
1

Formulating Constraint Satisfaction Problems on
Par t-Whole Relations: The Case of Automatic

Musical Harmonization

François Pachet1, Pierre Roy2

Abstract. We address the issue of formulating constraint problems in structured domains, and focus on the exploitation of part-
whole relations. We describe and compare two approaches in problem formulation in this context; one using a flattened repre-
sentation of domains, and one using a naturally occurring part-whole relation. We show that the second approach may be much
more eff icient than the flattened representation, thanks to a judicious partitioning of the constraint problem in several phases.
We give a theoretical measure of the respective complexities of the two approaches, and ill ustrate our result on a diff icult and
naturally structured musical problem: automatic harmonization of melodies. The resulting system outperforms previous attempts
on the same problem. Finally, we propose other applications of our approach for generating automatically musical programs.

1. FORMULATION OF CONSTRAINT SATISFACTION PROBLEMS

Constraint satisfaction techniques (CSP) have been increasingly used for solving difficult combinatorial problems
recently, thanks to the availabilit y of efficient algorithms and data structures. CSPs are attracting because they allow
problems to be stated in a simple and declarative way, as 1) a set of variables, having predetermined finite domains,
and 2) a set of constraints, usually taken off-the-shelf from a constraint library, which hold their own solving mecha-
nism.

Today, most of the problems solved by these techniques traditionally belong to the field of operational research, and
combinatorial optimization. These problems are usually formulated using some kind of mathematical representation,
such as graph theory. A typical consequence of this formulation is that the domains of constrained variables are
“flattened out” , and the whole problem is stated in terms of atomic values, such as integer or real numbers. Some-
how, the semantics of the domains is integrally represented by the constraints, and the domains of variables have no
direct interpretation. This approach is efficient in cases when the resulting constraint systems contains only well -
known constraints, such as basic arithmetic constraints or combinations thereof, or so-called global constraints, for
which generic, parameterized solving algorithms were developed [Beldiceanu and Contejean 94]. This typically
occurs for problems which have already been the subject of formalization in fields such as operational research:
scheduling, layout cutting, etc.

We believe CSP techniques can be successfully applied to many other fields, where 1) problems have not been for-
malized mathematically, and 2) domains are naturally structured. This is typically the case in multimedia, where
there is a growing pool of new problems which call for efficient solving techniques, and in which the underlying
ontologies are not easily reduced to mathematical entities such as integer or real numbers. However, applying CSP
techniques in this context raises an important formulation issue, by definition, since the reduction of problems to a
flattened representation is either impossible or unnatural. In this context, we are interested in the formulation of
constraint problems which allows to 1) take into account underlying ontologies of structured objects, and 2) give rise
to efficient solving by traditional CSP techniques.

This is typically the case of the automatic harmonization problem, on which we will concentrate in this paper. How-
ever, this paper is not specifically about harmonization, but about formulation of constraint problems in naturally
structured domains.

In Section 2 we will describe precisely the automatic harmonization problem, and review preceding approaches for
solving it. In Section 3 we will describe our approach, based on a formulation of the problem in a non-flattened
space, and compare it to the equivalent flattened formulation, including an evaluation of its theoretical complexity.

1 SONY CSL-Paris, 6 rue Amyot, 75005 Paris, France, pachet@csl.sony.fr

2 LIP6, Université Paris 6, E-mail: roy@poleia.lip6.fr

2

We will apply the approach on the harmonization problem in Section 4, and conclude on the generality of our pro-
posal, and other applications in progress.

2. THE AUTOMATIC HARMONIZATION PROBLEM

This section introduces the harmonization problem, and outlines previous attempts at solving it automatically.

2.1 Definition

The automatic harmonization problem (AHP) consists in finding a harmonization of a given melody, such as the
melody shown by Figure 1, or, more generally, any incomplete musical material. This harmonization must satisfy the
rules of harmony (and counterpoint, if rhythm is taken into account). Rules of harmony have constantly evolved
during history, but most treatises of harmony, such as [Schoenberg 78] describe rules corresponding to the baroque
and classical eras. However, the set of rules can be easily modified to realize harmony exercise in a style corre-
sponding to a different period.

Figure 1. An initial melody to harmonize (the beginning of the French national anthem, 18 notes).
Rhythm is not significant here.

