Hush — a C++ API for Tecl/Tk
Version 2.0

Anton Eliéns

Vrije Universiteit, Department of Mathematics and Computer Science
De Boelelaan 1081, 1081 HV Amsterdam The Netherlands

email: eliens@cs.vu.nl

Abstract This article describes the C++ programmer interface to hush, the
hyper utility shell based on Tcl/Tk. Tel is a scripting language that may be
embedded in C or C++. Tk is a window and graphics toolkit based on X11,
with an associated interpreter called wish. The hush library contains classes
that provide convenient yet flexible access to the functionality offered by the
Tcl/Tk toolkit and its extensions. The library is intended to support the needs
of both novice and experienced (window) programmers. It offers widget and
graphics classes with an easy to use interface, but allows more experienced
programmers also to employ the Tcl scripting language to define the behavior
and functionality of widget and structured graphics objects. The design of the
hush library has been inspired by the InterViews library. However, both the use
of event callbacks and the functional interface of widget and graphics classes is
significantly simpler. An important advantage of basing hush on the Tk toolkit
is that existing Tk applications written for the Tk interpreter wish can easily
be (re)used in a C++ context, virtually without any costs. On the other hand,
programs employing hush may again be used as an enhanced version of the wish
interpreter, allowing the functionality defined in the program to be used in a
(hush) script.

1 Introduction

In comparison with ordinary programming (in C++), programming in a win-
dow environment (in C++) introduces a number of additional difficulties. First
of all, the programmer must become acquainted with the various widgets con-
stituting the (graphical) user interface, such as buttons, menus, messages, can-
vasses, etcetera. And secondly, perhaps the most difficult aspect of window
programming, the programmer must deal with a rather different control struc-
ture, involving actions and callbacks in response to events generated by the
user or the window environment, such as mouse movements and mouse button
manipulations.

A number of toolkits for the X11 environment with an interface to C++
do exist already. Well-known for example is the InterViews library, which of-
fers powerful features for defining the layout of graphical user interfaces. See

This article describes hush-2.0 (and it’s 2.x successors). It is a slightly modified version
of the version that has been published in The X Resource, Issue 14, April 1995, O’Reilly &
Ass., pp 111-155. Part of the material presented here has been adapted from Principles of
Object-Oriented Software Development by Anton Eliéns, (c) 1995 Addison-Wesley Publishing
Co. Inc.

[LVC89]. However, despite the elegance of its design, InterViews is slightly
cumbersome to use and lacks a number of the features and widgets needed for
rapidly implementing a graphical user interface.

Commercial packages for GUI (Graphical User Interface) programming in
C++ are available. The disadvantage of these packages, apart from their price, is
primarily that they do not offer the flexibility needed in a research environment.

A rather different approach to GUI programming has been advocated in
[Ousterhout91], which describes the Tcl/Tk toolkit. Tecl is a cshell-like (inter-
preted) script language that may be embedded in C or C++. Tk is a window
and graphics toolkit based on X11, partly implemented in Tcl and partly in
C. Tk offers numerous widgets, including a powerful canvas and text widget.
Moreover, the Tcl scripting language allows the user to rapidly prototype rather
complex graphical user interfaces by writing Tcl scripts. These scripts may be
executed by using wish, the windowing shell interpreter that comes with Tk.
Despite being based on Tcl, the performance of Tk (and wish) is comparable
with (and in some respects even better than) C or C++ based toolkits.

The Tcl/Tk toolkit has become very popular in a rather short period of time.
The popularity of Tcl/Tk is partly due to the extensibility of Tcl. New function-
ality, implemented in C, may easily be added by creating a new version of the
wish interpreter, incorporating the additional commands. Numerous extensions
to Tcl/Tk and corresponding interpreters have been made available, including
extensions offering facilities for distributed programming (dp), extensions of-
fering object oriented features ([incr tcl])!, and extensions offering additional
widgets such as a barchart and hypertext widget (bit).?

The possibility of employing interpreted code and the availability of numer-
ous widgets makes the Tcl/Tk toolkit (and its extensions) an ideal vehicle for
implementing user interfaces.

However, Tcl/Tk has its drawbacks as well. One problem, obviously, is to
manage the large number of extensions. Ideally, there is one wish-like shell
unifying the various features. Even better, one should have the opportunity to
create such a shell in a simple manner.

A second problem is that, when an application grows, script code will not
always allow for an optimal solution. Generally, script code is not robust and
may be hard to maintain. In particular, when an application contains many
components not related to the user interface, efficiently compiled code may be
more appropriate.

For the latter problem, the obvious solution is to employ the C API (Ap-
plication Programmer Interface) offered by Tcl and to create a new interpreter
including the functionality needed. In a similar way, the first problem is rather
easily solved by linking the appropriate libraries into an extended interpreter.

Nevertheless, this is easier said than done. First of all, the C API offered for
Tcl/Tk is rather demanding for the novice programmer and does not support
a style of programming that is recommendable from a software engineering
perspective. Secondly, although not very difficult, creating a new interpreter
with additional C/C++ code is somewhat cumbersome.

The hush library has been developed to address the two problems mentioned.
Hush stands for hyper utility shell. The standard interpreter associated with the
hush library is a shell, called hush, including a number of the available extensions
of Tcl/Tk and widgets developed by ourselves (such as a filechooser and an
MPEG video widget). The hush library offers a C++ interface to the Tcl/Tk
toolkit and its extensions. It allows the programmer to employ the functionality

1[incr tcl] may be read as a paraphrase of tcl++ in Tcl syntax.
2These extensions may be obtained from harbor.ecn.purdue.edu.

of Tcl/Tk in a C++ program. Moreover, a program created with hush is itself
an interpreter extending the hush interpreter (and wish).

The hush library is explicitly intended to support the needs of both novice
and experienced window programmers. Its C++ class interface should suffice
for most applications, yet it allows for employing Tcl script code when more is
demanded.

The contribution of hush with respect to the Tcl/Tk toolkit is essentially
that it provides a type-secure solution for connecting Tcl and C++ code. As
an additional advantage, the hush library allows the programmer to employ
inheritance for the development of possibly compound widgets. In particular,
it provides the means to define composite widgets that behave as the standard
Tk widgets.

The class structure of the hush library is reminiscent to the class structure
of the InterViews library. In comparison with the InterViews library, the widget
class interfaces and event callbacks are significantly easier to use. Also, the hush
library provides many more ready-to-use graphical interface widgets. However,
hush does not offer resolution-independent graphics and provides no pre-defined
classes for complex interactions.

Summarizing, hush supports a multi-paradigm approach to window program-
ming, allowing to combine the robustness of compiled C++ code with the flexi-
bility of interpreted Tcl code. As such, it offers the best of both worlds. Or the
worst, for that matter.

The material presented here requires at least some knowledge of C++. See
for example [Stroustrup91]. Some familiarity with Tcl/Tk is also helpful. See
[Ousterhout94].

Availability The hush library has been in use for student programming as-
signments at the Vrije Universiteit for two years. It may be obtained by anony-
mous ftp from ftp.cs.vu.nl, directory eliens/hush. You may also retrieve it
via http://www.cs.vu.nl/"eliens/hush/.

Structure In section 2, some background information concerning Tcl/Tk is
given. Section 3 sketches the structure of a typical hush program and gives an
overview of the hush class library, including the kit and session class. Section 4
describes how handler objects may be defined as event callbacks. Next, section
5 presents a drawing tool application. The application illustrates the use of the
various widget classes and demonstrates how to construct compound widgets.
In addition, it shows how a widget developed in C++ may be made available
as a widget command to be used in scripts. And finally, in section 6, we will
look at the facilities offered for structured graphics and hypertext.

2 Background — Tcl/Tk

The language Tcl has first been presented in [Ousterhout90]. Tcl was announced
as a flexible cshell-like language, intended to be used for developing an X11-
based toolkit. A year later, the Tk toolkit (based on Tcl) was presented in
[Ousterhout91]. From the start Tcl/Tk has received a lot of attention, since
it provides a flexible and convenient way to develop rather powerful window
applications.

The Tcl language offers variables, assignment and a procedure construct.
Also it provides a number of control constructs, facilities for manipulating
strings and built-in primitives giving access to the underlying operating sys-
tem. The basic Tcl language may easily be extended by associating a function

written in C with a command name. Arguments given to the command are
passed as strings to the function defining the command.

The Tk toolkit is an extension of Tcl with commands to create and configure
widgets for displaying text and graphics, and providing facilities for window
management. The Tk toolkit, and the wish interpreter based on Tk, provides a
convenient way to program X-window based applications.

[¢] hello H]

hello wuﬁdl

Figure 1: Hello world

Wish The wish program is an interpreter for executing Tcl/Tk scripts. As an
example of a wish script, look at the hello world program below:

button .b -text "hello world" -command { puts "hello world" }
pack .b

This program results in the widget shown in figure 1. It defines a button
that displays hello world, and prints hello world to standard output when it is
activated by pressing the left mouse button. The language used to write this
script is simply Tcl with the commands defined by Tk, as for example the button
command (needed to create a button) and the pack command (that is used to
map the button to the screen).

The wish program actually provides an example of a simple application based
on Tcl/Tk. It may easily be extended to include for example 3D-graphics by
linking the appropriate C libraries and defining the functions making this func-
tionality available as (new) Tcl commands.

