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Abstract. We aldressthe isaue of formulating constraint problems in structured damains, and focus on the exploitation o part-
whole relations. We describe and compare two approadches in problem formulation in this context; one using a flattened repre-
sentation d domains, and ore using a naturally occurring part-whole relation. We show that the second approach may be much
more dficient than the flattened representation, thanks to a judicious partitioning of the cnstraint problem in severa phases.
We give atheoreticd measure of the respedive cmmplexities of the two approaches, and ill ustrate our result on a difficult and
naturally structured musicd problem: automatic harmonization d melodies. The resulting system outperforms previous attempts
on the same problem. Finally, we propose other applications of our approach for generating automatically musical programs.

1. FORMULATION OF CONSTRAINT SATISFACTION PROBLEMS

Congtraint satisfadion techniques (CSP) have been increasingly used for solving difficult combinatorial problems
recently, thanks to the avail ability of efficient algorithms and data structures. CSPs are dtrading because they allow
problems to be stated in asimple and dedarative way, as 1) a set of variables, having predetermined finite domains,
and 2) a set of constraints, usually taken off-the-shelf from a constraint library, which hold their own solving meda-
nism.

Today, most of the problems lved by these techniques traditionally belong to the field of operational research, and
combinatorial optimizaion. These problems are usually formulated using some kind of mathematica representation,
such as graph theory. A typicd consequence of this formulation is that the domains of constrained variables are
“flattened out”, and the whole problem is gated in terms of atomic values, such as integer or red numbers. Some-
how, the semantics of the domains is integrally represented by the mnstraints, and the domains of variables have no
dired interpretation. This approadh is efficient in cases when the resulting constraint systems contains only well-
known constraints, such as basic aithmetic constraints or combinations thereof, or so-cdled global constraints, for
which generic, parameterized solving algorithms were developed [Beldiceaiu and Contgjean 94]. This typicdly
occurs for problems which have drealy been the subjed of formalization in fields such as operationa reseach:
scheduling, layout cutting, etc.

We believe CSP techniques can be succesgully applied to many other fields, where 1) problems have not been for-
malized mathematicdly, and 2) domains are naturaly structured. This is typicdly the cae in multimedia, where
there is a growing pod of new problems which cdl for efficient solving techniques, and in which the underlying
ontologies are not easily reduced to mathematicd entities sich as integer or red numbers. However, applying CSP
techniques in this context raises an important formulation isaue, by definition, since the reduction of problems to a
flattened representation is either impossble or unretural. In this context, we ae interested in the formulation of
constraint problems which alows to 1) take into acount underlying ontologies of structured oljeds, and 2) giverise
to efficient solving by traditional CSP techniques.

Thisistypicdly the cae of the auitomatic harmonizaion problem, on which we will concentrate in this paper. How-
ever, this paper is not spedficdly about harmonization, but about formulation of constraint problems in raturally
structured damains.

In Sedion 2 we will describe predsely the automatic harmonizaion problem, and review preceling approades for
solving it. In Sedion 3 we will describe our approacd, based on a formulation of the problem in a non-flattened
space and compare it to the equivalent flattened formulation, including an evaluation of its theoreticd complexity.
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We will apply the approach on the harmonization problem in Section 4, and conclude on the generality of our pro-
posal, and other applications in progress.

2. THE AUTOMATIC HARMONIZATION PROBLEM
This section introduces the harmonization problem, and outlines previous attempts at solving it automatically.
2.1 Definition

The automatic harmonization problem (AHP) consists in finding a harmonization of a given melody, such as the
melody shown by Figure 1, or, more generally, any incomplete musical material. This harmonization must satisfy the
rules of harmony (and counterpoint, if rhythm is taken into account). Rules of harmony have constantly evolved
during history, but most treatises of harmony, such as [ Schoenberg 78] describe rules corresponding to the baroque
and classical eras. However, the set of rules can be easily modified to realize harmony exercise in a style corre-
sponding to a different period.
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Figure 1. Aninitial melody to harmonize (the beginning of the French national anthem, 18 notes).
Rhythm is not significant here.

