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Computer aided composition is a domain where
the integration of different programming paradigms finds spe-
cial relevance. We describe the integration of constraint, func-
tional and visual programming in two systems developped at
IRCAM. Efficient constraint satisfaction techniques are cou-
pled to iconic visual languages to ease programming of com-
plex problems and to get computed results directly into stan-
dard music notation editors. Real composition examples taken
from musical pieces actually created are discussed at some
length to show the relevance of both systems to non trivial
music composition tasks.

1 Introduction

Research on multi-paradigm languages has known increasing
interest in the last years. The integration of what appears
to be fundamentally different notions of programming has
come up as a real need in some domains. One salient exam-
ple is the realm of computer supported musical composition.
Composers define complex hierarchical structures represent-
ing multiple musical dimensions which are to evolve accord-
ing to either (or both) predetermined trajectories or to the
satisfaction of a set of compositional rules supplying partial
structural information. Both Object-Oriented and Constraint
programming paradigms easily come to mind as relevant for
devising music composition tools capable of effectively han-
dling each of these forms of interaction.

In this decade a number of tools integrating objects and
constraints for musical applications have been proposed.
These are in general based on standard object-oriented or
functional languages enriched with libraries for handling con-
straints. Situation ([BR98]) and PWConstraints ([Lau93]),
both visual constraint programming application developed at
IRCAM, are good examples of this approach. The visual lan-
guage PatchWork ([LD89]) or OpenMusic ([AA96]) is sup-
plied with a powerful constraint solving engine optimized to
solve musical problems that can be represented in terms of

1 TRCAM, Paris, France and Pontificia Universidad Javeri-
ana, Cali, Colombia. Supported in part by grant 1251-14-
041-95 from Colciencias-BID. E-mail: crueda@ircam.fr and
crueda@atlas.ujavcali.edu.co.

2 Composer.

Sibelius Academy, Helsinki, Finland. E-mail: laurson@siba.fi

Universite des Sciences Humaines de Strasbourg, Strasbourg,

France. E-mail:gbloch@monza.u-strasbg.fr

TRCAM, Paris, France E-mail:assayag@ircam.fr.

o

© 1998 C. Rueda, M. Lindberg, M. Laurson, G. Bloch, G. Assayag
Submitted to ECAT 98
June 13, 1998

a collection of possible objects and a set of properties they
should satisfy.

Constraint programming can have far reaching applications
in the field of computer assisted composition. In this paper
two music composition systems, PWConstraints and Situa-
tion are described. Both are based on the notion of program-
ming as searching for sets of elements satisfying a certain
number of given properties or constraints. PWConstraints is
a PatchWork library and Situation is an OpenMusic library
(a version is also available for PatchWork). Both systems of-
fer constraint satisfaction capabilities for constructing musical
structures. They differ significantly in the strategies and algo-
rithms used and also in their relative knowledge about the
application domain. Much like Patch Work, PWConstraints is
neutral in the sense that it makes no attempt to favor appli-
cations that fit into a particular notion of a musical object.
In fact, as is also the spirit of PatchWork, objects are musi-
cal only if the user chooses to interpret them as such. The
elements that the search engine of PWConstraints tries to
find does not necessarily have any structure, although com-
plex PatchWork musical structures can also be involved in
the exploration.

Situation on the other hand, defines a very general struc-
ture for the objects it deals with. They should be expressible
as sets of points and distances in a certain space. This struc-
ture is very general since it can easily accommodate musical
objects such as chords, chord sequences, voices, rhythmic pat-
terns, etc. But the fact that Situation knows already the
structure of its objects allows it to greatly optimize solution
searching in many practical applications. Obviously, not every
problem can be conveniently expressed as that kind of struc-
ture, so Situation has a way to consider unstructured objects
but in this case the optimizations do not apply. Each system
is described in more detail in the following.

We give next a very summary description of PatchWork
and OpenMusic. More details of these languages together with
their place within the research program at TRCAM can be
found in [CAR98].

1.1 PatchWork

PatchWork (PW) is a language for computer-assisted com-
position, although it can also be used as a general purpose
programming tool. Written in Digitools Macintosh Common
Lisp (MCL), PW provides a graphical interface to the Lisp
language. Any Lisp function can be translated to a graphically



operable box. Programming consists of making connections
between boxes. PW is musically neutral in the sense that it
does not make assumptions about what kind of music or mu-
sical raw material is to be produced or analyzed with it. The
main aim is to give the user basic tools for visual program-
ming and to provide a straightforward correspondence with
the base language, Common Lisp.