The Tcl C API To define Tcl commands in C style, the programmer has to
define a command function, with a profile similar to the function aCommand
shown below, and declare the function to be a command in Tcl by invoking the
Tcl_CreateCommand function:

// Define a command function in C style

int aCommand(ClientData data, Tcl_Interp* interp,
int args, char* argv[]) {

some_type* x = (some_typex) data; // conversion by cast
// some processing

}

// Declare the function aCommand as a Tcl command
// for example in the main function

some_type* user = new some_type(); // to create the client data
Tcl_CreateCommand(interp, "aco", aCommand, (ClientData) user);

Creating a command is done with reference to an interpreter, which accounts
for the first argument of T'cl_CreateCommand. The name of the command (aco
in this case), as may be used in a Tcl script is given as a second argument, and
the C style function defining the command as a third argument. Finally, the
address of a structure containing client data (user in this case) is passed as the
fourth parameter.

When the function aCommand is invoked as the result of executing the Tcl
command aco, the client data stored at declaration time is passed as the first
argument to the function. Since the type ClientData is actually defined to be
void*, the function must first cast the client data argument to an appropriate
type as indicated above. Clearly, casting is error-prone.

Another problem with command functions as used in the Tcl C API is that
permanent data are possible only in the form of client data, global variables or
static local variables. Both client data and global variables are unsafe by being
too visible and static local data are simply inelegant.

The hush library has been developed to offer a type-secure solution to the
problem of connecting C++ code with Tcl, and to allow for a safe way of
maintaining a (dynamically changing) state.

In hush the preferred way is to employ handler objects. The obvious solution
of associating class member functions with Tcl commands does not work since
pointers to member functions are different from pointers to ordinary C style
functions.

eliens@cs.vu.nl

3 Program structure

The hush library is intended to provide a convenient way to program window-
based applications in C++. Basically, there are two considerations that may
lead you to employ the hush library. When you are familiar with Tcl/Tk and
you need to combine Tcl scripts with C++ code, you may use handler classes
to do so in a relatively type-secure way. On the other hand, when you want
to program graphical user interfaces in C++, you may employ the hush widget
classes. In the latter case, you may choose to remain ignorant of the underlying
Tecl/Tk implementation or exploit the Tcl script facility to the extent you wish.

As an illustration of the structure of a program using hush, we will look at
a simple program written in C++ that uses a graphical interface defined by a
Tcl/Tk script.

After discussing the example, we will look at a brief overview of the classes
that constitute the hush library. A more detailed description will be given of
the kit class, that encapsulates the embedded Tcl interpreter, and the session
class, that shields off the details of the window environment.

3.1 Employing Tcl/Tk from within C++

Imagine that you have written some numerical function, for example a function
employing the Newton method for computing the square root. Such a function
may be defined as in the function newton:

double newton(double arg) { // computes square root
double r=arg, x=1, eps=0.0001;
while(fabs(r - x) > eps) {

r = x;

x=r-(r*xr-arg) / (2 x1);

}
return r;

}

When you have written such a function, you may wish to have a graphical
interface to allow you to experiment with possible inputs in a flexible way. For
example, you may wish to have a slider for setting the input value and a message
widget displaying the outcome of the function. Such an interface may look like
the one in figure 2.

.[#] newton]

| 7 549835

R

af

seed

Figure 2: A graphical interface for newton

Admittedly, the newton function given above is simple enough to be imple-
mented directly in Tcl. Nevertheless, since C++ is to be considered superior for
implementing numerical functions, we decide to implement the Newton function
in C++ and the graphical interface in Tcl. The problem we need to solve then
is how to connect the graphical interface with the C++ code.

The Tecl script Let us start by defining the interface, where we will use a
dummy function to generate the output. A Tcl script defining our interface is
given below:

#!/usr/prac/se/bin/hush -f

proc generate {} {
.m configure -text [.s get]

}

scale .s -label "seed" -orient horizontal -relief sunken
message .m -width 256 -aspect 200

pack .m .s -fill x

bind .s <Any-ButtonRelease> { generate }

The script defines a slider, as a (horizontal) scale widget, and a message
widget, that is used to display the output. The built-in Tcl/Tk bind function
is used to associate the movement of the slider with the invocation of the Tcl
function gemerate. Note that the function generate is a dummy function, which
merely echos the value of the scale widget to the message widget.

Now we have developed a graphical interface, which may be tested by using
the hush shell or wish. Next, we need to develop the C++ program embodying
the numerical function and connect it to the interface written in Tcl.

The C++4 code The structure of this program is best explained in a number
steps. Fach of these steps corresponds with a code fragment. Together, these
fragments form the C++ program shown below. We will first look at the code.
Afterwards it will be explained why the individual fragments are needed.

// Initial declaratiomns

#include "hush.h"

double newton(double arg); // declare the function

char*x ftoa(double f); // to convert float to charx
// The generator (handler) class gives access to the widgets

class generator : public handler {

public:
generator() { // access to Tcl widgets
s = (scalex) new widget(".s");
m = (message*) new widget(".m");
}

~generator() {
s->destroy(); m->destroy(); // to destroy widgets

delete s; delete m; // to reclaim resources
}
int operator() () { // the generator action
float £ = s->get();
m->text(ftoa(newton(f))); // display value
return 0K;
}
private:
scalex* s;
message* m;
};

// The application class takes care of installing the interface
class application : public session {
public:
application(int argc, charx argv[])
: session(argc,argv,"newton") {}

void main() { // tk is an instance variable

tk->source("interface.tcl"); // read interface script
handler* g = new generator();

tk->bind("generate",g) ; // bind Tcl command

// Finally, the function main is defined

void main (int argc, char #*xargv) {
session* s = new application(argc,argv);
s->run() ;

The functional part is represented by the function newton. We need to
declare its type to satisfy the compiler. Further we need to include the hush.h
header file and declare an auxiliary function ftoa that is used to convert floating
point values to a string.

The next step involves the definition of the interfacing between the Tcl
code and the C++ program. The class generator defines a so-called handler
object that will be associated with the function generate employed in the script,
overriding the dummy Tcl function generate as defined in the script. In order
to access the scale and message widget defined for the interface, C++ pointers
to these widgets are stored in instance variables of the object. These pointers
are initialized when creating a generator object. The widgets are destroyed
when deleting the object. Note that the widgets must first be destroyed before
deleting the corresponding C++ objects.

All you need to know at this stage is that when the function generate is
called in response to moving the slider, or more precisely releasing the mouse
button, then the operator() function of the C++ generator object is called.
In other words, the operator() function is (by convention) the function that is
executed when a Tcl command that is bound to a handler object is called. The
generator::operator() function results in displaying the outcome of the newton
function, applied to the value of the slider, in the message widget.

Then we define an application class, which is needed for the program to ini-
tialize the X-windows main event loop. An application class must be a subclass
of the session class. To initialize the program, the application class redefines the
(virtual) function main inherited from session. The function application::main
takes care of initializing the interface, creates an instance of the generator class,
and binds the Tcl command generate to the generator object.

Finally, the function main is defined. A function main is required for each C
or C++ program. It consists merely of creating an instance of the application
class and the invocation of run, which starts the actual program.

Comments The example C++ program illustrates a number of features, some
of which are typical for hush and some of which are due to programming in a
window environment.

In an ordinary C++ program the function main is used to start the compu-
tation. Control is effected by creating objects and calling the appropriate func-
tions. When programming a window-based application, at a certain moment
control is delegated to the window environment. Consequently, there needs to
be some kind of main loop which waits for incoming events, in response to which
the control may be delegated to an appropriate component of the program.

To hide the details of activating the main loop and the dispatching of events,
the hush library provides a class session that allows you to define an application
class to initialize your program.

In order to respond to events, the hush library provides a handler class,
that allows you to associate a C++ object with a Tcl function. Each time the
corresponding Tcl function is invoked, the operator() function of the object is

called. The actual object is an instance of a derived class, redefining the virtual
operator() function of the handler class.

Handler classes are typical for hush. Another feature typical for hush is the
use of a kit object, that may be accessed by using the tk instance variable of the
handler object. The kit object provides access to the Tcl interpreter embedded in
the C++ program. In the example it is used to initialize the graphical interface
by reading a script file and to define the association between the Tcl function
generate and the C++ instance of generator.

The widgets defined in the Tcl script are accessed in the C++ program
by means of a scale and message pointer. The hush library provides for each
Tk widget a class of the same name. Note that not the widgets themselves
are created in the constructor of the generator class, but only abstract widget
objects that are casted to the appropriate widget types. Casts are needed to
access these objects as respectively a scale and message widget. Widgets can be
created, however, directly in C++ as well, by employing the appropriate widget
class constructors. See section 5.

As a final comment, the example illustrates a classical stratagem of software
engineering, namely the separation of concerns. On the one hand we have a
script defining the interface that may be independently tested, and on the other
hand we have C++ code embodying the real functionality of our program.

3.2 An overview of the hush class library

The example given in the previous section showed what kind of components
are typically used when developing a program with the hush library. However,
instead of employing a Tcl script, the window interface may also be developed
entirely by employing hush C++ widgets. In this section, a brief overview will
be given of the classes offered by the hush library. Further, it will be shown how
to construct the hush interpreter referred to in the introduction. In addition,
we will take a closer look at the classes kit and session, which are needed to
communicate with the embedded Tcl interpreter and to initialize the main event
loop, respectively.

The library The hush C++ library consists of three kinds of classes, namely
the widget classes which mimic the functionality of Tk, the handler classes,
which are involved in the handling of events and the binding of C++ code to
Tcl commands, and the classes kit and session, which encapsulate the embedded
interpreter and the window management system,

Figure 3: Hush widget classes

In the widget class hierarchy depicted in figure 3, the class widget represents
an abstract widget, defining the commands that are valid for each of the descen-

dant concrete widget classes. The widget class, however, is not an abstract class
in C++ terms. As shown in the example in the previous section, the widget class
allows for creating pointers to widgets defined in Tcl. In contrast, employing
the constructor of one of the concrete widget classes results in actually creating
a widget. A more detailed example showing the functionality offered by the
widget classes will be given in section 5. A description of the individual widget
classes is included in the appendix.

