- object soccerPlayerUser : [bcilib].

var kickableDistance = 3.0.
var kickBallForce = 10.0.
var kickBallForceY =6.0.

soccerPlayerUser(Name, Clock) :-
format(’The user ~w thread active.~ n’, [Name]),
activity(Name,Clock).

activity(Name,Clock) :-
repeat,

sleep(1000),
Clock <- get_time(TimeLeft),
near_ball_then_kick(Name,ball),

TimeLeft < 1,
!.

near_ball_then_kick(Agent, Ball):-
getViewpointPosition(Agent,X,_,Z),
getPosition(Ball,X1,Y1,Z1),
X < X1,
distance2d(X,Z,X1,Z1,Dist),
Dist < kickableDistance,
getViewpointOrientation(Agent,_,_,_,R),
R1 is R -1.5708,
ball <- isUnlocked(Ball),
ball <- lock(Ball),
ball <- kickedwithStaticStartRF(Ball,translation,X1,Y1,Z1,R1,
kickBallForce,kickBallForceY),

ball <- unlock(Ball).

SOCCER PLAYING AGENTS: AN EXAMPLE 87

near_ball_then_kick(Agent, Ball):-
getViewpointPosition(Agent,X,_,Z),
getPosition(Ball,X1,Y1,Z1),
X >= X1,
distance2d(X,Z,X1,Z1,Dist),
Dist < kickableDistance,
getViewpointOrientation(Agent,_,_,_,R),
R1 is -R -1.5708,
ball <- isUnlocked(Ball),
ball <- lock(Ball),
ball <- kickedwithStaticStartRF(Ball,translation,X1,Y1,Z1,R1,

kickBallForce,kickBallForceY),
ball <- unlock(Ball).

near_ball_then_kick(_, _).

......

:- end_object soccerPlayerUser.

The predicate near ball then kick is used to check whether or not the user is
close enough to kick the ball. If yes and the ball is unlocked, then kick the
ball based on the user’s current orientation.

7.2.8 Discussion

In this subsection, we have discussed how DLP can be used to implement a
single user / multi-player soccer game. In this game, multiple 3D web agents
are based on a decision making architecture. Decision rules are used to guide
their behaviors to show certain intelligence.

A problem in this game is the ’line-up’ phenomenon in which several agents
run to the same position without awareness of the other players’ behaviors,
as shown in Figure7.3. The ’line-up’ phenomenon results in that the agents
do not use the information of other teammates when they decide to run to
the goal position. Here are several solutions for ’line-up’ phenomenon:

• Solution 1: obtaining more information of players, and add more com-
putation. For instance, in the game, we can ask the agents to find the
nearest agent to the soccer ball. Only the nearest player in the team
should run to the soccer ball. However, the problem of this solution is
that it is unsuitable for real-time agents, like the agents in the soccer
game, because the computation on the closest teammate is expensive.

88 3D WEB AGENTS IN DLP

Fig. 7.3 Line-up phenomenon in Soccer Playing Game

• Solution 2: Introducing Distributed behavioral models, like those that
are used in the simulation of flocks, herds, and schools in artificial life.
We are going to discuss a typical example in the next subsection. The
problem of this solution is that it is not intelligent enough, however, it
is good enough to avoid the ’line-up’ phenomenon.

7.3 DOG WORLD

In this subsection, we are going to discuss the ’dogworld’ example in which
several dogs can play with their master, i.e., the user. The dogs can move with
the master, run to the master, and bark, without the ’line-up’ phenomenon.
A screen shot of the dogworld example is shown in Figure7.4.

7.3.1 Design the virtual world

First we design a virtual world of several dogs with the following fields:

• position: a position field of a dog;

• rotation: a rotation field of a dog;

• whichChoice: a field which can be used to set whether a dog appears
or disappears in the virtual world, like the playing agents in the soccer
game example;

• id: an identification field of the dog, which will be used in the distribu-
tion function for the simulation of the flock which is discussed later;

DOG WORLD 89

Fig. 7.4 Screenshot of the dogworld example

• bark: a field which can be used to control the bark sound in a file
’bark.wav’.

7.3.2 Behavioral model of the dogs

The behavior of the dogs are based on the following rules:

• If the master runs, then dogs run with the master.

• If the master stands, then dogs bark, and move to the master.

• If the master is slowing down, then dogs stop move, look at the master,
and bark.

• If the master is too far away from a dog, the dog runs back to the master.

Of course, we should have described in more detail what means by slowing
down and too far away. That can be done by different parameters, like the
following:

var sleeptime = 250.
var small_movement = 0.20.
var big_movement = 0.40.
var max_distance = 40.

Namely, if the master moves more than 0.40 meter within 250 milliseconds, it
means that the master is running; if the master moves less than 0.20 meter,

90 3D WEB AGENTS IN DLP

Fig. 7.5 Flock and Distributive Function

it means that the master is standing; if the master is neither running, nor
standing, it means that the master is slowing down; if the master is at a
distance of 40 meters, it means that master is too far away.

7.3.3 Flock and Distributive Function

In [Reynolds, 1987], Craig Reynolds discusses the problem of simulated flocks,
and points out that the following issues are important for the simulation of
the flocks.

1. Collision Avoidance: avoid collisions with nearby flockmates.

2. Velocity Matching: attempt to match velocity with nearby flockmates.

3. Flock Centering: attempt to stay close to nearby flockmates.

In the dogworld example, we do not try to solve all of these problems in
simulated flocks. However, we borrow the idea of centering to avoid the line-
up phenomenon. We design a distribution function so that each dog moves
to a simulated flock center based on this distribution function, as shown in
Figure7.5.

DOG WORLD 91

7.3.4 Implementation

We can control the bark sound by setting the field bark in the virtual world,
so that when the value of the loop is ’true’, then the sound file is playing
repeatedly, and when the value is ’false’, the barking stops:

bark(Dog,Time):-
setSFBool(Dog, bark, true),
sleep(Time),
setSFBool(Dog, bark, false).

The next issue is to simulate the flock centering. When the master is stand-
ing, the flock center is the position of the master. However, when the master
is running, the dogs usually run much faster then the master. We set the
flock center dynamically somewhere in front of the master. Therefore, we
design an enlargement parameter so that the flock center is changing dynam-
ically. The computation of the flock center can be based on the position of
the master, the movement of the master and the enlargement parameters.
We need a distribution function which can be used to compute a relative po-
sition of a dog to the flock center. To simplify the problem, we design the
distribution function so that the relative position of a dog to the flock cen-
ter is constant. We use the predicate dFunction to specify the distribution
function. dFunction(ID,X, Y) means that the dog ID should move to the
position 〈x0 +X, y0 + Y 〉 if the position of the flock center is 〈x0, y0〉.

The implementation of the actions of the dogs can be described in DLP as
follows. The complete source code of the dogworld example can be found in
the appendix.

doAction(Dog, position(X,_Y,Z),position(X1,_Y1,Z1),_,_,_,
look_at_master):-

ook_at_position(Dog,X,Z,X1,Z1),
bark(Dog,500).

doAction(Dog, position(X,Y,Z),position(X1,_Y1,Z1),_,_,_,
move_to_master):-
getSFInt32(Dog,id,ID),
getFlockCenter(position(X2,_Y2,Z2), master_standing,[]),
dFunction(ID, Xd,Zd),
X3 is X2 + Xd,
Z3 is Z2 + Zd,
look_at_position(Dog,X,Z,X1,Z1),
bark(Dog,500),
move_to_position(Dog,position(X,Y,Z),position(X3,Y,Z3),5),

!.

doAction(Dog, position(X,Y,Z),position(X1,_Y1,Z1),_,

92 3D WEB AGENTS IN DLP

position(X3,Y3,Z3),_,move_with_master):-
Xdif is X3-X1,
Zdif is Z3-Z1,
getFlockCenter(position(X5,_Y5,Z5), master_moving,

[position(X3,Y3,Z3),Xdif,Zdif]),
getSFInt32(Dog,id,ID),
dFunction(ID, Xd,Zd),
X6 is X5 + Xd,
Z6 is Z5 + Zd,
look_at_position(Dog,X,Z,X6,Z6),
move_to_position(Dog,position(X,Y,Z),

position(X6,Y,Z6),10),
!.

......

getFlockCenter(position(X,Y,Z),master_standing, []):-
getSFVec3f(proxSensor,position,X,Y,Z),
!.

getFlockCenter(position(X,Y,Z),master_moving,
[position(X1,Y,Z1), Xdif, Zdif]):-
X is X1 + Xdif* enlargement,
Z is Z1 + Zdif* enlargement,
!.

dFunction(1,0,3):-!.
dFunction(2,-1,-2):-!.
dFunction(3,1,-7):-!.
dFunction(4,-2,3):-!.
dFunction(5,2,2):-!.
dFunction(6,-3,0):-!.
dFunction(7,3,-1):-!.
dFunction(8,-4,4):-!.
dFunction(9,5,-4):-!.
dFunction(10,5,-3):-!.

7.3.5 Discussion

In this example, we have shown how a distribution function can be used to
simulate a flock without the ’line-up’ problem. The position of an agent,
i.e., a dog in this example, relative to the flock center, is a constant in the
distribution function. Although it is a simple solution, the behaviors are not
natural enough for the simulation of a flock. That can be improved by the
introduction of more flexible functions.

EXERCISES 93

Exercises

7.1 Consider the following soccer game extensions:
7.1.1. Analysis the reasons why the computation on the closest teammate

is expensive.
7.1.2. Find your own solution to the action ”passing” and program it in

DLP.
7.1.3. For the action ”run to ball”, a soccer player agent should not simply

run to a position. Since the position of the ball is always changing, the player
should ”run and trace” the ball. Write a program to implement the action
”run and trace”.

7.1.4. Develop a cognitive model for the goalkeeper, and design a decision
tree to control the behavior of the goalkeeper.

7.1.5. Improve the soccer game example to avoid the ’line-up’ phenomenon.

7.2 Improve the dog world example by adding more rules on the behavioral
model, like:

• If the master stands near a dog, then the dog jumps up and bark.

• If the master stands and turns slowly, then dogs lie upside down.

7.3 Design a 3D web agent for the navigation assistant in virtual worlds,
like a guide in a building. The 3D web agent should be able to fulfill the
following tasks:

7.3.1. Send greeting messages whenever she finds a new visitor.
7.3.2. Show a brief introduction to the configuration of the building.
7.3.3. Guide the visitor to look around in a (virtual) building.

8
Avatar Design

8.1 AVATARS

In vitual worlds, avatars are used to represent human users or autonomous
agents. The complexities of avatars can range from the simple form, which
may just consists of a group of boxes and spheres, to the most complicated
ones, like humanoids with facial animation and sophisticated gestures. Based
on their functionalities, avatars can be classified into the following different
types:

• Animated versus Non-animated: Animated avatars have their own ani-
mation data. These animations are usually controlled by using ROUTE
semantics to express built-in gestures. Non-animated avatars have no
built-in animation data. However they may be controlled by using ex-
ternal facilities (i.e., programs) to make the animation. DLP can be
used to control the animation if the body components of the avatars are
properly defined by using DEF and those defined nodes have geometrical
fields, like position and rotation. In this chapter, we are more interested
in the design of non-animated avatars. However, we will discuss how
DLP can be used to create and control the gestures of the avatars.

• Texture-based versus non-texture-based: Texture-based avatars use tex-
tures to cover or present parts of their bodies, especially, the face and
clothes. These textures are usually presented by using picture files, like
gif or jpeg. Non-texture-based avatars do not use any picture files. They
use their own built-in appearance data to present special effects. The
file sizes of the texture-based avatars are usually small, for they have

95

96 AVATARS DESIGN

embedded picture files. However, they are hard to be controlled by
programs. Non-texture-based avatars have their own appearance data,
which would increase the file size of the avatars, however, they provide
the possibilities for the control from external programs. In this chapter
we will discuss how DLP can be used to control the facial expression of
non-texture-based avatars.

• audio-embedded versus non-audio-embedded: Audio-embedded avatars
have their own embedded audio data in their files, whereas non-audio-
embedded avatars have not any voice/sound data on them. The file
sizes for good quality voice are usually extremely large. They are seldom
embedded into avatars and virtual worlds.

• H-anim compliant versus non-H-anim compliant. H-anim1.1 is a spec-
ification for standard humanoids by the Humanoid animation working
group.[H-anim, 2001] As the name implies, H-anim compliant avatars
are designed according to the H-anim specification, whereas non-H-anim
compliant avatars are not. In this chapter we will focus on the design
and the control of H-anim compliant avatars.

8.2 H-ANIM 1.1 SPECIFICATION

As claimed by Humanoid animation working group in [H-anim, 2001], goals
of H-anim specification are the creation of libraries of humanoids for reusable
in Web-based applications, as well as authoring tools that make it easy to
create humanoids and animate them in various ways. H-anim specifies a
standard way of representing humanoids in VRML97. This standard will allow
humanoids created using authoring tools from one vendor to be animated
using tools from another. H-Anim humanoids can be animated using different
animation systems and techniques.

An H-Anim file contains a set of Joint nodes that are arranged to form
a hierarchy. Each Joint node can contain other Joint nodes, and may also
contain a Segment node which describes the body part associated with that
joint. Each Segment can also have a number of Site nodes, which define lo-
cations relative to the segment. Sites can be used for attaching accessaries,
like hat, clothing and jewelry. In addition, they can be used to define eye-
points and viewpoint locations. Each Segment node can have a number of
Displacer nodes, that specify which vertices within the segment correspond to
a particular feature or configuration of vertices.

The Joint PROTO looks like this:

PROTO Joint [
exposedField SFVec3f center 0 0 0
exposedField MFNode children []
exposedField MFFloat llimit []

H-ANIM 1.1 SPECIFICATION 97

exposedField SFRotation limitOrientation 0 0 1 0
exposedField SFString name ""
exposedField SFRotation rotation 0 0 1 0
exposedField SFVec3f scale 1 1 1
exposedField SFRotation scaleOrientation 0 0 1 0
exposedField MFFloat stiffness [0 0 0]
exposedField SFVec3f translation 0 0 0
exposedField MFFloat ulimit []

]

The meanings of most fields of the Joint PROTO, like scale, translation, are
straightforward from the names, however, the following fields need a further
explanation

• ulimit and llimit: gives the upper and lower joint rotation limits. The
ulimit field defines the maximum values for rotation around the X, Y
and Z axes. The llimit field describes the minimum values for rotation
around those axes.

• limitOrientation: describes the orientation of the coordinate frame in
which the ulimit and llimit values are to be interpreted. This field
specifies the orientation of a local coordinate frame, relative to the Joint
center position described by the center exposedField.

• stiffness: specifies values ranging between 0.0 and 1.0 which give the
inverse kinematics system hints about the ”willingness” of a joint to
move in a particular degree of freedom.

The segment PROTO look like this:

PROTO Segment [
field SFVec3f bboxCenter 0 0 0
field SFVec3f bboxSize -1 -1 -1
exposedField SFVec3f centerOfMass 0 0 0
exposedField MFNode children []
exposedField SFNode coord NULL
exposedField MFNode displacers []
exposedField SFFloat mass 0
exposedField MFFloat momentsOfInertia [0 0 0 0 0 0 0 0 0]
exposedField SFString name ""
eventIn MFNode addChildren
eventIn MFNode removeChildren

]

An explanation on some of the fields above:

• mass: the total mass of the segment, however, it is usually not necessary.

• centerOfMass: the location within the segment of its center of mass.

98 AVATARS DESIGN

Fig. 8.1 A Standard Joints/Segment Diagram of H-anim 1.1

• momentsOfInertia: the moment of inertia matrix. The first three ele-
ments are the first row of the 3x3 matrix, the next three elements are
the second row, and the final three elements are the third row.

A standard joints/segment diagram of H-anim 1.1 specification is shown in
Figure 8.2

In H-anim specification, site nodes are designed for the following three
purposes: First, it can be used to be an ”end effector” location for an inverse
kinematics system. Next, it defines an attachment point for accessories such
as hat and clothing. Third, it provides a location for a virtual camera in
the reference frame of a Segment (such as a view ”through the eyes” of the
humanoid for use in multi-user worlds).

Sites are located within the children exposedField of a Segment node. The
children field of a site node is used to store any accessories that can be attached
to the segment.

The Site PROTO looks like this:

H-ANIM 1.1 SPECIFICATION 99

PROTO Site [
exposedField SFVec3f center 0 0 0
exposedField MFNode children []
exposedField SFString name ""

exposedField SFRotation rotation 0 0 1 0
exposedField SFVec3f scale 1 1 1
exposedField SFRotation scaleOrientation 0 0 1 0
exposedField SFVec3f translation 0 0 0
eventIn MFNode addChildren
eventIn MFNode removeChildren

]

According to H-anim specification, if used as an end effector, the Site node
should use the following consisting naming system: the name of the site should
be with with the name of the segment which attached, like a ” tip” suffix ap-
pended. The end effector Site on the right index finger should have a name like
”r index distal tip”, and the Site node would be a child of the ”r index distal”
Segment. Sites that are used to define camera locations should have a ” view”
suffix appended. Sites that are not end effectors and not camera locations
should have a ” pt” suffix. Sites that are required by an application but are
not defined in this specification should be prefixed with ”x ”.

Sometimes the application may want to identify some specific vertices
within a Segment. That would require a Displace to store the hint message.
The Displacers for a particular Segment are stored in the displacers field of
that Segment.

The Displacer PROTO looks like this:

PROTO Displacer [
exposedField MFInt32 coordIndex []
exposedField MFVec3f displacements []
exposedField SFString name ""

]

The coordIndex field shows the indices into the coordinate array for the Seg-
ment of the vertices that are affected by the displacer. The displacements field
describes a set of 3D values that should be added to the neutral or resting
position of each of the vertices referenced in the coordIndex field of the Seg-
ment. These values correspond one to one with the values in the coordIndex
array.

The H-anim file also has a single Humanoid node which stores human-
readable data about the humanoid such as author and copyright information.
That also stores additional information about all the Joint, Segment and Site
nodes, and serves as a ”wrapper” for the humanoid. Of course, it is used
to describe the top-level Transform for positioning the humanoid in virtual
worlds.

100 AVATARS DESIGN

PROTO Humanoid [
field SFVec3f bboxCenter 0 0 0
field SFVec3f bboxSize -1 -1 -1
exposedField SFVec3f center 0 0 0
exposedField MFNode humanoidBody []
exposedField MFString info []
exposedField MFNode joints []
exposedField SFString name ""
exposedField SFRotation rotation 0 0 1 0
exposedField SFVec3f scale 1 1 1
exposedField MFNode segments []
exposedField MFNode sites []
exposedField SFVec3f translation 0 0 0
exposedField SFString version "1.1"
exposedField MFNode viewpoints []

]

8.3 CREATING H-ANIM COMPLIANT AVATARS

Based on H-anim 1.1 specification, we can design any humanoid with differ-
ent body geometrical data and different levels of articulation, which can be
anything we like. The appendix of the H-anim 1.1 specification also provides
a suggest on the body dimension and three levels of articulation. The level
of articulation zero is the minimum legal H-Anim humanoid, with the node
HumanoidRoot and several default site translations. The level of articulation
one is a typical low-end real-time 3D hierarchy. The level of articulation two
is a more complex one, a body with simplified spine. Take the VRML files
of the level of articulation, which are available from the H-anim web site, as
templates for building H-anim 1.1 compliant avatars, we can design our own
ones.