Much like in most graphical environments, PatchWork’s in-
terface is event-driven. It consists of windows in which dif-
ferent kinds of graphical items can be positioned, moved and
edited in various ways according to actions triggered by exter-
nal events such as mouse clicking or key pressing. PatchWork
is a visual language based on the notion of patch. A patch is a
layout of visual elements (or views ) in a window. The views
in a PatchWork patch are box frames enclosing one or more
input rectangles and exactly one output rectangle. An out-
put rectangle can be linked to one or more inputs of different
boxes by connecting lines. Each box represents the invocation
of a particular function. Lines linking boxes define functional
composition (see figure 1). A visual patch is thus intended
to define a very simple model of computation in which boxes
take the role of function calls. Procedural abstraction is added
by allowing a whole patch to be visually collapsed into a sin-
gle abstraction box with suitably defined inputs and output.
A powerful feature of PatchWork is the possibility of defining
boxes that compute editable data structures. These can then
be interpreted as musical structures that are amenable to vi-
sual manipulations in a variety of supplied editors. Figure 1
shows the same computed data visualized as a break point
function, a musical structure displayed in standard music no-
tation and an editable cell array.

1.2 Open Music

OpenMusic is a highly visual compositional environment on
the Macintosh. Developed at IRCAM, it is intended as a su-
perset of PatchWork. While drawing benefit from the huge
amount of knowledge and experience gathered around the
PatchWork project, OpenMusic implements a set of new fea-
tures that makes it a second generation compositional soft-
ware. Constructed on top of Digitool MCL, OpenMusic pro-
vides a visual programming interface to Lisp programming as
well as to CLLOS. OpenMusic is an Object Oriented visual pro-
gramming environment. Objects are symbolized by icons that
may be dragged and dropped all around. Most operations are
performed by dragging an icon from a particular place and
dropping it in an other. These places include the OpenMusic
workspace as well as the Macintosh finder itself. A rich set of
classes implementing musical data and behavior are provided.
They are associated with graphical editors and may be visu-
ally subclassed by the user to meet specific needs. Different
representations of a musical process are handled, including
common notation, MIDI piano-roll, sound waveforms, break-
point functions. High level in-time organization of the music
material is available through the concept of maquette, which
is a frame with an explicit representation of time where any
data or computational object can be positioned. The music
notation in OpenMusic is handled by CMN, a portable Com-
mon Lisp library designed by Bill Schottstaedt ([Sch95]) at
CCRMA. CMN has been extended for Quickdraw compati-

bility and some interactive editing features have been added.

2 PWConstraints
2.0.1 Basic Environment

PWConstraints is a rule-based programming language in
which the user writes rules to describe the end result from
many different points of view. PWConstraints has been inte-
grated into PW so that PW music editors can be used both for
input and output. This increases the usefulness of the system
as the results can be inspected and manipulated in standard
music notation. A more complete description of the system
can be found in [Lau93] and [Lau96].

A search problem is formalized in two steps. Firstly, a search
space is defined as a set of search variables. Each search vari-
able has a domain containing a list of values. Secondly, a set
of rules are written. In a rule a pattern-matching language
is used to extract relevant information from a potential solu-
tion. This information is given to a Lisp predicate that either
accepts or rejects the current choice made by the search en-
gine. The rules are compiled to efficient Lisp functions. The
pattern-matching part of a rule uses a fairly standard pattern-
matching syntax. It can contain variables (symbols beginning
with the character ”?”: e.g. 71, 72, ?foo), anonymous variables
(plain ”?”), wild card ("*”) and index variables (symbols that
begin with the character ”i” and end with an integer: e.g. i1,
i2, i12). A variable extracts single values from a partial solu-
tion and is typically used in conjunction with a wild card. By
contrast, an anonymous variable is never bound to a value, i.e.
it only acts as a "place-holder” in the pattern. The wild card
matches any continuous part of a partial solution. Finally,
an index-variable extracts values from an absolute position.
The pattern-matching part is followed by a Lisp code part
that begins with the expression (?if jLisp code; ). Besides the
variables and index-variables the Lisp code part can refer to
special reserved variables [ and rl. [ is the partial solution
(including the current candidate) found so far by the search
engine. rl is the same list but in reversed order. As an ex-
ample, a rule disallowing all two adjacent equal values in a
result is written as follows (this rule uses a wild card and two
variables):

(*?7172(?3f(/ =7172)) "no equal adjacent values”)