A standard exercise is to harmonize agiven melody into a four-voice harmonizaion (seeFigure 3 for a solution of
the melody of Figure 1). There ae various types of such constraints: 1) horizontal constraints on successve notes of
amelody (e.g. “two successve notes $ould make a onsonant interval”), 2) verticd constraints on the notes making
up achord (e.g. “no interval of augmented fourth, except on the fifth degree” or “voices never cross’) and 3) con-
straints on segquences of chords. In these exercises, rhythm is not taken into acount, and ead note of the melody is
harmonized by a mrresponding chord.

Constraints on sequences of chords are the most famous and important in our context. These cnstraints are impor-
tant because they are eplicitly stated as holding on “chords’, where chords are sets of simultaneously occurring
notes. This notion of chord introduces a natural part-whole relationship between chords and notes in the domain.
Moreover, chords are not only sets of notes, but have various properties: a name, computed from the intervals be-
tween their notes, a degree representing akind of abstradion with regards to a particular scde, and so forth. A typi-
cd constraint on sequences of chords is the parallel fifth constraint which states that: “parallel fifth between two
succesgve chords are forbidden”, i.e. if a chord contains a fifth interval between two o its notes, then the arre-
sponding rotes in the successve chord should not make up also a fifth interval, as ill ustrated in Figure 2. Another
similar constraint is the different degree onstraint: “two successve dhords $ould have different degrees’.
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Figure 2. The paradlel fifth constraint, holding on two successve dords. On the left, two chords
which violate the constraint. On the right, two chords which satisfy the mnstraint.
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Figure 3. A solution for the initial melody of Figure 1.

The main interest of this musicd problem for CSP is that the rules of harmony and counterpoint fit nicdy in the
formalism of finite domain CSP. It istherefore not surprising that several studies have proposed various lutions to
solve the aitomatic harmonization problem using constraints. We will review them in the following sedion, and
outline their main charaderistics. It is to be noted that a human student typicdly solves these kinds of exercises
quickly, with littl e or no “badtracking’. The problem istherefore a dallenge for artificial intelligence becaiseit is
bath difficult from a combinatorial viewpoint (SeeSedion 2.2), and easy for humans.

2.2 Previous Approachestothe AHP

The first system historicaly, which solved the AHP is probably Ebcioglu’'s Choral system [Ebcioglu 92]. Choral’s
objedive is to generate fully-fledged chorales in the style of J.S. Bach from scratch. To doso, Ebcioglu devised an
ad hoc constraint logic programming language (BSL), based on production rules integrated in a badjumping-based
agorithm. Chora includes svera interading modules for melody generation, harmonizaion and analysis, as well
as modules to consider stylistic constraints. From atechnicd point of view, constraints are used mostly passively, to
rejed solutions produced by production rules. It is therefore difficult to assessthe quality of the harmonization
module only.

Levitt [Levitt 93] propaosed a full y-fledged system for producing complete orchestrations acarding to various musi-
cd styles, such as ragtime, using constraints, but used value propagation techniques, in a perturbation model
[Borning 81], rather than satisfadion techniques, and was therefore unable to solve our problem. In the same spirit,
Steds approach [Steds 86] aimed at building a system that could lean the rules of harmony itself, using machine
leaning techniques. Although rot primarily designed for automatic, efficient harmonization, the system feaured an
interesting capadty to lean and use musicd heuristics to speed up the search, and an ability to combine brute explo-
ration with heuristic seach, an important concern of CSP in the large. The use of arc consistency (a widespread
technique in constraint satisfadion), for musica harmonization was first advocated by Ovans in [Ovans and Davison
92]. He showed experimentally that techniques based on arc consistency were more alapted and efficient than tech-
niques based on ealier techniques, such as pure badkjumping. However, he used a flat representation of the har-
monizaion problem, and addressed only the problem of two-voice harmonizaion. In addition, his results, athough
better than his predecessor’s, were still unsatisfadory.