Here are some examples: First we can design a simple H-anim 1.1 compliant
avatar, which just use simple geometrical data, like box, or sphere, to be the
body parts, which is shown in Figure 8.3.

For the convenience of the test on the construction, we can design each
body part as a seperated VRML file. For instances, the left-hand can be like
this:

\#VRML V2.0 utf8

DEF hanim_l_hand Transform {
translation 0.15 0.7 -0.025
rotation 0 0 1 0

children [
DEF hanim_l_hand_shape Shape {

CREATING H-ANIM COMPLIANT AVATARS 101

Fig. 8.2 A Simple H-anim 1.1 Compliant Avatar

appearance Appearance {
material Material {
ambientIntensity 0.200
shininess 0.200
diffuseColor 0.76863 0.61961 0.54902
emissiveColor 0.0 0.0 0.0
specularColor 0.0 0.0 0.0

}}
geometry Sphere {

radius 0.07
} }]}

Namely, the left-hand (without the left forearm and left upper-arm, which
would be defined in a separated file), is just a sphere with a defined name
”hanim l hand”. Moreover, we need a translation field and a rotation field to
put the body-part to an appropriate position. Suppose that this VRML file
is saved with the file name ”l hand0.wrl”. We can add it into the left-hand
segment in the template file like this:

......
children [

DEF hanim_l_hand Segment {
name "l_hand"
children [

Inline { url "l_hand0.wrl"}
.....

102 AVATARS DESIGN

We use Inline to add the VRML file into the avatar file, however, note that
VRML EAI does not support any referred nodes which is defined in Inline
files. If we want to control the defined nodes in DLP, we should add the
corresponding lines into the avatar file. Similarly, we can define other body
parts, like forearm, thigh, upper-arm, skull, calf, etc.

In order to obtain more realistic humanoid avatars, we need more sophisti-
cated geometrical data on the body parts and some necessary accessories, like
hairs, clothes, etc. The upper body and the clothes are normally located at
the joint vl5. Suppose that the corresponding VRML file is stored as ”l5.wrl”.
Add the data of upper body and the clothes can be like this:

......
DEF hanim_l5 Segment {

name "l5"
children [
DEF hanim_l5 Inline { url "l5.wrl" }

......

Moreover, the hairs should be located at the skull tip site of the skull base
joint as follows:

.....
DEF hanim_vl5 Joint {

name "vl5"
center 0.0028 1.0568 -0.0776
children [
DEF hanim_skullbase Joint {
name "skullbase"
center 0.0044 1.6209 0.0236
children [
DEF hanim_skull Segment {
name "skull"

children [
DEF hanim_skull
Inline { url "skull.wrl" }

DEF hanim_skull_tip Site {
name "skull_tip"
translation 0.0050 1.7504 0.0055
children [
Inline { url "hair.wrl" }
]

}

A H-anim 1.1 compliant avatar with hairs and clothes is shown in Figure 8.3.

AVATAR AUTHORING TOOLS 103

Fig. 8.3 A H-anim 1.1 Compliant Avatar with Hairs and Clothes

8.4 AVATAR AUTHORING TOOLS

8.4.1 Curious Labs Poser 4

Poser 4 by Curious Labs is a 3D-character animation and design tool for
avatars design. [Curious Labs] The program provides plentiful libraries of pose
settings, facial expressions, hand gestures, and swappable clothing. Users can
create images, movies, and posed 3D figures from a diverse collection of fully
articulated 3D human and animal models. More usefully, poser 4 supports
the export of avatar files with VRML format or H-anim format. However, the
sizes of the exported files from poser are usually too large, say, 2 MB or more,
which would be a problem for any significant use over the Web. A screenshot
of Poser 4 is shown in Figure 8.4.1.

8.4.2 Blaxxun Avatar Studio

Blaxxun Avatar Studio is a tool for design of animated and texture-based
VRML avatars. Blaxxun Avatar studio has not yet support of the export
of the avatars file with H-anim compliant format. The avatars designed by
Avatar Studio are non H-anim compliant ones. Using Avatar Studio, avatars
can be designed with large range of body sizes, individual proportions, skin,
hair and eye color. Once the avatar’s basic properties are determined, she/he
can be dressed from a large wardrobe and furnished with an extensive selection

104 AVATARS DESIGN

Fig. 8.4 A Screenshot of Poser 4

Fig. 8.5 A Screenshot of Avatar Studio

of accessories, like sunglasses or handbags. Avatar Studio also supports the
”animations editor,” a tool for creating gestures and movements which are
then assigned to certain key-words. The typical keys for the gestures are:
hello, hey, yes, smile, frown, no, and bye. A screenshot of Blaxxun Avatar
Studio is shown in Figure 8.4.2. Avatars designed by Blaxxun Avatar Studio
are texture-based ones. Therefore, the faces and clothes of the avatars can be
changed by editing the corresponding texture files. For example, Figure 8.4.2
shows the soccer player avatar ”blue2”, whose texture file for the face and the
clothes is shown in Figure 8.4.2.

AVATAR AUTHORING TOOLS 105

Fig. 8.6 Soccer Player Avatar blue2

Fig. 8.7 Texture of Soccer Player Avatar blue2

106 AVATARS DESIGN

8.5 AVATAR ANIMATION CONTROL IN DLP

Humanoid avatars can be controlled by using the get/set-predicates in DLP,
like those are shown in WASP soccer games. They can move to certain po-
sitions by the set-position-predicates, or turn to certain orientation by the
set-rotation-predicates, on those humanoid avatars. These humanoid avatars
can be built based the H-anim specification. The avatar animation can be
achieved by setting the positions/rotations of the body parts of the humanoid
avatars with different time intervals.

Consider a humanoid avatar which is based on H-anim specification. Turn-
ing the left arm of the avatar to front can be realized by simplely setting the
rotation of the left shoulder joint hanim l shoulder to 〈1, 0, 0, 1.57〉 as follows,

setRotation(hanim_l_shoulder, 1, 0, 0, 1.57)

However, in order to achieve a smooth change of movement of the body
part, we have to introduce several interpolations between two rotations with
certain time interval control. Turning Object to a rotation 〈X,Y, Z,R〉 within
Time milliseconds with I interpolation can be achieved by the following DLP
program1:

turn_object(Object, rotation(X,Y,Z,R), Time, I):-
getRotation(Object,X1,Y1,Z1,R1),
count := 0,
incrementr := (R-R1)/I,
incrementx := (X-X1)/I,
incrementy := (Y-Y1)/I,
incrementz := (Z-Z1)/I,
sleeptime := Time*1000/I,
repeat,

Rnew is R1+incrementr*(count+1),
Xnew is X1+incrementx*(count+1),
Ynew is Y1+incrementy*(count+1),
Znew is Z1+incrementz*(count+1),
setRotation(Object,Xnew,Ynew,Znew,Rnew),
sleep(sleeptime),
++count,

abs(Rnew-R) =< abs(incrementr),
setRotation(Object,X,Y,Z,R).

Animation of avatars usually involves the movements of several body parts si-
multaneously. That would make the maintenance of the timing and sycroniza-

1In order to achieve a natural transition between two rotations, we need the slerp interpo-
lation on quatenions, which is explained the section 9.6.3

AVATAR ANIMATION CONTROL IN DLP 107

Fig. 8.8 Facial Animation

tion of the multiple threads which controls the body movements more com-
plicated. In Chapter 9 we will discuss a scripting language which can be used
to simplize the control of the animation of humanoid avatars.

One of the important issues of the avatar animation is the facial expression.
H-anim specification adopts the facial animation parameters (FAP), which are
first proposed in MPEG4. The following is a simple example which shows how
some facial expression, like eyebrow movement and smile can be realized by
basing on some ad hoc facial geometrical data. The facial expression is shown
in Figure 8.8.

eyebrow_move(l,Range):-
getSFVec3f(l_eyebrow,translation,X,Y,Z),
Y1 is Y + Range,
setSFVec3f(l_eyebrow,translation,X,Y1,Z).
eyebrow_move(r,Range):-
getSFVec3f(r_eyebrow,translation,X,Y,Z),
Y1 is Y + Range,
setSFVec3f(r_eyebrow,translation,X,Y1,Z).

smiling(Time):-
smile_point(2, Point2),
setMFVec3f(lower_lip_coordinate, point, Point2),
sleep(Time),
smile_point(1, Point1),
setMFVec3f(lower_lip_coordinate, point, Point1).

smile_point(1,SmilePoint) :-
SmilePoint = [[0.0381, 0.0312, -5.0E-4],

[0.015, 0.0162, -0.0204],
[0.015, 0.03, 0.0],
[0.0215, 1.0E-4, -8.0E-4],
[-0.015, 0.0162, -0.0204],

108 AVATARS DESIGN

[-0.0381, 0.0312, -5.0E-4],
[-0.015, 0.03, 0.0],
[-0.0215, 1.0E-4, -8.0E-4]].

smile_point(2,SmilePoint):-
SmilePoint = [[0.04810,0.03920,-0.00050],
[0.01500,0.00020,-0.02040],
[0.01500,0.01400,0.00000],
[0.02150,-0.01610,-0.00080],
[-0.01500,0.00020,-0.02040],
[-0.04810,0.03920,-0.00050],
[-0.01500,0.01400,0.00000],
[-0.02150,-0.01610,-0.00080]].

Exercises

8.1 Design a H-anim 1.1 compliant avatar for the soccer playing agents.
The avatar should be able to be controlled in DLP to show the following
gestures: kicking, greeting, shouting, and ball-holding.

8.2 Design a texture-based humannoid avatar, by using your own photo as
the texture of the avatar’s face.

8.3 Extend the facial animation example with more facial expressions.

9
STEP : a Scripting

Language for Embodied
Agents

9.1 MOTIVATION

Embodied agents are autonomous agents which have bodies by which the
agents can perceive their world directly through sensors and act on the world
directly through effectors. Embodied agents whose experienced worlds are
located in real environments, are usually called cognitive robots. Web agents
are embodied agents whose experienced worlds are the Web; typically, they
act and collaborate in networked virtual environments. In addition, 3D web
agents are embodied agents whose 3D avatars can interact with each other or
with users via Web browsers[Huang et al., 2000].

Embodied agents usually interact with users or each other via multimodal
communicative acts, which can be non-verbal or verbal. Gestures, postures
and facial expressions are typical non-verbal communicative acts. In general,
specifying communicative acts for embodied agents is not easy; they often
require a lot of geometrical data and detailed movement equations, say, for
the specification of gestures.

In [Huang et al., 2002b] we propose the scripting language STEP (Script-
ing Technology for Embodied Persona), in particular for communicative acts
of embodied agents. At present, we focus on aspects of the specification and
modeling of gestures and postures for 3D web agents. However, STEP can
be extended for other communicative acts, like facial expressions, speech, and
other types of embodied agents, like cognitive robots. Scripting languages are
to a certain extent simplified languages which ease the task of computation
and reasoning. One of the main advantages of using scripting languages is that

109

110 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

the specification of communicative acts can be separated from the programs
which specify the agent architecture and mental state reasoning. Thus, chang-
ing the specification of communicative acts doesn’t require to re-program the
agent.

The avatars of 3D web agents are built in the Virtual Reality Modeling
Language (VRML). These avatars are usually humanoid-like ones. We have
implemented the proposed scripting language for H-anim based humanoids in
the distributed logic programming language DLP.

In this chapter, we discuss how STEP can be used for embodied agents.
STEP introduces a Prolog-like syntax, which makes it compatible with most
standard logic programming languages, whereas the formal semantics of STEP
is based on dynamic logic [Harel, 1984]. Thus, STEP has a solid semantic
foundation, in spite of a rich number of variants of the compositional operators
and interaction facilities on worlds.

9.2 PRINCIPLES

We design the scripting language primarily for the specification of commu-
nicative acts for embodied agents. Namely, we separate external-oriented
communicative acts from internal changes of the mental states of embodied
agents because the former involves only geometrical changes of the body ob-
jects and the natural transition of the actions, whereas the latter involves
more complicated computation and reasoning. Of course, a question is: why
not use the same scripting language for both external gestures and internal
agent specification? Our answer is: the scripting language is designed to be a
simplified, user-friendly specification language for embodied agents, whereas
the formalization of intelligent agents requires a powerful specification and
programming language. It’s not our intention to design a scripting language
with fully-functional computation facilities, like other programming languages
as Java, Prolog or DLP. A scripting language should be interoperable with
a fully powered agent implementation language, but offer a rather easy way
for authoring. Although communicative acts are the result of the internal
reasoning of embodied agents, they do not need the same expressiveness of
a general programming language. However, we do require that a scripting
language should be able to interact with mental states of embodied agents in
some ways, which will be discussed in more detail later.

We consider the following design principles for a scripting language.

Principle 1: Convenience As mentioned, the specification of communicative
acts, like gestures and facial expressions usually involve a lot of geometrical
data, like using ROUTE statements in VRML, or movement equations, like
those in computer graphics. A scripting language should hide those geomet-
rical difficulties, so that non-professional authors can use it in a natural way.

PRINCIPLES 111

For example, suppose that authors want to specify that an agent turns his
left arm forward slowly. It can be specified like this:

turn(Agent, left_arm, front, slow)

It should not be necessary to specify it as follows, which requires knowledge
of a coordination system, rotation axis, etc.

turn(Agent, left_arm, rotation(1,0,0,1.57), 3)

One of the implications of this principle is that embodied agents should
be aware of their context. Namely, they should be able to understand what
certain indications mean, like the directions ’left’ and ’right’, or the body
parts ’left arm’, etc.

Principle 2: Compositional Semantics Specification of composite actions, based
on existing components. For example, an action of an agent which turns his
arms forward slowly, can be defined in terms of two primitive actions: turn-
left-arm and turn-right-arm, like:

par([turn(Agent, left_arm, front, slow),
turn(Agent, right_arm, front, slow)])

Typical composite operators for actions are sequence action seq , parallel
action par, repeat action repeat, which are used in dynamic logics [Harel, 1984].

Principle 3: Re-definability Scripting actions (i.e.,composite actions), can be
defined in terms of other defined actions explicitly. Namely, the scripting
language should be a rule-based specification system. Scripting actions are
defined with their own names. These defined actions can be re-used for other
scripting actions. For example, if we have defined two scripting actions run
and kick, then a new action run then kick can be defined in terms of run
and kick :

run_then_kick(Agent)=

seq([script(run(Agent)), script(kick(Agent))]).

which can be specified in a Prolog-like syntax:

script(run_then_kick(Agent), Action):-

Action = seq([script(run(Agent)),script(kick(Agent))]).

Principle 4: Parametrization Scripting actions can be adapted to be other
actions. Namely, actions can be specified in terms of how these actions cause
changes over time to each individual degree of freedom, which is proposed by
Perlin and Goldberg in [Perlin and Goldberg, 1996]. For example, suppose
that we define a scripting action run: we know that running can be done at
different paces. It can be a ’fast-run’ or ’slow-run’. We should not define all

112 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

of the run actions for particular paces. We can define the action ’run’ with
respect to a degree of freedom ’tempo’. Changing the tempo for a generic
run action should be enough to achieve a run action with different paces.
Another method of parametrization is to introduce variables or parameters in
the names of scripting actions, which allows for a similar action with different
values. That is one of the reasons why we introduce Prolog-like syntax in
STEP.

Principle 5: Interaction Scripting actions should be able to interact with,
more exactly, perceive the world, including embodied agents’ mental states,
to decide whether or not it should continue the current action, or change to
other actions, or stop the current action. This kind of interaction modes can
be achieved by the introduction of high-level interaction operators, as defined
in dynamic logic. The operator ’test’ and the operator ’conditional’ are useful
for the interaction between the actions and the states.

9.3 SCRIPTING LANGUAGE STEP

In this section, we discuss the general aspects of the scripting language STEP.

9.3.1 Reference Systems

Direction Reference The reference system in STEP is based on the H-anim
specification: namely, the initial humanoid position should be modeled in a
standing position, facing in the +Z direction with +Y up and +X to the
humanoid’s left. The origin 〈0, 0, 0〉 is located at ground level, between the
humanoid’s feet. The arms should be straight and parallel to the sides of the
body with the palms of the hands facing inwards towards the thighs.

Based on the standard pose of the humanoid, we can define the direction
reference system as sketched in figure 9.1. The direction reference system is
based on these three dimensions: front vs. back which corresponds to the
Z-axis, up vs. down which corresponds to the Y-axis, and left vs. right which
corresponds to the X-axis. Based on these three dimensions, we can introduce
a more natural-language-like direction reference scheme, say, turning left-arm
to ’front-up’, is to turn the left-arm such that the front-end of the arm will
point to the up front direction. Figure 9.2 shows several combinations of
directions based on these three dimensions for the left-arm. The direction
references for other body parts are similar. These combinations are designed
for convenience and are discussed in Section 9.2. However, they are in general
not sufficient for more complex applications. To solve this kind of problem, we
introduce interpolations with respect to the mentioned direction references.
For instance, the direction ’left front2’ is referred to as one which is located

SCRIPTING LANGUAGE STEP 113

Fig. 9.1 Direction Reference for Humanoid

114 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

Fig. 9.2 Combination of the Directions for Left Arm

between ’left front’ and ’left’, which is shown in Figure 9.2. Natural-language-
like references are convenient for authors to specify scripting actions, since
they do not require the author to have a detailed knowledge of reference
systems in VRML. Moreover, the proposed scripting language also supports
the orginal VRML reference system, which is useful for experienced authors.
Directions can also be specified to be a four-place tuple 〈X,Y, Z,R〉, say,
rotation(1, 0, 0, 1.57).

Body Reference An H-anim specification contains a set of Joint nodes that
are arranged to form a hierarchy. Each Joint node can contain other Joint
nodes and may also contain a Segment node which describes the body part
associated with that joint. Each Segment can also have a number of Site
nodes, which define locations relative to the segment. Sites can be used for
attaching accessories, like hat, clothing and jewelry. In addition, they can
be used to define eye points and viewpoint locations. Each Segment node
can have a number of Displacer nodes, that specify which vertices within the
segment correspond to a particular feature or configuration of vertices.

Figure 9.3 shows several typical joints of humanoids. Therefore, turning
body parts of humanoids implies the setting of the relevant joint’s rotation.
Body moving means the setting of the HumanoidRoot to a new position. For
instance, the action ’turning the left-arm to the front slowly’ is specified as:

SCRIPTING LANGUAGE STEP 115

Fig. 9.3 Typical Joints for Humanoid

116 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

turn(Agent, l_shoulder, front, slow)

Time Reference STEP has the same time reference system as that in VRML.
For example, the action turning the left arm to the front in 2 seconds can be
specified as:

turn(Agent, l_shoulder, front, time(2, second))

This kind of explicit specification of duration in scripting actions does not
satisfy the parametrization principle. Therefore, we introduce a more flexible
time reference system based on the notions of beat and tempo. A beat is a
time interval for body movements, whereas the tempo is the number of beats
per minute. By default, the tempo is set to 60. Namely, a beat corresponds
to a second by default. However, the tempo can be changed. Moreover, we
can define different speeds for body movements, say, the speed ’fast’ can be
defined as one beat, whereas the speed ’slow’ can be defined as three beats.

