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Abstract

This article presents our current work on a virtual cameraman which
provides the user with camera movements satisfying user defined con-
straints specified in the image space and/or constraints on the objects of
the scene.

A first implementation [19] was using a basic interval solver based on
recursive subdivision of the search domain. This technique was not effi-
cient enough to tackle complex camera movements. The work presented in
this paper focuses on the use of more sophisticated constraint techniques
to handle the non-linear constraints related to the modelling of camera
movements and screen-space constraints. Specifics of the application have
led us to study a particular extension of the core local-consistency algo-
rithm to process universally quantified time constraints. Prototype exper-
iments are implemented in Declic, our interval-based Constraint Logic
Programming language compiler.

In particular, there is neither keyframing nor interpolation, thereby,
for the solutions obtained, the satisfaction of the specified constraints can
be precisely characterized. Moreover, the high level programming related
to the use of a CLP language allowed us to design a system in which the
user can easily devise new image space constraints.

1 Introduction

A simple glance at our world should convince anyone that image synthesis is
becoming more and more popular. Compared to image rendering or geometric
modelling domains, rather little work has been done to help computer graphics
designers to easily create camera movements.

Our goal is to release the computer graphics artist from the need to under-
stand perfectly the various coordinate systems, the interpolation curve concept
nor the velocity graph concept. We want to make possible a natural camera
movement specification. The Generate-and-Test process (create control points;



test them ; modify control points; repeat) in order to obtain the desired anima-
tion (see figure 1) must be avoided for two reasons: first because these actions
can be time-consuming and second because the artist could stop this process,
not when the desired animation is attained, but when the “fed-up moment” is
reached.

After a presentation of related work, we explain the necessary mathematical
models for the scene objects, the camera and the treated movements. After this,
the description process and the properties used to specify a desired sequence are
described. The constraint logic programming language used for the implemen-
tation, Declic is briefly presented. Finally, we state some preliminary remarks
on the necessary design of universally quantified constraints to handle proper-
ties that are required to hold on a specified interval of values (e.g. position over
time, stable equilibrium in a range of 3D positions, etc.). The paper ends with
some future research directions.

2 Related work

2.1 Control and interpolation curves

Most of the work in camera specification is concerned with obtaining continuous
movements and smooth transitions (see figure 1) between user defined keyframes
[3, 8, 22, 2]. Unified library of camera control[15], physical behavior[23], input
device driven control[25] are still very close to the camera representation leading
to difficulty for a user (therefore for an artist) to predict the image animation.

"From" path "At" path

Figure 1: Keyframes and interpolation

2.2 Image space specification

The very first attempt at translating the desired image (image space constraint)
into a camera location and orientation were done by Blinn [7]. The work is based
on the re-writing of the unknown vectors in term of vectors that are known. His
work is rather specific and does not treat multiple constraints.

Another interesting attempt in screen-space specification related work is the
Through the lense camera control system [16]. The set of accepted constraints
includes position of a 3D-point on the screen, orientation of two points on the
screen and distance between two points in the image. Higher level of control



is attained by the ability to bound a point within a region of the image or to
bound the size of an object. Constrained optimization, based on the desired
changes, permits the computation of virtual time derivatives of the camera
parameters. Their system allows the user to change some camera parameters
while maintaining the constraints. The method is limited to a static camera.
An advantage of this technique is the ability to explore the solution space since
it is connex.

Goal specific camera modules based on the concept of shot in cinematogra-
phy have been devised by [13]. Constraints are then specified via these modules:
follow a character, pan to a character. Camera motion under constraint seems
to be limited to simple movements. concerning complex camera motion, a path-
planning process uses point to point specification (which is not a screen defined
constraint), the obtained camera location is then given to the optimization pro-
cess. Consequently, the solving process is not global. Several drawbacks can
be exposed, the system only provides a single solution related to a user given
optimization function. There is no solution space exploration. Camera move-
ments (location and view direction) are not handled as a whole concept. The
system calculates a static camera solution for each frame. Thus, the optimiza-
tion process must be performed at each frame (interpolation between computed
keyframes is of no use because of the risk of constraint violation). A last draw-
back is concerned with the need for a user given initialization. However, this
work presents a rather complete set of screen space constraints.

[9] developped a paradigm for automatically generating camera specifications
in real-time. This work focuses more on the cutting part of filmmaking than on
the shooting part.