Tsang proposed a solution of the four-voice harmonizaion problem using constraint logic programming techniques
[Tsang and Aitken 91]. Althoughthe proposed system was operational, the authors dill concluded on the impradi-
cability of the gproach, for efficiency reasons: it took more than 5 minutes, on a SunSparc 1 workstation, and re-
quired 70Megabytes of memory to solve the AHP on an 11-note melody. They employed a flattened representation
of the musica domain: constraints were stated on “notes’ variables only, themselves represented as mere integers.

More recently, Henz addressed the harmonization problem from a different viewpoint, emphasizing the need for
developing a plan, prior to the resolution [Henz & al. 96] . This plan embodes knowledge aout the desired har-
monizaion, such as modulations and chord degrees. The harmonizaion problem is therefore much ssimpler, and
solutions are found in reasonable time (about 1 second for non-optimal solutions on a 133MHz PC). The resulting
systemisinteresting from amusica point of view because it al ows users to effedively test harmonization plan inter-



actively. However, it is less relevant from the constraint satisfaction point of view, since the constraint problem
addressed is actually a very simple combinatorial problem (harmonization with chord degrees given), which can be
solved easily by standard CSP technique (the Oz system [Smolka 94] in this case).

The system proposed by Ballesta in [Ballesta 98] is probably the most complete attempt at solving the four-voice
harmonization problem using recent constraint techniques (a Lisp version of the llog Solver system [Puget 95]). The
approach taken by Ballesta, however, is basically the same than in [Tsang and Aitken 91]: the constraints are all
stated on a flattened representation of the musical objects (notes and chords). For instance, in [Ballesta 98], 12 at-
tributes are defined to represent one interval, such asthe name of the interval (e.g. diminished fourth), its degree, and
itstwo extremities. Nine constraints are then introduced to state the relations that hold between the various attributes
of class Interval. For instance one constraint links the name of the interval to the various attributes of its extremities
(the octave and name of the note). As aresult, constraints are defined using a low-level language (arithmetic), thus
reguire a trandation of harmonic and melodic properties in terms of integers. For instance, the paralel fifth con-
straint is represented as follows (actually a set of six 4-ary constraints):

parallel-fifth(n1, n2, n3, n4, n’1, n'2, n'3, n'4) &
if fifth(n1, n2) then =fifth(n’1, n'2)
if fifth(n1, n3) then =fifth(n’1, n'3)
if fifth(n1, n4) then =fifth(n’1, n'4)
if fifth(n2, n3) then =fifth(n'2, n’3)
if fifth(n2, n4) then =fifth(n'2, n’4)
if fifth(n3, n4) then =fifth(n’3, n'4)

Figure 4. The oonstraint corresponding to the parale fifth rule, as expressed in the flattened for-
mulations, e.g. [Ovans and Davison 92] and [Ballesta 98]. The same @nstraint expressed using
structured damainsisgiven in Sedion 4.

It is clea that this approac leals to stating a huge anount of constraints and constrained variables. For instance, in
Ballesta's g/stem, one note instanceis represented by 6 constrained variables. To solve the AHP on a n-note melody,
his g/stem uses 126 x n - 28 constrained variables. The resulting system is expededly slow, and shows clealy -
through the mnstruction of a full system - the limits of the “flattened” approach. Althoughthe cmplexity of Ball-
esta’'s approach is difficult to evauate since the system uses pedal classs of constraints, one can approximate the
seach spaceby 14°n, where n is the number of notes, 3.n is the number of constrained note variables, and 14is the
avogage number of possble notes for ead variable. If n = 15 notes (typicd case), the search spaceis then 14" =
10

The drawbadks of these systems can be summed up asfollows: first, there ae too many constraints. The gproaches
proposed so far do not structure the representation of the domain objeds (notes, intervals, chords). When such a
structure is proposed (asin Balesta s g/stem) objeds are treaed as passve dusters of constrained variables. Se
ond, the mnstraints are treaed uniformly, at the same level. This does not refled the redity: a musician reasons at
various levels of abstradion, working first at the note level, and then on the dords, the most important harmonic
dedsions being made & the chord level (e.g. the parall el fifth constraint).