The user can also define preferences by heuristic rules.
These are similar to the ordinary PWConstraints rules but
the Lisp code part of a heuristic rule returns a numerical
value instead of a truth value (heuristic rules never reject
candidates). This scheme allows the search engin to sort can-
didates that are accepted by the ordinary rules. The search
engin tends to favor candidates with high numerical values.
For instance a heuristic rule that prefers large intervals can
be written as follows:

(*?7172(?1 f (abs(—7271))) ”prefer large intervals”)

Two classical constraint satisfaction algorithms (forward
checking and back jumping. See [Nad89] and [Dec90]) are sup-
plied to allow the user to optimize a difficult problem. Forward
checking is used when some relation in the result is given in
advance. By contrast, back jumping is more useful when the
search reacts dynamically to the state of the partial solution.
A typical case is for instance a melodic rule that allows only
a given amount of repetitions within a subsequence notes (we
don’t know in advance the exact positions where the repeti-
tions will occur).

The current version has also a new powerful tool that allows
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Figure 1. A PatchWork program

to run in parallel several independent copies of the same prob-
lem. In each copy the domains are ordered differently. This
can be interesting in difficult search problems where out of a
good number of trials only one or a few will produce a result
in a reasonable time. This tool can be used in two modes.
In the first one the user can interactively kill unsuccessful
searches and restart new ones. In the second one the system
is run under a supervisor process. [t automates the task of
killing and creation of searches according to a given deadline
schedule. The deadline schedule gives time limits that specify
the targets that must be reached. If a search does not meet
these constraints it will be killed and a new one will replace
it. The supervisor process will stop when the desired number
of solutions has been found.

2.0.2 Score-PMC

Besides these basic tools PWConstraints contains several ex-
tensions. The most important and complex one is used to
solve polyphonic search problems. This is accomplished with
a function called Score-PMC. Like in a traditional polyphonic
score, the user operates with several layers (parts, voices) of
events (notes). The rhythmic structure of a search problem is
prepared in advance in a standard PW music notation editor.
This input score (which can be arbitrary complex) is given as
an argument to the search engine. The search, in turn, aims
at filling the input score with pitch information according to
the given rules.

The search-engine works internally only with a flat queue
structure. Due to the complexity of the input score Score-
PMC has to make several preparation steps before starting
the search. Firstly, Score-PMC collapses a given polyphonic
score into a flat list of search variables. Each note of the input
score is represented in the search engine by a search variable.
The critical point is to determine the exact position of each
note in the final flat queue structure. This ordering is done
by a score sort algorithm. Score sorting works as follows. The
score is read from left to right and notes are taken as they
areencountered. If two or more notes share the same attack
time, they are sorted so that longer notes are placed before
shorter ones. If two or more notes have the same attack time

and the same duration the order is arbitrary. The default
convention is that notes having the highest part number are
considered first. Secondly, Score-PMC has to preserve the mu-
sical information of the original input score. Thus each note
must have knowledge of its melodic line (e.g. predecessor, suc-
cessor, metric context, part, measure, beat), of its harmonic
context (i.e. which notes are currently sounding and have al-
ready a solution), of its harmonic slice (i.e. which notes are
sounding with the current note), etc.

In Score-PMC the pattern-matching part refers to note suc-
cessions of a melodic line. In a sense Score-PMC can be seen
as a multi-layered search problem where each melodic line
represents one queue structure similar to the one used by a
simple search problem. Also, the variables refer in this case
to complex objects and not simply to values as before. This
scheme allows relevant information to be extracted from the
objects. A typical example is the expression (m?1) that re-
turns the current midi value of a variable having the name
?1. Thus the "no equal adjacent values” rule given above can
be rewritten in Score-PMC as (this rule is run for each melodic
note pair):

(*?172(?if(/ = (m?1)(m?2))) "no equal adjacent melodic
pitches”)

A harmonic rule disallowing unisons and octaves can be
written as follows (this rule is run for each note):

(*?1(?if (not(member(m?1)(hc¢  —  midis?l)
key# mod12))) "no unisons or octaves”)

Besides the function m this rule contains some useful utility
functions (currently PWConstraints has a library of over 200
predefined user functions): hc-midis returns the midi values
of the harmonic context of 71 and mod12 returns the modulo
12 of its argument.

