PiCO: A Calculus of Concurrent Constraint

Objects for Musical Applications.
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Abstract. Musical applications are very demanding on the
expressive power of the underlined programming model. We
propose PiCO, a calculus integrating concurrent objects and
constraints as a base for music composition tools. In contrast
with calculi such as [JM95, RMW92] or TyCO [Vas94], both
constraints and objects are primitive notions in PiCO. The
object model is extended with constraints by orthogonally
adding the notion of constraint system found in the p-calculus
[Smo94a]. The extended calculus provides a natural way to
express more sophisticated communication behaviors via the
standard message-passing synchronization mechanism. More-
over, it allows us to represent complex partially defined ob-
jects such as musical structures in a compact way. The paper
includes encodings in PiCO of the notions of class and sub-
class. We illustrate the transparent interaction of constraints
and objects by a musical example involving harmonic and
temporal relations.

Keywords: Concurrent Programming, Constraint Pro-
gramming, Concurrent Constraint objects, TyCO, PiCO, For-
mal Calculi, Mobile Processes

1 Introduction

e Why do we want Concurrent Objects with Constraints ?

Our objective is to develop computational models adapted
for constructing music composition tools. Musical objects can
take a wide variety of forms depending on the particular di-
mensions they belong to. In a harmonic (vertical) dimension,
objects such as chords contain notes that can be constrained
to lay within defined zones (or registers), to belong to defined
textures (e.g. patterns of harmonic intervals) or fundamen-
tals, etc. In a temporal (horizontal) dimension, sequences of
chords or notes can be defined to be positioned in such a way
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that they form selected rhythmic patterns. There exists also
”diagonal” dimensions such as dynamics, where notes can fol-
low complex amplitude evolutions or such as melody, where
patterns of distances relate notes in distinct temporal posi-
tions. Relationships among sets of objects in several dimen-
sions define musical structures. These in turn can be regarded
as higher level objects which are also amenable to different
kinds of musical transformations. Being able to express the
whole complexity of constructing a network of structures sat-
isfying the musical intentions of a composer is a big challenge
for any computer programming model.

In recently proposed computer aided musical composition
systems such as Situation [BR98] constraints and CLOS ob-
jects can be used to define complex musical structures. In
the same spirit, but more closely integrated to the underlying
Smalltalk language, Backtalk [PR95] provides a framework
for handling constraint satisfaction within an object environ-
ment. Both systems have been successfully used in real world
musical settings. In both applications, however, the constraint
engine is a black box barely accessible to the user. Moreover,
communicating data structures back and forth between the
constraint and object models is often awkward. In fact, ob-
jects containing partial information and ”standard” instan-
tiated objects are not really amenable to the same kind of
computational treatment. In musical applications this lack of
communicability can be specially troublesome since the ap-
proach of the composer involves for the most part constant
refinement and modification of compositional models based
on the acoustical result of partial implementations.

We think that the development of computational models
and of tools for computer aided music composition should
go hand in hand to benefit from insights at the user level
while maintaining a coherent formal base. Defining a uniform
model integrating constraints and objects can be of great help
to construct higher level musical applications that provide
the musician with flexible ways of interaction. In [VDR97]
the m-calculus was extended with the notion of constraint. In
this paper we consider the addition of objects and describe
encodings in it of basic notions of classes and subclassing.

Several concurrent objects calculi have been proposed re-
cently ([Wal95], [Vas94], [AC94]). In these models the inter-
actions of concurrent processes (or objects) are synchronized
essentially through one of two mechanisms: the “use of a chan-
nel” and “message-passing”. In TyCO, for instance, an object
av [l : (y)P] can be seen as a process P which is suspended
until some message selecting a method labeled by [ is sent to



an object located at a or, more generally, until a message is
sent to an object located at x, with x = a.

On the other hand, constraints can also be used to define a
rich set of possible concurrent processes interactions, as has
been shown in the CC model ([Sar93]). The basic operations
ask and tell allow processes to define complex synchroniza-
tion schemes through the use of common process variables.
In the CC language Oz ([JM95]), first-class procedures and
first-class cells are used to simulate objects within a concur-
rent constraint setting. Objects are thus not primitive. In fact,
the constraint paradigm is the only underlined model of inter-
action. The powerful constraints calculus of Oz allows other
programming models (functional, objects) to coexists through
syntactic encodings of those models within Oz.