Our basic ideais to exploit the natural structuring of objeds in this problem: chords. As we saw above, chords can
be defined as groups of simultaneous notes having certain properties. The main interest of chords is that they form
meaningful entities on which knowledge is usually formulated. For instance the paralle fifth constraint typicaly
holds between two chord oljeds, and not between 8 notes. In the next sedion, we will propase an integration of this
part-whole hierarchy in the formulation of the constraint problem, and show how it all ows the statement of the prob-
lem in asimpler way, while ensuring a better efficiency.

3. EXPLOITING NATURAL PART-WHOLE HIERARCHIESIN FORMULATING CSPs
In order to formulate predsely our ideg identify the technicd problems and propose asolution, we will concentrate

on asomewhat simpler problem in the field of elementary geometry in the next sedion. We will then apply the solu-
tion to the harmonization problem, and describe the resulting system.



3.1 Definition of a CSP

Let usfirst recdl that a CSP is defined by 1) aset V of variables, eat variable having a finite domain, and 2) a set
of congtraints. Constraints are defined either in intension by a predicate holding on some variables, or in extension
by the set of consistent tuples. A solution of a CSP is an instantiation of all variables that satisfies $multaneoudly all
the @nstraints.

3.2 TwoMain Designsfor CSP and Structured Domains
We will now ill ustrate our ideaby showing two dfferent formulations of a simple problem in the domain of planar

geometry. The problem P isthe following:

Find al pairs of non trivial quadril aterals stisfying the foll owing set of constraints (C):

C1 - All vertices have integer coordinatesin{1 .. n}.
C2- For all vertices, thex and y coordinate ae different.
C3 - All quadrilaterals are redili nea redangles.

C4 - The two redanges do not intersed.

Figure 5 shows a solution of (P) when n=10.

d

R1

R3 R2

Figure 5. A solution of problem (P) isapair of redangles stisfyingthe set of constraints (C). The pairs
of redanges{R1, R3} and {R2, R3} are posshle solutions; pair {R1, R2} isnot. Inaspacewith coor-
dinate ranging from 1 to 6, there ae 90 solutions.

The main task in formulating problem P is to identify the variables to be wnstrained. The first formulation consists
in “flattening out” the domains, i.e. spedfying the problem only with point variables, considering here points as
atomic entities. In this representation, the constraints are stated entirely in terms of point variables. Read of these
variable has a domain containing the set a all points with integer coordinates, where eat point is itself a cuple of
integers (%, y). The only variables in this formulation are the point variables; the mordinates are not variables.

The threefirst constraints would be stated as foll ows, where g b, ¢, d (resp. &, b, ¢/, d) are the variables representing
the point coordinates of Redl (resp. Red?2), and x and y are the functions yielding the x and y coordinate of the
points (seeFigure 6).

C1: unary congtraints on eadt variable: dom(a) = dom(b) = ... = {al points with integer coordinatesin { 1.. n}}
C2: unary congtraints on ead variable: dom(a) = dom(b) = ... ={al points with different coordinates}
C3: sets of four binary constraints for stating that ead redangle is redili nea:
x(a) = x(c); y(a) = y(b); x(b) = x(d); y(c) = y(d)
x@) =x(c); y(@) =y(0'); x(b') = x(d'); y(c') = y(d")
The most important constraint, C4, is a 8-ary constraint, stated as foll ows:

x(b) < x(a") "Redl on the left of Red2"
or x(a) > x(b" "Redl ontheright of Red2"
ory(c) >y(a) "Redl above Rea2"

ory(a) <y(c) "Redl below Rea2"



In this lution there ae:

« 8variables, representing the 8 vertices, eat one with a domain of size(n2 - n).

« 9 constraints (C1 and C2 are represented as domains, 8 hinary constraints for expressng C3, one 8-ary constraint
for C4).