A standard exercise is to harmonize a given melody into a four-voice harmonization (see Figure 3 for a solution of
the melody of Figure 1). There are various types of such constraints: 1) horizontal constraints on successive notes of
a melody (e.g. “ two successive notes should make a consonant interval”), 2) vertical constraints on the notes making
up a chord (e.g. “no interval of augmented fourth, except on the fifth degree” or “voices never cross”) and 3) con-
straints on sequences of chords. In these exercises, rhythm is not taken into account, and each note of the melody is
harmonized by a corresponding chord.

Constraints on sequences of chords are the most famous and important in our context. These constraints are impor-
tant because they are explicitly stated as holding on “chords” , where chords are sets of simultaneously occurring
notes. This notion of chord introduces a natural part-whole relationship between chords and notes in the domain.
Moreover, chords are not only sets of notes, but have various properties: a name, computed from the intervals be-
tween their notes, a degree representing a kind of abstraction with regards to a particular scale, and so forth. A typi-
cal constraint on sequences of chords is the parallel fifth constraint which states that: “parallel fifth between two
successive chords are forbidden” , i.e. if a chord contains a fifth interval between two of its notes, then the corre-
sponding notes in the successive chord should not make up also a fifth interval, as ill ustrated in Figure 2. Another
similar constraint is the different degree constraint: “ two successive chords should have different degrees” .

Figure 2. The parallel fifth constraint, holding on two successive chords. On the left, two chords
which violate the constraint. On the right, two chords which satisfy the constraint.

3

Figure 3. A solution for the initial melody of Figure 1.

The main interest of this musical problem for CSP is that the rules of harmony and counterpoint fit nicely in the
formalism of finite domain CSP. It is therefore not surprising that several studies have proposed various solutions to
solve the automatic harmonization problem using constraints. We will review them in the following section, and
outline their main characteristics. It is to be noted that a human student typically solves these kinds of exercises
quickly, with littl e or no “backtracking” . The problem is therefore a challenge for artificial intelli gence, because it is
both difficult from a combinatorial viewpoint (See Section 2.2), and easy for humans.

2.2 Previous Approaches to the AHP

The first system historically, which solved the AHP is probably Ebcioglu’s Choral system [Ebcioglu 92]. Choral’s
objective is to generate fully-fledged chorales in the style of J.S. Bach from scratch. To do so, Ebcioglu devised an
ad hoc constraint logic programming language (BSL), based on production rules integrated in a backjumping-based
algorithm. Choral includes several interacting modules for melody generation, harmonization and analysis, as well
as modules to consider stylistic constraints. From a technical point of view, constraints are used mostly passively, to
reject solutions produced by production rules. It is therefore difficult to assess the quality of the harmonization
module only.

Levitt [Levitt 93] proposed a fully-fledged system for producing complete orchestrations according to various musi-
cal styles, such as ragtime, using constraints, but used value propagation techniques, in a perturbation model
[Borning 81], rather than satisfaction techniques, and was therefore unable to solve our problem. In the same spirit,
Steels approach [Steels 86] aimed at building a system that could learn the rules of harmony itself, using machine
learning techniques. Although not primarily designed for automatic, efficient harmonization, the system featured an
interesting capacity to learn and use musical heuristics to speed up the search, and an abilit y to combine brute explo-
ration with heuristic search, an important concern of CSP in the large. The use of arc consistency (a widespread
technique in constraint satisfaction), for musical harmonization was first advocated by Ovans in [Ovans and Davison
92]. He showed experimentally that techniques based on arc consistency were more adapted and efficient than tech-
niques based on earlier techniques, such as pure backjumping. However, he used a flat representation of the har-
monization problem, and addressed only the problem of two-voice harmonization. In addition, his results, although
better than his predecessor’s, were still unsatisfactory.

Tsang proposed a solution of the four-voice harmonization problem using constraint logic programming techniques
[Tsang and Aitken 91]. Although the proposed system was operational, the authors still concluded on the impracti-
cabilit y of the approach, for efficiency reasons: it took more than 5 minutes, on a SunSparc 1 workstation, and re-
quired 70 Megabytes of memory to solve the AHP on an 11-note melody. They employed a flattened representation
of the musical domain: constraints were stated on “notes” variables only, themselves represented as mere integers.