In Score-PMC the pattern-matching has been extended so
that the user can easily add restrictions to the application of
a rule. For instance, the "no equal adjacent melodic pitches”
rule can be rewritten so that it is only applied for parts 1, 2
and 3 (this rule uses the keyword :partnum that refers to the
part number):

(%7172 : partnum(123)(?if(/ = (m?1)(m?2)))

“no equal adjacent melodic pitches”)
Other similar keywords (such as :measurenum, :beatnum,



etc.) can be mixed in the pattern-matching part.

Lately the multi-layered search idea has been extended to
cover parameters other than pitch. A new function called
Texture-PMC uses internally the Score-PMC function and is
capable of producing complex rhythms and textures. The in-
put score consists of a dense pulse of attacks. Each input at-
tack can be interpreted as either an attack, tie or rest defining
the rhythmic structure of the result. Furthermore a resulting
attack can consist of any PW chord object. Due to the flex-
ible nature of the PW chord object an attack can thus have
several textural interpretations: it can be a simple PW one
note chord with various dynamic levels, it can be a multi-
note chord resulting in attacks with varying note density, it
can consist of a multi-note chord where the notes have varying
offset times (relative to the start time of the chord) resulting
in ”grace chords”, ”clouds of notes”, etc. A chord can also be
attached a label (such as ”pizz” "harm” "gliss”) allowing for
instance to define different modes of playing when working
with instrumental parts.

2.0.3 FEngine

Engine is a composition by Magnus Lindberg for chamber or-
chestra written for and commissioned by London Sinfonietta.
It was premiered in 1996 and the duration is 16 minutes. Both
the rhythmic and pitch structure of Engine was realized with
the help of PatchWork. The piece is divided into 38 sections.
Fach section was translated into Enigma file format. The re-
sult was then read into Finale, where the final orchestration
was done by hand. The rhythmic structure was accomplished
with a PW user library called LeLisp ([Lin96]). Once a metric
score done, the next step was to fill it with pitch information.
This part of the task was in turn realized with PWConstraints.
For realizing the pitch structure of Engine the main tool was
naturally Score-PMC as the rhythmic structure for each sec-
tion was calculated in advance. we give next an overview of
the rules that were used during the search. The description is
greatly simplified and does not cover all the rules used during
this project (for instance, heuristic rules are not discussed at
all).

In order to produce musically meaningful results a section
needs typically from 30 to 40 rules. These rules can be divided
roughly in four main categories: melodic, harmonic, voice-
leading and crossing-ambitus. Melodic rules can be divided
into two main groups: interval control and control of repe-
titions of melodic cells. The composer developed during the
realization process a personal library of allowed interval suc-
cessions. This was done in order to personalize the musical
material and to treat problematic cases. Another type of in-
terval rule verifies that in every group of adjacent notes (the
length varies from three to six) the minimum and maximum
pitches should not form octaves. Some interval rules are sen-
sitive to the rhythmic context. Fast successions of notes have
a different interval character than slow ones. The control of
melodic cells consists of avoiding direct repetitions within a
given window size. Harmonic rules forbid octaves (unisons are
allowed) and require that vertical interval formations have a
given set-classidentity. Often chord formations having a long
duration are controlled more strictly than shorter ones. Voice-
leading rules are always applied for two voices (or parts) at a
time. A cross-identity rule forms a 2*2 matrix where the first

row consists of a two-note melodic succession of a given part
and the second row of a simultaneous two-note succession of
another part. The rule states that the diagonal pitch-class re-
lations in this matrix should not be equal. A similar more
strict version of this rule exists where the matrix size is 2*3.
Another voice-leading rule states that two parts should result
in an almost parallel movement. Voice-leading rules can easily
be chained to control more than two parts. For instance, when
the last mentioned rule is applied, say, to parts 1 and 2, and
then to parts 2 and 3, the result is that the parts 1-3 follow
the same rule. Like voice-leading rules crossing-ambitus rules
are applied for two voices. They deal with cases where one
wants to prevent two parts from crossing each other (voices
can form unisons). This category contains also an ambitus rule
that controls the minimum and maximum distance between
two voices. One of the most important targets in this project
was that the user should be able to ”localize” rules easily
for certain musical situations. For instance, a melodic rule
may react differently to rhythmic two-note patterns (such as
short-short, short-long, long-short, long-long), chord forma-
tions that have a long duration are controlled more strictly
than short ones, parts may form different melodic and voice-
leading textures (for instance parts 1-2 may use repetitions
and large skips, parts 3-4 can be more static but avoid repe-
titions, parts 5-8 can be controlled by rules that force them
to move in an almost parallel fashion), etc. An example of
this kind of multi-layered texture is given in figure 2. It shows
the beginning of section 2 (the score is written with usual
transpositions).