9.3.2 Primitive Actions and Composite Operators

Turn and move are the two main primitive actions for body movements. Turn
actions specify the change of the rotations of the body parts or the whole
body over time, whereas move actions specify the change of the positions of
the body parts or the whole body over time. A turn action is defined as
follows:

turn(Agent,BodyPart,Direction,Duration)

where Direction can be a natural-language-like direction like ’front’ or a
rotation value like ’rotation(1,0,0,3.14)’, Duration can be a speed name like
’fast’ or an explicit time specification, like ’time(2,second)’.

A move action is defined as:

move(Agent,BodyPart,Direction,Duration)

where Direction can be a natural-language-like direction, like ’front’, a posi-
tion value like ’position(1,0,10)’, or an increment value like ’increment(1,0,0)’.

Here are typical composite operators for scripting actions:

• Sequence operator ’seq’: the action seq([Action1, ...,Actionn]) denotes
a composite action in which Action1, ...,and Actionn are executed sequen-
tially, like:

seq([turn(agent,l_shoulder,front,fast),
turn(agent,r_shoulder,front,fast)])

• Parallel operator ’par’: the action par([Action1, ...,Actionn]) denotes a
composite action in which Action1, ...,and Actionn are executed simulta-
neously.

EXAMPLES 117

Fig. 9.4 Walk

• non-deterministic choice operator ’choice’: the action choice([Action1,

...,Actionn]) denotes a composite action in which one of the Action1,

...,and Actionn is executed.

• repeat operator ’repeat’: the action repeat(Action, T) denotes a compos-
ite action in which the Action is repeated T times.

9.3.3 High-level Interaction Operators

When using high-level interaction operators, scripting actions can directly
interact with internal states of embodies agents or with external states of
worlds. These interaction operators are based on a meta language which is
used to build embodied agents, say, in the distributed logic programming lan-
guage DLP. In the following, we use lower case Greek letters φ, ψ, χ to denote
formulas in the meta language. Examples of several higher-level interaction
operators:

• test: test(φ), check the state φ. If φ holds then skip, otherwise fail.

• execution: do(φ), make the state φ true, i.e. execute φ in the meta
language.

• conditional: if then else(φ,action1,action2).

• until: until(action,φ): take action until φ holds.

We have implemented the scripting language STEP in the distributed logic
programming language DLP.

9.4 EXAMPLES

9.4.1 Walk and its Variants

A walking posture can be simply expressed as a movement which exchanges
the following two main poses: a pose in which the left-arm/right-leg move
forward while the right-arm/left-leg move backward, and a pose in which the
right-arm/left-leg move forward while the left-arm/right-leg move backward.

118 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

The main poses and their linear interpolations are shown in Figure 9.4. The
walk action can be described in the scripting language as follows:

script(walk_pose(Agent), Action):-
Action = seq([par([

turn(Agent,r_shoulder,back_down2,fast),
turn(Agent,r_hip,front_down2,fast),
turn(Agent,l_shoulder,front_down2,fast),
turn(Agent,l_hip,back_down2,fast)]),

par([turn(Agent,l_shoulder,back_down2,fast),
turn(Agent,l_hip,front_down2,fast),
turn(Agent,r_shoulder,front_down2,fast),
turn(Agent,r_hip,back_down2,fast)])]).

Thus, a walk step can be described to be as a parallel action which consists
of the walking posture and the moving action (i.e., changing position) as
follows:

script(walk_forward_step(Agent),Action):-
Action= par([script_action(walk_pose(Agent)),

move(Agent,front,fast)]).

The step length can be a concrete value. For example, for the step length
with 0.7 meter, it can be defined as follows:

script(walk_forward_step07(Agent),Action):-
Action= par([script_action(walk_pose(Agent)),

move(Agent,increment(0.0,0.0,0.7),fast)]).

Alternatively, the step length can also be a variable like:

script(walk_forward_step0(Agent,StepLength),Action):-

Action = par([script_action(walk_pose(Agent)),

move(Agent,increment(0.0,0.0,StepLength),fast)]).

Therefore, the walking forwardN steps with the StepLength can be defined
as follows:

script(walk_forward(Agent,StepLength,N),Action):-
Action = repeat(script_action(

walk_forward_step0(Agent,StepLength)),N).

As mentioned above, the animations of the walk based on these definitions
are just simplified and approximated ones. As analysed in [Faure, 1997], a
realistic animation of the walk motions of human figure involves a lot of com-
putations which rely on a robust simulator where forward and inverse kine-
matics are combined with automatic collision detection and response. We do
not want to use the scripting language to achieve a fully realistic animation of

EXAMPLES 119

Fig. 9.5 Poses of Run

the walk action, because they are seldom necessary for most web applications.
However, we would like to point out that there does exist the possibility to
accommodate some inverse kinematics to improve the realism by using the
scripting language.

9.4.2 Run and its Deformation

The action ’run’ is similar to ’walk’, however, with a bigger wave of the lower-
arms and the lower-legs, which is shown in Figure 9.5a. As we can see from
the figure, the left lower-arm points to the direction ’front-up’ when the left
upper-arm points to the direction ’front down2’ during the run. Consider
the hierarchies of the body parts, we should not use the primitive action
turn(Agent, l elbow, front up, fast) but the primitive action turn(Agent, l elbow, front, fast),
for the direction of the left lower-arm should be defined with respect to the
default direction of its parent body part, i.e., the left arm (more exactly, the
joint l shoulder). That kind of re-direction would not cause big difficulties for
authoring, for the correct direction can be obtained by reducing the directions
of its parent body parts to be the default ones. As we can see in Figure 9.5b,
the lower-arm actually points to the direction ’front’.

The action ’run pose’ can be simply defined as an action which starts with a
basic run pose as shown in Figure 9.5b and then repeat the action ’walk pose’
for N times as follows:

script(basic_run_pose(Agent), Action):-
Action=par([turn(Agent,r_elbow,front,fast),

turn(Agent, l_elbow, front, fast),
turn(Agent, l_hip, front_down2, fast),
turn(Agent, r_hip, front_down2, fast),
turn(Agent, l_knee, back_down, fast),
turn(Agent, r_knee, back_down, fast)]).

script(run_pose(Agent,N),Action):-
Action = seq([script_action(basic_run_pose(Agent)),
repeat(script_action(walk_pose(Agent)),N)]).

120 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

Therefore, the action running forward N steps with the StepLength can
be defined in the scripting language as follows:

script(run(Agent, StepLength,N),Action):-
Action=seq([script_action(basic_run_pose(Agent)),
script_action(walk_forward(Agent,StepLength,N))]).

Actually, the action ’run’ may have a lot of variants. For instances, the
lower-arm may point to different directions. They would not necessarily point
to the direction ’front’. Therefore, we may define the action ’run’ with respect
to certain degrees of freedom. Here is an example to define a degree of freedom
with respect to the angle of the lower arms to achieve the deformation.

script(basic_run_pose_elbow(Agent,Elbow_Angle),Action):-
Action = par([

turn(Agent,r_elbow,rotation(1,0,0,Elbow_Angle),fast),
turn(Agent,l_elbow,rotation(1,0,0,Elbow_Angle),fast),
turn(Agent,l_hip,front_down2,fast),
turn(Agent,r_hip,front_down2,fast),
turn(Agent,l_knee,back_down,fast),
turn(Agent,r_knee,back_down,fast)]).

script(run_e(Agent,StepLength,N,Elbow_Angle),Action):-
Action = seq([script_action(

basic_run_pose_elbow(Agent,Elbow_Angle)),
script_action(walk_forward(Agent, StepLength, N))]).

9.4.3 Tai Chi

In this subsection, we will discuss an application example, the development
of an instructional VR for Tai Chi, illustrating how our approach allows for
the creation of reusable libraries of behavior patterns.

A Tai Chi exercise is a sequence of exercise stages. Each stage consists of
a group of postures. These postures can be defined in terms of their body
part movements. Figure 9.6 shows several typical postures of Tai Chi. For
instance, the beginning-posture and the push-down-posture can be defined as
follows:

script(taichi(Agent,beginning_posture),Action):-
Action =seq([

turn(Agent,l_hip,side1_down,fast),
turn(Agent,r_hip,side1_down,fast),

par([turn(Agent,l_shoulder,front,slow),
turn(Agent,r_shoulder,front,slow)])]).

script(taichi(Agent,push_down_posture),Action) :-

EXAMPLES 121

Fig. 9.6 Tai Chi

Action =seq([
par([turn(Agent,l_shoulder,front_down,slow),

turn(Agent,r_shoulder,front_down,slow),
turn(Agent,l_elbow,front_right2,slow),
turn(Agent,r_elbow,front_left2,slow)]),
par([turn(Agent,l_hip,left_front_down,slow),

turn(Agent,r_hip,right_front_down,slow),
turn(Agent,l_elbow,right_front_down,slow),
turn(Agent,r_shoulder,front_down2,slow),
turn(Agent,l_knee,back2_down,slow),
turn(Agent,r_knee,back2_down,slow)])]).

Those defined posture can be used to define the stages like this:

script(taichi(Agent, stage1), Action) :-
Action =seq([

script(taichi(Agent,beginnin_posture),
script(taichi(Agent,push_down_posture),
......

]).

Furthermore, those scripting actions can be used to define more complex
Tai Chi exercise as follows:

script(taichi(Agent), Action) :-
Action = seq([

do(display(’Taichi exercise ...~n’)),
script(taichi(Agent, stage1)),

122 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

script(taichi(Agent, stage2))
......

]).

Combined with the interaction operators, like do-operator, with built-in pred-
icates in mete-language, the instructional actions become more attractive.
Moveover, the agent names in those scripting actions are defined as variables.
These varibales can be instantiated with different agent names in different
applications. Thus, the same scripting actions can be re-used for different
avatars for different applications.

9.4.4 Interaction with Other Agents

Just consider a situation in which two agents have to move a ’heavy’ table
together. This scripting action ’moving-heavy-table’ can be designed to be
ones which consist of the following several steps (i.e., sub-actions): first walk
to the table, then hold the table, and finally move the table around. Using
the scripting language, it is not difficult to define those sub-actions, they can
be done just like the other examples above, like walk and run. A solution to
define the action ’moving-heavy-table’ which involves multiple agents can be
as follows 1:

script(move_heavy_table(Agent1,Agent2,Table,
NewPos), Action):-

Action = seq([par([
script(walk_to(Agent1,Table)),
script(walk_to(Agent2,Table))]),

par([script(hold(Agent1,Table,left)),
script(hold(Agent2,Table,right))]),

par([move(Agent1,NewPosition,slow),
move(Agent2,NewPosition,slow),
do(object_move(Table,NewPos,slow))

])]).

The solution above is not a good solution if we consider this action is a co-
operating action between two agents. Namely, this kind of actions should not
be achieved by this kind of pre-defined actions but by certain communica-
tive/negotiation procedures. Hence, the scripting action should be considered
as an action which involves only the agent itself but not other agents. Any-
thing the agent need from others can only be achieved via its communicative
actions with others or wait until certain conditions meet. Therefore, the
cooperating action ’moving-heavy-table’ should be defined by the following
procedure, first the agent walks to the table and holds one of the end of the

1We omit the details about the definitions of the actions like walk to, hold, etc.

XSTEP: THE XML-ENCODED STEP 123

table2, next, wait until the partner holds another end of the table, then moves
the table. It can be defined as follows:

script(move_heavy_table(Agent,Partner,
Table, NewPos), Action):-

Action=seq([script(walk_to(Agent,Table)),
if_then_else(not(hold(Partner,Table,left)),

script(hold(Agent,Table,left)),
script(hold(Agent,Table,right))),

until(wait,hold(Partner,Table,_)),
par([move(Agent,NewPos,slow),

do(object_move(Table,NewPos,slow))]
)]).

9.5 XSTEP: THE XML-ENCODED STEP

We are also developing XSTEP, an XML encoding for STEP. We use seq and
par tags as found in SMIL3, as well as action tags with appropriate attributes
for speed, direction and body parts involved. As an example, look at the
XSTEP specification of the walk action.

<action name="walk(Agent)">
<seq>
<par>
<turn actor="Agent" part="r_shoulder">
<dir value="back_down2"/>
<speed value="fast"/>

</turn>
<turn actor="Agent" part="r_hip">
<dir value="front_down2"/>
<speed value="fast"/>

</turn>
<turn actor="Agent" part="l_shoulder">
<speed value="fast"/>
<dir value="front_down2"/>

</turn>
<turn actor="Agent" part="l_hip">
<dir value="back_down2"/>
<speed value="fast"/>

</turn>

2Here we consider only a simplified scenario. We do not consider the deadlock problem
here, like the that in the philosopher dinner problem.
3http://www.w3.org/AudioVideo

124 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

</par>
......

</seq>
</action>

Similar as with the specification of dialog phrases, such a specification is
translated into the corresponding DLP code, which is loaded with the scene
it belongs to. For XSTEP we have developed an XSLT stylesheet, using the
Saxon4 package, that transforms an XSTEP specification into DLP. We plan
to incorporate XML-processing capabilities in DLP, so that such specifications
can be loaded dynamically.

9.6 IMPLEMENTATION ISSUES

We have implemented the scripting language STEP in the distributed logic
programming language DLP. In this section, we discuss several implementa-
tion and performance issues. First we will discuss the module architectures of
STEP . Scripting actions are defined as a sequence or parallel set of actions.
One of the main issues is how to implement parallel actions with a satisfying
performance. Another issue is which interpolation method should be used to
achieve smooth transitions from an initial state to a final state.

9.6.1 STEP Components

STEP is designed for multiple purpose use. It serves as an animation/action
engine, which can be embodied as a component in embodied agents, or can also
be located at the controlling component at XSTEP, the XML-based markup
language.

STEP consists of the following components:

• Action library: The action library is the collections of the scripting
actions, which can be of user defined or of system built-in.

• STEP ontology: The STEP ontology component defines the seman-
tic meanings of the STEP reference systems. So-called Ontology is a
description of the concepts or bodies of knowledge understood by a par-
ticular community and the relationships between those concepts. The
STEP body ontological specification is based on H-anim specification.
The STEP ontology component also defines the semantic meaning of
the direction reference system. For instance, the semantic interpreta-
tion of the direction ’front’ can be defined in the ontology component
as follows:

4http://saxon.sourceforge.com

IMPLEMENTATION ISSUES 125

Fig. 9.7 STEP and its interface with embodied agents

rotationParameter(_,front,rotation(1,0,0,-1.57)).

Namely, turning a body part to ’front’ is equal to setting its rotation
to (1, 0, 0, -1.57). Separated ontology specification component would
make STEP more convenient for the extension/change of its ontology.
It is also a solution to the maintenance of the interoperability of the
scripting langauge over the Web.

• STEP Kernel: The STEP kernel is the central controlling component
of STEP . It translates scripting actions into executable VRML/X3D
EAI commands based on the semantics of the action operators and the
ontological definitions of the reference terms. The STEP kernel and
the STEP ontology component are application-independent. The two
components together is called the STEP engine.

• STEP application interface: The STEP application interface com-
ponent offers the interface operators for users/applications. The script-
ing actions can be called by using these application interface operators.
They can be java-applet-based, or java-script-based, or XML-based.

The avatars of VRML/X3D-based embodied agents are displayed in a VRML/X3D
browser. These embodied agents are usually designed as java applets which
are embodied in the browser. They interact with virtual environments via
VRML/X3D External Application Interface (EAI). STEP is also designed as
the part of the java applets, which can be called by embodied agents via the
step interface component. STEP module architecture and its interface with
embodied agents is shown in Figure 9.7.

9.6.2 Parallelism and Synchronization

How to implement parallel actions with a satisfying performance is an impor-
tant issue for a scripting language. A naive solution is to create a new thread

126 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

Fig. 9.8 Processing Parallel Actions

IMPLEMENTATION ISSUES 127

for each component action of parallel actions. However, this naive solution
will result in a serious performance problem, because a lot of threads will be
created and killed frequently. Our solution to handle this problem is to create
only a limited number of threads, which are called parallel threads. The sys-
tem assigns component actions of parallel actions to one of the parallel threads
by a certain scheduling procedure. We have to consider the following issues
with respect to the scheduling procedure: the correctness of the scheduling
procedure and its performance. The former implies that the resulting ac-
tion should be semantically correct. It should be at least order-preserving.
Namely, an intended late action should not be executed before an intended
early action. In general, all actions should be executed in due time, with the
sense that they are never executed too early or too late.

In general, a set of composite sequential and parallel actions can be depicted
as an execution graph; each node in a graph represents either a sequential or a
parallel activity. Execution graphs indicate exactly when a particular action
is invoked or when (parallel) actions synchronize. Parallel actions can be
nested, i.e. a parallel action can contain other parallel activities. Therefore,
synchronization always takes place relative to the parent node in the execution
graph. This way, the scheduling and synchronization scheme as imposed by
the execution graph preserves the relative order of actions.

From a script point of view, a parallel action is finished when each of the
individual activities are done. However, action resources are reclaimed and
re-allocated incrementally. After synchronization of a particular activity in a
parallel action construct its resources can be re-used immediately for other
scripting purposes. Just consider a nested parallel action which consists of
several sequential and parallel sub-actions, like,

par([seq([A1, A2, A3]), seq([B1, par([C1, C2]), B2]),
par([D1, seq([E1, E2])])])

The procedure of the scheduling and synchronization is shown in Figure 9.8.

9.6.3 Rotation Interpolation

We use DLP to implement the scripting language STEP . One of the issues on
the implementation is to achieve the function of turn-object by introducing
an appropriate interpolation between the starting rotation and the ending
rotation.

Suppose that the object’s current rotation is

Rs = 〈X0, Y0, Z0, R0〉

and the ending rotation of the scripting action is

Re = 〈X,Y, Z,R〉,

128 STEP : A SCRIPTING LANGUAGE FOR EMBODIED AGENTS

and the number of interpolations is I. In STEP , we use slerp (spherical inter-
polation) on unit quaternions to solve this problem. Let Qs = 〈w0, x0, y0, z0〉
and Qe = 〈w, x, y, z〉 be the corresponding quaternions of the rotations Rs and
Re. The relation between a rotation 〈X,Y, Z,R〉 and a quaternion 〈w, x, y, z〉
is as follows:

w = cos(R/2).
x = X × sin(R/2).
y = Y × sin(R/2).
z = Z × sin(R/2).

The function slerp does a spherical linear interpolation between two quater-
nions Qs and Qe by an amount T ∈ [0, 1]:

slerp(T,Qs, Qe) = Rs × sin((1− T)× Ω)/sin(Ω) +
Re × sin(T × Ω)/sin(Ω)

where cos(Ω) = Qs·Qe = w0×w+x0×x+y0×y+z0×z. See [Schoemake, 1985]
for more details of the background knowledge on quaternions and slerp.