More recently, Henz addressed the harmonization problem from a different viewpoint, emphasizing the need for
developing a plan, prior to the resolution [Henz et al. 96] . This plan embodies knowledge about the desired har-
monization, such as modulations and chord degrees. The harmonization problem is therefore much simpler, and
solutions are found in reasonable time (about 1 second for non-optimal solutions on a 133 MHz PC). The resulting
system is interesting from a musical point of view because it allows users to effectively test harmonization plan inter-

4

actively. However, it is less relevant from the constraint satisfaction point of view, since the constraint problem
addressed is actually a very simple combinatorial problem (harmonization with chord degrees given), which can be
solved easily by standard CSP technique (the Oz system [Smolka 94] in this case).

The system proposed by Ballesta in [Ballesta 98] is probably the most complete attempt at solving the four-voice
harmonization problem using recent constraint techniques (a Lisp version of the Ilog Solver system [Puget 95]). The
approach taken by Ballesta, however, is basically the same than in [Tsang and Aitken 91]: the constraints are all
stated on a flattened representation of the musical objects (notes and chords). For instance, in [Ballesta 98], 12 at-
tributes are defined to represent one interval, such as the name of the interval (e.g. diminished fourth), its degree, and
its two extremities. Nine constraints are then introduced to state the relations that hold between the various attributes
of class Interval. For instance one constraint links the name of the interval to the various attributes of its extremities
(the octave and name of the note). As a result, constraints are defined using a low-level language (arithmetic), thus
require a translation of harmonic and melodic properties in terms of integers. For instance, the parallel fifth con-
straint is represented as follows (actually a set of six 4-ary constraints):

parallel-fifth(n1, n2, n3, n4, n’1, n’2, n’3, n’4)
�

if fifth(n1, n2) then ¬fifth(n’1, n’2)
if fifth(n1, n3) then ¬fifth(n’1, n’3)
if fifth(n1, n4) then ¬fifth(n’1, n’4)
if fifth(n2, n3) then ¬fifth(n’2, n’3)
if fifth(n2, n4) then ¬fifth(n’2, n’4)
if fifth(n3, n4) then ¬fifth(n’3, n’4)

Figure 4. The constraint corresponding to the parallel fifth rule, as expressed in the flattened for-
mulations, e.g. [Ovans and Davison 92] and [Ballesta 98]. The same constraint expressed using
structured domains is given in Section 4.

It is clear that this approach leads to stating a huge amount of constraints and constrained variables. For instance, in
Ballesta’s system, one note instance is represented by 6 constrained variables. To solve the AHP on a n-note melody,
his system uses 126 × n - 28 constrained variables. The resulting system is expectedly slow, and shows clearly -
through the construction of a full system - the limits of the “ flattened” approach. Although the complexity of Ball-
esta’s approach is difficult to evaluate since the system uses special classes of constraints, one can approximate the
search space by 143n, where n is the number of notes, 3.n is the number of constrained note variables, and 14 is the
average number of possible notes for each variable. If n = 15 notes (typical case), the search space is then 1445 =
1052.

The drawbacks of these systems can be summed up as follows: first, there are too many constraints. The approaches
proposed so far do not structure the representation of the domain objects (notes, intervals, chords). When such a
structure is proposed (as in Ballesta' s system) objects are treated as passive clusters of constrained variables. Sec-
ond, the constraints are treated uniformly, at the same level. This does not reflect the reality: a musician reasons at
various levels of abstraction, working first at the note level, and then on the chords, the most important harmonic
decisions being made at the chord level (e.g. the parallel fifth constraint).

Our basic idea is to exploit the natural structuring of objects in this problem: chords. As we saw above, chords can
be defined as groups of simultaneous notes having certain properties. The main interest of chords is that they form
meaningful entities on which knowledge is usually formulated. For instance, the parallel fifth constraint typically
holds between two chord objects, and not between 8 notes. In the next section, we will propose an integration of this
part-whole hierarchy in the formulation of the constraint problem, and show how it allows the statement of the prob-
lem in a simpler way, while ensuring a better efficiency.

3. EXPLOITING NATURAL PART-WHOLE HIERARCHIES IN FORMULATING CSPS

In order to formulate precisely our idea, identify the technical problems and propose a solution, we will concentrate
on a somewhat simpler problem in the field of elementary geometry in the next section. We will t hen apply the solu-
tion to the harmonization problem, and describe the resulting system.

5

3.1 Definition of a CSP

Let us first recall that a CSP is defined by 1) a set V of variables, each variable having a finite domain, and 2) a set
of constraints. Constraints are defined either in intension by a predicate holding on some variables, or in extension
by the set of consistent tuples. A solution of a CSP is an instantiation of all variables that satisfies simultaneously all
the constraints.