3 Situation

situation allows the construction of objects out of two no-
tions: point and distance. An object contains one or more
points, spaced according to distances which are evaluated in a
given unit of measure and with respect to a user supplied dis-
tance function. Distances can be internal or external depend-
ing on (respectively) whether they involve points contained
in the same object or in several different objects. Intervals in
a chord, for example, are internal distances whereas melodic
intervals are external. The unit of measure can in this case
be the semitone, the eighth tone or any other. By default,
points are considered to have integer coordinates in a stan-
dard cartesian space. The sequence [60,64,67], for example,
could represent an object (chord) consisting of three points
(notes, pitch expressed in Midics) separated by distances of
4 and 3 semitones. The objects could also be rhythmic plans
concerning a set of articulation points spaced according to
a given set of temporal distances. An eighth note, quintu-
plet or other could be the unit of measure in this case. The
sequence [31/4,65/8,67/8], for example, might represent the
articulation points of a voice object. The unit of measure is
1/8 (an eighth note). The first articulation point is located
at position 31/4. 3/8 and 1/4 are the distances separating
consecutive points in this voice.

The specification of a problem for situation consists in sup-
plying the number of objects wanted, the space of possibili-
ties (region) for points, the number of distances in each object
and the set of possible values for these distances. Built-in con-
straints establish the allowed configurations of each object and
also that of object combinations. Any point or distance of any
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Figure 2. FEngine. Beginning of section 2.

object or set of objects can be related by a constraint. Built in

constraints conveniently define : general profiles that should

follow the objects ; patterns that a given set of distances
should match ; predetermined points that should belong to

every solution ; equality or difference of points or distances

(or simultaneity, in the case of rhythms), etc. Figure 3 shows

a visual program for the construction of a sequence of chords

having some harmonic and melodic properties. The solver en-

gine is represented by a pair of dice icon. In this example,

constraints control the constitution of each chord as well as

melodic and harmonic properties of chord subsequences. Each

constraint icon defines a particular aspect of this control (in-

tegers represent number of semitones). These include, among

others:

Patterns of interval content in each chord (icon wvint-filt).
The expression (not(or(ints12t)(* 6 *)(* 2 2 2 %)...)) con-
straints chords to not having octaves, augmented fourth or
sequences of three major seconds, etc.

Patterns of notes in each chord (icon pitch/ch-filt). The

expression (0(65 67 70 72)34(61 *)...) constrains the first
chord to be (F,G,A#,C), the thirty-fifth to contain C#,
etc.

Single voice profiles, controlling the number of consecutive
upward and downward movements (icon v-prof). The ex-
pression (0_27(mazx 3)...) requires the upper voice for the
first 28 chords to have a maximum three consecutive move-
ments in the same direction.

Relative movements of two voices (icon v/v-prof). Expres-
sion (0-27(0 u (maz 3)...)) imposes for the lower and upper
voices of the first 28 chords a maximum of 3 consecutive
parallel movements.

Patterns of melodic intervals (icon hint-filt). The expression
(0(not(or(222) (33)...))) constrains the lower voice to not
contain three consecutive major seconds or two consecutive
minor thirds.

e Ambitus evolution, defined by an interpolation forcing

the chords gradually into an octave above middle C:
(interp(54 77)(61 77)))



The visual program in figure 3 generates 96 chords. It is a
simplified version of a patch used to generate an ostinato in
the orchestral piece FEpitaph, commissioned by TRCAM and
written for the FEnsemble Intercontemporaine, by the french
composer Antoine Bonnet.
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Situation: Harmonic problem definition

As mentioned before, Situation can also be used to gen-
erate sequences in other dimensions of a musical structure.
In figure 4 each generated object contains the rhythmic pat-
tern of one voice. Distances between points in each voice are
here "measured” in a different unit: A 7-tuplet (1/28), a 6-
tuplet(1/24) and a triplet(1/12). The general minimum ap-
proximation unit is set to the 7-tuplet. A constraint posi-
tions the first point of the first voice at less than 9/28 units
of the beginning. Other constraint controls possible spacings
between points within a voice. Each point in a voice is an ar-
ticulation point where a suitable motive will be attached. A
user-defined constraint contained in the patch ”points-cnstr”
requires than no two motives (motive size is constrained to
lay within a given range) in the same or in different voices
overlap. The icon rim-sol associates articulation points with
their motive notes. The latter are also computed (in an inde-
pendent patch) by Situation. The score in figure 4 shows one
measure of a computed solution.

