\begin{figure}[htb]\caption{and-parallelism}
\setlength{\unitlength}{0.01cm}
\nop{
)
}
\hspace{1.7cm}
\begin{tabular}[t]{|p{ 4.0cm}|p{ 4.0cm}|p{ 4.0cm}|} \hline
\multicolumn{3}{|c|}{ \it And-parallel goal evaluation }
\\ \hline \hline
\begin{picture}(400,275)(0,0)
\put(125,200){\makebox(0,0)[r]{ } }
\put(125,150){\makebox(0,0)[r]{ B } }
\put(250,200){\makebox(0,0)[l]{ A } }
\put(125,150){\circle{10}}
\put(125,200){\circle{10}}
\put(250,200){\circle*{10}}
\put(125, 210){\line(0,6){ 50}}
\put(125, 160){\line(0,6){ 30}}
\multiput( 135,200)(10,0){ 12}{\line(6,0){5}}
\end{picture}
&
\begin{picture}(400,275)(0,0)
\put(125,200){\makebox(0,0)[r]{ } }
\put(125,150){\makebox(0,0)[r]{ B } }
\put(125,75){\makebox(0,0)[r]{ } }
\put(250,200){\makebox(0,0)[l]{ A } }
\put(125,75){\circle{10}}
\put(125,150){\circle{10}}
\put(125,200){\circle{10}}
\put(250,200){\circle*{10}}
\put(125, 210){\line(0,6){ 50}}
\put(125, 85){\line(0,6){ 55}}
\put(125, 160){\line(0,6){ 30}}
\multiput(250, 85)(0, 20){ 6}{\line(0,6){10}}
\multiput( 135,200)(10,0){ 12}{\line(6,0){5}}
\end{picture}
&
\begin{picture}(400,275)(0,0)
\put(125,200){\makebox(0,0)[r]{ } }
\put(125,150){\makebox(0,0)[r]{ B } }
\put(125,75){\makebox(0,0)[r]{ } }
\put(250,75){\makebox(0,0)[l]{ } }
\put(250,200){\makebox(0,0)[l]{ A } }
\put(125,75){\circle{10}}
\put(125,150){\circle{10}}
\put(125,200){\circle{10}}
\put(250,75){\circle{10}}
\put(250,200){\circle*{10}}
\put(125, 210){\line(0,6){ 50}}
\put(125, 65){\line(0,-6){25}}
\put(125, 85){\line(0,6){ 55}}
\put(125, 160){\line(0,6){ 30}}
\multiput(250, 85)(0, 20){ 6}{\line(0,6){10}}
\multiput( 135,75)(10,0){ 12}{\line(6,0){5}}
\put( 145,75){\vector(-4,0){ 20}}
\multiput( 135,200)(10,0){ 12}{\line(6,0){5}}
\end{picture}
\\ \hline \hline
\leftcomment{goal}
A&B & B & Q? \\
\leftcomment{effect}
\small \sloppy A new process is created, \n
to evaluate the method call A.
& \small \sloppy During the remote evaluation of A
the goal B is evaluated by the process itself.
& \small \sloppy The results of evaluating B and A
are merged. Backtracking over the solutions for A may occur.
\\ \hline
\nop{
\it definition &
\multicolumn{3}{|l|}{\x A & B :- Q = self!A, B, Q? }
\\ \hline
}
\end{tabular}
\end{figure}