One of the requirement to achieve a natural transition of the two rotations
is to introduce the non-linear interpolation between two rotations. STEP
also allows users to introduce their own non-linear interpolation by using the
enumerating type of interpolation operator. An example:

turnEx(Agent,l_shoulder,front,fast,
enum([0,0.1,0.15,0.2,0.8,1]))

would turn the agent’s left arm to the front via the interpolating points 0,
0.1, 0.15, 0.2,0.8,1.

Users can use the interaction operators do to calculate interpolating point
lists for their own interpolation function. Therefore, the enumerating list is
powerful enough to represent arbitrary discrete interpolation function.

9.7 CONCLUSIONS

In this chapter we have discussed the scripting language STEP for embodied
agents, in particular for their communicative acts, like gestures and postures.
Moreover, we have discussed principles of scripting language design for em-
bodied agents and several aspects of the application of the scripting language.

STEP is close to Perlin and Goldberg’s Improv system. In [Perlin and Goldberg, 1996],
Perlin and Goldberg propose Improv, which is a system for scripting inter-
active actors in virtual worlds. STEP is different from Perlin and Goldberg’s
in the following aspects: First, STEP is based on the H-anim specification,
thus, VRML-based, which is convenient for Web applications. Secondly, we

CONCLUSIONS 129

separate the scripting language from the agent architecture. Therefore, it’s
relatively easy for users to use the scripting language.

Prendinger et al. are also using a Prolog-based scripting approach for
animated characters but they focus on higher-level concepts such as affect
and social context[Prendiner et al., 2002]. STEP shares a number of interests
with the VHML(Virtual Human Markup Language) community5, which is
developing a suite of markup language for expressing humanoid behavior,
including facial animation, body animation, speech, emotional representation,
and multimedia. We see this activity as complementary to ours, since our
research proceeds from technical feasibility, that is how we can capture the
semantics of humanoid gestures and movements within our dynamic logic,
which is implemented on top of DLP.

5http://www.vhml.org

Part III

Virtual Communities

10
Virtual Communities

10.1 INTRODUCTION

3D virtual communities and in particular VRML-based multi-user virtual
worlds, have been adopted in a lot of application areas like 3D virtual confer-
encing [VESL], Web-based multi-user games [MiMaze], on-line entertainment
[Blaxxun, 2000], and e-commerce [Messmer]. Examples of popular 3D vir-
tual community servers are Active World [ActiveWorld, 2000] and Blaxxun
Interactive [Blaxxun, 2000].

The term ”virtual community” is usually used to refer to the general ap-
pearance and gathering of people over distributed computer systems, in par-
ticular, on the Internet. A typical text-based virtual community is Internet
Relay Chatting [Liu, 1999], whereas typical 3D web-based virtual community
are the VRML-based ones, like the Blaxxun community server, DeepMatrix
[Reitmayr et al., 1999], VLNet [Capin et al., 1997]. In VRML-based virtual
communities, virtual worlds are designed by using VRML, whereas the VRML
External Authoring Interface (EAI) connects the Java Virtual Machine run-
ning in a Web Browser to execute applets and plug-ins are used to control the
virtual worlds.

Virtual communities usually have a client-server network architecture. In
particular, they occasionally use a centralized server architecture, for the
clients are Java applets running in a remote Web Browser, and the Java
platform security policy allows clients only to connect to the originating host.

133

134 VIRTUAL COMMUNITIES

10.2 LIVING WORLDS

The ”Living Worlds” Working Group describes a general concept and context
of VRML-based virtual communities [Living Worlds]. In Living worlds, a
component called MUTech, or alternatively called Multi-User Technology, is
used to implement shared behaviors/states across the network. MUTechs
provide all network communication needed for multi-user interaction beyond
that provided by the Browser itself. A scene is used to refer to a set of VRML
objects which is geometrically bounded and is continuously navigable, i.e.,
without ”jumps”. A world consists of one or more scenes linked together both
from a technical and conceptual point of view. A zone is a contiguous portion
of a scene. A SharedObject, or shared object, is an object whose state and
behavior are to be synchronized across multiple clients. Thus, a zone is a
container for SharedObject. The SharedObject on one of these clients are
called an instance of the SharedObject. In ”Living worlds” a pilot is used
to refer to an instance of a SharedObject whose states and behaviors are
replicated by other instances, its drones, Namely, a drone an instance of a
SharedObject replicating the state or behavior of another instance, its pilot.
In Living Worlds, a avatar is defined as a SharedObject whose pilot is under
real-time user control. However, in agent-based virtual communitity, which
would be discussed in the next section, an avatar can be a representation of
a human user, or an autonomous agent.

10.3 AGENT-BASED VIRTUAL COMMUNITY

Most existing virtual community do not provide support for intelligent agents.
Enhancing virtual worlds with intelligent agents would significantly improve
the interaction with users as well as the capabilities of networked virtual
environments [Broll et al., 2000, Earnshaw, et al., 1998, Watson, 1996].

In [Huang et al., 2002], an approach to 3D agent-based virtual communities
has been proposed. So-called agent-based virtual community has the following
two shades of meaning :

• Virtual environments with embedded agents: autonomous agents are par-
ticipants in virtual communities. The main advantages are: the agent
can be used to enhance the interaction with users. For instance, in a
multi-user soccer game, it is usually hard to find enough users to join
the game at a particular moment. Autonomous agents can serve as goal
keepers, or players whenever they are needed. Moreover, autonomous
agents always possess certain background knowledge about the virtual
worlds. They can serve as intelligent assistants for navigation or as
masters to maintain certain activities, like a referee in a soccer game.

• Virtual environments supported by ACL communication: Agent commu-
nication languages are designed to provide a high level communication

AGENT-BASED VIRTUAL COMMUNITY 135

facility. The communication between the agents can be used for the
realization of shared objects in virtual worlds. For instance, in a soc-
cer game, whenever an agent or user kicks the soccer ball, the kicking
message should be broadcast to all other agents and users. The state of
the soccer ball in the user’s local world can be updated after receiving
the message. Moreover, such a high-level communication facility can
also be used to reduce message delays, which are usually a bottleneck
in networked virtual communities. We will discuss performance related
details in section 11.3.

In agent-based virtual communities, a shared object is designed to be con-
trolled by an agent. Therefore, a pilot agent is one which controls the states
or behavior of a shared object, whereas a drone agent is one which replicates
the state of a shared object. Based on the different types of shared objects,
the agents can be further distinguished into the following three types:

• object agents: an autonomous program controls a simple shared object,
like a soccer ball. Pilot object agents are usually located at the server
side, whereas drone object agents are usually located at the client side.

• user agents: an autonomous program which controls a user avatar; it
translates commands from users to messages for the communication be-
tween the agents. Of course, a pilot user agent is located at the user
or client side. Drone user agents can be located at the server or other
clients, however, they are usually not required, as will be explained in
the section 11.2.

• autonomous agents: an autonomous program with its own avatar which
is able to perform complex tasks, like an autonomous player in a soccer
game. Pilot autonomous agents are located at the server side, whereas
drone autonomous agents are located at all clients.

In addition, we also need multi-threaded components which are in charge
of passing communication messages. However, we would not call them agents,
but communication components/threads, for the agents are interested in the
communications only with other agents, rather than the communication facil-
ities themselves.

11
DLP for Virtual

Communities

11.1 DLP NETWORKING PREDICATES

DLP is a distributed programming language. DLP programs can be executed
at different computers in a distributed architecture.

The followings are TCP/IP networking predicates in DLP:

• Host-identification predicate hostaddress(HostName, InternetAddress)
gets HostName with the name of the host from which the current pro-
gram objects are loaded.

• Server predicate tcpserver(ServerPort, ServerSocket)
creates a server socket on a server port.

• Server acceptance predicate tcpaccept(ServerSocket, ServerStreamIn,
ServerStreamOut) create a stream for messages input and a stream for
message output on the server socket.

• Client predicates tcpclient(ServerHostName, ServerPort, T imeOut,
ClientStreamIn,ClientStreamOut) create a stream for message input
and a stream for message output from the client on the host at the server
port.

• Bi-Directional Client / Server Communication predicates:
tcpgetterm(StreamIn, Term) gets a message term from the stream, and
tcpputterm(StreamOut, Term) puts a message term on the stream.

The TCP networking predicates are primarily intended for internal , i.e.
DLP run-time system use only. The primitives are used in the current DLP

137

138 DLP FOR VIRTUAL COMMUNITIES

run-time system to implement a high-level distributed communication frame-
work. However, occasionally it will be useful to implement a dedicated dis-
tributed communication infrastructure. The following source code example
illustrates how TCP predicates can be used to build special purpose dis-
tributed processing systems in DLP itself. The program example consists
of two objects: pxserver and pxclient.

Object pxserver is used as a stand-alone program; once invoked by a ”dlp
pxserver” command, it will handle multiple pxclient connections. Each client
connection will be processed by a separate pxserver thread :

:- object pxserver.

var port = 4321.

main :-
tcp_server(port, ServerSocket),
format(’Server ~w : socket = ~w~ n’, [this, ServerSocket]),
new(pxserver(ServerSocket), _),
format(’end of ~w main~ n’, [this]).

pxserver(ServerSocket) :-
server_init(ServerSocket, ServerStreamIn, ServerStreamOut),
server_loop(ServerStreamIn, ServerStreamOut).

server_init(ServerSocket, ServerStreamIn, ServerStreamOut) :-
tcp_accept(ServerSocket, ServerStreamIn, ServerStreamOut, ClientHostName),
format(’Server ~w : accepting new client connection from ~w~ n’,

[this, ClientHostName]),
new(pxserver(ServerSocket),_).

server_loop(ServerStreamIn, ServerStreamOut) :-
repeat,
tcp_get_term(ServerStreamIn, ClientRequest),
process_mesg(ClientRequest, ServerReply),
tcp_put_term(ServerStreamOut, ServerReply),

ServerReply = thread_shutdown,
!,
tcp_close(ServerStreamIn),
tcp_close(ServerStreamOut).

process_mesg(Input, Reply):-
format(’Server ~w : tcp get = ~w~ n’, [this, Input]),

message_type(Input, Reply),
format(’Server ~w : tcp put = ~w~ n’, [this, Reply]).

DLP NETWORKING PREDICATES 139

message_type(mul_int(I0,I1), ReplyTerm) :-
integer(I0),
integer(I1),
!,
IR is I0 * I1,
ReplyTerm = mul_val(IR).

message_type(InputTerm, ReplyTerm) :-
InputTerm = [client, [_]],
!,
ReplyTerm = [server, [ServerHost]],
local_host(ServerHost, _).

message_type(client_shutdown, thread_shutdown) :- !,
format(’~ nServer Thread ~w shutdown~ n’, [this]).

message_type(Input, Reply) :-
Reply = unknown_message_type(Input).

:- end_object pxserver.

A pxclient object can execute as a stand-alone client or can execute in a
browser. Typically, several active pxclient objects will connect to a single
multi-threaded pxserver object simultaneously. In case one or more pxclient
objects are running in a browser on different machines, the pxserver should
run on the same machine from which the pxclient code is loaded.

:- object pxclient.

var port = 4321, loop = 5 .

main :-
text_area(BrowserTextArea),
set_output(BrowserTextArea),
code_base_host(ServerHost),
pxclient(ServerHost, port),
format(’end of ~w main~ n’, [this]).

pxclient(ServerHost, ServerPort) :-
format(’Code base host = ~w~ n’, [ServerHost]),
tcp_client(ServerHost, ServerPort, 10, StreamIn, StreamOut),
format(’client socket = ~w, ~w~ n’, [StreamIn,StreamOut]),
client_init(StreamIn, StreamOut),
client_loop(StreamIn, StreamOut),
client_exit(StreamIn, StreamOut),
tcp_close(StreamIn),

140 DLP FOR VIRTUAL COMMUNITIES

tcp_close(StreamOut).

client_init(StreamIn, StreamOut) :-
local_host(ClientHost,_),
format(’Client host = ~w~ n’, [ClientHost]),
tcp_put_term(StreamOut, [client, [ClientHost]]),
tcp_get_term(StreamIn, OK),
format(’server answer = ~w~ n’, [OK]).

client_loop(StreamIn, StreamOut) :-
repeat,
ServerInput = mul_int(loop, 100),
format(’Client ~w : tcp put = ~w~ n’, [this, ServerInput]),
tcp_put_term(StreamOut, ServerInput),
tcp_get_term(StreamIn, ServerReply),
format(’Client ~w : tcp get = ~w~ n’, [this, ServerReply]),
-- loop,

loop =:= 0,
!.

client_exit(StreamIn, StreamOut) :-
tcp_put_term(StreamOut, client_shutdown),
tcp_get_term(StreamIn, thread_shutdown).

:- end_object pxclient.

Another (somewhat unusual) example of running the client - server objects
is shown below. When the object pxsock is executed by means of a ”dlp
pxsock” command, it will create an active pxserver as well as several active
pxclient threads. These active threads will communicate within the context
of a single program by means of the established socket connections.

:- object pxsock.

var port = 4321.

main:-
tcp_server(port, Socket),
local_host(Host, _),
new(pxserver(Socket), _),
new(pxclient(Host,port), _),
new(pxclient(Host,port), _),
new(pxclient(Host,port),_),
format(’end of ~w main~ n’, [this]).

:- end_object\ pxsock.

DISTRIBUTED COMMUNICATION 141

Server

Client

User

Client

User

Client

User

Fig. 11.1 virtual community based on server-client mode

11.2 DISTRIBUTED COMMUNICATION

In general, a virtual community based on server-client network architecture
works like this: all of the clients/users connect with a centralized server via
a Web browser, usually by means of a TCP connection. The server receives,
processes, and transfers the messages about shared objects to the clients for
the necessary update. The network architecture of the server-client based
virtual community is shown in figure 11.1.

To improve the performance, multiple threads of control are introduced in
both server and clients for the virtual communities, which is shown in Figure
11.2. Each thread has its own message queue to keep the coming-messages
(sent from other threads) which have not yet been processed. Thus, sending
a message to a thread means just putting the message to the recipient’s mes-
sage queue. The predicates get queue and set queue are used to get and set a
message from the queue respectively. Each client has its own communication
thread, called client thread, which is in charge of the network communica-
tion. Moreover, for each client a special thread called server thread, is created
for the network communication with its corresponding client thread. The
introduction of multiple threads leads to the following more sophisticated
communication types:

• communication between internal threads: messages are sent from a
thread to another thread inside server or clients. This kind of com-
munication is done by directly calling one of the predicates get queue
and set queue.

• communication between threads across the network: messages are sent
from a thread located at the server to a thread located at a client, or

142 DLP FOR VIRTUAL COMMUNITIES

vice versa. Sending a message from a thread located at the server to a
thread located at a client, has the following procedure:

1. the message is put to the corresponding server thread’s message
queue;

2. the server thread uses get queue to get the message from the mes-
sage queue;

3. the server thread used tcp put term to put the message to the
stream connected with the client thread;

4. the client thread uses tcp get term to get the message from the
stream;

5. the client thread uses tcp put term to put the message to the des-
tination thread’s message queue;

6. the destination thread uses get queue to get the message from its
own message queue.

• communication between two clients: messages are sent from a client
thread to a thread located at another client. Since there are no direct
connection between two clients, this kind of communications have to be
achieved via the server.

Moreover, server/clients are designed to consist of two main components:
a general component, called gg-server and gg-client, which deals with the
network communication and an application specific component, say, called
wsserver and wsclient for the soccer game, which deals with anything that is
relevant for the application. Furthermore, the gg echo component is used to
achieve the actual message broadcasting.

In agent-based virtual communities, each agent is represented as a thread.
Considering the high degree of autonomous behavior of user agents, we don’t
need the drone user agent at the server side and other client sides, which will
become more clear in section 11.3.

For agent-based virtual communities, agent communication languages (ACL)
are used to serve as a high level communication facility. KQML [Finin and Fritzson, 1994]
and FIPA ACL [FIPA, 1999], which are based on speech act theory [Searle, 1969],
are popular agent communication languages. A message in ACL usually con-
sists of a communicative act, a sender name, a list of recipients, and additional
content. Communicative acts like ’tell’, ’ask’, and ’reply’, are used to iden-
tify the communication actions which may change the mental attitudes of the
agents. Moreover, a set of the agent interaction protocols based on ACL have
to be defined to achieve interoperability among the agents.

The agents need not to take care of the details how the messages are passed
across the network, that is done by communication threads. The configuration
between multiple agents at the server or client is shown in figure 11.3.

DISTRIBUTED COMMUNICATION 143

Fig. 11.2 Communication among Multiple Threads in DLP

144 DLP FOR VIRTUAL COMMUNITIES

Fig. 11.3 Communication among Agents in DLP

EXAMPLE: VRML-BASED MULTIPLE USER SOCCER GAME 145

11.3 EXAMPLE: VRML-BASED MULTIPLE USER SOCCER GAME

We used the soccer game as one of the benchmark examples to test 3D agent-
based virtual communities for the following reasons:

• multiple users: Multiple human users can join the soccer game, so that
a virtual community is formed.

• multiple agents: Soccer games are multi-agent systems which require
multiple autonomous agents to participate in the games, in particular,
the goalkeepers are better to be designed as autonomous agents, rather
than human users, for their active areas are rather limited, i.e., only
around the goal gates. The goalkeeper agents can be designed to be
ones which never violate the rules of games.

• reactivity: Any player (user or agent) has to react very quickly in the
game. Thus, it is not allowed to have serious performance problems.

• cooperation/competition: Soccer games are typical competition games
which require the strong cooperation among teammates. Therefore,
intelligent behavior is a necessity for agents.

• dynamic behavior: Sufficiently complex 3D scenes, including the dy-
namic behavior of the ball.

A screenshot of the soccer game with multiple users is shown in Figure
11.4.

We consider to extend the soccer game example with a single user to the
multiple user version. Namely, there are two playing teams: red and blue, in
the soccer game. Two goal keepers, a soccer ball, and several agent players
are designed to be pilot agents in the server. Whenever a new user joins the
game, a client is created in which a user agent is created to be a pilot agent
in the client.

Of course, the game would establish the balance of the number of players
for two teams by considering the assignment of the player names to new users.
This is achieved by take the first element of a free name list as a new player
name:

FreeList = [blue2, red4, blue6, red8, blue10, red12]

11.3.1 Distributed Soccer Game Protocol

ACL is used to design a distributed soccer game protocol which states how
the message should be processed and forwarded among the agents to achieve

146 DLP FOR VIRTUAL COMMUNITIES

Fig. 11.4 Screenshot of Soccer Game with Multiple Users

shared objects. The messages in distributed soccer game protocol is a 3-tuple:
1

[Act, Type, ParameterList]

where Act is a communicative act; like ’tell’, ’ask’, ’register’ ; Type is a
content type, like ’position’, ’rotation’, ’kick-ball’ ; ParameterList is a list of
the parameters for the content type.

The followings are the basic message formats for the distributed soccer game
protocol:

• register game: [register, game name, from(Host)].