Our approach is different. We want to maintain as much as
possible the independence of the object and constraint models
at the calculus level. Firstly, we think that this better reflects
the two actual main approaches composers use for construct-
ing musical structures. Secondly, we would like our tool to be
easily adaptable to different notions of object and different
constraint systems.

Consider an example. Let us suppose that we want to de-
fine some conditions for the location of an object. For instance
?(z € {a,b,c}).z> [l : (y)P] can be seen as a process P which
is suspended until a message is sent to a location z where z
is either a,b or ¢. This can also be interpreted as an object
capable of receiving through x messages from three different
locations. Of course, for this simple example, the w-calculus
process a?[y].P + b?[y]. P + c?[y]. P [Mil91] could very well be
used for this. However, when we wish to define arbitrary con-
ditions to execute P, to send messages to objects, or to locate
objects, we need better ways to express communication. These
arbitrary conditions can be naturally expressed by means of
constraints. For example:

o (z €{ai,az,...}).zal: (j) means “Tell message z al : (j)
that can only be sent to objects identified by a1, az,...”.

e xz > [l : (y)?(z € {a,b}).P] means “Execute process
(method) P only if a message is sent to a location labeled
by either a or b”.

In fact, object interactions can naturally be modeled in
at least two ways. First, by means of concurrent objects
whose synchronized execution simulates changes on real ob-
Jjects [Mil91] and second, by using constraints to ”change” the
object state by refining the partial knowledge one has of the
attributes of the object.

These views are complementary. In a musical setting both
are typically used. Composers may very well conceive musical
processes evolving according to explicitly defined trajectories
or to particular compositional rules, or both. In the former,
object attributes can naturally be seen as being bound to
values whereas in the latter attributes express only their con-
sistency with the partial information implied by the rules.

We give further bellow an example of an object environment
showing the transparent and useful integration of constraints
and concurrent processes in a real music composition problem.

In sections 2 and 3 we present the syntax and semantics
of PiCO. The syntax of PiCO adds constraint processes to
the standard TyCO process. Constraint processes perform the
standard Ask and Tell operations of CCP languages. The se-
mantics is defined operationally following the transition sys-
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tem for the cc-model used in [Sar93]. Recursive definitions are
shown in section 4. Recursive definitions are not considered
primitives in PiCO, since they can easily be encoded as it
was done in [Mil91]. Section 5 shows how classes and mutable
objects carrying partial information on their attributes can
be conveniently represented in PiCO. In section 6 we show a
somewhat elaborate musical example. Section 7 shows briefly
how the semantics for a concurrent constraint visual language
can be expressed using PiCO. Finally, section 8 gives some
conclusions.

2 Syntax

The syntax of PiCO is given in Table 1. There are three basic
processes: Messages, Objects and Constraints.

We describe next the calculus informally. In what follows, T
denotes a sequence ti, ... tx, of length m = k whose elements
belong to some given syntactic category.

A process Iv[ly : (21)Pi& ... &l (Hn)Pm] can be thought
of as an object located at I (named I or identified by I) whose
methods (z1)P ... (fﬂ;)Pm are labeled by a set of pairwise
distinct labels I; ...lny. In a method I : (7)P, 7 represents the
formal parameters and P the body of the method. Other than
names, variables and primitive values can be used as object
identifiers. _

A process I <l : [J].P can be thought of as a message to
target object located at I with contents or information J. We
also allow messages to have a continuation P. Label [ is used
to select the corresponding method in the target object. In-
tuitively, the result of the interaction between a message and
the target object is the body of the selected method with the
formal arguments replaced by the respective actual arguments
in the contents of the message.

The summation form N; + Nz represents a process able
to take part in one -but only one - of two alternatives for
execution. The choice of one alternative precludes the other.
The null process 0 is the process doing nothing.