Chandler>

Cwidget> Citern O

Figure 4: Hush handler classes

The handler class may also be considered an abstract class, in the sense
that it is intended to be used as the ancestor of a user-defined handler class.
Recall that in the example we defined the generator class as a descendant of
handler. The handler class has two pre-defined descendant classes, namely the
widget class and the class item. This implies, indeed, that both the widget and
the item class (that is treated in section 6.1) may be used as ancestor handler
classes as well. The reason for this is that any descendant of a widget or item
class may declare itself to be its own handler and define the actions that are
invoked in response to particular events. This will be illustrated and discussed
in sections 4 and 5.

The hush interpreter In the introduction, hush was announced as both a
C++ library and as an interpreter extending the wish interpreter. The program
shown below substantiates this claim, albeit in a perhaps disappointingly simple
way.

#include "hush.h"

// Include definitions of external package(s)

#include "extern/ht.h"

// Define the application class

class application : public session {
public:

application(int argc, char* argv[]) : session(argc,argv) {

hyper = 0;

if ((argc==3) && !strcmp(argv[1],"-x")) { // check for -x
hyper = 1;
strcpy (hyperfile,argv[2]);
}

10

void main() { // tk represents the kit
init_ht(tk); // initialize package(s)

if (hyper) { // initialize hypertext
hypertext* h = new hypertext(".help");
h->file(hyperfile);
h->geometry(330,250) ;
h->pack();
tk->pack(".quit"); // predefined button to quit
}
}

private:

char hyperfile[BUFSIZ];

int hyper;

I

// Define the main function

int main (int argc, char* argv[]) {
session* s = new application(argc,argv);
s=>run(); // start X event loop

}

The structure of the program is similar to the C++ example of section 3.1.
In addition to including the hush.h header file, however, we must include the
declarations needed for employing the external hypertext (ht) and distributed
processing (dp) packages. Next, we need to define an application class, derived
from session, specifying how the hush interpreter deals with command-line ar-
guments and what initialization must take place before starting the main event
loop.

At this stage it suffices to know that the hush library provides a hypertext
widget and that the -x option treats the next argument as the name of a hy-
pertext file. In section 6.3, an example will be given that involves the hypertext
widget.

Further, a predefined button .quit is packed to the root widget.

The hush interpreter defined by the program extends the wish interpreter by
loading the distributed processing extension and by allowing for the display of
a hypertext file. The interpreter accepts any command-line argument accepted
by the wish interpreter, in addition to the —-x hypertext option. The Tcl inter-
face script given in section 3.1, for example, may be executed using the hush
interpreter.

3.3 The kit class

Hush is meant to provide a simple C++ interface to Tcl/Tk. Nevertheless, as
with many a toolkit, some kind of API shock seems to be unavoidable. This
is especially true for the widget class (treated in section 5.1) and the class kit
defining the C++ interface with the embedded Tcl interpreter. The functional-
ity of kit can only be completely understood after reading this article. However,
since an instance of kit is used in almost any other object (class), it is presented
here first. The reader will undoubtly gradually learn the functionality of kit by

11

studying the examples. The class interface of kit is given below:?

interface kit {

int eval(char* cmd); // to evaluate script commands
charx result(); // to fetch the result of eval
void result(charx* s); // to set the result of eval
char* evaluate(charx cmd) // combines eval and result
int source(charx f); // to load a script from file

void bind(char* name, handler* h); // to bind Tcl command

widget* root(); // returns toplevel (root) widget
widget* pack(widget* w, char* options = "-side top -fill x");
widget* pack(char* wp, char* options = "-side top -fill x";
char* selection(char* options=""); // X environment

void after(int msecs, char* cmd);
void after(int n, handler* h);

void update(char* options="");
char* send(char* it, char* cmd);

void trace(int level = 1);
void notrace();
void quit() // to terminate the session

};

To understand why a kit class is needed, recall that each hush program
contains an embedded Tcl interpreter. The kit class encapsulates this interpreter
and provides a collection of member functions to interact with the embedded
interpreter.

The first group of functions (eval, result, evaluate and source) may be used
to execute commands in Tecl scripting language directly. A Tcl command is
simply a string conforming to certain syntactic requirements. The function eval
evaluates a Tcl command. The function result() may be used to fetch the result
of the last Tcl command. In contrast, the function result(char*) may be used
to set the result of a Tcl command, when this command is defined in C++ (as
may be done with kit::bind). The function evaluate provides a shorthand for
combining eval and result(). The function source may be used to read in a file
containing a Tel script.

Also, we have the kit::bind function that may be used to associate a Tcl
command with a handler object.

The next group of functions is related to widgets. The function root gives
access to the toplevel root widget associated with that particular instance of the
kit. The function pack may be used to append widgets to the root widget, in
order to map them to the screen. Widgets may be identified either by a pointer
to a widget object or by their path name, which is a string. See section 5.1.

3Each function listed in the class interface is public unless it is explicitly indicated as
protected. The interface descriptions start with the pseudo-keyword interface. This is merely
done to avoid the explicit indication of public for both the ancestor and the member functions
of the class.

12

Next, we have a group of functions related to the X environment. The
function selection delivers the current X selection. The function after may be
used to set a timer callback for a handler. Setting a timer callback means that
the handler object will be invoked after the number of milliseconds given as the
first argument to after.

The function update may be used to enforce that all pending events are
processed. For example, when moving items on a canvas, an update may be
needed for making the changes visible. Also, we have a function send that may
be used to communicate with other Tcl/Tk applications. The first argument
of send must be the name of an application, which may be set when creating a
session.

Further, we have the functions trace and notrace, which may be used to turn
on, respectively off, tracing. The level indicates in what detail information will
be given. Trace level zero is equivalent to notrace(). Finally, the function quit
may be used to terminate the main event loop.

3.4 The session class

Each program written with hush may contain only one embedded hush inter-
preter. To initialize the kit object wrapping the interpreter and to start the
main event loop, an instance of the class session must be created.

The preferred way of doing this is by defining a descendant class of the
session class, redefining the virtual function session::main to specify what needs
to be done before starting the main loop. In addition, the constructor of the
newly defined class may be used to check command line arguments and to
initialize application specific data, as illustrated in the code for the interpreter
in section 3.2.

interface session {
session(int argc, char** argv, char* name = 0);

virtual void prelude();
virtual void main();
int run();

protected:
kit* tk;

};

When creating a session object, the name of the application may be given
as the last parameter. By this name the application is known to other Tk
applications, that may communicate with each other by means of the send
command.

Apart from the function main, also a function prelude may be defined. When
the program is used as an interpreter (by giving -f file as command line ar-
guments) only the prelude function will be executed, otherwise prelude will be
executed before main. In interpreter mode, the function main will also be exe-
cuted when the script contains the command go-back. Finally, the function run
must be called to actually initialize the program and start the main loop.

4 Binding actions to events

In the example in section 3.1 we have seen that handler objects may be bound
to Tcl commands. Handler objects may also be bound to events.

13

Events are generated by the (X) window environment in response to actions
of the user. These actions include pressing a mouse button, releasing a mouse
button, moving the mouse, etcetera. Instead of explicitly dealing with all in-
coming events, applications delegate control to the environment by associating a
callback function with each event that is relevant for a particular widget. This
mechanism frees the programmer from the responsibility to decide to which
widget the event belongs and what action to take.

Nevertheless, from the perspective of program design, the proper organiza-
tion of the callback functions is not a trivial matter. Common practice is to
write only a limited number of callback functions and perform explicit dispatch-
ing according to the type of event.

An object oriented approach may be advantageous as a means to organize a
collection of callback functions as member functions of a single class [Eliens95].
One way of doing this is to define an abstract event handler class which provides
a virtual member function for each of the most commonly occurring events. In
effect, such a handler class hides the dispatching according to the type of the
event. A concrete handler class may then be defined simply by overriding the
member functions corresponding to the events of interest.

In the following, we will look at how we may define a simple drawing editor
by declaring a handler defining the response to pressing, moving and releasing
a mouse button. After that we will look more closely at the notion of events
and the definition of handlers and actions.

[®] drawr ETl

- . !

e s

'\. -'" = -l-l|l-- l'il"- ""-' -

St I -:-".'- i St

quit

Figure 5: A simple drawing editor

A simple drawing editor Before looking at the program, think of what you
would like a drawing editor to offer you. And, if you have any experience in pro-
gramming graphics applications, how would you approach the implementation
of a drawing editor?

A drawing editor is a typical example of an interactive program. As a first
approximation, we will define a drawing editor that allows the user to paint a
series of black dots by pressing and moving the mouse button, as pictured in
figure 5. The program realizing our first attempt is given below:

#include "hush.h"

// The drawing_canvas responds to press, motion and release events

14

class drawing_canvas : public canvas {
public:

drawing_canvas(char* path) : canvas(path) {
geometry(200,100) ;
bind(this); // become sensitive
dragging = 0;

}

void press(event&) { dragging = 1; }

void motion(event& e) {
if (dragging) circle(e.x(),e.y(),1,"-fill black");
}

void release(event&) { dragging = 0; }

protected:
int dragging;
};

// To initialize the application

class application : public session {
public:
application(int argc, char* argv[])
: session(argc,argv,"draw") {}
void main() {

canvas* ¢ = new drawing_canvas(".draw");

c->pack();
tk->pack(".quit");
}
};

int main (int argc, char* argv[]) {
session* s = new application(argc,argv);
return s->run();

}

Again, the program may be broken up in a number components. First we

must include the hush.h header file. Next we define the class drawing_canvas.
The class drawing_canvas inherits from the canvas widget class and consequently
allows for drawing figures such as a circle. See section 6.2 and the appendix for

further details on the canvas class.
Before looking at the constructor of the drawing_canvas, note that the mem-

ber functions press, motion and release expect a reference to an event. These are
precisely the member functions corresponding to the event types for which the
canvas is sensitive. The meaning of these member functions becomes clear when
looking at the role of the instance variable dragging. When dragging is non-zero
and a motion event occurs, a black dot is painted on the canvas. Drawing starts

when pressing a mouse button and ends when releasing the button.