3.0.4 The constraint engine

Situation is a finite domains system. Each computed object
is by default represented with two domain variables. The first
variable defines the position of the first point of the object and
the second variable defines the sequence of distances separat-
ing each consecutive point in the object. The domain of the
first variable is any finite set of numbers. The domain of the
second is a finite set of sequences of numbers. The latter do-
main is usually large.Situation allows it to be structured in a
tree hierarchy. A subset of the sequences sharing a given prop-
erty can be collected into a subtree in this hierarchy. At the
level of the root of this subtree, the whole subsequence is rep-
resented by a domain of just one value: The shared property. A
collection of (user supplied) functions compute properties to
be used to abstract the sequences domain at a specified level.

By default, Situation uses two levels, with the sum of the
object’s distances as the abstracting property for the highest
level. This is very convenient for harmonic problems, where
the upper and lower voices are usually more constrained than
the others.

The notion of ”distance” in Situation is not fixed. The com-
poser can define her/his own by supplying the appropriate
functions (normal, inverse) and neutral element. In musical
applications this option can be very important. For example,
some composers conceive harmonic material as aggregates of
frequency partials related in precisely defined ways. Multi-
plicative distances are more relevant in this case.

The search engine of Situation uses first-found forward
checking (F3C. [RV97]), a lazy-evaluation version ([DM94]
of forward checking extended to hierarchical domains. Each
domain level keeps track of the position of the current consis-
tent value at that level. These are values known to satisfy all
constraints referring to that level. A judicious choice of data
structures allows Situation to efficiently update these current
positions as new constraints are checked or when backtracking
is needed.

No varaible reordering is used (although included as an
option) since constraints for musical problems generally ap-
ply within short subsequences, with little dependencies across
subsequences. All domain values are randomly permuted prior
to exploration. The reason for this is that the musician is in
most cases interested in obtaining few but widely different so-
lutions to a given problem. Due to domain permutations, any
new execution of the same problem is likely to give a solution
with different values for many of the variables.

Constraints can relate any level of the domain of one vari-
able to any level of the domain of any others. Arc consis-
tency ([Mac77]), via AC-7+ ([VC96], an enhancement of the
algorithm in ([CBU94]) can also be performed for binary con-
straints over upper domain levels. In the next subsection we
develop in some detail a musical example involving interaction
between rhythm and harmonic and melodic control.

3.0.5 Palm Sax: A musical example

Situation was used in the last movement of a piece called
Palm Saz by the french composer Georges Bloch. Palm Sax
is a composition for saxophone ensemble. Saxophones are or-
ganized in three groups, a soloist (tenor sax) and two groups
of three saxophones. In the last movement these two groups
are formed of an upper register group of soprano and alto
and a lower register group of one alto and two barytone sax-
ophones. This movement plays over two types of oppositions:
A contrast between an improvised variation based on a given
grid and a polyrhythmic structure. The grid rests on a rather
traditional structure of subtil variations from a fixed tempo.
The polyrhythmic part is based on a sort of inverted canon.
Its structure is formed of ”pages” of identical rhythmic pat-
tern and variable tempo. The coexistence of page fragments
of different speeds enforces an impression of ”unfinishedness”.
At the harmonic level the opposition plays on the difference
between "regular” and ”fragmentary”. The fragmentary part
has a textural dominance. The combination of harmonic ag-
gregates in this part creates a repetitive harmonic functional-
ity. Different aggregates are formed by the repetition of chords
in two variable temporal grids. The aggregates thus formed
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Figure 4. Situation: Rhythm generation

must follow a fixed given harmonic function which is itself re-
peated in a fixed temporal grid. Constraints are used to find
the right harmonic aggregates.

There are two key concepts in the musical model: Estrada
distance and Hindemith fundamental. A Fstrada chord is
one for which the sum of the intervals (modulo 12) between
consecutive notes does not exceed an octave. All chords in the
piece are Estrada. The signature Sig of a Estrada chord C is
defined as

Sig(C) = nts(C) U {12 = > ( )(i mod12)}, where
ints(C) is the set of intervals between consecutive notes in
chord C.

The Estrada distance between two chords Cy, C5 is defined
thus

distance(Cy,C2) =
Maz(#Notes(Ch), #Notes(C2)) — |Sig(C1) N Sig(C2)| — 1,
where #Notes(C) is the number of notes in chord C.

The Hindemith fundamental of a chord C' is defined to be
the lowest note in C forming an interval of a fifth with any
other note of the chord. If no such interval exists then the
lowest note in C is chosen.