The process (va)P restricts the use of the name a to P.
Another way to describe this is that (va)P declares a new
unique name a, distinct from all external names, to be used
in P. Similarly, (vz)P (new process) declares a new (logical)
variable z, distinct from all external variables in P.

Process composition P | @ denotes the concurrent execu-
tion of processes P and Q. xP (replication) means P | P >

..( as many copies as needed). A common instance of repli-
cation is *I > M, an object which can be reproduced when a
requester communicates via I. Replication is often used for
encoding recursive process definitions (see [Mil91]).

Finally, Constraint processes are new kinds of processes
whose behavior depends on a global store. A store contains
information given by constraints. The store is used in PiCO to
control all potential communications. The Tell process !¢.P
means “Add ¢ to the store and then activate P.”. Thus, Tell
processes will be used to influence the behavior of other pro-
cesses. The Ask process 7¢. P means “Activate P if constraint
¢ is a logical consequence of the information in the store or
destroy P if —¢ is a logical consequence of the information in
the store. Otherwise, suspend 7¢.P until the store contains
enough information to run it.”.

In what follows, we write (vli,I2,...,I,) instead of
(vI1)(vI2)...(vIn) and we omit .O when no confusion arises.
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I am.P
I>M
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Normal Processes: N

16.P
?7¢.P

Constraint processes: R

i

Processes: P,Q (vz)P

(va)P

PlQ
*P

Object identifiers: I, .J

Collection of Methods M

li

[l

: 1]

Messages m

Table 1.

3 Operational Semantics

3.1 Constraint System

PiCO is parameterized in a Constraint System. For our
purposes it will suffice to found the notion of constraint
system on first-order Predicate Logic, as it was done in
[Smo94b, Smo94a] &.

A Constraint System consists of [Smo94b, Smo94a]:

e A signature X ( a set of functions, constants and predicate
symbols with equality) including a distinguished infinite
set, \V, of constants called names denoted a, b, ..., u. Other
constants, called wvalues, are written vy, vs,...,. They are
regarded as primitive objects in the calculus and used as
object identifiers.

e A consistent theory A (a set of sentences over ¥ having a
model) satisfying two conditions:

1. A = =(a =1b) for every two distinct names a, b.

2. A |= ¢ + ¢ for every two sentences ¢, ¥ over X such that
¥ can be obtained ;from ¢ by permutation of names.

Often A will be given as the set of all sentences valid in a
certain structure (e.g. the structure of finite trees, integers,
or rational numbers). Given a constraint system, symbols
é,¢, ... denote first-order formulae in %, henceforth called
constraints. We say that ¢ entails ¢ in A, written ¢ |=a 1, iff
¢ — ¢ is true in all models of A. We say that ¢ is equivalent

/

to ¥ in A, written ¢ |Hav, iff ¢ =a ¢ and ¥ |Ea ¢. We

8 In [Sar93], a more general notion of a constraint system is de-
fined. We follow [Smo94b, Smo94a] in taking Predicate Logic as
the starting point, so we can rely on well-established intuitions,
notions and notations.

Section Title

Message to |

Object T

Indeterminate execution
Inaction or null process

Tell process
Ask process

New variables z in P
New name a in P
Normal process
Composition
Replicated process
Constraint process

Name
Value
Variable

(@) P& &t (Tm) P

PiCO syntax

3

say that ¢ is satisfiable in A iff ¢ ALl . We use L for the
constraint that is always false and T for the constraint that is
always true. A particular constraint system must, of course,
have a decidable entailment relation.

As usual, we will use infinitely many z,y,... € V to denote
logical variables, designating some fixed but unknown element
in the domain under consideration. The sets fv(¢) C V and
bu(¢) C V denote the sets of free an bound variables in ¢,
respectively. Finally, fn(¢) C A is the set of names appearing
in ¢.

As we said before, constraint processes act relative to a
store. A store is defined in terms of the underlined constraint
system:

Definition 3.1 (Store) A store S = g1 Ad2A...ANd, (with
r > 0) is a constraint in . When r = 0,5 is said to be the
empty store (i.e., S=T). When S |=al, S is said to be the
unsatisfiable store.