3.2 Two Main Designs for CSP and Structured Domains

We will now ill ustrate our idea by showing two different formulations of a simple problem in the domain of planar
geometry. The problem P is the following:

Find all pairs of non trivial quadrilaterals satisfying the following set of constraints (C):

C1 - All vertices have integer coordinates in { 1 .. n} .
C2- For all vertices, the x and y coordinate are different.
C3 - All quadrilaterals are rectili near rectangles.
C4 - The two rectangles do not intersect.

Figure 5 shows a solution of (P) when n = 10.

R1

R2R3

Figure 5. A solution of problem (P) is a pair of rectangles satisfying the set of constraints (C). The pairs
of rectangles { R1, R3} and { R2, R3} are possible solutions; pair { R1, R2} is not. In a space with coor-
dinate ranging from 1 to 6, there are 90 solutions.

The main task in formulating problem P is to identify the variables to be constrained. The first formulation consists
in “ flattening out” the domains, i.e. specifying the problem only with point variables, considering here points as
atomic entities. In this representation, the constraints are stated entirely in terms of point variables. Reach of these
variable has a domain containing the set al all points with integer coordinates, where each point is itself a couple of
integers (x, y). The only variables in this formulation are the point variables; the coordinates are not variables.

The three first constraints would be stated as follows, where a, b, c, d (resp. a', b', c', d') are the variables representing
the point coordinates of Rect1 (resp. Rect2), and x and y are the functions yielding the x and y coordinate of the
points (see Figure 6).

C1: unary constraints on each variable: dom(a) = dom(b) = … = { all points with integer coordinates in { 1.. n}}

C2: unary constraints on each variable: dom(a) = dom(b) = … = { all points with different coordinates}

C3: sets of four binary constraints for stating that each rectangle is rectili near:

x(a) = x(c); y(a) = y(b); x(b) = x(d); y(c) = y(d)

x(a’) = x(c’); y(a’) = y(b’); x(b’) = x(d’); y(c’) = y(d’)

The most important constraint, C4, is a 8-ary constraint, stated as follows:

x(b) < x(a') "Rect1 on the left of Rect2"
or x(a) > x(b') "Rect1 on the right of Rect2"
or y(c) > y(a') "Rect1 above Rect2"
or y(a) < y(c') "Rect1 below Rect2"

6

In this solution there are:

• 8 variables, representing the 8 vertices, each one with a domain of size (n2 - n).

• 9 constraints (C1 and C2 are represented as domains, 8 binary constraints for expressing C3, one 8-ary constraint
for C4).

R1

R2

a b

c d

a’ b’

d’c’

Figure 6. Stating constraint C4 in terms of points variables.

The second formulation is based on the exploitation of natural structures: the rectangles themselves. Since the
problem statement contains constraints involving rectangles (C4) and that the domain is defined in terms of points, a
natural solution consists in specifying a problem with both "rectangle variables" (i.e. variables whose domain is
collection of rectangles) and point variables. The main interest of this solution is to allow the statement of con-
straints in a more natural manner, and to exploit the natural part-whole relation between rectangles and points.

In this formulation, constraints C1, C2, and C3 would be stated similarly, but constraint C4 would then be stated as
the following binary constraint:

not (intersects (Rect1, Rect2))

In this solution, there would be:

• 8 point variables as in the first solution,
• 2 additional variables, representing the 2 rectangles, each one with a domain of size N! / (N-4)!

 where N = n2-n (the number of possible points).
• the same constraints C1, C2, and C3 than in the first formulation
• 1 binary constraint, for C4.

In the first solution, constraints are difficult to state, because they involve only "lower-level" objects. In our previ-
ous example, imagine a constraint involving three rectangles! In the second solution, constraints are stated on
higher-level objects (rectangles). Also, the constraints involve less variables (the arity of constraints is a crucial
parameter for performance). In our example, C4 has eight variables in the first solution, and only two in the second
one.

Of course, this formulation raises a problem: how to build rectangles to create the domains for the two additional
rectangle variables? Creating these domains naively would involve the creation of a lot of objects: in our case it is
roughly equal to the Cartesian product of the domain sizes of the variables making up a rectangle. Although the
collection of all possible rectangles in a finite 2-dimension space is, of course, finite, it is practically unreasonable to
build this collection prior to the resolution.

These two approaches are graphically represented in Figure 7. The first one corresponds to a problem with partially
instantiated objects, i.e. objects whose attributes are constrained variables. In the second one, constraints are stated
between fully instantiated objects.