15

Turning back to the constructor, we see that it expects a path string, which
is passed to the canvas ancestor class to create an actual canvas widget. Fur-
ther, the body of the constructor sets the size of the widget to 200 by 100 and
initializes the variable dragging to zero. Finally, the drawing_canvas widget is
declared to be its own handler. The member function handler is defined by
the class widget. Invoking the handler function results in making the widget
sensitive to a number of predefined events.

Discussion A note on terminology is in place here. The reader may be con-
fused by the fact that handlers can be bound to Tcl actions as well as to events.
The situation may become even more confusing when realizing that the widget
class itself is a descendant of the handler class. Schematically, we have

class widget : public handler {
public:

void bind(class handler* h) { ... }

};

The bind function declares a handler object to be responsible for dealing with
the events that are of interest to the widget.

In other words, a drawing_canwvas fulfills the dual role of being a widget and
its handler. This must, however, be explicitly indicated by the programmer,
which explains the occurrence of the otherwise mysterious expression bind(this).
The reason not to identify a widget with a handler is simply that some widgets
may need separate handlers.

Before studying the abstract handler class in more detail, we will briefly look
at the definition of the event class.

4.1 Events

Events always belong to a particular widget. To which widget events are actually
directed depends on whether the programmer has defined a binding for the event
type. When such a binding exists for a widget and the (toolkit) environment
decides that the event belongs to that widget, then the callback associated with
that event is executed. Information concerning the event may be retrieved by
asking the kit for the latest event.

interface event {

int typeQ; // X event type

char* name(); // type as string

int x();

int yO;

int button(int i = 0); // ButtonPress

int buttonup(int i = 0); // ButtonRelease

int motion(); // MotionNotify

int keyevent(); // KeyPress or KeyRelease

int buttonevent(int i = 0); // ButtonPress or ButtonRelease

int keycode();

16

void trace(); // prints event information

void* rawevent(); // delivers raw X event

};

Event objects represent the events generated by the X-window system. Each
event has a type. The type of the event can be inspected with type() which
returns an integer value or name() which returns a string representation of the
type. For some of the common event types, such as ButtonPress, ButtonRelease,
and MotionNotify, member functions are provided to facilitate testing. If an
integer argument (1,2 or 3) is given to button, buttonup or buttonevent, the
routines check whether the event has occurred for the corresponding button.

The functions z and y deliver the widget coordinates of the event, if appro-
priate.

Calling trace for the event results in printing the type and coordinate infor-
mation for the event. When setting the kit::trace level to 2 this information is
automatically printed.

Programmers not satisfied with this interface can check the type and access
the underlying XEvent at their own risk.

4.2 Handlers

Handler objects provide a type secure way to deal with local data and global
resources needed when responding to an event. An actual handler class must
be derived from the (abstract) handler class defined below:

interface handler {

virtual event* dispatch(event* e);
virtual int operator() ();

virtual void press(event&) { }
virtual void release(event&) { }
virtual void keypress(event&) {
virtual void keyrelease(event&)
virtual void motion(event&) { }
virtual void enter(event&) { }
virtual void leave(event&) { }
virtual void other(event&) { }

}
{32

protected:
event*x _event;
kit* tk;

};

An instance of an actual handler class may store the information it needs
in its instance variables when it is created. A handler object can be activated
in response to an event or a Tcl command by calling the dispatch function of
the handler. The system takes care of this, provided that the user has bound
the handler object to a Tcl command or event. The definition of the dispatch
function is given below:

event* handler::dispatch(event* e) {
_event = e;
int res = this->operator()();

17

return (res '= 0K) ? _event : 0;

}

int handler::operator() 0 {
event& e = * _event; /// fetch event
if (e.type() == ButtonPress) press(e);

else if (e.type() == ButtonRelease) release(e);
else if (e.type() == KeyPress) keypress(e);

else if (e.type() == KeyRelease) keyrelease(e);
else if (e.type() == MotionNotify) motion(e);
else if (e.type() == EnterNotify) enter(e);

else if (e.type() == LeaveNotify) leave(e);
else other(e);
return 0K;

}

The dispatch function, in its turn, calls the operator() function, after storing
the incoming event in the corresponding instance variable. The kit variable is
initialized by the constructor of the handler.

The handler::operator() function selects one of the predefined member func-
tions (press, motion, release, etcetera) according to the type of the event.

The original handler class knows only virtual functions. Each of these func-
tion, including the dispatch and operator() function may be redefined.

The two-step indirection, via the dispatch and operator() function, is intro-
duced to facilitate derivation by inheritance, directly from the handler or from
classes that are itself derived from the handler class, such as the widget classes.

Handler objects are activated only when a binding has been defined, by
using kit::bind or implicitly by employing widget::bind. Such bindings may also
be defined by kit::after or item::bind. Implicit binding results in the creation of
an anonymous binding.

Technically, the implementation of event handling by means of handler ob-
jects employs a callback function with the handler object as client data. The
dispatch function of the client object is called when the callback function is
invoked in response to an event or a Tcl function.

Bindings encode the binding of C++ handlers to Tcl/Tk commands. They
will not be further discussed here.

5 User interface widgets

The Tk toolkit offers numerous built-in widgets. The Tk widgets conform to
the look-and-feel of the OSF/Motif standard. The hush C++ interface for Tk
provides for each Tk widget a class of the same name, which supports the
creation of a widget and allows the user to access and modify it. In addition to
the standard Tk widgets, the hush library includes a number of other widgets,
such as a barchart, hypertert, and photo widget (created by other Tk adepts).
Also widgets of our own making are offered, such as a filechooser, an MPEG
video widget, and recently a World Wide Web browser widget.

In this section we will look at an extension of the simple drawing tool pre-
sented in section 5.

The example illustrates how to use the hush library widgets. The example
serves to illustrate in particular how handlers may be attached to widgets, either
by declaration or by inheritance, and how to construct compound widgets.

18

[¢] dravrtool 1

EERETEERL:

Edit help
draw | move =
move | figure ™ | hox
hox circle]

- arrow
circle

L

i

Rk —

Figure 6: The drawtool interface

Our approach may be considered object oriented, in the sense that each
component of the user interface is defined by a class derived from a widget
class.

It must be pointed out beforehand, that the major difficulty in defining com-
pound or mega widgets is not the construction of the components themselves,
but to delegate the configuration and binding instructions to the appropriate
components.

In section 5.5 it will be shown how a compound widget defined in C++
may be made to correspond to a widget command that may be used in a Tecl
script. Ideally, defining a new widget includes both the definition of a C++
class interface and the definition of the corresponding Tcl command.

Example — drawtool Our drawing tool consists of a tablet, which is a canvas
with scrollbars to allow for a large size canvas of which only a part is displayed,
a menu_bar, having a File and an Edit menu, and a toolboz, which is a collection
of buttons for selecting among the drawing facilities. See figure 6. In addition,
a help facility is offered. The application class for drawtool is defined as follows:

class application : public session {
public:
application(int argc, charx argv[])
: session(argc,argv,"drawtool") {}

void main() {
widget* root = tk->root();
frame*x f = new frame(root,".frame");

tablet* c = new tablet(f); // create tablet

toolbox* b = new toolbox(f,c);
menubar* m = new menu_bar(root,c,b);

b->pack("-side left"); // pack tablet
c->pack("-side right");

19

tk->pack(m) ->pack(f); // pack menu and frame
}
};

Before the main event loop is started, the components of the drawing tool
are created and packed to the root widget.

In addition to the tablet, menu_bar and toolboz, a frame widget is created
to pack the toolbor and tablet together. This is needed to ensure that the
geometrical layout of the widget comes out right.

Fach of the component widgets is given a pointer to the root widget. In
addition, a pointer to the tablet is given to the toolbor and a pointer to the
toolboz is given to the menu_bar. The reason for this will become clear when
discussing the toolbox and menu_bar in sections 5.2 and 5.3, respectively. In the
example, no attention will be paid to memory management.

5.1 Configuring widgets

Widgets are the elements a GUI is made of. They appear as windows on the
screen to display text or graphics and may respond to events such as motioning
the mouse or pressing a key by calling an action associated with that event.

Most often, the various widgets constituting the user interface are (hierar-
chically) related to each other, as for instance in the drawtool application which
contains a canvas to display graphic elements, a button toolbox for selecting
the graphic items and a menubar offering various options such as saving the
drawing in a file.

Pathnames Widgets in Tk are identified by a pathname. The pathname of a
widget reflects its possible subordination to another widget. See figure 7.

.draw.menu
.draw.menu.help

|[CJC
gl 1 .draw.frame.tablet.canvas
(=] T S
| - | |
A== O .draw.frame.tablet.scrolly
=l ! ™.