The operational semantics of PiICO will be defined in terms
of an equivalence relation, =p, on configurations describing
computation states and a one-step reduction relation, — de-
scribing transitions on these configurations. A configuration
is a tuple (P;S) consisting of a process P and a store S.

3.2 Structural Congruence and equivalence
on configurations

We identify first the binding operators in PiCO: The bind-
ing operator for names is (va)P which declares a new name
a in P. There are only two binding operators for variables:
(vz)P which binds zin P and (1 ... z,).P which declares for-

mal parameters z1,...,7, in P. So we can define free names
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fn(P), bound names bn(P), free variables fv(P), bound vari-
ables bn(P) of a process P in the usual way. The set of vari-
ables appearing in P, v(P), is fv(P) U bv(P) and similarly
the set of names appearing in P, n(P), is fn(P) U bn(P).

We define structural congruence for PiCO much in the same
way as is done for the w-calculus in [Mil91].

Definition 3.2 (Structural Congruence) Let siructural
congruence, =, be the smallest congruence relation over pro-
cesses satisfying the following axioms:

o Processes are identical if they only differ by a change of
bound variables or bound names (o — conversion ).

e (P/ =,|,0) is a symmeiric monoid, where P is the set of
processes.

o (NP/ =,+,0) is a symmetric monoid, where NP is the
set of normal processes.

o I M =1v M if M' is a permutation of M.

e xP=P | % P.

. (UGI)O = O, }(U.’E)O = 0O, (U(l)(Ub:)P =
(Ub)(ua)P, (vz)(vy)P = (vy)(vr)P, (va)(vz)P =
(vz)(va)P.

o Ifad fn(P) then (va)(P | Q)= P | (va)Q
o Ifz & fu(P) then (vz)(P | Q) = P | (vz)Q.
o [fd12ath and P =Q then 6.P =14.Q and ?6.P =74.Q

Definition 3.3 (P-equivalence relation) We will
say that (P1;S1) is P-equivalent to (P»;S:2), writlen
(P1;51) =p (P2; S2) , if Pr = P2, S1 [HaS2, fn(S1) = fn(S2)
and fv(S1) = fu(S2). =p is said to be the P-equivalence
relation on configurations.

The behavior of a process P is defined by transitions
from an initial configuration (P; T). A transition, {P;S) —
(P'; 8"y, means that {P;S) can be transformed into (P’; S’)
by a single computational step. For simplicity, we assume that
all variables and names are declared in the initial configura-
tion i.e., fo(P) = fn(P) = (. We define transitions on con-
figurations next.

3.3 Reduction relation

The reduction relation ,—, over configurations is the least
relation satisfying the rules appearing in Table 2:

COMM describes the result of the interaction between mes-
sage I al; : [J].Q and object I'o[l1 : (£1)Pr1,. .. lm : (a?,;)Pm]
The store is used to decide whether the object is indeed the
target of the message. Process P;{.J/z;} is obtained by re-
placing, in parallel, every free occurrence of variables from
z; by identifiers (i.e., values, names or variables) from J, re-
spectively. Notice that Q is activated whereas the remaining
normal processes, N1 and N3 are discarded.

The ASK and TELL rules describe the interaction between
constraint processes and the store. TELL gives the way of
adding information to the store. !¢.P adds the constraint ¢
to store S and then activates its continuation P. Such augmen-
tation of the store is the major mechanism in CCP languages
for a process to affect the behavior of other processes in the
system [Sar93]. For example, agent !(z = a).P informs mes-
sages of the form z «m that their target object is now located
at a.

Section Title

ASK gives the way of obtaining information from the store.
The rule says that P can be activated if the current store
S entails ¢, or discarded when S entails —¢. For instance,
process ?(z € {a,b}).z am is able to send m to z, just when
x is either object a or object b.

An ask process that cannot be reduced in the current store
S is said to be suspended by S. A process suspended by S
might be reduced in some augmentation of S. Ask processes
add the “blocking ask” mechanism in CC models to the syn-
chronization scheme of object calculi.