Figure 6. Stating constraint C4 in terms of points variables.

The second formulation is based on the exploitation of natura structures: the redanges themselves. Since the
problem statement contains constraints involving redanges (C4) and that the domain is defined in terms of paints, a
natural solution consists in spedfying a problem with both "redangle variables' (i.e. variables whose domain is
colledion of redanges) and pdnt variables. The main interest of this lution is to alow the statement of con-
straintsin a more natural manner, and to exploit the natural part-whole relation between redanges and pdnts.

In this formulation, constraints C1, C2, and C3 would be stated simil arly, but constraint C4 would then be stated as
the foll owing binary constraint:

not (intersects (Rectl, Rect?2))

In this olution, there would be:

e 8 pdnt variablesasin the first solution,
« 2 additional variables, representing the 2 redangles, ead one with adomain of sizeN! / (N-4)!

where N = n2-n (the number of possble paints).
« thesame mnstraints C1, C2, and C3 than in the first formulation
e 1 hinary constraint, for C4.

In the first solution, constraints are difficult to state, because they involve only "lower-level" objeds. In our previ-
ous example, imagine a onstraint involving three redanges! In the secnd solution, constraints are stated on
higher-level objeds (redanges). Also, the cnstraints involve less variables (the aity of constraints is a aucia
parameter for performance). In our example, C4 has eight variables in the first solution, and only two in the second
one.

Of course, this formulation raises a problem: how to build redangles to creae the domains for the two additi onal
redangle variables? Creding these domains naively would involve the aedion of alot of objeds: in our case it is
roughly egual to the Cartesian product of the domain sizes of the variables making p a redange. Although the
colledion of al posgble redanglesin afinite 2-dimension spaceis, of course, finite, it is pradicdly unreasonable to
buil d this coll edion prior to the resolution.

These two approaches are graphicdly represented in Figure 7. The first one corresponds to a problem with partialy
instantiated oljeds, i.e. objeds whose dtributes are mnstrained variables. In the second one, constraints are stated
between fully instantiated oljeds.

> .04

Figure 7. The two design approaches in designing a CSP + part-whole hierarchy problem. Solution
lisontheleft, 2 on theright.



3.3 Introducing a Part-Whole Relation in the For mulation

We will now introduce the part-whole relation between domain values in the definition of the CSP. The ideaisthat a
part-whole relation between domain values yields a natural partition of the set of variables and of the set of con-
straints. For the sake of simplicity, we will consider here only “one-level” part-whole relationships. The generaliza-
tion to arbitrary levelsis eesy.

Definition 1 Part-Wholed CSP. Let Pa CSP.
A part-whole relation R is defined as foll ows:

eV=V10OV2
*R V1 xV2 2{0, 1}
vl RV2 meansthat vlisa” part of” v2

This relation between variables induces a partition of the constraints in three sets, according to the nature of their
variables. This partition is defined as follows:

c=Cc10¢C2 DCm'XGjVVith ClnC2=[JandCln Crixed = [JandC2n Chixed= [J

where the subset C1 (resp. C2), consists of constraints involving only variables of V1 (resp. V2), and where Ciixeds
contains variables of both V1 and V2.

Our proposa consists in decomposing the resolution of P into the successive resolution of sub-problems holding
only on subparts of C. The strategy is the following: in a first step, we consider only atomic objects of the problem
and the congtraints involving them, i.e. V1 and C1. We then apply domain reduction to remove inconsistent values
from thisinitial problem values. We then compute al the higher level objects that can be made up with the remain-
ing atomic values. These objects make up the domains of the variablesin V2. Finally, we can solve the full problem
as defined in our second formulation.

The strategy can be summarized as follows:
First phase

We first create a CSP P1, whose variable set is V1, and whose constraint set is C1. We apply a consistency algo-
rithm to P1, in order to reduce the size of the domains of its variables as much as possible.

I ntermediate phase

The intermediate phase consists in computing the domain of every v2 in V2. These domains are computed with
respect to the reduced domains of each vl that satisfies vl R v2. This computation is done by simply enumerating,
for each v2, the Cartesian product of its parts, i.e. every vl such asvl RVv2.