Loe—e———— = .draw.frame.tablet

[araw . frame . toolbox —\ ‘\.draw.frame .tablet.scrollx

.draw.frame

Figure 7: The drawtool widget hierarchy

Pathnames consist of strings separated by dots. The first character of a path
must be a dot. The first letter of a path must be lower case. The format of a
path name may be expressed in BNF form as

path ::= . | .string | path.string

” N

where string and path are nonterminals. For example ”.” is the pathname of the
root widget, whereas ”.quit” is the pathname of a child of the root widget. A
widget that is a child of another widget must have the pathname of its parent as
part of its own path name. For example, the widget ”.f.m” may have a widget
7fm.h” as a child widget. Note that the widget hierarchy induced by the
pathnames is completely orthogonal to the widget class inheritance hierarchy
depicted in figures 3 and 11. Pathnames are treated somewhat more liberally

20

in hush. For example, widget pathnames may simply be defined or extended by
a string. The missing dot is then automatically inserted.

The widget class When creating a widget, a pathname must be given to the
widget constructor. Pathnames may be defined relative to a parent widget. The
class interface of widget is given below:

interface widget : handler {

widget (char* p);
widget (widget& w, char* p);

char* type(); // returns type of the widget
char* path(); // returns path of the widget
int eval(char* cmd); // invokes "thepath() cmd"

char* result(); // returns the result of eval
char* evaluate(char* cmd); // combines eval and result()

virtual void configure(char* cmd); // invokes Tk configure
virtual void geometry(int w, int h); // determines w x h

widget* pack(char* options = ""); // maps it to the screen
bind(char *b, handler* h, char* args = ""); // binding
bind(handler* h, char* args = ""); // implicit
void xscroll(scrollbar* s); // to attach scrollbars

void yscroll(scrollbar* s);

void focus(char* options="");
void grab(char* options="");

void destroy(); // to remove it from the screen
void* tkwin(); // gives access to Tk_Window implementation

widget* self(); // for constructing mega widgets
void redirect(widget* w);

protected:
char* thepath(); // delivers the virtual path
void alias(widget*); // to create widget command

virtual install(bindingx*,char* args=""); // default bindings
virtual direct(char* bnd, binding*, char* args=""); // effect

+;
The widget class is an abstract class. Calling the constructor widget as in
widget* w = new widget(".awry");

does not result in creating an actual widget but only defines a pointer to the
widget with that particular name. If a widget with that name exists, it may
be treated as an ordinary widget object, otherwise an error will occur. The

21

constructor widget(widget* w,char* path) creates a widget by appending the
pathname path to the pathname of the argument widget w.

The function path delivers the pathname of a widget object. Each widget
created by Tk actually defines a Tcl command associated with the pathname
of the widget. In other words, an actual widget may be regarded as an object
which can be asked to evaluate commands. For example a widget ”.b” may be
asked to change its background color by a Tcl command like

.b configure -background blue

The functions ewval, result and evaluate enable the programmer to apply Tcl
commands to the widget directly, as does the configure command. The function
geometry sets the width and height of the widget.

Packing Naming widgets in a hierarchical fashion does not imply that the
widgets behave accordingly. In particular, to position widgets properly, they
must be packed in relation to one another. Packing results in displaying the
widgets on the screen. The widget class interface offers two pack functions.
The function widget::pack(char*) applies to individual widgets. As options one
may specify for example -side X, where X is either top, bottom, left or
right, to pack the widget to the appropriate side of the cavity specified by the
ancestor widget. Other options are -fill x or -fill y, to fill up the space
in the appropriate dimensions or -padx N or -pady N, for some integer N, to
surround the widget with some extra space.

As a remark, the kit::pack function may only be used to pack widgets to the
root window.

Binding events Widgets may respond to events. To associate an event with
an action, an explicit binding must be specified for that particular widget. Some
widgets provide default bindings. These may, however, be overruled.

The function bind is used to associate handlers or bindings with events. The
first string parameter of bind may be used to specify the event type. Common
event types are, for example, ButtonPress, ButtonRelease and Motion, which
are the default events for canvas widgets. Also keystrokes may be defined as
events, as for example Return, which is the default event for the entry widget.

The function widget::bind(handler*, char*) may be used to associate a han-
dler object or action with the default bindings for the widget. Concrete widgets
may not override the handler function itself, but must define the protected vir-
tual function install. Typically, the install function consists of calls to bind for
each of the event types that is relevant to the widget. Bindings are effected
by the virtual function direct that may be redefined to effect the binding for
multiple widgets, for example.

For both the bind functions, the optional args parameter may be used to
specify the arguments that will be passed to the handler or action when it is
invoked. For the button widget for example, the default install function supplies
the text of the button as an additional argument for its handler.

Compound widgets In addition, the widget class offers four functions that
may be used when defining compound or mega widgets. The function call redi-
rect(w) must by used to delegate the invocation of the ewval, configure, bind
and handler functions to the widget w. The function self() gives access to the
widget to which the commands are redirected. After invoking redirect, the func-
tion thepath will deliver the path that is determined by self()->path(). In
contrast, the function path will still deliver the pathname of the outer widget.

22

Calling redirect when creating the compound widget class suffices for most situ-
ations. However, when the default events must be changed or the declaration of
a handler must take effect for several component widgets, the virtual function
install must be redefined to handle the delegation explicitly. The alias function
is needed when creating widgets that are also used in Tcl scripts. It creates
the command corresponding to the widget’s path name. How redirect and alias
actually work will hopefully become clear in the examples.

5.2 Buttons

As the first component of the drawing tool, we will look at the toolbox. The
toolboz is a collection of buttons packed in a frame:

class toolbutton : public button { // the toolbutton
public:
toolbutton(widget* w, char* name) : button(w,name) {
text (name) ;

bind (w,name) ; // the parent becomes the handler
pack();
}
};
class toolbox : public frame { // the toolbox
public:

toolbox(widget* w, tablet* t) : c(t), frame(w,"toolbox") {
button* b0 = new toolbutton(this,"draw");
button* bl = new toolbutton(this,"move");
button* b2 = new toolbutton(this,"box");
button* b3 = new toolbutton(this,"circle");
button* b4 = new toolbutton(this,"arrow");

}
int operator() () {
c->mode(_event->arg(1l)); // transfer to tablet
return 0K;
}
private:
tablet* c;
s

Each individual button is an instance of the class toolbutton. When a tool-
button is created, the actual button is given the name of the button as its path.
Next, the button is given the name as its text, the parent widget w is declared
to be the handler for the button and the button is packed. The function tezt is
a member function of the class button, whereas both bind and pack are common
widget functions. Note that the parameter name is used as a pathname, as
the text to display, and as an argument for the handler, that will passed as a
parameter when invoking the handler object.

The toolboz class inherits from the frame widget class, and creates a frame
widget with a path relative to the widget parameter provided by the constructor.
The constructor further creates the toolbuttons.

The toolboz is both the parent widget and handler for each individual tool-
button. When the operator() function of the toolboz is invoked in response to

23

pressing a button, the call is delegated to the mode function of the tablet. The
argument given to mode corresponds to the name of the button pressed.

Comments The definition of the toolbutton and toolboz illustrates that a wid-
get need not necessarily be its own handler. The decision whether to define a
subclass which is made its own handler or to install an external handler depends
on what is considered the most convenient way to access the resources needed.
As a guideline, exploit the regularity of the application!

5.3 Menus

The second component of our drawing tool is the menu_bar:

class menu_bar : public menubar { // row of menubuttons
public:
menu_bar (widget* w, tablet* t, toolbox* b) : menubar(w,"bar") {
configure("-relief sunken");

menubutton* bl = new file_menu(this,t);
menubutton* b2 = new edit_menu(this,b);
button* b3 = new help_button(this);
}
};

The class menu_bar is derived from the hush widget menubar, which is de-
scribed in the appendix. Its constructor requires an ancestor widget, a tablet
and a toolbox. The tablet is passed as a parameter to the file_menu, so that the
application can write to a file and read from a file. The toolboz is passed as a
parameter to the edit_menu because the toolbox is employed as a handler for the
edit_menu. In addition, a help_button is created, which provides on-line help in
a hypertext format when pressed. The help facility will be discussed in section
6.3.

The menu_bar consists of menubuttons to which actual menus are attached.
The menubutton and menu widgets are built-in widgets. They are described in
the appendix. Each menu consists of a number of entries, which may possibly
lead to cascaded menus.

The file_menu class defines a menu, but is derived from menubutton in order
to attach the menu to its menu_bar parent:

class file_menu : public menubutton {

public:
file_menu(widget* w, tablet* t) : c(t), menubutton(w,"file") {

configure("-relief sunken"); text("File"); pack("-side left");
f = new file_handler(c); // create a file_handler
class menu* m = new class menu(this,"menu");

this->menu(m) ; // declares it for the menubutton
m->bind (this); // installs this as the handler

24

m->entry("Open");
m->entry("Save") ;
m->entry("Quit");

}

int operator() () {

if (!strcmp(_event->arg(1),"Quit")) tk->quit();
else f->dispatch(_event); // transfer to file_handler
return 0K;

protected:
tablet* c;
file_handler* f;
};

The file_menu constructor defines the appearance of the button and creates
a file_handler (which will be discussed in section 5.6). It then defines the actual
menu. The menu must explicitly be attached to the menubutton by invoking
the function menubutton::menu. For creating the menu, the keyword class is
needed to disambiguate between the creation of an instance of the class menu
and the call of the menubutton::menu function.

Before defining the various entries of the menu, the filemenu instance is
declared as the handler for the menu entries. However, except for the entry
Quit, which is handled by calling the kit::quit function, the calls are delegated
to the previously created file_handler.