PAR says that reduction can occur underneath composi-
tion. DEC-V is the way of introducing new variables. From
here on S>> {I1,...,1,} will denote store SA(I1 = [1)A...A
(In = I,.). Intuitively, S > {z} (i.e. S Az = z) denotes the
addition of variable = to store S. Thus, any variable z ¢ fv(S)
added to the store by S > {z} will not be used in subsequent
declarations. If it happens that z € fv(S), we can rename
with a new variable z ¢ fv(S)U fu(P) by using the first item
of Definition 3.2 (i.e. (vz)P = (vz)P{z/z} if z & fu(P)).
DEC-N is defined in a similar way. Rule EQUIV simply says
that P-equivalent configurations have the same reductions.

In what follows, = will denote the reflexive and transitive
closure of —s. Finally, we will say that (P'; S’} is a derivative
of {P;S)iff {P;S) = (P";5").

Runtime failure. In the cc-model [Sar93], the invariant
property of the store is that it is satisfiable. This can be
made to hold in PiCO by defining transitions from (!¢.P;S)
just when S A ¢ is satisfiable and otherwise reducing to a
distinguished configuration called fail. Fail denotes a runtime
failure which is propagated thereafter in the usual way. For
simplicity, we do not consider runtime failures, but we can
add these rules orthogonally, as in [Tur95], without affecting
any of our results.

Potentiality of reduction. Whenever we augment the
store, we may increase the potentiality of reduction, that is,
the number of possible transitions from a configuration. The
following proposition states that any agent P’ obtained from
a configuration (P;S1) can be obtained from a configuration
(P;S2), Sz being an augmentation of Si.

Proposition 3.4 IfS: |=a S1 and{(P1;S1) — (P»; S1) then
(P1;S2) — (P2;83) and S |=a S1.

Proof: Straightforward from rules TELL, COMM and ASK:

1. Transitions using ASK or COMM: Since S> |=a S1, for any
constraint ¢ such that S1 |=a ¢ we have S |=a ¢. Thus,
any P, obtained by using ASK or COMM in (P;;S;) can
be obtained by using the same rule for (P;;S2). Neither
ASK nor COMM modify the store, therefore Sj |=a Sj.

2. Transitions using TELL: TELL modifies the store. In this
case P; =1¢.Q. For the transition (1¢.Q;S1) — (Q; 51 A &)
we have {16.Q;S2) — (Q; S2 A ¢). Thus, Sj =a 5.

3. Transitions using EQUIV: If (P1;5,) =p (Ps;Ss) and

(Ps; S3) —> (Ps;S3), where (P3;55) =p (P»;S1), then
from 3.3 we have S2 |=a S3 and Pi = Ps. The desired
result is obtained by applying inductively items 1,2,3,4,5.
4. Transitions using DEC-V or DEC-N: In this case P, =p
(vz)Q. Suppose first that £ ¢ fv(S2). If z € fv(S1) we
have S2 > {z} Ea S1 > {z}. If z € fv(S1), then using
3.2 (i.e. (vz)Q = (v2)Q{z/z} if z &€ fu(Q), z was replaced
in P) by a new variable, z, such that z ¢ fv(S;). For any z
we have Sz > {z} Ea S1 > {z}. Similarly, if z € fv(S2)
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SEaI=I

1<i<m _ |Jj=]#]

(Ni+ Tl {T1.Q | Na+ I'ollr(E0) Provs i) Pr)iS)—(Q | Pi{ 772 }:5)

TELL: (1¢.P;S) —s (P;S A ¢)

SEA—9®

7 (7P S)—(0;5)

(P;S)y—(P';8")

COMM:
: SEad
ASK: <?¢.P;S)—A—><P;s>
PAR:
DEC-V: z&fv(9), <PSS>>{I})——><P’;SI>

((va) P;S)—(P’;S")

Pl’;S’1>

1

(P2;S2)=p{P3;S4)

(Q | P;S)y—(Q | P';57)

agfn(9), <PSS>>{G})——><P’;5’>
((va) P;Sy— (P; 57y

DEC-N:

(P1;S1)—(P2;S2)

EQUIV: (P1381)=p(

Table 2.

it is easy to see that for any y, S> > {y} |=a S:1 and for
any z, S» > {z} Ea S1 > {z}. Thus, the desired result is
obtained by applying inductively items 1,2,3,4,5.