2.3 Goal

Our system is concerned with a virtual cameraman. The system presented in
this paper computes camera movements corresponding to user-specified desired
properties in the image space. We believe in a process that provides the user with
multiple solutions if any. Consequently, the use of a single solution optimization
process is not suitable. Moreover, our aim is to help the artist to generate
complex camera movements that could not be obtained, at reasonable cost, by
a generate-and-test stage.

We suppose that the artist has already modelled the scene (object shape and
movement). The objects behavior is therefore known completely by the system.

The solving process presented is global and computes camera movements
which satisfy multiple constraints. In addition, the calculation is not performed
frame to frame, nor for some keyframes, but for the complete animation.

The use of Declic permits an easy extension of properties definition together
with reduced computational time.

3 Mathematical models

The used mathematical models for Camera representation and scene objects for
both static and dynamic approaches are detailed in the following.



3.1 Fixed camera model

The constraint solving process must manage any camera model even if we
present the most commonly used (see figure 2)

e eye position: three scalars (z,y, z);
e view direction: three scalars (panning: 6, tilting: ¢, rolling: ¥);
o focal distance: one scalar (focal);

e image aspect ratio: one scalar (ratio).
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Figure 2: Camera Model

3.2 Fixed Object model

Let us recall that the scene is considered as a data for the problem. We suppose
that the user has already set the position, orientation and movement of each
object.

First, a 3D-point could be attached to any moving or fixed object or just
defined by its global coordinates. Second, a bounding box (in the local object
coordinate system) is attached to each scene object. In addition, bounding
boxes can be associated to any set of objects.

The user may want to see the right part of an object or the top. Thus, to
be able to specify object orientation on the image, three vectors are defined for
each object (see figure 3) : Front, W? and Right. Up is the natural object axis
if the object posseses one.

3.3 Animated objects and camera
3.3.1 Elementary shots and Desired camera movements

Most films are made of a large number of short elementary shots. This remark
leads us to reject, for the moment, very complicated camera movements like
the movements a cameraman could perform when carrying the camera on his
shoulder. Our goal is to help an artist to obtain easily simple camera movements
with a precise control on object position within the image space. An editor could
then assemble the calculated shots (this problem is not currently addressed).
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Figure 3: Object axis

In this article, we shall not enumerate all the camera movements that one
animator could need. The reader can refer with profit to the most comprehensive
book by Arijon[1]. However, for clarity sake, let us recall the main camera
movements (see figure 4):

e panoramic shot; Usually the camera location is constant:

— horizontal panoramic shot: the camera rotates around a vertical axis
— vertical panoramic shot: the camera rotates around an horizontal
axis
o tracking shot or travelling; General term for the case of a change of the
camera location :
— dolly shot: the camera is placed on a dolly and moved from left to
right (or reciprocally) or from above to front (or reciprocally);

— tracking: for movements on the side of objects. Usually dolly term
is not used for such movements.

— arcing: the camera moves along a circle and looks towards the circle
center;

Horizontal panoramic Travelling or Dolly

Figure 4: Camera movements



3.3.2 Modelling the parameter changes

We use parametrized movements. In order to obtain the set of movements, the
solver must compute the parameters that satisfy the desired constraints.

An easy and powerful formulation is the polynomial formulation. In our tool,
every parameter of any object of the scene and each parameter of the camera
is allowed to change with respect to time in a linear, parabolic or cubic manner
with respectively 2,3 and 4 unknowns.

Let us take the panning parameter @, if 6 is set to parabolic (0(¢) = agt? +
bgt + ¢p), the unknowns would become ag, by, co. The solver will search their
domains to obtain the solution triplets which satisfy the constraints.

The domains of the new parameters have to be chosen with care to allow
maximum range of movements.

3.3.3 Object movements

For the sake of simplicity, we have restricted, for instance, the scene objects
to perform simple movements. These movements are specified by the evolution
formula of each parameter of the location and orientation of each object. The
only restrictions on the use of complicated formulas are the available interval
functions of the solver.

For the moment, there is no visibility testing (just a Z component compari-
son) and no collision detection.