The second button of the menu_baris defined by the edit_menu. The edit_menu
requires a toolbox and creates a menubutton. It configures the button and de-
fines a menu containing two entries, one of which is a cascaded menu. Both
the main menu and the cascaded menu are given the toolbox as a handler. This
makes sense only because for our simple application, the functionality offered
by the toolbor and edit_menu coincide.

5.4 Defining actions — delegation versus inheritance

The most important component of our drawtool application is defined by the
tablet class:

class drawmode { // drawing modes
public: enum { draw, move, box, circle, arrow, lastmode };

};

class tablet : public canvas { // the tablet
public:

tablet (widget* w, char* options="");

int operator() () { // according to _mode
return handlers[_mode]->dispatch(_event);

}

void mode(char* m) ; // to set the drawing mode

25

protected:
void init(char* options); // initializes the tablet
int _mode;
class handler* handlers[drawmode: :lastmode]l; // keeps modes
canvas* c; // the actual canvas

};

The various modes supported by the drawing tool are enumerated in a sep-
arate class drawmode. The tablet class itself inherits from the canvas widget
class. This has the advantage that it offers the full functionality of a canvas. In
addition to the constructor and operator() function, which delegates the incom-
ing event to the appropriate handler according to the _mode variable, it offers a
function mode, which sets the mode of the canvas as indicated by its string ar-
gument, and a function 4nit that determines the creation and geometrical layout
of the component widgets. As instance variables, it contains the integer _mode
variable and an array of handlers that contains the handlers corresponding to
the modes supported. See section 6.2 for an example of a typical canvas handler.

Dispatching Although the tablet must act as a canvas, the actual tablet wid-
get is nothing but a frame that contains a canvas widget as one of its components.
This is reflected in the definition of the tablet constructor and the way it invokes
the canvas constructor.

tablet::tablet (widget* w, char* options) : canvas(w,"tablet",0) {
widget* top = new frame(path());

init(options); // inialization, layout
redirect(c); // redirect to canvas
bind(this); // this is the handler

handlers[drawmode: :draw] = new draw_handler(this);
handlers[drawmode: :move] = new move_handler(this);
handlers[drawmode: :box] = new box_handler (this);
handlers[drawmode: :circle] = new circle_handler(this);
handlers[drawmode: :arrow] = new arrow_handler(this);
_mode = drawmode: :draw;

}

By convention, when the options parameter is 0 instead of the empty string,
no actual widget is created but only an abstract widget, as happens when calling
the widget class constructor. Instead of creating a canwvas rightaway, the tablet
constructor creates a top frame, initializes the actual component widgets, and
redirects the ewval, configure, bind and handler invocations to the canwvas child
widget. It then declares itself to be its own handler, which results in declaring
itself to be the handler for the canvas component. Note that reversing the order
of calling redirect and handler would be disastrous, since the bindings resulting
from calling handler would then be defined not for the canvas but for the frame
containing the canvas. After that it creates the handlers for the various modes
and sets the initial mode to draw.

The operator() function takes care of dispatching calls to the appropriate
handler. The dispatch function must be called to pass the event information.

26

5.5 Creating new widgets

Having taken care of the basic components of the drawing tool, that is the
toolbozx, menu_bar and tablet widgets, all that remains to be done is to define a
suitable file_handler, appropriate handlers for the various drawing modes and a
help_handler. This will be done in sections 5.6, 6.2 and 6.3, respectively.
However, before that we will look at how to define the drawtool widget class
such that we may also declare a corresponding drawtool script command. The
actual declaration of the drawtool command is done in the application class
defined below, which will by now look familiar, except for the function prelude:

class application : public session {
public:
application(int argc, charx argv[])
: session(argc,argv,"drawtool") {}

void prelude() {

tk->bind ("drawtool", new drawtool()); // declare
}

void main(kit* tk, int, char* argv[]) {
drawtool* d = new drawtool(".draw");
tk->bind ("drawtool",d) ; // override
d->pack();
}
};

In the body of the prelude function, the Tcl command drawtool is declared,
with an instance of drawtool as its handler.

In this way, the drawtool widget is made available as a command when the
program is used as an interpreter. However, in the function main this declara-
tion is overridden. Instead, the actual drewtool widget is made the handler of
the command, in order to allow for a script to address the drawtool by calling
drawtool self, as will be explained later.

Since an instance of drawtool may also be used as simply a handler for the
drawtool command, the drawtool class must offer a constructor that creates no
widget, in addition to a constructor that does create a drawtool widget:

class drawtool : public canvas {
public:
drawtool() : canvas() { 1 // no widget
drawtool(char* p, charx opts="") : canvas(p,0) {
top = new frame(path(),"-class Drawtool"); // outer frame

init(opts) ;
redirect(c); // redirect to tablet
alias(top); // to declare widget command

}

// Define the semantics of the drawtool command

int operator() (){

if (!strcmp("self",argv[1])) // self
tk->result(self ()->path());
else if (!strcmp("drawtool" ,*argv)) // create

27

create(--argc,++argv) ;
else // eval
self ()->eval(flatten(--argc,++argv));

return OK;
}
protected:
wiget* top; // outer frame
tablet* c; // inner component

void init(char* optiomns);
// To create a new drawtool widget and corresponding command

void create(int argc, char* argv[]) {
char* name = *argv;
new drawtool(name, flatten(--argc,++argv));
}
};

The drawtool widget constructor redirects itself to the tablet widget, which
is initialized by calling init.

The drawtool::operator() function defines the semantics of the drawtool script
command. When the first argument of the call is drawtool, a new drawtool widget
is created, except when the second argument is self. In that case, the virtual
path of the widget is returned, which is actually the path of the tablet’s canvas.
As an example of a script employing self consider

set x [drawtool self]

$x create rectangle 100 20 160 80
$x create rectangle 90 30 150 90
$x create oval 120 40 170 90

Evaluating the script results in the drawing displayed in figure 6. Such a script
may be read in by using the Open option in the File menu (see section 5.6).

If neither of these cases apply, the function widget::eval is invoked for self(),
with the remaining arguments flattened to a string. This makes it possible to
use the drawtool almost as an ordinary canvas as illustrated above and in the
example hypertext script shown in section 6.3.

The creation of the actual widget and declaration of the corresponding Tcl
command, according to the Tk convention, is somewhat more involved.

Recall that each Tk widget is identified by its path, which simultaneously
defines a command that may be used to configure the widget or, as for a canvas,
to draw figures on the screen. Hence, the function create must create a new
widget and declare the widget to be the handler of the command corresponding
to its pathname.

Discussion By now you may have lost track of how delegation within a com-
pound widget takes place. Hopefully, a brief look at the implementation will
clarify this.

Each ewval, configure or bind function call for a widget results in a command
addressed at the path of the widget. By redirecting the command to a different
path, the instructions may be delegated to the appropriate (component) widget.
Delegation occurs, in other words, by directing the commands to the widget’s
virtual path, which is obtained by the protected function thepath(). In contrast,

28

the function path() delivers the path of the widget’s outer component. Indi-
rection takes place by invoking the function self(), which relies on an instance
variable _self that may be set by the redirect function.

drawtool

tablet

canvas
-5 -

Figure 8: Dereferencing self()

Figure 8 represents the evaluation of self() for drawtool in a pictorial way.
Dereferencing ultimately results in addressing commands to the canvas widget,
because of the redirections declared for drawtool and tablet. The implementation
of thepath() and self() is simply:

char* thepath() { return self()->path(); }
widget* self() { return _self?_self->self():this; }

Hence, resolving a compound widget’s primary inner component relies on simple
pointer chasing, which may be applied recursively to an arbitrary depth at
acceptable costs.

5.6 Dialogs

Interactive applications may require the user to type some input after reading
a message or to select an item from a list of alternatives. One of the widgets
that may be used in a dialog with the user is a file_chooser widget as depicted
in figure 9.

Despite its simple appearance, the file_chooser widget has some subtle com-
plexities. The file_chooser class is given below:

class file_chooser : public toplevel { // toplevel
file_chooser() : toplevel(gensym("filechooser")) { init(); }

int operator() ();
char*x get() { return e->get(); }

protected:
button* b; button *c; // 0K and CANCEL
entry* e; listbox* 1;
int install(char* s, bindingx* a, char* opts);
void init();
void list();
};

The file_chooser widget consists of a listboz filled with filenames and an entry
widget that contains the filename selected by the user (by double clicking on
the name) or which may, alternatively, be used to type in a filename directly.
In addition, the file_chooser has an OK button, to confirm the choice and a
CANCEL button, to break off the dialog.

29

[¢] filechooser-1 HT]

||::uwes.tc:l

scene-2.1cl A
scene-3.1cl

hlocks.icl

curves. tcl

fiures.tcl

figure-1.tcl

figure-2.tcl

figure-3.tcl

figure-4.tcl

figure-5.tcl

Figure 9: A filechooser

Typically, a file_chooser is a toplevel widget, that is a widget that is inde-
pendently mapped to the screen. To avoid name clashes the function gensym,
which delivers a system-wide unique name (with filechooser as a prefix), is used
to determine its path. Apart from the operator() function, the file_chooser has
only one public function get, which delivers the name selected or typed in by
the user.

The widget components of the file_chooser, two buttons and the entry and
listbox widgets, are stored in its instance variables. Further, we have a function
init to construct the actual file_chooser widget, a function list to fill the listbox
and the function instaell, which is used to install an external handler for the two
button widgets. The install function is defined as

void file_chooser::install(binding* a, charx args) {
b->handler(a,args);
c->handler (a,args) ;

}

Recall, that when declaring a handler for a button, the name of the button is
given as an additional argument when invoking the handler. This enables the
file_handler to distinguish between a call due to pressing the OK button and a
call due to pressing the CANCEL button.