5. Transitions using PAR: PAR does not consider the store
(directly) as a premise, therefore the desired result is ob-
tained by applying inductively items 1,2,3,4,5.

1

In the following example we describe the behavior of a sim-
ple process.

Example 3.5 Process P1 sends a message to object r. The
contents of the message is the greater of two numbers x and y,
which is received by method Q1. Let A be the set of all valid

sentences in the rational numbers and ¥ the corresponding

symbols.
Py = (va)Pa; P2 = (vy)Ps; Pz = (vr)Pa; Po = (ro [l -
(2)Q &y : (Z)Qg] | 2(z > y)oraly : [z] | 72(z > y).raly :

[yl | Nz =y+1)).

Since the variable declarations are different, by DEC-V, the
derivatives of (P1; T) are the derivatives of (P2; T > {z}),
whose derivatives are the derivatives of (Po; T > {z,y}).
By DEC-N (r denotes a name) the derivalives of
(P2; T > {z,y}) are the derivatives of (Py; T > {z,y,r}), if
any. The Ask agents in Py are suspended by T > {z,y,r},
and there is no other agent sending along channel r, so we
can only reduce (Py; T > {z,y,r}) by applying TELL com-
bined with PAR and EQUIV. Thus,

(Pi; T > {z,y,r})

— {(ro[l: (2)Q1&l2 : (2)Q2] | Nz > y).r <ly : [z] |
Ta(z > y)ral [yl | 0 (T > {z,y,rHAz=y+1)

Now using ASK combined with PAR and EQUIV,
— {(roh ()&l : (2)Q2] | raly : [z] |
?a(z > y)ral [yl | 0 (T > {z,y,rPHAz=y+1)

We can eliminate the null process by using =p,

=p {(ro[l: (Z)Ql&ZQ : (Z)QQ] | raly i [z] |
(x> y)ral [Y])(T>{z,y,rHDAs=y+1)

Section Title
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(LS — (75

2772

Transition system

Using ASK combined with PAR,
— {(rol: (2)Q1&lz : (2)Q2] | raly : [2] | 0);
(T>{z,y,rHhAz=y+1)

Using =p we can rewrite the processes so they can have the

correct format for COMM, and then eliminate the null

process,

=p (((rofh : (2)Q1&l2 : (2)Q2] +0) | (raly : [z]+0));
(T {z,y,rHhAc=y+1)

Finally, applying COMM and =p,
— (Q{z/z} | 0 (T > {z,y,r ) Az =y +1)
=p (Qu{z/z}(T> {z,yrh Az =y+1)

Thus, {P1; T) — (Q1{z/z}; (T > {z,y,r}) Az =y +1).

Behavioral equivalence. In [VDR97] a reduction equiv-
alence relation for an extension of the w-calculus with con-
straints was defined. This relation equates configurations
whose agents can communicate on the same channels at each
transition. For each process identifier I and label I, this is
expressed by means of an observation predicate iil detect-
ing the possibility of performing a communication with the
external environment along identifier I and label ! in a store
S. Behavioral equivalence can be similarly defined for PiCO.
The details of this are out of the scope of this paper.

Names and Variables. In the w-calculus there is no dif-
ference between names and variables [Smo94b]. Names, con-
veniently used, provide a unique reference to concurrent ob-
Jjects which can be used for data encapsulation as in [Tur95].
Names and Variables in PiCO are different entities because
of the presence of constraints.

The  following  example illustrates  this  differ-
ence. Let P (vz)(vy)(?—(z y).Q) and
P (va)(vb)(?=(a = b).Q) and let A be the set of
sentences valid in the natural numbers. It is easy to see that
(Po; TY — {Q; T > {a,b}). However, since ?=(z = y).Q is
suspended by T > {z,y}, there is no reduction for (P;; T).
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4 Recursive Definitions

It is often convenient recursively.