Second phase

We then create a CSP P2, whose variable set is V=V1/[V2, and whose constraint set is C1[JC2[JC,jxe. The domains
of variablesin V2 were reduced during the intermediate phase.

Notice that in the general case, constraintsin C1 have to be considered in the second phase, because arc consistency
has not necessarily ensured global consistency. For this reason, it could seem that our decomposition is useless.
However, it is not the case, and the main result of our approach is that the cost contribution of these constraintsin the
second phase is small compared to the cost of C2 in the flattened formulation.

We will now evaluate the complexity of this approach, and then apply it to the rectangle problem and the harmoniza-
tion problem.

3.4 Theoretical Complexity of the Approach

The contribution of our approach can be evaluated as follows: let A be a set of n atomic objects. The size of the set
of all n-uplets of A iscard(A)". The set of composite objects can be seen as the image of A by a composition map-
ping, called c.



Let us consider a problem with two compasite objeds, and thus 2.n atomic objeds. Let us then suppcse one global
“arbitrary” constraint, i.e. for which there is no particular filtering method avail able.

The complexities of the two approaches can be computed as foll ows:

Approach #1

In the first approad, the compasition constraints hold on at most n atomic variables. Their complexity is therefore
bounded by Card(A)". The global constraint holds in 2.n atomic variables, whose domains is A. Its complexity is
(Card(A)")’. Thetotal complexity of the flattened approach is Card(A)>".

Approach #2

In this approach the mmplexity of the first phase is the same & above, i.e. Card(A)". The intermediate phase an-
sists in computing the Cartesian product of n variables whose reduced damains are bounded by Card(A) : its com-
plexity is bounded by 2.Card(A)". In this approad, the global constraint holds on two composite variables whose
domains contains c(A") elements. Its complexity is (Card(c(A"))2 The total complexity of the second approach is
thus (Card(c(A"))2 + 2.Card(A)".

In general, Card(A)" is negligible before (Card(c(A"))?, so the total complexity may be gproximated by
(Card(c(A"))2

Let r be the ratio Card(A)" / Card(c(A")). r measures the “density” of composite objeds in the spaceof all n-uplets.
Since the ratio between the complexities of the two approadies is r2, we deduce that the scarcer are composite ob-
jeds, the more dficient is our approad.

In the cae of redangles, the scheme instantiates as foll ows: the number of 4-pletsis n®, while the number of redili n-
ea redanglesisn!/(n-4)!, which is approximated by n®. Thereforetheratior = n*.

The resolution scheme presented here can be generalized to problems involving more than two levels of composi-
tion. For instance, in the problem (P) there ae two composition levels if we mnsider the points as atomic objeds,
but there ae threelevels (coordinates, points and redangles) if we consider points themselves as dructures of two
integers.

3.5 Related Works

Our work is related to the general isaue of problem reformulation. The impaad of formulation of CSP on their reso-
lution has already been emphasized by [Nadel 90]. Nadel identified several equivalent formulation of the n-queen
problem, including “dual” approaches, in which constraints and variables are somewhat swapped. In our case, we do
not try to find a “dual” representation space but rather to build a representation spacein which structures are made
explicit, and considered themselves as variables. This ideais gmilar to the ideas underlying the Robin Chess pro-
gram [Pitrat 77]: these representation spaces are interesting becaise 1) they are much smaller than the initial flat-
tened space and 2) knowledge can be expressed dredly in terms of these structures and exploited by the solver
(chord structures for music; plansin the cae of chess.

For instance, CSP decomposition, see eg. [Weigel and Faltings 97], somehow addressthe same problem, but follow
a bottom-up approadh, starting from a flatted formulation, and trying to build clusters that minimize the number of
seach nodesin the resolution. We follow a top-down approad, that may not be & optimal, but which is interesting
becaiseit isbased on meaningful abstradions, for which 1) models can exist already, and 2) implementations can be
reused.