The interplay between the C++ definition and the underlying Tcl/ Tk toolkit
is nicely illustrated by the definition of the list function.

void file_chooser::1list() {
sprintf (buf,"foreach i [glob *.tcl] { %s insert end $i }",
1->path());
tk->eval(buf);

30

}

Calling list results in filling the listbor with the filenames in the current directory.
Its corresponding definition in C++ would, no doubt, be much more involved.

The file_handler class Window-based interactive applications differ from ordi-
nary interactive applications by relying on an event-driven flow of control. The
indirection that is typical for event-driven control is exemplified in the definition
of the file_handler depicted below (recall that the file_handler was employed by
the file_menu described in section 5.3):

class file_handler : public handler {
public:
file_handler(canvas* x) : c(x) {}

int operator() () {
char* key = _event->arg(1);
if (!strcmp("Open", key)) launch("OPEN");
else if (!strcmp("Save", key)) launch("SAVE");
else if (!strcmp("OPEN", key)) open();
else if (!strcmp("SAVE", key)) save();
return 0K;

protected:
canvasx* c;
file_chooserx f;

void launch(char* args) { // launch new filechooser
f = new file_chooser();
f->handler(this, args);

}

void open() { tk->source(f->get()); f->destroy(); }
void save() { c->postscript(f->get()); f->destroy(); }
};

Since the file_handler does not correspond to an actual widget when created,
its constructor merely stores the canvas pointer, which is actually a pointer to
the tablet.

In response to the Open or Save menu entries, the file_handler launches
a file_chooser and declares itself to be the handler (with the appropriate argu-
ments). For example, when selecting the Open entry, the file_chooser is launched
which eventually calls the file_handler :: dispatch function with OPEN as its
argument. The file_handler then invokes the open function, which results in
reading in the file and destroys the file_chooser. In a similar way, the menu en-
try Save results in writing the canvas to a postscript file. (The code for checking
whether the OK or CANCEL button is pressed is left as an exercise.)

6 Graphics and hypertext

The Tk toolkit offers powerful facilities for graphics and (hyper)text. See
[Ousterhout93]. In this section we discuss the canvas widget offered by Tk.

31

Instead of looking at the text widget provided by Tk, we will (briefly) look at
the hypertert widget, which presents an alternative approach to defining hyper-
structures.

6.1 The item class

The canvas widget allows the programmer to create a number of built-in graphic
items. Items are given a numerical index when created and, in addition, they
may be given a (string) tag. Tags allow items to be manipulated in a group-wise
fashion. To deal with items in a C++ context, the hush library contains a class
item of which the functionality is shown below.

interface item {

operator int(); // returns item index
void configure(char* cmd) ; // calls canvas::itemconfigure
void tag(char* s); // sets tag for item
char* tags(); // delivers tags set for the item

void move(int x, int y);

bind(char *b, handler* h, charx args = "");

bind(char *b, binding* ac, charx args = nn);

handler(class handler* h, charx args = "");

handler(binding* ac, charx args = "");
protected:

virtual install(action&,char* args=""); // default bindings
};

Instances of itermn may not be created directly by the user, but instead are
created by the canvas widget. For an item, its index may be obtained by casting
the item to int. If the index does not identify an existing item, it will be zero.
Existing items may be moved, in a relative way, by the function move.

In a similar way as for widgets, items may be associated with events, either
explicitly by using item::bind, or implicitly by using item::handler. The default
bindings for items are identical to the default bindings for the canvas widget,
but these may be overridden by descendant classes.

Similar as the widget class, the item class is derived from the handler class.
This allows the user to define possibly compound shapes that have their own
handlers.

6.2 The canvas widget

The Tk canvas widget offers powerful means for doing structured graphics. The
hush class canvas provides merely a simplified interface to the corresponding
Tk widget.

As an example of the use of a canvas, consider the definition of the move_handler
below. The move_handler defines one of the modes of the tablet and allows for
moving graphical items on the canvas.

class move_handler : public handler {
public:

32

move_handler(canvas* cv) : c(cv) { dragging = 0; }

void press(event& e) { // if overlapping start dragging
x=ex0;y=ey0;
id = c->overlapping(x, y);
if (id) dragging = 1;

}

void motion(event& e) { // if dragging move
if (dragging) {
id.move(e.x() - x, e.yO) -y);
x =e.x(0; y=ey50;
}
}

void release(event&) { dragging = 0; } // stop dragging

protected:
canvas* c; int dragging; item id; int x,y;

};

The move_handler class is derived from the class handler. It makes use of the
dispatch and operator() function defined for handler, but redefines the (virtual)
functions press, motion and release.

When creating an instance of move_handler, a pointer to the canvas must
be given to the constructor. In addition, the class has data members to record
position coordinates and whether a particular item is being moved. Actually
moving an item occurs by pressing the (left) mouse button on an item and
dragging the item along. When the mouse button is released, moving stops. To
identify the item, the function overlapping is used. The movement is determined
by the distance between the last recorded position and the current position of
the cursor.

In an analogous manner, a boz_handler may be defined, which is used for
drawing rectangles and allows for rubberbanding. The boz_handler sets dragging
to true when the button is pressed and creates a rectangle of zero width and
height. Each time the function motion is called, the item created in the previous
round is deleted and a new rectangle is created:

void box_handler::motion(event& e) { // if dragging stretch
if (dragging) {
id.del();
id = c->rectangle(x,y,e.x(),e.y()); // x and y are fixed
}
}

where c is a pointer to the canvas and z and y the button pointer coordinates
stored when dragging began. For circles and lines, it suffices to replace the call
to rectangle with a call to the appropriate figure creation function.

6.3 The hypertext widget

Both the Tk canvas and text widget allow to bind actions to particular items
and hence to define dynamically what we may call hyperstructures.

33

[e] help

Sze
File
draws
move
bhox
circle

Ao

Rubber banding: press the left mouse button
and release when the rectangle is of appropriate

Edit. help

For additional informationclick on the instruction
bution. Press quit | to remove the window.

A different, in a way more static, approach is offered by the hypertert widget

Figure 10: Hypertext help

originally developed by George Howlett.

The hypertext widget may be used to display text files containing embedded
Tcl code. The Tcl code must be placed between escapes, that take the form
of %7 for both the begin and end of the code. A screen shot of a fragment
of the on-line help for drawtool is given in figure 10. Notice, that the on-line
help provides a replica of the drawtool application, surrounded by text. When
looking at (again a fragment of) the hypertext file specifying the contents of the
on-line help, given below, you see that the drawtool command defined in section

5.5 is employed to create the embedded widget:

Rubber banding: press the left mouse button
and release when the rectangle is of appropriate

size

hh

drawtool $this.draw

$this append $this.draw

$this.draw create rectangle 20 20 80 80
$this.draw create rectangle 10 30 70 90
$this.draw create oval 40 40 90 90
$this append $this.draw

hh

For additional information click on the %%

button $this.goto -text instruction -command end-of-text

$this append $this.goto

34

hh

button. Press %%

button $this.quit -command { destroy . } -text quit -bg pink
$this append quit

%% to remove the window.

When specifying the hypertext file, widgets may be given a pathname rel-
ative to the pathname of the hypertext widget by using the variable this. In
addition the hypertext widget offers the variables thisline and thisfile to identify
the current line number and current file name.

Any of the widgets and commands offered by Tcl/Tk or supported by hush
may be included in a hypertext file, including the ones defined by the program
itself.

7 Conclusions

The Tcl/ Tk toolkit offers very versatile means to create graphical user interfaces
and couple these with programs written in C. However, from the point of view
of object oriented programming and the use of Tcl/Tk in a C++ context, the
standard interface does not suffice.

The hush library is meant to provide a flexible, yet easy to use, and above
all simple, interface for Tcl/Tk in C++. To some extent, it may be regarded
as syntactic sugar of an object oriented flavor, merely simplifying the interface
already provided by Tcl/Tk. However, hush improves on the standard Tcl C
interface by providing the opportunity to employ handler objects, allowing the
programmer to deal in a type-secure way with client information associated with
events.

In addition, the hush library allows for the definition of composite widgets
with the behavior of one of the standard widgets. To support such composite
widgets, each widget has a virtual path that coincides with the widget’s own
path, unless it is redirected to an inner component widget. Composite widgets
may be nested to arbitrary depth. This solution has the advantage that the
composite widget may be given an already familiar interface, both in C++ and
Tecl, with a minimum of coding.

The approach embodied by hush is intended to allow the novice programmer
to develop graphical user interfaces easily, however, without restricting experi-
enced and more demanding programmers, who may gradually exploit the full
functionality offered by Tk and extend this by using C++.

Acknowledgement 1 would like to thank Paula Ferguson from The X Re-
source for her detailed advice on improving the readability of the original article.
Acknowledgements are also due to Jacco van Ossenbruggen, Martijn van Welie
and Bastiaan Schénhage for their suggestions, their contributions to the exten-
sions of hush, and their unrelenting insistence on conceptual clarity.

References

[Eliens95] Eliéns A. (1995) Principles of Object-Oriented Software Develop-
ment Addison-Wesley

[LVC8Y] Linton M., Vlissides J. and Calder P. (1989) Composing user in-
terfaces with Interviews. IEEE Computer 22(2), pp. 8-22

35

[Ousterhout90] Ousterhout J.K. (1990) Tcl: an embeddable command lan-
guage. In Proc. USENIX Winter Conference, pp. 133-146

[Ousterhout91] Ousterhout J.K. (1991) An X11 Toolkit based on the Tcl lan-
guage. In Proc. USENIX Winter Conference, pp. 105-115

[Ousterhout93] Ousterhout J.K. (1993) Hypergraphics and hypertext in Tk.
The X Resource 5, pp. 113-127

[Ousterhout94] Ousterhout J.K. (1994) Tcl and the Tk toolkit. Addison-Wesley

[Stroustrup91] Stroustrup B. (1991) The C++ Programming Language.
Addison-Wesley, 2nd edn

A Appendix: The hush widget classes

The hush widget class library encapsulates the standard Tk widgets. In addition,
a hypertext widget is offered. The widget classes are organized as a tree, with
the class widget at the root.