• register accept: [tell, accept, [Name, BallPosition, Score, OtherPlayers]].

• register wait: [tell, wait, []].

• new player: [tell, new player, user(Host,Name)].

• tell position: [tell, position, [user(Host,Name),position(X,Y,Z)]].

• tell rotation: [tell, rotation, [user(Host,Name),rotation(X,Y,Z,R)]].

• text chat: [tell, text, [user(Host,SenderName), RecipientNameList, Text]].

• text chat broadcast: [tell, text,[user(Host,SenderName), [all], Text]].

1Consider the fact in the game most messages are sent either only to the server for further
processing, or all of the clients, namely, there is only one world in the soccer game. We
omit the sender name and the recipient names in most message formats. However, note
that they can be added in the parameterList if necessary.

EXAMPLE: VRML-BASED MULTIPLE USER SOCCER GAME 147

• kick ball: [tell, kick ball, [user(Host,Name),force(X,Y,Z)]].

• tell game score: [tell, game score, user(Host,Name)].

• ask game score: [ask, game score, user(Host,Name)].

• reply game score: [reply, game score, score(score1,score2)].

• unregister game: [unregister, game name, user(Host,Name)].

• reply unregister game: [reply, unregister, done(Host,Name)].

• player gone: [tell, player gone, user(Host,Name)].

The meaning of the message formats above are straightforward. For in-
stance, the message

[tell, position, [host(swpc257, red10), position(0, 0, 10)]]

states that the current position of the player red10 at the host swpc257 is
〈0, 0, 10〉.

The distributed soccer game protocol for pilot agents are straightforward,
namely, they should regularly tell their position and rotation to the communi-
cation threads if the position and rotation is changed, so that their information
can be updated by their drones. Moreover, for the player agents, if they kick
the ball, the kicking message has to be passed to the server communication
thread. The server communication thread would decide which one is legal kick
and takes certain actions. Thus, the server communication thread plays a cen-
tral role for the communication among pilot/drone agents. The distributed
soccer game protocol for the server communication thread is a set of 4-tuples
with the following format: 〈M,C,RM,B〉, which states that if the Message
M is received and the Condition C holds, then reply the message RM , and
broadcast the message B. The protocol is shown in the table 11.3.1.

11.3.2 Performance Improvement

Theoretically, the protocol above is sufficiently strong to realize the shared
objects in the soccer game. However, in practice it results in several perfor-
mance problems. Consider a problem caused by autonomous player agents.
The players may continuously run to the ball or other positions. If the play-
ers regularly send messages about their positions and rotations, the message
queues grows rapidly, which would cause serious message delays. In a worst
case situation, a user will never be able to kick a ball, because its local world
isn’t updated.

In order to improve the performance and decrease the message delays, new
message formats are needed in the protocol, so that the drone agents can
simulate the behavior of their counterpart pilot agents at a high level, i.e. the
behavior can be computed locally. However, note that the high level simu-
lations are suitable only for autonomous agents and object agents, for their
pilots are controlled by DLP programs, thus, their behaviors are somehow
predictable. Because of the high autonomy of the human users, user agents

148 DLP FOR VIRTUAL COMMUNITIES

received message condition reply message broadcast

register game player name available register accept tell new player

register game player name not available register wait

tell position tell position

tell rotation tell rotation

tell kick legal kick tell kick

tell kick illegal kick

text chat recipient list text chat

text chat broadcast text chat

ask, game score reply game score

unregister game reply unregister player gone

Table 11.1 Distributed Soccer Game Protocol

are usually hard to be simulated in a high level. Thus, the high level mes-
sage formats are used only for autonomous player agent and objects agents.
Furthermore, consider the cost of creation of a thread, drone user agents are
not needed, for their drones can be controlled directly by the communication
threads.

One of the high-level simulations is that: if an agent wants to run to the
position 〈X1, Y 1, Z1〉 from the initial position 〈X0, Y 0, Z0〉, then he sends a
move-player message, like [tell, move player,[user(Host,Name),X0,Y0,Z0,X1,Y1,Z1,
Distance]].

Here is a list of high level message formats:

• move player: [tell, move player,[user(Host,Name),X0,Y0,Z0,X1,Y1,Z1,
Distance]].

• run and trace: [tell, run and trace, [user(Host,Name), Ball,X,Y,Z, Kick-
ableDistance,Dist,Runstep,RunSleepTime]].

• move ball: [tell, move ball, [Ball, X0,Y0,Z0, X1,Y1,Z1, Distance]].

Introducing the high level messages formats significantly reduces the mes-
sage delay. Suppose that in the game there are u users, a autonomous player
agents, including object agents. Compared to autonomous agents, human
agents are relatively slow to change their position and rotations. Suppose
that each autonomous agent creates ma messages per second, and each hu-
man agent create mu message per second. There are M = a×ma + u×mu

EXAMPLE: VRML-BASED MULTIPLE USER SOCCER GAME 149

message per second in total. That means that each communication thread
has to process M messages. If a communication thread is able to process Mc

messages and Mc < M , then the message queue length becomes t× (M −Mc)
after time t. Now, suppose that introducing a high level message format f
for which the average time period for the action is at(f) and the probability
is p(f). A single high-level message m with the format f would be equal to
at(f)×ma messages for a period at(f). Namely, it would reduce ma−1/at(f)
message per second for a single occurrence of message m. In general, the re-
duced number of messages Mr(f) per second by introducing f is as follows:

Mr(f) = (at(f)×M × p(f) + 1)/at(f)

The improved performance ratio R(f) is defined as:

R(f) = Mr(f)/M ≈ p(f)

Namely, the improved performance is mainly determined by the probability
of the message format. For example, if the average time period for the action
move player is 4 seconds, and the probability is 0.15, the move player message
would improve 15 percent of the performance.

11.3.3 Implementation

The whole implementation of the soccer game consists of the following five
programs:

• ggserver deals with the network communication in the server;

• ggclient deals with the network communication in the clients;

• ggecho deals with the network broadcasting in the server;

• wssever deals with the soccer game relevant issues in the server;

• wsclient deals with the soccer game relevant issues in the clients.

The first three programs deal with the general issues of the network commu-
nication, which can be done, like the example is already discussed in Section
11.1. In this section, we discuss the implemantation of the programs wsserver
and wsclient.

11.3.3.1 wsserver The main tasks of the program wsserver are:

• message passing: Based on the distributed soccer game protocol dis-
cussed above, the server communication thread should control how the
messages should be passed, forwarded, or broadcast to the receivers.

• realization of pilot agents: Most pilot agents would be located at the
server, like autonomous player agents, pilot goalkeepers, and the pilot
soccer ball, in a soccer game.

150 DLP FOR VIRTUAL COMMUNITIES

For the message passing, the object wsserver uses the predicate serverreply
to decide a replying termReplyTerm for an incoming message term InputTerm
as follows:

server_reply(InputTerm, ReplyTerm) :-
InputTerm = [register, soccer, from(ClientHost, ClientAddr)],
!,
format(’~ n~w new client from ~ q~ n~ n’, [this, ClientHost]),
get_field(used_name_list, Others),
gg_register_client(ClientHost, ClientName),
client_host := ClientHost,
client_name := ClientName,
client_addr := ClientAddr,
get_field(ball, position, BallPosition),
game_score <- getGameScoreStruct(Score),
ReplyTerm = [reply, accept, [client_name, BallPosition, Score, Others]],
Message = [tell, new_player, [client_name]],
gg_echo <- broadcast(ClientHost,ClientName, Message).

server_reply(InputTerm, ReplyTerm) :-
InputTerm = [unregister, soccer, [user(Host,Name)]],
!,
gg_unregister_client(Host, Name, Length),
ReplyTerm = [reply, unregister, [done, Length]],
Message = [tell, unregister, [client_name]],
gg_echo <- broadcast(client_host, to_all_clients, Message).

server_reply(InputTerm, ReplyTerm) :-
InputTerm = [tell, position, [user(Host,Name), Position]],
!,
set_field(Name, position, Position),
gg_echo <- broadcast(Host, Name, InputTerm),
gg_echo <- get_broadcasted_data(user(Host,Name), Attributes),
ReplyTerm = [reply, update, Attributes].

......

If the server communication thread receives a register request from a client,
then it would register the client by calling ggregisterclient, and reply the
client a message about the player name, the current position of the ball,
the current game score, and the positions and rotations of the other players.
Moreover, a message, which announces that the new player has joined, should
be broadcast to all other players. If the server communication thread receives
a unregister message from a client, it would reply a unregister message to the
client, and broadcast the unregister message to all other players. If the server
communication thread receives a message about the position of a player, then

EXAMPLE: VRML-BASED MULTIPLE USER SOCCER GAME 151

it should update the state of the drone by calling set field. Moreover, the
message should be broadcast to all other players and ask them to get the
broadcast message by calling getbroadcasteddata in the object ggecho.

For the realization of the pilot agents in the server, wsserver should locally
create the behaviors of the agents, like their counterparts in the soccer game
with the single user version. In order to improve the performance, the VRML
EAI interface is not necessary in the server, for nobody is actually watching
at them and the system manager can always monitor the 3D-game by either
watching the text-based message logs, or join in the game as a player. There-
fore, we need some machinery which can be used for non-3D interface, i.e,
text-based interface, to simulate the 3D VRML predicates, like setPosition
and getPosition. These predicates are called Get / Set Field Predicates:

• set field(+GlobalFieldName, +Term)

• get field(+GlobalFieldName, ?Term)

• get field block(+GlobalFieldName, ?Term)

• get field reset(+GlobalFieldName, ?Term)

• get field event(+GlobalFieldName, ?Term)

• set field(+NodeName, +FieldName, +Term)

• get field(+NodeName, +FieldName, ?Term)

• get field block(+NodeName, +FieldName, ?Term)

• get field reset(+NodeName, +FieldName, ?Term)

• get field event(+NodeName, +FieldName, ?Term)

The NodeName and FieldName predicate arguments are atoms. Predicate
set field sets the associated value of the specified FieldName or NodeName
and FieldName combination to the term as mentioned in the Term argument.
Predicate get field returns the stored Term value or returns the atom unde-
fined when not yet defined by a set field predicate. The get field predicate is
non-blocking, it always returns immediately. Predicate get field event blocks
until a new set field operation sets the corresponding value, after which it re-
turns that value and ”resets” the field. This blocking and reset behavior can
be independently selected by the get field block (no reset) or get field reset
(no blocking) predicates respectively.

Summary: get field and get field reset are non-blocking : they allow for
polling a particular field value. Predicates get field block and get field event
always block until a new field value has been defined by the set field predicate.
Blocking and unblocking are (internally) wait / notify driven.

The soccer ball thread should regularly get the message from its own mes-
sage and process the received messages as follows:

152 DLP FOR VIRTUAL COMMUNITIES

ball_action(Name) :-
get_queue(ball, Message),
ball_activity(Name,Message).

ball_activity(Ball, Message) :-
Message = [ball_position, Data],
Data = [Ball, Position],
!,
set_field(Ball, position, Position).

ball_activity(Ball, Message) :-
Message = [kick_ball, Data],
!,
check_kick_ball(Ball, Data).

ball_activity(Ball, Message) :-
Message = [move_ball, Data],
Data = [Ball, XB,YB,ZB, XE,YE,ZE, Dist],
!,
move_to_position(Ball, translation, stepUnit,
ballSleepTime,XB,YB,ZB,XE,YE,ZE, Dist).

ball_activity(Ball, Message) :-
format(’~ nUNKNOWN ~w MESSAGE = ~w~ n’, [Ball, Message]).

The pilot player agents in the server behaves like those in the single user
version, however, they have to regularly broadcast the behavior messages.
For instance, if a player wants to run-and-trace, he should send the high level
message to everyone, like this:

run_and_trace(Player,Ball,X,Y,Z,KickableDistance,Dist,
Runstep,RunSleepTime):-

Data = [user(ServerHost,Player), Ball,X,Y,Z,KickableDistance,
Dist,Runstep,RunSleepTime],

Message = [tell, run_and_trace, Data],
gg_echo <- broadcast(ServerHost, to_all_clients, Message),
xold := X,
zold := Z,
repeat,

sleep(RunSleepTime),
getPosition(Ball,X1,_,Z1),
look_at_position(Player,X1,Z1),
getRotation(Player,_,_,_,R),
R1 is R + 1.5708,
Xnew is xold-Runstep * cos(R1),

EXAMPLE: VRML-BASED MULTIPLE USER SOCCER GAME 153

Znew is zold+Runstep * sin(R1),
setSFVec3f(Player,set_position, Xnew, Y, Znew),
xold := Xnew,
zold := Znew,
distance2d(Xnew,Znew,X1,Z1,Distball),
balldistance := Distball,

end_of_run_and_trace(balldistance, KickableDistance, Dist),
!.

11.3.3.2 wsclient The task of the program wsclient is to process the re-
ceived messages in the client. The client communication thread in wsclient
uses the predicate serverreply to handle the messages based on the different
message formats.

If the message is ’tell position’ or ’tell rotation’, then set the player’s posi-
tion or rotation by directly calling the predicate setPosition like this:

server_reply(ReplyTerm):-
ReplyTerm = [tell, position, Data],
Data = [user(_Host,Name), position(X,Y,Z)],
client_name \= Name,
!,
setPosition(Name, X,Y,Z).

server_reply(ReplyTerm) :-
ReplyTerm = [tell, rotation, Data],
Data = [user(_Host,Name), rotation(X,Y,Z,R)],
client_name \= Name,
!,
setRotation(Name, X,Y,Z,R).

If the received message is of the high level format, then the client commu-
nication thread would forward the message to the corresponding drone agent,
like this:

server_reply(ReplyTerm) :-
ReplyTerm = [tell, move_player, Data],
Data = [user(_Host,Player), _X,_Y,_Z, _X1,_Y1,_Z1, _Dist],
!,
set_queue(Player, [move_player, Data]).

server_reply(ReplyTerm) :-
ReplyTerm = [tell, run_and_trace, Data],
Data = [user(_ServerHost,Player),

_Ball,_X,_Y,_Z,_KickableDistance,_Dist,_Runstep,_RunSleepTime],
!,
set_queue(Player, [run_and_trace, Data]).

154 DLP FOR VIRTUAL COMMUNITIES

server_reply(ReplyTerm):-
ReplyTerm = [tell, kick_ball, Data],
!,
set_queue(ball, [kick_ball, Data]).

server_reply(ReplyTerm):-
ReplyTerm = [tell, move_ball, Data],
!,
set_queue(ball, [move_ball, Data]).

The behaviors of the ball drone agent is like those of the counterpart in the
server, like this:

ball_activity(Mesg):-
Mesg = [ball_position, Data],
Data = [Ball, position(X,Y,Z)],
!,
setPosition(Ball, X, Y, Z).

ball_activity(Mesg):-
Mesg = [kick_ball, Data],
Data = [_Name, BallName, X,Y,Z,R1, KickBallForce, KickBallForceY],
!,
kickedwithStaticStartRF(BallName,translation,X,Y,Z,R1, KickBallForce,

KickBallForceY).

ball_activity(Mesg):-
Mesg = [move_ball, Data],
Data = [Ball, X,Y,Z, X2,Y2,Z2, Dist],
!,
move_to_position(Ball,translation, stepUnit,ballSleepTime, X,Y,Z,X2,Y2,Z2,Dist).

Similarly, the drone player agents in the clients should behave like this:

player_activity(Mesg):-
Mesg = [move_player, Data],
Data = [user(_Host,Player), X,Y,Z, X2,Y2,Z2, Dist],
!,
move_to_position(Player,set_position, runStep, runSleepTime, X,Y,Z,X2,Y2,Z2,Dist).

player_activity(Mesg) :-
Mesg = [run_and_trace, Data],
Data = [user(_ServerHost,Player), Ball,X,Y,Z,KickableDistance,
Dist,Runstep,RunSleepTime],
!,
run_and_trace(Player,Ball,X,Y,Z,KickableDistance,

EXERCISES 155

Dist,Runstep,RunSleepTime).

The pilot user agents in the clients behave like those in the single user version,
however, they should report their positions and rotations to the server if
the positions and rotations are new, which is mainly done by the predicate
nearballthenkick as follows:

near_ball_then_kick(Agent, Ball):-
getViewpointPosition(Agent,X,Y,Z),
local_host(Host, _),
TellData = [user(Host,client_name), position(X,Y,Z)],
TellMessage = [tell, position, TellData],
getPosition(Ball,X1,Y1,Z1),
distance2d(X,Z,X1,Z1,Dist),
Dist < kickableDistance,
!,
getViewpointOrientation(Agent,_,_,_,R),
R1 is sign(X1 - X) * R -1.5708,
Data = [client_name, Ball, X1,Y1,Z1,R1, kickBallForce,
kickBallForceY],
KickMessage = [tell, kick_ball, Data],
set_queue(client_name, TellMessage),
set_queue(client_name, KickMessage).

Exercises

11.1 Design a virtual gallery for multiple users, in which an intelligent agent
serve as a guide.

12
Conclusions

157

Appendix A
DLP Built-in Predicates

Arithmetic comparison

+Eval =:= +Eval (arithmetic equal)
+Eval =\= +Eval (arithmetic not equal)
+Eval > +Eval (arithmetic greater than)
+Eval >= +Eval (arithmetic greater than or equal)
+Eval < +Eval (arithmetic less than)
+Eval =< +Eval (arithmetic less than or equal)

Arithmetic evaluation

LogicalVar is Expression (evaluate expression)
Arithmetic functors :

’+’/2
’-’/1
’-’/2
’*’/2
’/’/2
’//’/2
’<<’/2
’>>’/2
’**’/2

159

160 DLP BUILT-IN PREDICATES

abs/1
mod/2
rem/2
acos/1
asin/1
atan/1
cos/1
sin/1
tan/1
exp/1
log/1
random/0
round/1
sign/1
sqrt/1
truncate/1

Atomic term processing

atom_chars (+Atom, ?CharList)
atom_chars (?Atom, +CharList)
atom_codes (+Atom, ?CodeList)
atom_codes (?Atom, +CodeList)
atom_concat (+Atom1, +Atom2, ?NewAtom)
atom_list_concat (+AtomList, ?NewAtom)
atom_length (+Atom, ?Length)
atom_number(+Atom, ?Number)
atom_number(?Atom, +Number)
char_code (+Char, ?Code)
char_code (?Char, +Code)
number_chars (+Number, ?CharList)
number_chars (?Number, +CharList)
number_codes (+Number, ?CodeList)
number_codes (?Number, +CodeList)

Character input/output

get_char(?Char)
get_char(+Stream, ?Char)
nl
nl(+Stream)
put_char(+Char)
put_char(+Stream, +Char)

Logic and control

’,’ /2 (conjunction)

161

’!’ /0 (cut)
fail /0
halt /1
not /1, ’\+’ /1
once /1
repeat /0
true /0

Stream selection and control

at_end_of_stream/0
at_end_of_stream(+Stream)
close(+Stream)
open(+Source_Sink, +IOmode, -Stream),
atom stream (TBD) + set_output
IOmode = {read | write | append}
set_input(+Stream)
set_output(+Stream)

Term comparison

Term1 == Term2
Term1 \== Term2
Term1 @< Term2
Term1 @> Term2
Term1 @=< Term2
Term1 @>= Term2

Term creation and decomposition

arg (+ArgI, +CompoundTerm, ?ArgV)
copy_term (?Term, ?Copy)
functor (+Term, ?Name, ?ArgC)
functor (?Term, +Name, +ArgC)
+Term =.. ?List
?Term =.. +List

Term input/output

display (?Term)
display (+Stream, ?Term)
format (+Format, +ArgList)
format (+Stream, +Format, +ArgList)
format specifiers : ~k ~n ~q ~t ~w
write (?Term)
write (+Stream, ?Term)
write_canonical (?Term)

162 DLP BUILT-IN PREDICATES

write_canonical (+Stream, ?Term)
writeq (?Term)
writeq (+Stream, ?Term)

Term input from constant terms

read_from_atom (+Atom, ?Term)
read_from_atom (+Atom, ?Term, ?VarList)
unifies Term with the term representation
of Atom or an error/2 term.