?
?

?

? ?
?

?

?

C4

??
C4

Figure 7. The two design approaches in designing a CSP + part-whole hierarchy problem. Solution
1 is on the left, 2 on the right.

7

3.3 Introducing a Part-Whole Relation in the Formulation

We will now introduce the part-whole relation between domain values in the definition of the CSP. The idea is that a
part-whole relation between domain values yields a natural partition of the set of variables and of the set of con-
straints. For the sake of simplicity, we will consider here only “one-level” part-whole relationships. The generaliza-
tion to arbitrary levels is easy.

Definition 1 Part-Wholed CSP. Let P a CSP.

A part-whole relation R is defined as follows:

• V = V1 ∪ V2
• R: V1 × V2 � {0, 1}
• v1 R v2 means that v1 is a ” part of” v2

This relation between variables induces a partition of the constraints in three sets, according to the nature of their
variables. This partition is defined as follows:

C = C1 ∪ C2 ∪ Cmixed with C1 ∩ C2 = ∅ and C1 ∩ Cmixed = ∅ and C2 ∩ Cmixed = ∅

where the subset C1 (resp. C2), consists of constraints involving only variables of V1 (resp. V2), and where Cmixed,
contains variables of both V1 and V2.

Our proposal consists in decomposing the resolution of P into the successive resolution of sub-problems holding
only on subparts of C. The strategy is the following: in a first step, we consider only atomic objects of the problem
and the constraints involving them, i.e. V1 and C1. We then apply domain reduction to remove inconsistent values
from this initial problem values. We then compute all the higher level objects that can be made up with the remain-
ing atomic values. These objects make up the domains of the variables in V2. Finally, we can solve the full problem
as defined in our second formulation.

The strategy can be summarized as follows:

First phase

We first create a CSP P1, whose variable set is V1, and whose constraint set is C1. We apply a consistency algo-
rithm to P1, in order to reduce the size of the domains of its variables as much as possible.

Intermediate phase

The intermediate phase consists in computing the domain of every v2 in V2. These domains are computed with
respect to the reduced domains of each v1 that satisfies v1 R v2. This computation is done by simply enumerating,
for each v2, the Cartesian product of its parts, i.e. every v1 such as v1 R v2.

Second phase

We then create a CSP P2, whose variable set is V=V1∪V2, and whose constraint set is C1∪C2∪Cmixed. The domains
of variables in V2 were reduced during the intermediate phase.

Notice that in the general case, constraints in C1 have to be considered in the second phase, because arc consistency
has not necessarily ensured global consistency. For this reason, it could seem that our decomposition is useless.
However, it is not the case, and the main result of our approach is that the cost contribution of these constraints in the
second phase is small compared to the cost of C2 in the flattened formulation.

We will now evaluate the complexity of this approach, and then apply it to the rectangle problem and the harmoniza-
tion problem.

3.4 Theoretical Complexity of the Approach

The contribution of our approach can be evaluated as follows: let A be a set of n atomic objects. The size of the set
of all n-uplets of A is card(A)n. The set of composite objects can be seen as the image of A by a composition map-
ping, called c.

8

Let us consider a problem with two composite objects, and thus 2.n atomic objects. Let us then suppose one global
“arbitrary” constraint, i.e. for which there is no particular filtering method available.

The complexities of the two approaches can be computed as follows:

Approach #1

In the first approach, the composition constraints hold on at most n atomic variables. Their complexity is therefore
bounded by Card(A)n. The global constraint holds in 2.n atomic variables, whose domains is A. Its complexity is
(Card(A)n)². The total complexity of the flattened approach is Card(A)2n.

Approach #2

In this approach the complexity of the first phase is the same as above, i.e. Card(A)n. The intermediate phase con-
sists in computing the Cartesian product of n variables whose reduced domains are bounded by Card(A) : its com-
plexity is bounded by 2.Card(A)n. In this approach, the global constraint holds on two composite variables whose
domains contains c(An) elements. Its complexity is (Card(c(An)))². The total complexity of the second approach is
thus (Card(c(An)))² + 2.Card(A)n.

In general, Card(A)n is negligible before (Card(c(An)))², so the total complexity may be approximated by
(Card(c(An)))².

Let r be the ratio Card(A)n / Card(c(An)). r measures the “density” of composite objects in the space of all n-uplets.
Since the ratio between the complexities of the two approaches is r², we deduce that the scarcer are composite ob-
jects, the more efficient is our approach.