In the piece the upper voice is constrained by requiring
FEstrada distance equal to one, between every pair of chords
in positions ¢z and 7+ 11. Lower voice and upper voice chords
whose "living time” intersect are mixed together into a single
chord. Each different chord thus formed should be such as to
have a particular Hindemith fundamental.

Figure 5 shows a patch implementing this model. Variables
vg, . . ., va7 correspond to the first 48 chords in the lower voice.
Variables v4s, . . ., vig7 refer to the first 120 chords of the upper

voice. The entries to the constraint solver (the pair of dice)
specify,

e The allowed subspace for the generated objects. In this case
the pitch region allowed for the evolution of each voice. For
the lower voice, this is defined by an interpolation from the
register comprised between D2 and D3 for the first chord,
to that comprised between C3 and C4 for the 47-th chord.
For the upper voice, by an interpolation from the region
comprised between C3 and C4 for the first chord, to that
comprised between A4# and C5 for the 120-th chord.

e The set of allowed internal distances within an object. In
this case the set of possible harmonic intervals within each
chord. These are defined to be the set of possible intervals of
FEstrada chords consisting of one, two or three notes. They
are computed in patch wvert-intervals.

e A collection of constraints.
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Figure 5. Palm Saz: Patch in Situation

The rhythm of Palm Saz is given by the composer. Each
chord has an associated temporal position given as a distance
from the beginning of the piece. The unit of measure is the
sixteenth note. Each chord sounds until the beginning of the
next chord in the same voice.

In figure 5 icons pitch/ch-filt, user-cnstr and generic-cnstr
implement different types of constraint schemes. Each scheme
defines a predicate to be used for constraining evry pair of
consecutive chords within specified subsets of the variables.
The actual subset is either given directly in one of the inputs
to the icon, as in the expression (48_59), or computed by a
patch, as for the input to user-cnstr comming down from
patch group-simuli-chords.

The subset of variables to be constrained by predicate hin-
demith is computed by patch group-simuli-chords by consid-
ering thythmic specifications for the voices supplied in its first
(from the left) two entries. These rhythm data is used in the



patch to compute the indexes of chords sounding together at
each basic global "beat” of 17 time units. These chords should
be constrained to mix (in pairs, one from each voice) into a
chord having a hindemith base (modulo 12) equal to the one
supplied for that beat (see the list linked to the fourth input to
group-simult-chords). Predicate Hindemith implements this
constraint. The corresponding patch icon has five inputs. The
first one comes from group-simuli-chords and contains the list
of Hindemith bases for each pair of mixed chords. The rest of
the inputs represent the variable index and the notes of each
chord involved in this constraint. They are supplied by the
search engine as new instanciations of chords are proposed.

Patch implements the
FEstradadistance constraint for the upper voice. Icon fiz-estr-
chord defines an additional constraint, namely that the first
twelve chords in the upper voice should be each at a Fstrada
distance equal to one from a supplied corresponding chord
(computed in patch accords-bis).

The two icons pitch/ch-filt constraint the first chord of each
voice to a restricted zone within the allowed pitch region. The
expression (0(< 45 x)) makes the base note of the first chord
in the lower voice to be lower than 45 (i.e. A3).

estrada-dist above mentioned

Finally, patch build-rtm associates to each temporal po-
sition the corresponding chord computed by the constraint
solver. It also performs a quantification to translate absolute
temporal positions into standard OpenMusic rhythm nota-
tion.

The domain of each one of the 168 computed chords consists
of about 800 possibilities. There are about 300 constraints in
the problem definition. A section of the beginning of the last
movement of the piece is given in figure 6.

4 An experience on rhythm : metric
modulations using constraints

A metric modulation is a variation of the tempo and of the
meter structure that keeps stable a common basic impulse
unit, jus as a harmonic modulation is a change of tonality
through a chord that is common to both tonalities. This idea
has been widely investigated by american composer Eliott
Carter. The french composer Frangois Nicolas ([Nic90]) has
given a clever formalization of metric modulations using eight
variables linked by simple algebraic relations. These variable
alltogether define a basic meter structure. Three levels of dis-
crete segmentation of time are used. First we have measures.
These are in turn subdivided into a series of pulses. For exam-
ple, a 4/4 measure contains 4 pulses where the pulse value is
the quarter note. Finally pulses are segmented into impulses.
For example, if pulses are subdivided into triplets, the impulse
value is 1/12 (one third of a quarter note). A summary of the
variables used is shown in figure 7.

i: value of the impulse (1/8 for an eighth note, etc.)
p: value of the pulse (1/4 for a quarter note, etc.)
m: value of the measure (1 for a whole note, etc.)
m: value of the measure (1 for a whole note, etc.)