Term output to constant terms

format_to_atom (?Atom, +Format, +ArgList)
format_to_chars (?CharList, +Format, +ArgList)
format_to_codes (?CodeList, +Format, +ArgList)

Term unification

?Term1 = ?Term2 (unify)
?Term1 \= ?Term2 (not unifiable)

Type testing

atom (?Term). Term is an atom.
atomic (?Term). Term is atomic (atom or number).
compound (?Term). Term is a compound term.
float (?Term). Term is a float.
integer (?Term). Term is an integer.
nonvar (?Term). Term is instantiated.
number (?Term). Term is a number (integer or float).
var(?Term). Term is uninstantiated.

List Processing

append / 3
insert(+OldSortedList, +Term, ?NewSortedList) (ascending order)
length / 2
member / 2
memberchk / 2
reverse / 2
select / 3
selectchk / 3

Miscellaneous

compare(R, Term1, Term2).

163

The first argument R will be unified with
’<’, when Term1 ’term-precedes’ Term2
’=’, when Term1 is identical to Term2
’>’, when Term2 ’term-precedes’ Term1
Predicate compare/3 is used by the term comparison predicates.

link_object(ObjectName). Load, link and initialize ObjectName and
all its base objects.

memory(-TotalKBs, -FreeKBs). Set the total number of KBytes and the
currently available free KBytes.

sleep(+Msecs). Suspend the execution of the current thread for Msecs
milliseconds.

get_system_property(+Key, -Value)

set_system_property(+Key, +NewValue, -OldValue)

Java run-time system property predicates

stack_trace/0. Show the method/predicate continuations until the
current point of execution.

text_area(BrowserStream). Argument BrowserStream will be unified with
a Java TextArea like stream. Combining this predicate with
set_output(BrowserStream) redirects the output of a program
to the corresponding BrowserStream, otherwise program
output will be written to the browser "Java Console".

text_field(InputQueueName). Asynchronous browser input from a
TextField like input line is sent to the queue as an atom.
Input in DLP (and Java), like browser or socket input, is usually
processed by a separate thread. Instead of all kinds of detailed
I/O control facilities as found in programming languages like C
or C++, I/O in DLP (and Java) is handled by a thread that
communicates its I/O results to other threads in a multi-threaded
safe way.

trace/0. Turn trace mode on. All method calls will be displayed
(non-interactively).

notrace/0. Turn trace mode off.
...

164 DLP BUILT-IN PREDICATES

TCP / IP Networking

Host Identification
host_address(+HostName, -InternetAddress).
local_host(-HostName, -InternetAddress).
code_base_host(-HostName).

Unifies HostName with the name of the host from
which the current program objects are loaded. When
running in a browser. HostName will be unified with
the name of the originating host.

Server Predicates
tcp_server(+ServerPort, -ServerSocket).
tcp_accept(+ServerSocket, -ServerStreamIn, -ServerStreamOut).
tcp_accept(+ServerSocket, -ServerStreamIn, -ServerStreamOut,

-ClientHostName).

Client Predicates
tcp_client(+ServerHostName, +ServerPort, -ClientStreamIn,

-ClientStreamOut). (To be done)
tcp_client(+ServerHostName, +ServerPort, +TimeOut,

-ClientStreamIn, -ClientStreamOut).

Bi-Directional Client / Server Communication
tcp_get_term(+StreamIn, ?Term).
tcp_put_term(+StreamOut, +Term).
....

Closing Client / Server Connection
tcp_close(+Socket).
tcp_close(+Stream).

Node::Field Attribute Storage and Retrieval Predicates
DLP can be used to develop multi-threaded stand-alone client / server systems
as well as multi-threaded programs running in the context of browsers, VRML
/ EAI frameworks, or other special purpose environments that support JVM
based execution. When developing distributed VRML / EAI Web based DLP
systems it’s often convenient to provide the server part of the system with
similar capabilities as available in the VRML/EAI embedded clients of the
system in order to maintain the (distributed) state of particular nodes. This
allows for a similar modeling approach of several storage and retrieval aspects
in both the client and server parts. The EAI-like NodeName :: FieldName
storage and retrieval predicates (see below) provide such a functionality. Al-
though they are primarily intended for stand-alone servers, i.e. servers not
embedded in a VRML / EAI framework, they can also be used for other pur-
poses. Typically, such a server will handle multiple independently running

165

client threads, therefore the storage and retrieval predicates are extended to
deal with event driven, i.e. (internally) wait /notify based, processing.

Get / Set Field Predicates

set_field(+GlobalFieldName, +Term)
get_field(+GlobalFieldName, ?Term)
get_field_block(+GlobalFieldName, ?Term)
get_field_reset(+GlobalFieldName, ?Term)
get_field_event(+GlobalFieldName, ?Term)

set_field(+NodeName, +FieldName, +Term)
get_field(+NodeName, +FieldName, ?Term)
get_field_block(+NodeName, +FieldName, ?Term)
get_field_reset(+NodeName, +FieldName, ?Term)
get_field_event(+NodeName, +FieldName, ?Term)

The NodeName and FieldName predicate arguments are atoms. Predicate
set field sets the associated value of the specified FieldName or NodeName
and FieldName combination to the term as mentioned in the Term argument.
Predicate get field returns the stored Term value or returns the atom unde-
fined when not yet defined by a set field predicate. The get field predicate is
non-blocking; it always returns immediately.

Predicate get field event blocks until a set field operation sets the corre-
sponding value, after which it returns that value and ”resets” the field. This
blocking and reset behavior can be independently selected by the get field block
(no reset) or get field reset (no blocking) predicates respectively. An implicit
(get field event) or explicit (get field reset) field reset doesn’t set the field
value to undefined, but only flags that the value has been retrieved. This al-
lows non-blocking predicates to get the latest field value. Summary: get field
and get field reset are non-blocking : they allow for polling a particular field
value. Predicates get field block and get field event always block until a new
field value has been defined by the set field predicate. Blocking and unblock-
ing are (internally) wait / notify driven.

Get / Set Queue Predicates Queue predicates provide a flexible way to con-
struct special purpose asynchronous interaction patterns or protocols between
active objects. All queue primitives are safe in multi-threaded execution con-
texts (atomic queue update).

new_queue(+GlobalQueueName, +MaxSize)
set_queue(+GlobalQueueName, +Term)
get_queue(+GlobalQueueName, ?Term)

queue_full(+GlobalQueueName)
queue_empty(+GlobalQueueName)

166 DLP BUILT-IN PREDICATES

queue_length(+GlobalQueueName, -CurrentLength)

new_queue(+NodeName, +QueueName, +MaxSize)
set_queue(+NodeName, +QueueName, +Term)
get_queue(+NodeName, +QueueName, ?Term)

queue_full(+NodeName, +QueueName)
queue_empty(+NodeName, +QueueName)
queue_length(+NodeName, +QueueName, -CurrentLength)

NodeName and QueueName predicate arguments are atoms. Predicate
new queue creates a unique queue. The maximum number of queue elements
is defined by MaxSize. When a queue isn’t defined yet by new queue upon
the first invocation of a set queue or get queue predicate, a queue descriptor
will automatically be created with a default maximum size of 100. Predicate
set queue appends a new Term to the queue. If the queue contains MaxSize
elements this operation will block until a get queue operation removes an
element from the queue. Predicate get queue removes the first element from
the queue and unifies this element with Term. In case the queue is empty,
this operation will block until a set queue operation adds an element to the
queue.

Conditional Queue Lookup Predicates

accept_queue_term (+GlobalQueueName, +AcceptExpressionList,
-Term)

accept_queue_term (+NodeName, +QueueName,
+AcceptExpressionList, -Term)

Accept the first entry in the queue that satifies one of the
AcceptExpressions in the AcceptExpressionList.

Get / Set Array Predicates

new_array(+NodeName, +ArrayName, +Dim1)
get_array(+NodeName, +ArrayName, +Idx1, ?Elem)
set_array(+NodeName, +ArrayName, +Idx1, +Elem)

new_array(+NodeName, +ArrayName, +Dim1, +Dim2)
get_array(+NodeName, +ArrayName, +Idx1, +Idx2, ?Elem)
set_array(+NodeName, +ArrayName, +Idx1, +Idx2, +Elem)

new_array(+NodeName, +ArrayName, +Dim1, +Dim2, +Dim3)
get_array(+NodeName, +ArrayName, +Idx1, +Idx2, +Idx3, ?Elem)
set_array(+NodeName, +ArrayName, +Idx1, +Idx2, +Idx3, +Elem)

167

NodeName and ArrayName are atoms.
Array elements must be explicitly initialized.

DLP Regular Expression Library Predicates The rexlib requires Java SDK 1.4.X.
See the java.util.regex package for more information : each Pattern or Matcher
predicate mentioned below corresponds to a single Java method as defined in
the java.util.regex package.

Pattern Predicates

compile_pattern (+RegExpPattern , -PatternRef)
RegExpPattern is an atom.

PatternRef is a foreign language object reference term.
Compiles the given regular expression into a pattern.

compile_pattern (+RegExpPattern , +PatternFlagList , -PatternRef)
PatternFlagList is a list of one or more pattern
compilation options: [canon_eq, case_insensitive,
comments, dotall, multiline, unicode_case, unix_lines]
Compiles the given regular expression into a pattern
with the given flags.

pattern_matches (+RegExpPattern , +InputAtomOrString)
pattern_matches (+RegExpPattern , +InputAtomOrString ,

-Boolean)
Compiles the given regular expression and matches the given
input against it. Predicate pattern_matches / 2 either
succeeds or fails, pattern_matches / 3 returns the atom
true or false. Predicate pattern_matches / [2,3] is defined
as a convenience for when a regular expression is used only once.

split_input (+PatternRef , +InputAtomOrString , -AtomList)
split_input (+PatternRef , +InputAtomOrString , +MaxListLength ,

-AtomList)
Splits the given input sequence around matches of this pattern.

Pattern Matcher Creation

pattern_matcher (+PatternRef , +InputAtomOrString , -Matcher)
Creates a matcher that will match the given input against this
pattern, many matchers can share the same pattern specification.
Matcher is a matcher foreign language object reference term.

URL predicates

url_open (+URL , -URLRef)

168 DLP BUILT-IN PREDICATES

url_read_line (+URLRef , -LineString)
url_close (+URLRef)
Predicates are part of dlplib, not rexlib.

Matcher Predicates

replacement_buffer (+BufferSize, -BufferRef)

append_replacement (+Matcher , +BufferRef ,
+Replacement)

append_replacement (+Matcher , +BufferRef ,
+Replacement , -MatcherOut)

Non-terminal append-and-replace.

append_tail (+Matcher , +BufferIn , -AtomOut)
Terminal append-and-replace.

end_index (+Matcher , -Index)
Returns the index of the last character matched,
plus one.

end_index (+Matcher , +GroupNumber , -Index)
Returns the index of the last character, plus
one, of the subsequence captured by the given
group during the previous match operation.
GroupNumber = [0 ... GroupCount - 1]. See also
group_count / 2.

find_next (+Matcher)
find_next (+Matcher , -Boolean)

Finds the next subsequence of the input sequence
that matches the pattern.

find_starting_at (+Matcher , +Index)
find_starting_at (+Matcher , +Index , -Boolean)

Finds the next subsequence of the input sequence
that matches the pattern, starting at the specified
index.

group (+Matcher , -Atom)
Returns the input subsequence matched by the
previous match.

group (+Matcher , +GroupNumber , -Atom)

169

Returns the input subsequence captured by the
given group during the previous match operation.

group_count (+Matcher , -GroupCount)
Returns the number of capturing groups in this
matcher’s pattern

looking_at (+Matcher)
looking_at (+Matcher , -Boolean)

Starting at the beginning, match the input sequence
against the pattern.

matches (+Matcher)
matches (+Matcher , -Boolean)
Matches the entire input sequence against the pattern.

replace_all (+Matcher , +Replacement , -Atom)
Replaces every subsequence of the input sequence that
matches the pattern with the given replacement.

replace_first (+Matcher , +Replacement , -Atom)
Replaces the first subsequence of the input sequence
that matches the pattern with the given replacement.

reset_matcher (+MatcherIn , -MatcherOut)
Resets this matcher.
reset_matcher (+MatcherIn , +InputAtomOrString , -MatcherOut)
Resets this matcher with a new input sequence.

start_index (+Matcher , -Index)
Returns the start index of the previous match.
start_index (+Matcher , +GroupNumber , -Index)

Returns the start index of the subsequence captured by the given
group during the previous match operation.

Atom / String Predicates In logic programming languages, atoms are typi-
cally used for the representation of symbolic constants. Usually they have a
relatively modest size and they can be used efficiently in many contexts. How-
ever, the implementation of atoms is optimized for unification; all identical
atoms have a unique reference, which reduces the atom related string compar-
ison operations to a single object reference comparison. Although atoms may
be used for several text-like manipulation and inspection issues, a number of
applications require sometimes a representation that is more appropriate for
manipulating text in general.

170 DLP BUILT-IN PREDICATES

Atom/String Predicates
atom_to_string (+Atom , ?String)
string_to_atom (+String , ?Atom)

new_string_buffer (-StringBuffer)
new_string_buffer (+Length , -StringBuffer)

string (?Term)
Succeeds when Term is a string.
string_char_at (+String , +Index , ?Char)
Char is a single character atom.
string_code_at (+String , +Index , ?Code)
Code is an integer.
string_compare_to (+String1 , +String2 , ?Result)
Result: < 0 | == 0 | > 0
string_buffer_to_atom (+StringBuffer , ?Atom)
string_buffer_to_string (+StringBuffer , ?String)
string_length (+String , -Length)
substring (+String , +BeginIndex , +EndIndex , -SubString)
...

strings should be built-in :
<@ , >@ , =<@ , >=@ , == / 2 , \== / 2
= / 2 , \= / 2
"write_term" output method
type testing: string(Term)
copy_term / 2 .
FLI : StrTerm

...

DLP / JavaScript Interface

DLP methods (object jsilib)
get_window (-JSObject)
call (+JSObject, +JSMethodName, +ArgList, -Result)
(t.b.d. arrays < = > lists)
eval (+JSObject, +Evaluate, -Result)
see member example w.r.t. netscape/explorer remarks.
get_member (+JSObject, +Member, -Result)
set_member (+JSObject, +Member, +Value)
get_slot (+Member, +Index, -Value) (netscape)
set_slot (+Member, +Index, +Value) (netscape)
(use call/4 for a portable solution)

JS method (part of object dlpbrow / dlpcons)
applet.set_field("namespace", "queuename", term) (t.b.d.)

171

applet.set_queue("namespace", "queuename", term)
var applet = window.document.applets[’dlpbrow’];
var applet = window.document.applets[’dlpcons’];
Parameters namespace, queuename are strings.
Parameter term is an integer, float, double, or string :
a string is either :

"term:" + "aValidTermString"
"atom:" + "anAtom" (explicit atom)

or any other string (implicit atom)

JS / DLP interface is based on the JS / Java LiveConnect interface.

DLP / XML : Extensible Markup Language Predicates under construction.

Multi-threaded Objects (Syntax Summary)

program examples :
multi-threaded (binary) semaphore objects
multi-threaded producer / buffer / consumer objects

declaration of objects :
:-object name .
:-object name : [base].
:-object name : [base1, base2, ...].
:-end_object name .

declaration non-logical variables (nlv’s) :
var i=0, j=[1,2,3], k=f(a,b,c).
destructive assignment:
nlv := Term
simplification:

nlv := Expression
other nlv occurrences are replaced by their current value.

object creation:
ObjectRef := new(ObjectNameOrConstructor)
method invocation:
ObjectRef <- method(...)
synchronuous accept statement :
accept (AcceptExpression1, AcceptExpression2, ...)

accept expression:
method(...) <== [Guard] ==> Body
method(...) <== [Guard]
method(...) ==> Body
method(...)
any

accept guard:
callable term

accept body:

172 DLP BUILT-IN PREDICATES

callable term
...

DLP Foreign Language Interface FLI General Remarks
All Term classes, as mentioned below, are derived from class Word (and

not class Term) because run-time structures (that are not Term’s) should
have the same machine word oriented base class. The C like macro style
of the described interface hides many aspects of the actual implementation
characteristics of Terms. It allows for a more convenient conversion to different
Term implementation schemes.