Another way to reduce the acomplexity of CSPs is by exploiting topdogies of already flattened CSPs, such as tree
structured [Bayardo and Miranker 94]. In our case this is not applicable becaise 1) we predsely do not want to
build the flattened formulation and 2) If we were ale to produce this formulation, it would not exhibit a treelike
topdogy, since there remains constraints holding “aaoss’ structured oljeds (for instance @nstraints between con-
seautive notes, which creae o/cles).



4. FORMULATING THE AHP USING THE CLASS-BASED APPROACH

The preceading approach and results can now be diredly applied to the AHP, by identifying the natural part-whole
relation between chord oljeds and notes.

To doso, we reused afully-fledged oljed-oriented library, the MusES system [Pachet et al. 96], which contains a set
of around 100classes that represents the basic dements of harmony, such as notes, intervals, scades and chords.
Congtraints are stated and solved using the BadkTalk system [Roy and Pachet 97], designed to alow constraints to
hold diredly on objeds using arbitrary methods defined in their classes.

Using our approach, given a n-note melody, the total CSP contains 3.n variables for the notes plus n variables for the
chords (handled only in the second phase). Some nstraints are stated bah at the note level (C1), asin the flattened
approaches. Constraints on chords (C2) are diredly expressed on chord variables. For instance, the famous parall el
fifth constraint is expressed as foll ows:

Not (hasParallel Fifth (chordl, chord2))

where chor d1 an chor d2 are two chord variables, and hasPar al | el Fi ft h isastandard predicae (a method
in classChor d).

Solutions for melodies of around 15 notes are found almost instantaneoudly (lessthan 1 second on a Pentium PC,
using the Smalltalk languege).

Comparing predsely our approach to the precaling ones is difficult to do because the previous authors did not solve
the same problem, the melodies were different, the solvers were different, as well as the cmmputers used. Ovans ad-
dresses a much simpler problem than ours: unfigured two-voice harmony exercises instead of four-voice The com-
parison is therefore not relevant. Similarly, Henz's g/stem solves a harmonization with a predetermined harmoniza-
tion plan, which is also a ssimpler problem, but not enoughinformation is avail able to compare it in detail with ours.
We give here some predse dements for assessng our approach and comparing to Tsang's and Ballesta's.

» Comparison with Tsang's approach.

Tsang is the only precading approach solving the full 4-voice unfigured harmonization problem. Tsang gves only
one sample melody. The comparison on this melody is given in Figure 8. There is a 1000fador between these two
figures. If we consider that there is afador of 100 ketween our PC and the computer used by Tsang, our result is 10
times better, notwithstanding the memory spacewhich is much lessin our case. However, this comparison is limited
since there is only one melody, and we do not have much information on the performance of the solver used by
Tsang.

Tsang's 11 note melody

Tsang (CLP) 5 minutes on a SunSparc 1 workstation + 70 M egabyte memory space

BACKTALK + MUuseS | 0.34 secs on a Pentium 300MHz computer + 1.6 Megas memory (54 badktrads)

Figure 8. Comparison between our approach and Tsang's on a 11-note melody.

» Comparison with Ball esta’s approadch.

Ball esta solves the figured bassproblem, which is much simpler than the unfigured bassone. Indeed, figure infor-
mation limits drasticdly the number of possble dhords (there ae in average 8 passhble dords for a given figure).
Solving the figured bassproblemsis, in our case, even simpler than solving only C2 alone (the second phase), since
the domains of chord variables are drealy given. Some of Ballesta’'s melodies are even very difficult to solve with-
out the figure information. Our system allows to solve dl the melodies of Ballesta, without the figures, and much
faster.

To give more dements of comparison, we took a bassline proposed by Ball esta (seeFigure 9), and solved the unfig-
ured bassproblem using our system on segments of the bassline of increasing length (2 to 14 notes). The results are
given in Figure 10. We give the CPU and number of badktradcs for the computation of the first solution, for both
systems (Ballesta's and ours). The differencein performance between the Sparc 10 and the Pentium 300MHz can be
estimated to be afador of 10. Thisyieldsafador of 50in favor of our approach, on amuch harder problem.
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Figure 9. Theinitial bassline for our benchmarks.