4 Using constraints to specify the image

This section deals with the various means that can be used to define a desired
image.
4.1 Frame

Let us define a frame (similar to [14]) as a rectangle whose borders are parallel
to the screen borders (see figure 5). This rectangle can be inside, outside or
partially inside the screen. Usually, it is fully inside the screen.

frames
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Figure 5: Frame concept

A frame helps to restrain the projection zone of an object (or group of
objects).



4.2 Constraints on the camera

Constraints can be separated into three categories. The first category contains
camera description functions. Objects are not used in these constraints. The
second category consists of 2D-projection of the object constrained over frames.
The last family is concerned with constraints on objects and constraints between
objects. The following paragraphs deal with these three categories.

Some simple constraints on the camera are listed below.

e fized location panoramic shot, The camera location is constant, but the
direction view is allowed to change;

e pure travelling; View direction remains constant during the movement
while the location of the camera is changing.

e high-angle or low-angle: Quantitative constraints. This allows us to spec-
ify whether the camera view direction looks from above or beneath the
horizon.

4.3 Constraints on the projected objects

The next constraints are functions of both an object and a frame. They are
used to place the object in the image space. The user (interactively or off-line)
defines frames, then chooses properties and selects a frame together with an
object. The following are some examples of the constraints we have defined.

o fully included in; The object bounding box must appear within the frame.
This is the main property.

e partially included in; The object bounding box is allowed to appear par-
tially out of the frame.

o fully excluded of, Could be used for example to specify that a given object
must not appear in the image.

4.4 Constraints on objects

e orientation of the object axis; This orientation is specified with respect
to the screen border; The specified object must be naturally axial. The
constraint is based on the Up vector, defined in section 3.

o upside down; stand up: is used to specify that the given object appears
upside down (respectively standing up); The object must be naturally
orientated;

e front side visible: is used to force the object to face the camera.

e closer than: Function of two objects; This constraint compares the Z
componants of the transformed objects bounding box.



4.5 Duration of a constraint

Another important property of our work is the ability to specify the duration of
any constraint. In the virtual cameraman, any constraint on the camera or on
any projected object can last for the whole animation or only for a given time
interval. This allows us to, for example, specify a starting image and a final
image and to leave the camera movement totally free between these two images.
By default, a constraint is specified for the whole time interval.

5 The Declic language

Declic (Declarative Language with Interval constraints) is a new CLP (intervals)
language [4]. Designed with clp(FD) [11] as a starting point, it implements
the cooperation of two main solvers: one enforcing hull-consistency over some
primitive constraints [10, 6], and the other enforcing box-consistency over global
complex constraints [5, 24]. Declic is able to handle problems merging integer,
boolean and real constraints, and supports closed as well as opened domains for
the variables.

5.1 Declic in a nutshell

Declic is based on the constraint logic programming framework [12, 17, 18]
and more precisely on clp(FD), developped by D. Diaz and P. Codognet [11]. It
inherits from this last language all the Prolog engine along with both the ability
to interpret as well as to compile programs into bytecodes executables [4].

In Declic, a variable need not to be initialized, all the typing is done dy-
namically with constraints. Initialisation of variable may be done with a X in
R construction, where R denotes a range. Opened and closed domains are
accepted. By default, the domain of a variable ranges over the real numbers.

There are three classes of relations, whose symbols, {=,\ =, <, >, <=, >=},
are prefixed by #, $ or $$. These classes of relations allow the user to specify
the corresponding solver. Basically, Declic introduces a cooperation framework
between primitive-based interval-consistency and global interval Newton-based
techniques. These techniques are essentially interval extensions of well known
local consistency techniques such as arc and path consistency [20, 21], widely
studied in artificial intelligence.

Besides the primitive constraints, Declic implements some traditional high-
level constraints. Moreover, the user has still the ability to write its own con-
straints directly in the engine by interfacing C code with Prolog predicates.

5.2 Universally quantified constraints

In a mobile camera context, it is important to specify that an object (or group
of objects) remain in a given screen frame during the whole animation or a
user-defined interval of time. Since time is, in our model, represented as a
constrained variable, this requirement implies the introduction (and processing)
in a traditionally existential and conjunctive constraint world, of universally
quantified constraints.