Term Dereferencing

Word dt = Word.deref (Word t)

Term Creation

IntTerm it = Word.new_int (int)
FltTerm ft = Word.new_flt (double)
ForTerm ft = Word.new_for (Object ref)
foreign object reference term
FunTerm ft = Word.new_fun (SymTerm func, Word [] args)
FunTerm ft = Word.new_fun (SymTerm func, Word arg1)
FunTerm ft = Word.new_fun (SymTerm func, Word arg1,

Word arg2)
FunTerm ft = Word.new_fun (SymTerm func, Word arg1,

Word arg2, Word arg3)
LstTerm lt = Word.new_lst (Word head, Word tail)
NilTerm nt = Word.new_nil ()
SymTerm st = Word.new_sym ("String".intern())

Term Type Tests

boolean it = Word.int_term (Word w)
boolean ft = Word.flt_term (Word w)
boolean ft = Word.for_term (Word w)
boolean ft = Word.fun_term (Word w)
boolean lt = Word.lst_term (Word w)
boolean nt = Word.nil_term (Word w)
boolean st = Word.sym_term (Word w)
boolean vt = Word.var_term (Word w)

Term Type Casts

IntTerm it = Word.int_cast (Word w)

173

FltTerm ft = Word.flt_cast (Word w)
ForTerm ft = Word.for_cast (Word w)
FunTerm ft = Word.fun_cast (Word w)
LstTerm lt = Word.lst_cast (Word w)
SymTerm st = Word.sym_cast (Word w)
VarTerm vt = Word.var_cast (Word w)

Term Value Retrieval

int i = Word.int_val (Word it)
double f = Word.flt_val (Word ft)
Object o = Word.for_val (Word ft)
String n = Word.fun_name (Word ft)
int argc = Word.fun_argc (Word ft)
Word argv [] = Word.fun_argv (Word ft)
Word argv = Word.fun_argi (Word ft, int argi)
Word head = Word.lst_head (Word lt)
Word tail = Word.lst_tail (Word lt)
String s = Word.sym_val (Word st)

Vectors / Quaternions (vectorlib)

Predicates
vector_dot_product(vector(X1,Y1,Z1), vector(X2,Y2,Z2),

V1DotV2)

vector_cross_product(vector(X1,Y1,Z1), vector(X2,Y2,Z2),
vector(XN,YN,ZN))

quaternion_to_rotation(quaternion(W1,X1,Y1,Z1),
rotation(X,Y,Z,R))

rotation_to_quaternion(rotation(X1,Y1,Z1,R1),
quaternion(W,X,Y,Z))

unit_quaternion(quaternion(W1,X1,Y1,Z1),
quaternion(W,X,Y,Z))

quaternion_product(quaternion(W1,X1,Y1,Z1),
quaternion(W2,X2,Y2,Z2), quaternion(W,X,Y,Z))

slerp(F, quaternion(W1,X1,Y1,Z1),
quaternion(W2,X2,Y2,Z2), quaternion(W,X,Y,Z))

174 DLP BUILT-IN PREDICATES

DLP / EAI: VRML External Authoring Interface Library (Summary)

VRML Browser Predicates

loadURL(+URL)
getWorldURL(-URL)
setDescription(+Description)
Description is an atom
setTimerInterval(+NewMsecs , -OldMsecs)
beginUpdate / 0, endUpdate / 0

createVrmlFromString(+VrmlAtom , -ObjectRefList)
createVrmlFromString(+VrmlAtom , +ParentObject ,

-ObjectRefList)
ObjectRefList is a Foreign Object Reference List.
See also the addChildren and removeChildren predicates.
createVrmlFromURL(+URL , +NotifyNode , +NotifyField)

addRoute(+FromObject, +EventOutFieldName ,
+ToObject , +EventInFieldName)

deleteRoute(+FromObject, +EventOutFieldName,
+ToObject, +EventInFieldName)

VRML Event Observers

eventObserverQueue (+Object, +FieldName,
+QueueName)

Object/FieldName events are sent to QueueName as a term:
FieldName(EventValue, EventTime, Object)
Not available (in the current EAI SDK : EventOut.unAdvise) :
removeEventObserverQueue (+Object, +FieldName, +QueueName)

Agent / Object Coordinates

getPosition(+Object, -X, -Y, -Z)
setPosition(+Object, +X, +Y, +Z)
getRotation(+Object, -X, -Y, -Z, -R)
setRotation(+Object, +X, +Y, +Z, +R)
getViewpointPosition(+Agent, -X, -Y, -Z)
setViewpointPosition(+Agent, +X, +Y, +Z)
getViewpointOrientation(+Agent, -X, -Y, -Z, -R)
setViewpointOrientation(+Agent, +X, +Y, +Z, +R)
X, Y, Z, and R values are integers or floats

175

Agent / Object Distance

distance2D(+X1, +Z1, +X2, +Z2, -Distance)
distance3D(+X1, +Y1, +Z1, +X2, +Y2, +Z2, -Distance)

Vector Products

vector_dot_product(+X1,+Y1,+Z1, +X2,+Y2,+Z2,
-Angle12, -V1dotV2)

V1 dot V2 = | V1 | . | V2 | . cos (Angle12)

vector_cross_product(+X1,+Y1,+Z1, +X2,+Y2,+Z2,
-XN,-YN,-ZN, -Angle12, -VNSize)

| VN | = | V1 cross V2 | = | V1 | . | V2 | . sin (Angle12)

Single Field Predicates

getSFBool(+Object, +Field, -Bool)
setSFBool(+Object, +Field, +Bool)
Bool is an atom : ’true’ or ’false’
getSFFloat(+Object, +Field, -Float)
setSFFloat(+Object, +Field, +Float)
getSFInt32(+Object, +Field, -Int32)
setSFInt32(+Object, +Field, +Int32)

getSFString(+Object, +Field, -Atom)
setSFString(+Object, +Field, +Atom)
setSFString(+Object, +Field, +Format, +ArgList)

getSFColor(+Object, +Field, -R,-G,-B)
setSFColor(+Object, +Field, +R,+G,+B)
R, G, and B values are integers or floats
getSFNode(+Object, +Field, -ObjectRef)
setSFNode(+Object, +Field, +NameOrRef)
getSFRotation(+Object, +Field, -X,-Y,-Z, -R)
setSFRotation(+Object, +Field, +X,+Y,+Z, +R)
getSFTime(+Object, +Field, -Time)
setSFTime(+Object, +Field, +Time)

getSFVec2f(+Object, +Field, -X,-Y)
setSFVec2f(+Object, +Field, +X,+Y)
getSFVec3f(+Object, +Field, -X,-Y,-Z)
setSFVec3f(+Object, +Field, +X,+Y,+Z)

176 DLP BUILT-IN PREDICATES

Multi Field Predicates

getMFFloat(+Object, +Field, -FloatList)
setMFFloat(+Object, +Field, +FloatList)
getMFInt32(+Object, +Field, -IntegerList)
setMFInt32(+Object, +Field, +IntegerList)

getMFString(+Object, +Field, -AtomList)
setMFString(+Object, +Field, +AtomList)
setMFString(+Object, +Field, +Format, +ArgList)

getMFColor(+Object, +Field, -RGBList)
setMFColor(+Object, +Field, +RGBList)
RGBList = [[R1,G1,B1], [R2,G2,B2],]
getMFNode(+Object, +Field, -ObjectRefList)
setMFNode(+Object, +Field, +ObjectRefList)
TBD : (mixed) Object or ObjectRef List
getMFRotation(+Object, +Field, -XYZRList)
setMFRotation(+Object, +Field, +XYZRList)
XYZRList = [[X1,Y1,Z1,R1], [X2,Y2,Z2,R2],]

getMFVec2f(+Object, +Field, -XYList)
setMFVec2f(+Object, +Field, +XYList)
XYList = [[X1,Y1], [X2,Y2],]
getMFVec3f(+Object, +Field, -XYZList)
setMFVec3f(+Object, +Field, +XYZList)
XYZList = [[X1,Y1,Z1], [X2,Y2,Z2],]

(Incremental) MFNode Updates

addChildren(+ParentObject, +ObjectRefList)
removeChildren(+ParentObject, +ObjectRefList)

Appendix B
Source Codes

B.1 SOCCER GAME: SINGLE USER/MULTIPLE AGENTS

Figure B.1 shows the field of play with the length 100 meter and the width
64 meter, which is designed as a gif file ”field1.gif”. Therefore, the field can
be designed in VRML as follows:

Transform {
translation 0 0 0

children [
Shape {
appearance Appearance {
texture ImageTexture { url "field1.gif" }
textureTransform TextureTransform {scale 1 1}
}
geometry Box {size 100 .2 64}

}
]

Similarly we can define goal gates and the soccer ball. However, we will
omit the details.

The prototype of player avatars is designed as follows:

177

178 SOURCE CODES

Fig. B.1 The Field of Play

PROTO Sportman [
exposedField SFVec3f position
exposedField SFRotation rotation
exposedField SFInt32 whichChoice
exposedField SFString nickname
exposedField MFString picturefile

]
{......}

The following VRML code defines a goalkeeper and a player:

Transform {
children [DEF goalKeeper1 Sportman

{rotation 0 1 0 -1.5708
whichChoice -1
position 48 1.8 0
picturefile ["sportmanblue1.jpg"]
nickname "blue1"

}] }

Transform {
children [DEF blue9 Sportman

{
rotation 0 1 0 -1.5708
whichChoice -1
position 35 1.8 4

SOCCER GAME: SINGLE USER/MULTIPLE AGENTS 179

picturefile ["sportmanblue9.jpg"]
nickname "blue9"

}] }

the multiple thread control for the soccer game can be implemented as
follows:

:- object waspsoccer : [bcilib].

var url = ’soccer.wrl’.

main :-
text_area(Browser),
set_output(Browser),

format(’Load the game ... ~ n’),
loadURL(url),
Clock := new(game_clock),

_Pulse := new(clock_pulse(Clock)),

Clock <- get_time(TimeLeft),
format(’the game will start in 5 seconds,~ n’),
format(’the total playing time is ~w seconds,~ n’, [TimeLeft]),
delay(5000),

format(’the game startup,~ n’),
_ball := new(ball(ball, Clock)),
_GoalKeeper1 := new(goalKeeper(goalKeeper1, Clock)),
_GoalKeeper2 := new(goalKeeper(goalKeeper2, Clock)),
_UserMe := new(soccerPlayerUser(me_red10, Clock)),
_Blue9 := new(soccerPlayer(blue9, Clock)),
_Blue8 := new(soccerPlayer(blue8, Clock)),
_Blue7 := new(soccerPlayer(blue7, Clock)),
_Red2 := new(soccerPlayer(red2, Clock)),
_Red3 := new(soccerPlayer(red3, Clock)),
_Blue11 := new(soccerPlayer(blue11, Clock)),
_Red11 := new(soccerPlayer(red11, Clock)).

:- end_object waspsoccer.

A general framework of the soccer playing agents based on decision-making
models can be programmed in DLP as follows:

:- object soccerPlayer : [bcilib].

180 SOURCE CODES

soccerPlayer(Name, Clock) :-
setSFInt32(Name,whichChoice, 0),
format(’~w thread active.~ n’, [Name]),
activity(Name,Clock).

activity(Name,Clock) :-
repeat,

sleep(2000),
Clock <- get_time(TimeLeft),
format(’ player ~w thread ~w seconds left~ n’,

[Name,TimeLeft]),
getPositionInformation(Name,ball,X,Y,Z,Xball,Yball,Zball,

Dist,Xgoal,Zgoal,DistGoal),
findHowtoReact(Name,ball,X,Y,Z,Xball,Yball,Zball,Dist,

Xgoal,Zgoal,DistGoal,Action),
format(’player ~w action: ~w ~ n’,[Name,Action]),
doAction(Action,Name,ball,X,Y,Z,Xball,Yball,Zball,Dist,

Xgoal,Zgoal,DistGoal),
TimeLeft < 1,
quitGame(Name),
!.

......

:- end_object soccerPlayer.

The decision tree can be programmed in DLP as follows:

findHowtoReact(_,Ball,_,_,_,_,_,_,Dist,_,_,Dist1,shooting):-
Dist =< kickableDistance,
Dist1 =< kickableGoalDistance,
!.

findHowtoReact(_,_,Ball,_,_,_,_,_,_,Dist,_,_,Dist1,passing):-
Dist =< kickableDistance,
Dist1 > kickableGoalDistance,
!.

findHowtoReact(Player,_,_,_,_,X1,_,_,Dist,_,_,_,run_to_ball):-
Dist > kickableDistance,
getFieldAreaInformation(Player,_,_,FieldMin,FieldMax),
FieldMin =< X1,
FieldMax >= X1,
!.

findHowtoReact(Player,_,_,_,_,X1,_,_,Dist,_,_,_,move_around):-

SOCCER GAME: SINGLE USER/MULTIPLE AGENTS 181

Dist > kickableDistance,
getFieldAreaInformation(Player,_,_,FieldMin,_),
X1 < FieldMin,
!.

findHowtoReact(Player,_,_,_,_,X1,_,_,Dist,_,_,_,move_around):-
Dist > kickableDistance,
getFieldAreaInformation(Player,_,_,_,FieldMax),
X1 > FieldMax,
!.

” soccer player users” can be as follows:

:- object soccerPlayerUser : [bcilib].

var kickableDistance = 3.0.
var kickBallForce = 10.0.
var kickBallForceY =6.0.

soccerPlayerUser(Name, Clock) :-
format(’The user ~w thread active.~ n’, [Name]),
activity(Name,Clock).

activity(Name,Clock) :-
repeat,

sleep(1000),
Clock <- get_time(TimeLeft),
near_ball_then_kick(Name,ball),

TimeLeft < 1,
!.

near_ball_then_kick(Agent, Ball):-
getViewpointPosition(Agent,X,_,Z),
getPosition(Ball,X1,Y1,Z1),
X < X1,
distance2d(X,Z,X1,Z1,Dist),
Dist < kickableDistance,
getViewpointOrientation(Agent,_,_,_,R),
R1 is R -1.5708,
ball <- isUnlocked(Ball),
ball <- lock(Ball),
ball <- kickedwithStaticStartRF(Ball,translation,X1,Y1,Z1,R1,
kickBallForce,kickBallForceY),

ball <- unlock(Ball).

182 SOURCE CODES

near_ball_then_kick(Agent, Ball):-
getViewpointPosition(Agent,X,_,Z),
getPosition(Ball,X1,Y1,Z1),
X >= X1,
distance2d(X,Z,X1,Z1,Dist),
Dist < kickableDistance,
getViewpointOrientation(Agent,_,_,_,R),
R1 is -R -1.5708,
ball <- isUnlocked(Ball),
ball <- lock(Ball),
ball <- kickedwithStaticStartRF(Ball,translation,X1,Y1,Z1,R1,

kickBallForce,kickBallForceY),
ball <- unlock(Ball).

near_ball_then_kick(_, _).

......

:- end_object soccerPlayerUser.

The predicate near ball then kick is used to check whether or not the user is
close enough to kick the ball. If yes and ball is unlocked, then kick the ball
based on the user’s current orientation.

B.2 DOG WORLD

The virtual world of the dogworld can be specified in VRML as follows.

PROTO Doggie [
exposedField SFVec3f position 0 0 0
exposedField SFRotation rotation 0 1 0 0
exposedField SFInt32 whichChoice 0
exposedField SFInt32 id 0
exposedField SFBool bark FALSE]

{Transform { translation IS position
rotation IS rotation
children [Dog {whichChoice IS whichChoice id IS id}
Sound {minFront 10 minBack 10 intensity 20

source AudioClip { loop IS bark url ["bark.wav"] }}]}}

DOG WORLD 183

Transform { children [
DEF dog1 Doggie {position 0.0 0.0 -10.0 whichChoice 0 id 1}

DEF dog2 Doggie {position -1.0 0.0 -15.0 whichChoice 0 id 2}

...
DEF dog10 Doggie {position 5.0 0.0 -16.0 whichChoice 0 id 10}
]}
EXTERNPROTO Dog [
exposedField SFRotation rotation
exposedField SFInt32 whichChoice
exposedField SFVec3f position
exposedField SFInt32 id
]["./dog.wrl"]

:-object dogworld : [bcilib].

var url = ’./dog/dogworld.wrl’.

main :-
text_area(Browser),
set_output(Browser),

format(’Load the game ...~n’),
loadURL(url),
Clock := new(game_clock),

_Pulse := new(game_clock_pulse(Clock)),
Clock <- get_game_time(TimeLeft),

format(’the game will start in 5 seconds,~n’),
format(’the total playing time is ~w seconds,~n’, [TimeLeft]),

sleep(5000),
format(’the game startup,~n’),
_dog1 := new(dog(dog1, Clock)),
_dog2 := new(dog(dog2, Clock)),
_dog3 := new(dog(dog3, Clock)),
_dog4 := new(dog(dog4, Clock)),
_dog5 := new(dog(dog5, Clock)),
_dog6 := new(dog(dog6, Clock)),
_dog7 := new(dog(dog7, Clock)),
_dog8 := new(dog(dog8, Clock)),
_dog9 := new(dog(dog9, Clock)),
_dog10:= new(dog(dog10, Clock)).

184 SOURCE CODES

:-end_object dogworld.

:-object game_clock.

var time_left = 5000.

get_game_time(Time) :-
Time := time_left.
set_game_time(Time) :-
time_left := Time.

:-end_object game_clock.

:-object game_clock_pulse.

game_clock_pulse(Clock) :-
repeat,
sleep(1000),
Clock <- get_game_time(Time),

Left is Time - 1,
Clock <- set_game_time(Left),
Left < 1,
!.

:-end_object game_clock_pulse.

:-object dog : [bcilib].

var sleeptime = 250.
var small_movement = 0.20.
var big_movement = 0.40.
var enlargement = 5.
var max_distance = 40.

dog(Dog, Clock) :-
setSFInt32(Dog,whichChoice, 0),
format(’~w thread active.~n’, [Dog]),
activity(Dog,Clock).

activity(Dog,Clock) :-

DOG WORLD 185

repeat,
sleep(500),
Clock <- get_game_time(TimeLeft),
getInformation(Dog, DogPosition, MasterPosition1,MasterRotation1, MasterPosition2, MasterRotation2),
findHowtoReact(Dog,DogPosition,MasterPosition1, MasterRotation1, MasterPosition2, MasterRotation2, Action),
nonvar(Action),
format(’player ~w action: ~w~n’,[Dog,Action]),
doAction(Dog,DogPosition,MasterPosition1,MasterRotation1,MasterPosition2, MasterRotation2,Action),
TimeLeft < 1,
!.

getInformation(Dog,position(X,Y,Z),position(X1,Y1,Z1),rotation(X2,Y2,Z2,R2),position(X3,Y3,Z3),rotation(X4,Y4,Z4,R4)):-
getSFVec3f(Dog,position,X,Y,Z),
getSFVec3f(proxSensor,position,X1,Y1,Z1),
getSFRotation(proxSensor,orientation,X2,Y2,Z2,R2),
sleep(sleeptime),
getSFVec3f(proxSensor,position,X3,Y3,Z3),
getSFRotation(proxSensor,orientation,X4,Y4,Z4,R4).

findHowtoReact(_,position(X,_Y,Z),_,_,position(X3,_Y3,Z3),_,move_to_master):-
distance2D(X,Z,X3,Z3,Dist),
Dist > max_distance,
!.

findHowtoReact(_,_,position(X1,_Y1,Z1),_,position(X3,_Y3,Z3),_,move_to_master):-
distance2D(X1,Z1,X3,Z3,Dist),
Dist < small_movement,
!.

findHowtoReact(_,_,position(X1,_Y1,Z1),_,position(X3,_Y3,Z3),_,move_with_master):-
distance2D(X1,Z1,X3,Z3, Dist),
Dist > big_movement,
!.

findHowtoReact(_,_,position(X1,_Y1,Z1),_,position(X3,_Y3,Z3),_,look_at_master):-
distance2D(X1,Z1,X3,Z3,Dist),
Dist < big_movement,
Dist > small_movement,
!.