In the case of rectangles, the scheme instantiates as follows: the number of 4-plets is n8, while the number of rectili n-
ear rectangles is n!/(n-4)!, which is approximated by n4. Therefore the ratio r = n4.

The resolution scheme presented here can be generalized to problems involving more than two levels of composi-
tion. For instance, in the problem (P) there are two composition levels if we consider the points as atomic objects,
but there are three levels (coordinates, points and rectangles) if we consider points themselves as structures of two
integers.

3.5 Related Works

Our work is related to the general issue of problem reformulation. The impact of formulation of CSP on their reso-
lution has already been emphasized by [Nadel 90]. Nadel identified several equivalent formulation of the n-queen
problem, including “dual” approaches, in which constraints and variables are somewhat swapped. In our case, we do
not try to find a “dual” representation space, but rather to build a representation space in which structures are made
explicit, and considered themselves as variables. This idea is similar to the ideas underlying the Robin Chess pro-
gram [Pitrat 77]: these representation spaces are interesting because 1) they are much smaller than the initial flat-
tened space, and 2) knowledge can be expressed directly in terms of these structures and exploited by the solver
(chord structures for music; plans in the case of chess).

For instance, CSP decomposition, see e.g. [Weigel and Faltings 97], somehow address the same problem, but follow
a bottom-up approach, starting from a flatted formulation, and trying to build clusters that minimize the number of
search nodes in the resolution. We follow a top-down approach, that may not be as optimal, but which is interesting
because it is based on meaningful abstractions, for which 1) models can exist already, and 2) implementations can be
reused.

Another way to reduce the complexity of CSPs is by exploiting topologies of already flattened CSPs, such as tree-
structured [Bayardo and Miranker 94]. In our case this is not applicable because 1) we precisely do not want to
build the flattened formulation and 2) If we were able to produce this formulation, it would not exhibit a tree-like
topology, since there remains constraints holding “across” structured objects (for instance constraints between con-
secutive notes, which create cycles).

9

4. FORMULATING THE AHP USING THE CLASS-BASED APPROACH

The preceding approach and results can now be directly applied to the AHP, by identifying the natural part-whole
relation between chord objects and notes.

To do so, we reused a fully-fledged object-oriented library, the MusES system [Pachet et al. 96], which contains a set
of around 100 classes that represents the basic elements of harmony, such as notes, intervals, scales and chords.
Constraints are stated and solved using the BackTalk system [Roy and Pachet 97], designed to allow constraints to
hold directly on objects using arbitrary methods defined in their classes.

Using our approach, given a n-note melody, the total CSP contains 3.n variables for the notes plus n variables for the
chords (handled only in the second phase). Some constraints are stated both at the note level (C1), as in the flattened
approaches. Constraints on chords (C2) are directly expressed on chord variables. For instance, the famous parallel
fifth constraint is expressed as follows:

Not (hasParallelFifth (chord1, chord2))

where chord1 an chord2 are two chord variables, and hasParallelFifth is a standard predicate (a method
in class Chord).

Solutions for melodies of around 15 notes are found almost instantaneously (less than 1 second on a Pentium PC,
using the Smalltalk language).

Comparing precisely our approach to the preceding ones is difficult to do, because the previous authors did not solve
the same problem, the melodies were different, the solvers were different, as well as the computers used. Ovans ad-
dresses a much simpler problem than ours: unfigured two-voice harmony exercises instead of four-voice. The com-
parison is therefore not relevant. Similarly, Henz’s system solves a harmonization with a predetermined harmoniza-
tion plan, which is also a simpler problem, but not enough information is available to compare it in detail with ours.
We give here some precise elements for assessing our approach and comparing to Tsang’s and Ballesta’s.

• Comparison with Tsang’s approach.

 Tsang is the only preceding approach solving the full 4-voice unfigured harmonization problem. Tsang gives only
one sample melody. The comparison on this melody is given in Figure 8. There is a 1000 factor between these two
figures. If we consider that there is a factor of 100 between our PC and the computer used by Tsang, our result is 10
times better, notwithstanding the memory space which is much less in our case. However, this comparison is limited
since there is only one melody, and we do not have much information on the performance of the solver used by
Tsang.

Tsang’s 11 note melody

Tsang (CLP) 5 minutes on a SunSparc 1 workstation + 70 Megabyte memory space

BACKTALK + MusES 0.34 secs on a Pentium 300 MHz computer + 1.6 Megas memory (54 backtracks)

 Figure 8. Comparison between our approach and Tsang’s on a 11-note melody.