This process is achieved by the transformation of the standard interval prop-
agation algorithm[10, 6] as follows: first the solution space is approximated



thanks to Newton-based propagation techniques and the range of the univer-
sally quantified variables is checked. If the domains of the considered variables
after approximation are strictly included in the desired Cartesian product, con-
straints are then negated in turn and interior partial approximations are com-
puted. The set of fixed points, computed by successive interval bisections finally
gives an inner approximation of the intended solution set. Further local (box)
consistency checks are applied at each step to prune the remaining search space.
This last algorithm is not currently implemented in Declic.

5.3 Constraint for camera movements in Declic

In this section, we give the relations, written in Declic language, corresponding
to some of the properties listed above.

5.3.1 Basic relations

The main relation is concerned with the perspective transformation. This trans-
formation uses 3D translation, 3D rotation and projection. Therefore, We first
provide the system with 3D translation/9, rotations around z,y, z.

translation(X1,Y1,Z21,X2,Y2,Z2,X3,Y3,23):-
X1+X2 #= X3,
Y1+Y2 #= Y3,

Z1+7Z2 #= Z3.
x_rotation(X1,Y1,Z1,A,X1,Y3,23):-

CA $= cos(a), SA $= sin(a),

Y3 $$= (CA * Y1) - (SA * Z1),

Z3 $$= (SA * Y1) + (CA * Z1).

Y rotation and Z rotation are written in the same manner.
The projection along Y axis relation is then written.

Yprojection(X1,Y1,Z1,AX,AY X2,Y2):-
TX $= tan(AX), TY $= tan(AY),

X2 $$= (X1*AX)/Y1,

Y2 $$=(Z1#AY)/Y1.

And last the general perspectve relation:

perspective(XC,YC,ZC,TH,PH,PS,
AX,AY,X1,Y1,Z1,X2,Y2):-
translation(X1,Y1,Z1,XC,YC,ZC,

X3,Y3,23),
Z_rotation(X3,Y3,23,TH,X4,Y4,24),
X_rotation(X4,Y4,Z4,PH,X5,Y5,25),
Y_rotation(X5,Y5,Z5,PS,X6,Y6,26),
Yprojection(X6,Y6,26,AX,AY ,X2,Y2).

5.3.2 Properties relations

To bound a 3D point within a Frame in the screen, the perspective relation is
simply called.

framepoint(XC,YC,ZC,TH,PH,PS,
AX,AY,X1,Y1,21,
XMIN,XMAX,YMIN,YMAX) :-

perspective(XC,YC,ZC,TH,PH,PS,



AX,AY,X1,Y1,21,X2,Y2),
X2 $> XMIN, X2 $< XMAX,
Y2 $> YMIN, Y2 $< YMAX.

This relation permits to obtain the camera position (XC,YC,ZC) and the ro-
tation angles (TH,PH,PS) given the appertures on x and y axis (AX,AY) and the
position (X1,Y1,Z1) of the point to bound within the frame (XMIN,XMAX,YMIN, YMAX) .

5.3.3 Animated objects and camera

This description can be extended to handle animated objects and camera. This
can be done by introducing a specific variable representing time and to model
the movements in the same manner with respect to time in a linear, parabolic
or cubic manner, as already mentioned in the section 3.3.2.

6 Future Work and Conclusion

Our goal was to conceive and develop a helping tool for the camera positionning
in a synthetic image film creation context. Our first implementation of the
virtual cameraman has shown the feasibility of such a tool.

Using this tool, an artist specifies the desired properties within the image
space, without any knowledge of the camera model. The artist can, therefore,
focus on creativity and forget internal mathematical models.

The presented tool provides a safe approximation of the whole set of solu-
tions for the camera movement problem instead of a single movement strongly
depending on an optimization process. Different kinds of camera movement
modelisation have been proposed and interval computation has been shown to
be a good solution to avoid keyframing and interpolation.

In the second phase of this project, as developped in this paper, we are
interested in (a) improving the performance of the resolution process in order
to extend the number of camera degrees of freedom that can be handled by the
system, (b) to program the system in a high level, constraint-oriented language
for flexibility and ease of programming/maintenance, (c) to study and devise
an appropriate and efficient way of dealing with constraints that must hold in
a given interval (e.g. of time) and to implement this process as a built-in in
the Declic language. Finally, we intend to demonstrate the usability of such a
tool for artists and more generally graphists without involving them in camera
movements mathematical descriptions. The final implementation will be clearly
oriented towards creativity, minimizing the amount of repetitive tasks and the
need for image representation models knowledge.
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