Note that we dso applied our system to the figured bassproblem, as Ballesta, and also oltained better results. How-
ever, the improvement of performanceis not so significant in the context of this paper, since the figured bass prob-
lem involves asimplified part-whole relation. These results are not reported here for reasons of spaceli mitations.

Note dso that we have not reported the results for finding all solutions of given bassor melody lines. Thisis because
the solutions ts are different: the @sence of figure information increases dramaticaly the number of solutions by
several orders of magnitude, so this comparison is not relevant.

Ballesta, Figured Bass® Bolution Our approach, Unfigured Bass, first Solution

length CPU (in seconds) CPU, Phase #[ICPU, Phase #PCPU, Phase #BCPU Total |fails
2 9 0,007 0,042 0,013 0,062 1
3 45 0,007 0,029 0,031 0,067 6
4 120 0,006 0,064 0,063 0,133 7
5 90 0,007 0,066 0,167 0,24 36
6 160 0,008 0,069 0,17 0,247 36
7 180 0,008 0,085 0,18 0,273 36
8 130 0,022 0,061 0,18 0,263 36
10 170 0,009 0,085 0,207 0,301 40
12 191 0,009 0,102 0,24 0,351 41
14 184 0,011 0,108 0,28 0,399 43

Figure 10. Comparison between the system of Ballesta and ours. The table shows the resolution of afigured
bassexercise in Ball esta's approadh, for increasingly long basslines. For our approach, we give alditionally
the number of badktradks. Note that our system solves a harder problem because figures are not given.

5. OTHER APPLICATIONS

The domain of Multimedia often includes domains which are naturally structured by part-whole relations. We out-
line here aprojed in progressconcerning the aitomatic generation of music redtals, for which or approach was used
succesdully.

In this g/stem, the dm is to generate aittomaticdly a redtal, which is a sequence of musicd pieces taken from a
given repertoire. The redtal must satisfy certain conditi ons, expressed as constraints. In our projed, the pieces are
taken from a repertoire of French Baroque Harpsichord Music, and the @nditions come from studies by well -known
musicologists [Bukofzer 47]. Typicd constraints are “two contiguous pieces $ould be of a different type”, or “all
pieces ould bein the same key”.

However, it appeas that redtals are naturally structured into so-cdled “blocks’: the introductory block, an optional
block and a mnclusive block. Additional conditions must hold on these blocks. For instance, if there is an optional
block, there has to be a @nclusive block. Other constraints hold on pieces within a block. For instance, the intro-
ductory block must begin by an “allemande” or a “pavane”, and may include agigue, in between the first and third
pieces.

Although several works were devoted to designing spedalized global constraints for buil ding constrained sequences
[Baptiste & al. 94], our approach can be used here profitably for reducing the seach space without requiring a spe-
cialized algorithm.

It is clea that the nature of the problem makes it fit naturally in our scheme. More predsely, we identify a part-
whole hierarchy Redtal/Block/Piece and split the mnstraint set into two parts: constraints holding only on pieces,
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and constraints holding only on blocks. The resulting system is then efficient enough to handle large repertoires of
musicd pieces, which would be otherwise impradicable using standard CSP techniques.

6. CONCLUSION

This paper addresses the isaue of formulating constraint problems in structured damains. We propaose to explicitly
take into acount part-whole hierarchies, when they occur, at the problem formulation level, rather than during exe-
cution. We show that these relations allow to state the problem in a representation spacein which domains are
smaler, thus lead to gains in efficiency. Additionally, the proposed approach all ows the statement of problemsin a
more natural way than using a dasdcd, flattened representation of domains. In this resped, our approach fitsin the
genera isae of problem reformulation [Amarel 66], where the @m is to identify representation spaces where dther
domains are small er or more knowledge is avail able.
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