I: impulse tempo (nb of impulses per mn)

P: pulse tempo (nb of pulses per mn)

M:measure tempo (nb of measures per mn)

r: speed (nb of impulses contained in one pulse)

t: signature (nb of pulses in one measure)

Figure 6.

Palm Saz. Computed seven measures.

Figure 7 shows the relations defining a meter structure. It
can be seen, for instance, that the pulse value (p) is equal to
the product of the impulse value (i) by the speed (r). Other
relations are quite obvious. Defining a metric modulation is
then very simple. Given two measures defined by the variables
(i1,p1,m1,...) and (iz,p2, m2,...), the two sets of variables
must be internally consistent with regard to the relations de-
fined in figure 7, and I1 must be equal to /5. We have imple-
mented the experiment in PatchWork. The constraint solver
used is Screamer, a Common Lisp package by J.M. Siskind
([SM93)).

The implementation in Screamer is straight forward :

(solution
(Let ((i (a-ratio)) (I (a-ratio))
(p (a-ratio)) (P (a-ratio))
(m (a-ratio)) (M (a-ratio))
(r (a-ratio)) (t (an-integer))
(assert! (=v (v i r) p))
(assert! (=v (xv P v) I))
(assert! (=v (v p t) m))
(assert! (=v (v M t) P))
(assert! (integerpv (*v r t)))



Figure 7.

Relations defining a meter structure.

(list i I pPmMrt))

Before launching the resolution process, one may fix the
value of certain variables to a constant (e.g.

(assert! (=v I 240) )

) and let the other variables undefined. The solver will then
find out correct values for the open variables, that is values
representing a correct meter structure. If we fix the value of
I to a constant and let the other variables partially or to-
tally open, we get after resolution a set of meter structures
that are in a metric modulation relationship. Figure 8 shows
a subset of the possible results for I = 180, p = 1/4 (quar-
ter note), ¢ = 2 (measures with two pulses only) and all the
other variables undefined. An obvious result is that a triplet
eighth with a tempo ¢ = 60 is equivalent to a regular eighth
note with ¢ = 90. A less obvious (and unexpected) result is
the equivalence between an impulse equal to 2/5 of a quarter
note with ¢ = 72 and another one equal to 2/3 of a quar-
ter with ¢ = 120 (first 2 measures). Values for the variable
r (speed) are 5/2 and 3/2. These fractionary speeds appear
because we choosed to set the variables domains to rationals.
Such musical objects were not taken into account in the initial
metric modulation theory and have proven to be very useful
for composers. They provide the musician with an alternate
notation for polyrhythm when the tempo in one voice is con-
strained to be the same than in another voice. This is a case
where modelling music by constraints not only gives the ex-
pected solutions within a musical theory, but even extends
the theories scope.

The experience has been carried on further in order to pro-
vide with rhythmically structured tempo interpolation (an
idea proposed by composer Claudy Malherbe). The idea is
to start from a source pulse tempo (e.g. ¢ = 60) and reach,
after a certain number of steps, a target tempo (e.g. ¢ = 200)
by alterning metric modulation and simple acceleration (i.e.
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Figure 8. Metric modulations

increase of the speed r). Example in Figure 9 shows such an
interpolation that was constrained to have 8 steps, to start
from g = 60 then reach ¢ = 200 with a tolerance of 30% for
this last value (the meter model being defined with rationals,
a precise real value cannot be reached). The metric modula-
tions were also constrained to be based on the 3:4 ratio in
order to avoid arbitrary jumps (e.g. triplets to septuplets).
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Figure 9. Tempo interpolation



5 Conclusions

It has been shown that constraint solving techniques are be-
ing used more and more in the field of contemporary mu-
sic. The challenge here is that one cannot refer to a well
known music theory (e.g. the tonal system) in order to re-
strain variable types, domains and relations to a specific sub-
set; thus the need for open systems connected to powerful
musical user interfaces. The nature of the problem also cre-
ates a need for multi-paradigm environments where functional
style, constraint solving, parallel processing and visual pro-
gramming may seamlessly co-exist. The Awvispa Workgroup,
including some of the authors, has been set up in order to ex-
plore this topic with a particular focus on music composition

(IAJDFVRO8]).
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