• Comparison with Ballesta’s approach.

 Ballesta solves the figured bass problem, which is much simpler than the unfigured bass one. Indeed, figure infor-
mation limits drastically the number of possible chords (there are in average 8 possible chords for a given figure).
Solving the figured bass problems is, in our case, even simpler than solving only C2 alone (the second phase), since
the domains of chord variables are already given. Some of Ballesta’s melodies are even very difficult to solve with-
out the figure information. Our system allows to solve all the melodies of Ballesta, without the figures, and much
faster.

To give more elements of comparison, we took a bass line proposed by Ballesta (see Figure 9), and solved the unfig-
ured bass problem using our system on segments of the bass line of increasing length (2 to 14 notes). The results are
given in Figure 10. We give the CPU and number of backtracks for the computation of the first solution, for both
systems (Ballesta’s and ours). The difference in performance between the Sparc 10 and the Pentium 300MHz can be
estimated to be a factor of 10. This yields a factor of 50 in favor of our approach, on a much harder problem.

10

Figure 9. The initial bass line for our benchmarks.

Note that we also applied our system to the figured bass problem, as Ballesta, and also obtained better results. How-
ever, the improvement of performance is not so significant in the context of this paper, since the figured bass prob-
lem involves a simplified part-whole relation. These results are not reported here for reasons of space limitations.

Note also that we have not reported the results for finding all solutions of given bass or melody lines. This is because
the solutions sets are different: the absence of figure information increases dramatically the number of solutions by
several orders of magnitude, so this comparison is not relevant.

Ballesta, Figured Bass, 1st Solution Our approach, Unfigured Bass, first Solution
length CPU (in seconds) CPU, Phase #1CPU, Phase #2CPU, Phase #3CPU Total fails

2 9 0,007 0,042 0,013 0,062 1
3 45 0,007 0,029 0,031 0,067 6
4 120 0,006 0,064 0,063 0,133 7
5 90 0,007 0,066 0,167 0,24 36
6 160 0,008 0,069 0,17 0,247 36
7 180 0,008 0,085 0,18 0,273 36
8 130 0,022 0,061 0,18 0,263 36

10 170 0,009 0,085 0,207 0,301 40
12 191 0,009 0,102 0,24 0,351 41
14 184 0,011 0,108 0,28 0,399 43

Figure 10. Comparison between the system of Ballesta and ours. The table shows the resolution of a figured
bass exercise in Ballesta’s approach, for increasingly long bass lines. For our approach, we give additionally
the number of backtracks. Note that our system solves a harder problem because figures are not given.

5. OTHER APPLICATIONS

The domain of Multimedia often includes domains which are naturally structured by part-whole relations. We out-
line here a project in progress concerning the automatic generation of music recitals, for which or approach was used
successfully.

In this system, the aim is to generate automatically a recital, which is a sequence of musical pieces taken from a
given repertoire. The recital must satisfy certain conditions, expressed as constraints. In our project, the pieces are
taken from a repertoire of French Baroque Harpsichord Music, and the conditions come from studies by well -known
musicologists [Bukofzer 47]. Typical constraints are “ two contiguous pieces should be of a different type”, or “all
pieces should be in the same key” .

However, it appears that recitals are naturally structured into so-called “blocks” : the introductory block, an optional
block and a conclusive block. Additional conditions must hold on these blocks. For instance, if there is an optional
block, there has to be a conclusive block. Other constraints hold on pieces within a block. For instance, the intro-
ductory block must begin by an “allemande” or a “pavane”, and may include a gigue, in between the first and third
pieces.

Although several works were devoted to designing specialized global constraints for building constrained sequences
[Baptiste et al. 94], our approach can be used here profitably for reducing the search space, without requiring a spe-
cialized algorithm.

It is clear that the nature of the problem makes it fit naturally in our scheme. More precisely, we identify a part-
whole hierarchy Recital/Block/Piece, and split the constraint set into two parts: constraints holding only on pieces,

11

and constraints holding only on blocks. The resulting system is then efficient enough to handle large repertoires of
musical pieces, which would be otherwise impracticable using standard CSP techniques.