Tadiobutton> checkbuttol> @enubutton> {opleveD menubar >

Figure 11: Widget classes

Each concrete widget class offers the functionality supported by the (ab-
stract) widget class and may in addition define functions specific to the particular
widget class. The member function for a widget class have usually a straightfor-
ward correspondence with the command interface defined by the Tcl/Tk toolkit.
See [Ousterhout94] for the most recent description.

Each widget class specifies two constructors, one with only a path and one
which allows both for a widget and a path. In the latter case, the actual path
consists of the concatenation of the path of the widget and the path specified
by the string parameter. For the concrete widget classes, no widget will be
created when the options parameter is zero. This convention is adopted to
allow composite widgets to inherit from the standard widgets, yet define their
own components.

In addition, each widget class has a destructor, which is omitted for brevity.
The destructor may be used to reclaim the storage for a widget object. To
remove a widget from the screen, the function widget::destroy must be used.

The scale class The scale widget may be used to obtain numerical input from
the user.

interface scale : widget {

scale(char* p, char* options = "");
scale(widget* w, char* p, char* options = "");

36

void text(charx* s); // text to display

void from(int n); // begin value

void to(int n); // end value

int get(Q); // gets the value

void set(int v); // sets the value
protected:

install(binding*, char* args);

};

When a handler is attached to a scale it is called when the user releases the
slider. The value of the scale is passed as an additional parameter when the
handler is invoked. The default binding for the scale is the ButtonRelease event.

The message class The message widget may be used to display a message on
the screen.

interface message : widget {

message (char* p, char* options = "");
message (widget* w, char* p, char* options = "");
void text(char* s); // the text

};

The message class does not define default bindings, but the user is free to
associate events to a message widget by employing widget::bind.

The button class Buttons come in a number of varieties, such as ordinary
(push) buttons, that simply invoke an action, checkbuttons, that toggle be-
tween an on and off state, and radiobuttons, that may be used to constrain
buttons to allow the selection of only a single alternative. Checkbuttons and
radiobuttons are implemented as subclasses of the class button, and will not be
further discussed here.

interface button : widget {

button(char* p, char* options = "");

button(widget* w, charx p, char* options = "");

void text(charx s); // text to display
void bitmap(char* s); // to display a bitmap
void state(char *s); // to change the buttons state

void flash();
char* invoke();

protected:
install(binding*,char* args); // default binding
+;

In addition to the constructors, which have the same format for each widget
class, the button class offers the function text to define the text displayed by

37

the button and the function bitmap, which takes as argument the name of a file
containing a bitmap, to have a bitmap displayed instead. The function state
may be used to change the state of the button. Legal arguments are either
normal, active or disabled. Further, the button class defines the function flash
and invoke that result respectively in flashing the button and in invoking the
action associated with the button by means of the widget::handler function.
(Note that button::install is defined, albeit protected.)

The menubutton class The menubutton is a specialization of the button wid-
get. It allows for attaching a menu that will be displayed when pressing the
button.

interface menubutton : button {

menubutton(char* p, char* options = "");
menubutton(widget* w, char* p, char* options = "");
void menu(char* s); // to attach a menu
void menu(class menu* m) ;

1

The menubutton must be used to pack menus in a menubar.

The menu class A menu consists of a number of button-like entries, each
associated with an action. A menu entry may also consist of another menu,
that pops up whenever the entry is selected.

interface menu : widget {

menu(char* p, char* options = "");

menu(widget* w, char* p, char* options = "");

menu* add(char* s, char* options = "");

menu* entry(char* s, char* args ="", char* options="");

menu* entry(char* s, binding* ac, char* args="", char* opts="");
menu* cascade(char* s, char*x m, char* options = "");

menu* cascade(char* s, menu* m, char* options = "");

char* entryconfigure(int i, char* options);

int index(char *s);

int active(); // returns active index
void del(int i); // delete entry with index i
void del(char* s); // delete entry with tag s
char* invoke(int i); // invoke entry with index i
char* invoke(char *s); // invoke entry with tag s

void post(int x = 500, int y = 500);
void unpost();

38

protected:
install(binding*, char* args);

};

The add function is included to allow arbitrary entries (as defined by Tk) to
be added. We restrict ourselves to simple command and cascade entries.

The entry function (that is used for adding simple command entries) may
explicitly be given a binding to be associated with the entry. Alternatively, if
no binding is specified, the default handler binding installed by invoking wid-
get::bind will be used. The string used as a label for the entries (the first
parameter of entry) will be given as a parameter to the action invoked when
selecting the entry. The string given in the args parameter will be added to the
actual parameters for the action invoked.

The cascade function may either be given a menu or a string, containing the
pathname of the menu. In any case the cascaded menu must be a child of the
original menu.

The function index returns the integer index associated with the string de-
scribing the entry. The function active may be used to inquire which entry has
been selected.

Entries may be deleted using the function del and invoked by using invoke.
For both functions, the entry may be indicated by its numerical index or a
string. Menus are toplevel widgets, they are mapped to the screen either by
invoking the function post, or by pressing the menubutton to which the menu is
attached.

The canvas class Apart from the two standard constructors, it offers the
functions tag, tags and move that merely repeat the functions offered by the
item class, except that mowe may also be given a tag to identify the items to be
moved.

interface canvas : widget {

canvas(char *p, char* options="");
canvas(widget* w, char *p, char* options="");

void tag(int id, char* tag);
char* tags(int id);

void move(int id, int x, int y);
void move(charx* id, int x, int y);

item bitmap(int x1, int y1, char* bitmap, char* options="");
item line(int x1, int y1, int x2, int y2, char* options="");
item line(char* linespec, charx* options="");

item circle(int x1, int y1, int rad, char* options="");

item oval(int x1, int y1, int x2, int y2, charx* options="");
item polygon(char* linespec, char* options="");

item rectangle(int x1, int y1, int x2, int y2, char* options="");
item text(int x1, int yl1, char* txt, char* options="");

item window(int x1, int y1, char* win, char* options="");

item window(int x1, int y1, widget* win, char* options="");

item current();
item overlapping(int x, int y);

39

itemconfigure(int it, char* options);

itemconfigure(char* tag, char* options);

itembind(int it, char* s, binding* a, char* args = "");
itembind(char* tag, char* s, binding* a, char* args = "");

void postscript(char* file, charx options="");

protected:
install(binding*, char* args);

};

Currently, the graphic items bitmap, line, oval, polygon and rectangle may
created and, in addition, textitems and window items consisting of a widget. The
function overlapping may be used to retrieve the item overlapping a particular
position.

In addition, the canvas class offers auxiliary functions needed to support
the functionality provided by the itemn class. The canvas may be written as
Postscript to a file with the function canvas::postscript.

The frame class Frame widgets may used to combine widgets. A frame has
no functionality or bindings of its own.

interface frame : widget {

frame(char* P, char * 0ptions = ||||);
frame(widget* w, charx P> char * Options = ||||);

};

The frame widget class has the toplevel and menubar as subclasses.

The toplevel widget is used when the widget must be independently mapped
to the screen.

The menubar widget is used as a special frame to collect button widgets
including menubutton widgets.

The scrollbar class The scrollbar allows the user to scroll through widgets
that are only partly displayed.

interface scrollbar : widget {

scrollbar(char* p, char* options = "");

scrollbar(widget* w, char* p, char* options = "");

void orient(char* opts="vertical"); // orientation

xview(widget* w); // widget to scroll

yview(widget* w); // widget to scroll
s

The default orientation of a scrollbar is vertical. A scrollbar must be explic-
itly attached to a widget w by calling the scrollbar::yview functions for vertical
scrollbars and scrollbar::xview for horizontal scrollbars. To obtain the proper
geometrical layout, the scrollbar and the widget it controls must usually be
packed in a frame.

40

The listbox class The listbox widget is used to allow the user to select an item
from a list of alternatives.

interface listbox : widget {

listbox(char* p, char* options = "");
listbox(widget* w, char* p, char* options = "");

void insert(charx* s);
charx get(int d); // entry with index d

void singleselect();

protected:
install(binding*, char* args);

};

The listbor may be filled by using insert. When a handler is attached to
the widget, it is activated when the user double clicks on an item. The selected
entry is passed as an additional parameter to the handler. The entry may also
be obtained by either kit::selection or listboz::get.

The entry class An entry widget may be used to display text or allow the
user to type a short text.

interface entry : widget {

entry(charx p, char* options = "");

entry(widget* w,char* p, char* options = "");

void insert(charx* s); // insert text

char* get(); // to get the text
protected:

install(binding*, char* args);

};

When a handler is attached to the entry widget it is activated whenever the
user double clicks on the widget or presses the return key. The contents of the
entry are added as an argument when calling the handler.

The hypertext class The hypertext widget may be used to display text with
embedded Tcl code.

interface hypertext : widget {

hypertext(char* p, char* options = "");
hypertext (widget* w, char* p, char* options = "");

void file(charx* f); // to read in hypertext file
s

Apart from the standard constructors, it offers the function file to read in
a hypertext file. Such a hypertext file allows to embed widgets in the text by
inserting them in escape sequences.

41