186 SOURCE CODES

findHowtoReact(_,_,_,_,_,_,look_at_master):-!.

bark(Dog,Time):-
setSFBool(Dog, bark, true),
sleep(Time),
setSFBool(Dog, bark, false).

doAction(Dog, position(X,_Y,Z),position(X1,_Y1,Z1),_,_,_,look_at_master):-
look_at_position(Dog,X,Z,X1,Z1),
bark(Dog,500).

doAction(Dog, position(X,Y,Z),position(X1,_Y1,Z1),_,_,_,move_to_master):-
getSFInt32(Dog,id,ID),
getFlockCenter(position(X2,_Y2,Z2), master_standing,[]),
dFunction(ID, Xd,Zd),
X3 is X2 + Xd,
Z3 is Z2 + Zd,
look_at_position(Dog,X,Z,X1,Z1),
bark(Dog,500),
move_to_position(Dog,position(X,Y,Z),position(X3,Y,Z3),5),
!.

doAction(Dog, position(X,Y,Z),position(X1,_Y1,Z1),_,
position(X3,Y3,Z3),_,move_with_master):-

Xdif is X3-X1,
Zdif is Z3-Z1,
getFlockCenter(position(X5,_Y5,Z5), master_moving, [position(X3,Y3,Z3),Xdif,Zdif]),
getSFInt32(Dog,id,ID),
dFunction(ID, Xd,Zd),
X6 is X5 + Xd,
Z6 is Z5 + Zd,
look_at_position(Dog,X,Z,X6,Z6),
move_to_position(Dog,position(X,Y,Z),position(X6,Y,Z6),10),
!.

look_at_position(O,X,Z,X1,Z1):-
Xdif is X-X1,
Zdif is Z1-Z,
Xdif =\= 0.0,

DOG WORLD 187

R is atan(Zdif/Xdif) - sign(Xdif)*1.57,
setRotation(O, 0.0, 1.0, 0.0, R).

look_at_position(_,_,_,_,_):-!.

move_to_position(O,_,position(X,Y,Z),0):-
setSFVec3f(O,position,X,Y,Z).

move_to_position(O, position(X1,Y1,Z1),position(X2,Y2,Z2),C):-
C > 0,
C1 is C-1,
Xdif is X2 -X1,
Zdif is Z2 -Z1,
X is X1 + Xdif/C,
Z is Z1 + Zdif/C,
setSFVec3f(O,position,X,Y1,Z),

sleep(500),
move_to_position(O,position(X,Y1,Z),position(X2,Y2,Z2),C1).

getFlockCenter(position(X,Y,Z),master_standing, []):-
getSFVec3f(proxSensor,position,X,Y,Z),
!.

getFlockCenter(position(X,Y,Z),master_moving, [position(X1,Y,Z1), Xdif, Zdif]):-
X is X1 + Xdif* enlargement,
Z is Z1 + Zdif* enlargement,
!.

dFunction(1,0,3):-!.
dFunction(2,-1,-2):-!.
dFunction(3,1,-7):-!.
dFunction(4,-2,3):-!.
dFunction(5,2,2):-!.
dFunction(6,-3,0):-!.
dFunction(7,3,-1):-!.
dFunction(8,-4,4):-!.
dFunction(9,5,-4):-!.
dFunction(10,5,-3):-!.

:-end_object dog.

Appendix C

This is an appendix without a title.
Here is the content.

189

References

[ActiveWorld, 2000] ActiveWorlds, http://www.activeworlds.com.

[AlphaWorld, 1999] Alpha Enterprises, World of Alpha,
http://www.alphaworld.com, 1999.

[de Antonio, et al., 2001] A. de Antonio, R. Aylett, D. Ballin (Eds.): Intelli-
gent Virtual Agents, Proceedings of Third International Workshop,
IVA 2001, Springer LNAI 2190, 2001.

[Bandai, 1997] Bandai America Incorporated website, 1997.
http://bandai.com.

[Beer, 1999] M. Beer, M. d’Inverno, N. Jennings, M. Luck, C. Preist and M.
Schroeder, Negotiation in Multi-Agent Systems, Knowledge Engi-
neering Review, 14(3), 285-289, 1999.

[Bell, 1995] Bell, J., A Planning Theory of Practical Rationality. Proc.
AAAI’95 Fall Symposium on Rational Agency: Concepts, Theories,
Models and Applications, 1-4.

[Bell and Huang, 1997] Bell, J., and Huang, Z., Dynamic goal hierarchies, in:
L. Cavedon, A. Rao, W. Wobcke (eds.), Intelligent Agent Systems,
Theoretical and Practical Issues , LNAI 1209, Springer, 1997, 88-
103.

[Blaxxun, 2000] Blaxxun Interactive Inc. web site http://www.blaxxun.com.

191

192 REFERENCES

[Broll et al., 2000] Wolfgang Broll, Eckhard Meier, Thomas Schardt,
Symbolic Avatars Acting in Shared Virtual Environments,
http://orgwis.gmd.de/projects/VR, 2000.

[Brusilovsky, 1996] Brusilovsky, P., Methods and Techniques of Adaptive Hy-
permedia, User Modeling and User-Adapted Interaction, 6, 87-129,
1996.

[Caglayan, 1997] Caglayan, A., and Harrison, C., Agent Source Book – a com-
plete guide to Desktop, Internet and Intranet Agents , Wiley, 1997.

[Capin et al., 1997] Tolga K. Capin, Hansrudi Noser, Daniel Thalmann, Igor
Sunday Pandzic, Nadia Magnenat Thalmann, Virtual Human Rep-
resentation and Communication in VLNet, IEEE Computer Graph-
ics, March-April 1997 (Vol. 17, No. 2)

[Carson et al., 1999] G. Carson, R. Puk, and R. Carey, Developing the VRML
97 International Standard, IEEE Computer Graphics and Applica-
tions 19(2), 1999, 52-58.

[Cheong, 1996] Cheong, F-C.,Internet Agents: Spiders, Wanderers, Brokers
and Bots, New Riders, 1996.

[Cohen and Levesque, 1990] Cohen, P., and Levesque, H., Intention is choice
with commitment. Artificial Intelligence, 42 (3), 1990.

[Creature Labs, 1999] Creature Labs website, 1999.
http://www.creaturelabs.com.

[Curious Labs] Curious Labs: http://www.curiouslabs.com/.

[DLP web site, 2001] DLP web site: http://www.cs.vu.nl/∼
eliens/projects/logic/index.html.

[Earnshaw, et al., 1998] R. Earnshaw, N. Magnenat-Thalmann, D. Terzopou-
los, and D. Thalmann, Computer Animation for Virtual Humans,
IEEE Computer Graphics and Applications 18(5), 1998, 24-31.

[Eliëns, 1992] Anton Eliëns, DLP, A language for distributed logic program-
ming, Wiley, 1992.

[Eliëns, 2000] Eliëns, A., Principles of Object-Oriented Software Develop-
ment, Addison-Wesley, 2000.

[Eliëns et al., 2002] A. Eliëns, Z. Huang, and C. Visser, A platform for Em-
bodied Conversational Agents based on Distributed Logic Program-
ming, Proceedings of AAMAS 2002 WORKSHOP: Embodied con-
versational agents - let’s specify and evaluate them, 2002.

REFERENCES 193

[Faure, 1997] F. Faure, et al., Dynamic analysis of human walking, Proceed-
ings of the 8th Workshop on Computer Animation and Simulation,
Budapest, 1997.

[FIFA, 2001] FIFA, Laws of soccer games, http://www.fifa.com, 2001.

[Finin and Fritzson, 1994] T. Finin and R. Fritzson, KQML as an agent com-
munication language, Proceedings of the 3rd International Confer-
ence on Information and Knowledge Management, 1994.

[FIPA, 1999] FIPA, FIPA Content Language Library, Foundation for Intelli-
gent Physical Agents, 1999.

[Freach, 1988] French, S., Decision Theory, an Introduction to the mathemat-
ics of Rationality, Ellis Horwood Limited, 1988.

[Graham, 1996] Graham, M., and Wavish, P., A situated approach to imple-
menting characters in computer games. Applied Artificial Intelli-
gence, 10(1):53-74, 1996.

[H-anim, 2001] Humanoid animation working group: http://h-
anim.org/Specifications/H-Anim1.1/, 2001.

[Harel, 1984] D. Harel, Dynamic Logic, Handbook of Philosophical Logic, Vol.
II, D. Reidel Publishing Company, 1984, 497-604.

[Huang et al., 2000] Zhisheng Huang, Anton Eliëns, Alex van Ballegooij, Paul
de Bra, A Taxonomy of Web Agents, Proceedings of the 11th Inter-
national Workshop on Database and Expert Systems Applications,
IEEE Computer Society, pp. 765–769, 2000.

[Huang et al., 2001] Zhisheng Huang, Anton Eliëns, and Paul de Bra, An
Architecture for Web Agents, to appear in: Proceedings of EURO-
MEDIA 2001, 2001.

[Huang et al., 2001b] Zhisheng Huang, Anton Eliëns, and Cees Visser, Pro-
grammability of Inteligent Agent Avatars, Proceedings of the Au-
tonomous Agents’01 Workshop on Embodied Agents, Montreal,
Canada, 2001.

[Huang et al., 2002] Zhisheng Huang, Anton Eliëns, and Cees Visser, 3D
Agent-based Virtual Communities, Proceedings of the 2002 Web
3D Conference, ACM Press, 2002.

[Huang et al., 2002b] Z. Huang, A. Eliëns, and C. Visser, STEP : a Scripting
Language for Embodied Agents, Proceedings of the Workshop of
Lifelike Animated Agents, Tokyo, 2002.

[Living Worlds] Living Worlds Working Group,
http://www.web3d.org/WorkingGroups/living-worlds/.

194 REFERENCES

[Liu, 1999] Z. Liu, Virtual Community Presence in Internet Relay Chatting,
Computer-Mediated Communication 5(1), 1999.

[Liu and Ye, 2001] Jiming Liu, Yiming Ye (Eds.): E-Commerce Agents, Mar-
ketplace Solutions, Security Issues, and Supply and Demand, Lec-
ture Notes in Computer Science 2033, Springer 2001.

[ISO, 1997] ISO, VRML97: The Virtual Reality Modeling Language, Part
1: Functional specification and UTF-8 encoding, ISO/IEC 14772-1,
1997.

[ISO, 1997b] ISO, VRML97: The Virtual Reality Modeling Language, Part 2:
External authoring interface, ISO/IEC 14772-2, 1997.

[Jennings et al., 1998] Jennings, N.R., Sycara, S., and Wooldridge, M., A
Roadmap of Agent Research and Development, Autonomous Agents
and Multi-Agent Systems I, Kluwer, 275-306, 1998.

[Klusch, 1999] Klusch, M., (Ed) Intelligent Information Agents - Agent-Based
Information Discovery and Management on the Internet, Springer,
1999.

[Klusch et al, 2003] Klusch, M., Bergamaschi, S., Edwards, P., Petta, P.
(Eds) Intelligent Information Agents: An AgentLink Perspective,
Springer LNAI 2568, 2003.

[Knoblock, 1997] Knoblock, G.A., Ambite, J.L., 1997, Agents for Information
Gathering , Software Agents, pp. 347 - 373, 1997.

[Maes, 1997] Maes, P., Humanizing the global computer, Interview in: IEEE
Internet Computing1(4), 1997.

[Messmer] E. Messmer, E-commerce yet to embrace virtual reality,
http://www.idg.net/english/crd commerce 441283.html.

[MiMaze] MiMaze, http://www-sop.inria.fr/rodeo/MiMaze/.

[MUD, 2000] Mud Connector, http://www.mudconnect.com, 2000.

[Negroponte, 1995] Negroponte, N., Being Digital, New Riders, 1995.

[Perlin and Goldberg, 1996] K. Perlin, and A. Goldberg, Improv: A System
for Scripting Interactive Actors in Virtual Worlds, ACM Computer
Graphics, Annual Conference Series, 205-216, 1996.

[Petrie, 1997] Petrie, C., What’s an agent ... and what’s so intelligent about
it?, WebWord column, IEEE Internet Computing 1(4), 1997.

[Prendiner et al., 2002] H. Prendinger, S. Descamps, and M. Ishizuka, Script-
ing affective communication with life-like characters in web-based
interaction systems, Journal of Applied Artificial Intelligence,

REFERENCES 195

[Rao and Georgeff, 1991] A. Rao, and M. Georgeff, Modeling Rational Agents
within a BDI-Architecture, Proceedings of the Second International
Conference on Principles of Knowledge Representation and Reason-
ing, pp. 473–484, Morgan Kaufmann Publishers, 1991.

[Rao and Georgeff, 1991] A. Rao, and M. Georgeff, BDI Agents: From The-
ory to Practice, Proceedings of the 1995 International Conference
on Multiple Agent Systems, pp. 312–319,1995.

[Reitmayr et al., 1999] G. Reitmayr, S. Carroll, and A. Reitemeyer, Deep-
Matrix – An Open Technology Based Virtual Environment System,
Visual Computer 15, 395-412, 1999.

[Reynolds, 1987] Reynolds, C.W., Flocks, Herds, and Schools: A Distributed
Behavioral Model, Computer Graphics, 21(4), July 1987, pp. 25-34.

[Reynolds, 1999] Reynolds, C.W., Steering Behaviors for Autonomous Char-
acters. March 19, 1999. http://www.red.com/cwr/steer/gdc99.

[Robocup, 1999] RoboCup, The Robot World Cup Initiative,
http://www.csl.sony.co.jp/person/kitano
/RoboCup/RoboCup.html, 1999.

[Roth, 1999] Volker Roth, Mutual protection of co-operating agents, Secure
Internet Programming: Security Issues for Mobile and Distributed
Objects , Lecture Notes in Computer Science 1603, pages 275-285,
Springer-Verlag Inc., 1999.

[Russell and Norvig, 1995] Russell, S., and Norvig, P., Artificial Intelligence;
A modem approach, Prentice Hall, New Jersey, 1995.

[Schoemake, 1985] K. Shoemake, Animating Rotation using Quaternion
Curves, Computer Graphics 19(3), 245-251, 1985.

[Searle, 1969] J. R. Searle, Speech Acts. An Essay in the Philosophy of Lan-
guage. Cambridge, 1969.

[Subrahmanian, 1998] Subrahmanian, V.S., Principles of Multimedia
Database Systems, Morgan Kaufmann, 1998.

[Takahashi, 1999] Tomoichi Takahashi, LogMonitor: from player’s action
analysis to collaboration analysis and advice on formation, Robocup
99, 1999.

[VESL] Virtual European Statistical Lab, Conferencing using Vnet,
http://vesl.jrc.it/en/comm/eurostat/research/supcom.97/01/conf/mainvnet.htm.

[WASP, 2000] WASP project home page: http : //www.cs.vu.nl/ ∼
huang/wasp.

196 REFERENCES

[Watson, 1996] Watson, M., AI Agents in Virtual Reality Worlds – program-
ming intelligent VR in C++, Wiley, 1996.

Glossary

Agent Agent is ...
Artificial Intelligence Artificial Intelligence is a study on ...

197

Index

2D web agent, 52
3D BDI web agents, 81
3D virtual commmunity, 121
3D virtual conferencing, 121
3D web agent, 52
3d-server-multiple-agent, 53
ACL, 122
Action alternative, 40
Active objects, 15
Active World, 121
Agent communication languages, 122
Agent model, 65
Agent, 39
Agent-based virtual community, 122
Alpha world, 47
Animated avatars, 85
Animated gif, 1
Antecedent, 6
Anton Eliëns, 3
Approach VRML+JAVA, 2
Approach VRML+JAVA+PROLOG, 3
Artificial intelligence, 3
Atom, 6
Atomic formula, 6
Audio-embedded avatars, 86
Autonomous agent, 123
Autonomy, 43
Avatar authoring tools, 93
Avatar design, 85
Avatar, 85

Backtracking, 8
Ball distance, 75
BDI Agents, 41
BDI agents, 65, 81
Blaxxun Agent, 61
Blaxxun Avatar Studio, 93
Blaxxun Community Server, 48
Blaxxun Interactive, 121
Body of rule, 6
Clause, 6
Co-operating agents, 45
Cognitive loop, 40
Cognitive model, 66
Cognitive models of soccer players, 75
Communication component, 123
Communication thread, 123
Communicative act, 130
Conclusion, 6
Constant, 6
Constructor clauses, 16
Curious Labs, 93
Cut !, 13
Decision making agents, 65
Decision theories, 40
Decision-making agents, 40
Declarative language, 5
DeepMatrix, 121
Defender, 71
Displace, 89
Distributed logic programming language, 3

198

INDEX 199

Distributed Soccer Game Protocol, 134
Distributed virtual environment, 121
DLP, 3
Domain-dependent agents, 45
Drone agent, 123
Drone, 122
E-commerce agents, 45
E-commerce, 121
Eliëns A., 3
Expertise seeking agents, 45
Extened BDI architecture, 42
Facial animation, 97
Fact, 6
Fail, 14
FAP, 97
FIPA ACL, 130
Forward, 71
Function-dependent agents, 45
Get / Set Field Predicates, 138
Gg-client, 130
Gg-server, 130
Goal distance, 75
Goal, 5
Goalkeeper, 71
H-anim compliant avatars, 86
H-anim1.1, 86
Head of rule, 6
High-level simulations, 136
Humanoid animation working group, 86
Imperative programming languages, 5
Infinite loop, 9
Information gathering agents, 45
Instances of object, 15
Internet Relay Chatting, 121
Joint nodes, 86
Joint PROTO, 87
Jpeg pictures, 1
Kickable ball distance, 75
Kickable goal distance, 75
KQML, 130
Lattice of web agent, 53
List, 9
Living Worlds Working Group, 122
Living Worlds, 122
Logic programming language, 3
Maintenance goals, 83
Matching, 8
Method clauses, 16
Middle fielder, 71
Move-to-default-position, 77
MPEG4, 97
Multiple thread control, 70
Multiple web agents, 52
Negotiation agents, 45
Networked virtual environment, 1
Networking predicate, 125

Non-distributed multiple agent systems, 65
Object agent, 123
Object declarations and statements, 15
On-line entertainment, 121
Parallel threads, 114
Parallelism, 114
Passable distance, 75
Passing, 77
Passive objects, 15
Performance, 135
Pilot agent, 123
Pilot, 122
Poser 4, 93
Practical reasoning module, 42
Predicate, 6
Pro-activity, 44
Problem solving agents, 45
PROLOG, 3
Prolog, 5
Property, 6
Quaternions, 116
Query, 5, 7
Recursion, 7
Relation, 6
Responsiveness, 43
Rotation interpolation, 116
Rule, 6
Run-to-ball, 77
Runnable distance, 75
Scene, 122
Segment node, 86
Server-client network architecture, 129
Shared events, 2
Shared object, 122
SharedObject, 122
Shooting, 77
Simple reflex agents, 39, 65
Single occurrence of variables, 12
Single web agent, 52
Site nodes, 89
Sites, 89
Slerp, 116
Soccer balls, 67
Soccer player avatars, 69
Soccer playing agents, 66
Soccer playing game, 66
SoccerPlayer, 71
SoccerPlayerUser, 71
Socialness, 44
Software agents, 39
Sound clip, 1
Statement, 6
STEP, 99
Synchronization, 114
Taxonomy of web agents, 45
Term, 6

200 INDEX

Texture-based avatars, 85

Theoretical reasoning module, 42

Travel assistant agents, 45

Unification, 8

User agent, 123

Variable, 6

Video clips, 1

Virtual communities, 2

Virtual community agents, 45

Virtual community, 121

Virtual environment, 1

Virtual Reality Modelling Language, 1

Virtual world, 1
VLNet, 121
VRML EAI, 2
VRML, 1
Web agents, 39
Web-based multi-user games, 121
World Wide Web, 1
World, 122
Wsclient, 130
Wsserver, 130
WWW, 1
XSTEP, 112
Zone, 122