6. CONCLUSION

This paper addresses the issue of formulating constraint problems in structured domains. We propose to explicitly
take into account part-whole hierarchies, when they occur, at the problem formulation level, rather than during exe-
cution. We show that these relations allow to state the problem in a representation space in which domains are
smaller, thus lead to gains in efficiency. Additionally, the proposed approach allows the statement of problems in a
more natural way than using a classical, flattened representation of domains. In this respect, our approach fits in the
general issue of problem reformulation [Amarel 66], where the aim is to identify representation spaces where either
domains are smaller or more knowledge is available.

REFERENCES

[Amarel 66] S. Amarel. (1966) Comments on the Mechanization of Creative Processes. IEEE Spectrum.
[Ballesta 98] Ph. Ballesta. (1998) Contraintes et objets: clefs de voûte d'un outil d'aide à la composition. Chapter in

“Recherches et applications en informatique musicale”, Hermès Eds, Paris, France.
[Baptiste et al. 94] B. Baptiste, H. Legeard, and H. Zidoum. (1994) Sequence Constraint Solving in Constraint Logic

Programming. International Conference on Logic Programming - Workshop on Logic programming with Sets, 6th
IEEE Int. Conf. on Tools for Artificial Intelli gence, TAI'94, NewOrleans, USA, 804-807, IEEE Computer Society
Press.

[Bayardo and Miranker 94] R.J. Bayardo, and D. P. Miranker. (1994) An Optimal Backtrack Algorithm for Tree-
Structured Constraint Satisfaction Problems. Artificial Intelli gence 71: 159-181

[Beldiceanu and Contejean 94] N. Beldiceanu and E. Contejean. (1994) Introducing global constraints in CHIP.
Math. Comput. Modelli ng. 20(12):97-123

[Borning 81] A. Borning. (1981) The Programming Language Aspects of ThingLab, a Constraint-Oriented
Simulation Laboratory. ACM transaction on Programming Languages and Systems, 3(4), 353-387

[Bukofzer 47] M. F. Bukofzer. (1947) Music in the Baroque Era, from Monteverdi to Bach. Norton & Company
[Ebciolgu 92] K. Ebcioglu. (1992) An Expert System for Harmonizing Chorales in the Style of J.-S. Bach.

Understanding Music with AI: Perspectives on Music Cognition. AAA I Press: 294-333
[Henz et al. 1996] M. Henz, S. Lauer and D. Zimmermann. (1996) CompoZe- Intention-Based Music Composition

Through Constraint Programming. 8th IEEE International Conference on Tools with AI, Toulouse (France)
[Levitt 93] D.A. Levitt. (1993) A Representation of Musical Dialects. Machine Models of Music. S. M. Schwanauer

and D. A. Levitt, MIT Press: 456-469
[Nadel 90] B. Nadel (1990). The representation selection of constraint satisfaction: a case study using n queens.

IEEE Expert, pp. 16-23
[Ovans and Davison 92] R. Ovans and R. Davison. (1992) An Interactive Constraint-Based Expert Assistant for

Music Composition. Ninth Canadian Conference on Artificial Intelli gence, University of British Columbia,
Vancouver, 76-81, 1992

[Pachet et al. 96] F. Pachet, G. Ramalho, and J. Carrive. (1996) Representing temporal musical objects and reasoning
in the MusES system. Journal of New Music Research, 25(3): 252-275

[Pitrat 77] J. Pitrat. (1977). “A chess combination program which uses plans.” Artificial Intelligence, 8, 275-321.
[Puget 95] J.-F. Puget. (1995) Beyond the Glass Box: Coonstraints and Objects. ILPS’95, Portland, Oregon, pp. 513-

527
[Roy and Pachet 97] P. Roy and F. Pachet. (1997) Reifying Constraint Satisfaction in Smalltalk. Journal of Object-

Oriented Programming, 10(4):51-63
[Schoenberg 78] A. Schoenberg. (1978) Theory of Harmony, University of Cali fornia Press, Berkeley
[Smolka 94] G. Smolka. (1994) The Oz programming model. In J. van Leeuwen, editor, Computer Science Today,

LNCS, vol. 1000, pp. 324-343
[Steels 86] L. Steels. (1986) Learning the craft of musical composition. ICMC, The Hague (Netherlands), 86
[Tsang and Aitken 91] C. P. Tsang, and M. Aitken. (1991) Harmonizing music as a discipline of constraint logic

programming. ICMC '91, Montréal
[Weigel and Faltings 97] R. Weigel and B. V. Faltings. (1997) Structuring techniques for constraint satisfaction

problems. Proc. of IJCAI’97, Nagoya, 418-423