. o d
Recursively-defined processes have the form D(z1,...,z5) a2y

P, where P may contain occurrences of D (perhaps with differ-
ent arguments), fv(P) C {z1,...,z,} and fn(P) = 0. When

no confusion arises we write D (without arguments) instead

of D(z1,...,75) “p

”Definition-making” and its applications are not primitives,
since they can easily be encoded by means of replication
[Mil91]. In some other calculi (e.g. Most versions of TyCO),
however, recursion is primitive [Vas94]. Keeping in mind that
recursion can be simulated with the standard syntax of PiCO,
we will extend the syntax with recursive process definitions

L d
| D(z1,. . )

,Yn).Q) and assume there is a transition rule:

to define processes

and their invocations, ( ie. P :=

P | D(yl,...
APPLY: <D(m1,...,xn) “p| D(yl,...,yn).Q;S> —

D(z1,...,%5) “p | P{yi, ..., yn/T1,...,Zn} | Q;S>

APPLY denotes the usual result of applying y1,...,yn to
definition D. Definition D remains in the derivatives and the
result of the invocation is obtained by replacing in P the
formal arguments by the actual parameters and by activing
its continuation Q. Symbol D is assumed to be included in .

5 Classes of Objects

In this section we show how classes and object attributes can
be encoded in PiCO by using recursive definitions and con-
straints. Attributes are represented in PiCO by variables con-
taining partial information given by tell operations. Much like
in ([Smo94b]) classes can be viewed as object generators giv-
ing initial conditions or class constraints over their attributes.
Class constraints are conditions which must be satisfied re-
gardless the attributes’ changes and thus define the funda-
mental properties of instances belonging to the class. From
this point of view Classes can be codified as:

< ClassName > (zo,21,...,%n) déf!qb[xl, ey Zn)mo > M

where < ClassName > denotes the name (or identifier)
for the class given in X, zo the object identifier (or self), and
., Ty the object attributes. The operation !@[z1, ..., Tx]
imposes on each object of the class a constraint ¢ over its
attributes. Methods in M can be arbitrarily defined. In or-
der to ensure persistence and mutability each method should
contain a recursive call to < ClassName >. Special methods
to read and update attributes should also be present. Thus
M should have the form:

T1,y..

[Updat€<ClassName> :(yh ey yn)
< ClassName > (zo, 1, ..., yn)&
read<ciassName> : (2)z drecetve : [T1...Ty].
< ClassName > (20, 21,...,7,)&
dispose<ciassName> : ()0&

]

An object updated by wusing the method
update«ciassName> Which receives new attributes. these will
be constrained by the initial condition of the Class. Us-
ing method read<ciassName> the object can report its cur-
rent state to a requester object. The latter should be able

can be
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to respond to the appropriate receive message. A method
dispose<ciassName> reduces to the null process thus termi-
nating the object’s existence.

Example 5.1 In this example the creation of a simple object
in PiCO is illustrated. A ”FEstrada” chord contains three in-
tervals (expressed in number of semitones between consecutive
notes) whose sum modulo 12 is equal to zero. To represent the
intervals of a chord we assume a constraint system over suit-
able finite domains of integers. Class E, of ”Fstrada” chords
18 defined as follows.

\ def
E(z,z1,12,23) =
((z1 + 22 + z3) mod 12 = 0).z > [ updater : (yn, Ye1, Ye2)
E(x,yn, Ye1,Yc2)&
readr :
E(r,z1,72,23)&
disposeg : ()0]

Where x1,z2,x3 denote the intervals between consecutive
notes in the chord. Any update of an object belonging to class
E must satisfy the class constraint ((z1+z2+23) mod 12 = 0)

An instance ¢ of class E is created and then sent a message
setting one of its intervals to 4 semitones. Another interval is
constrained to be bigger than one semitone.

P = E | (ve,zi,z2,23)( E(t,z1,22,23) | ¢ «
updateg : [z1,22,4] | Yz2>1))

Reduction gives:

(P; TY=(E | cvlupdateg : (y1,y2,y3) E(z,y1,9y2,y2)&
readg : (z)z dreceive : [z1, 32, z3].
E(z,z1,22,73)&
disposeg : ()0]
| c<updateg : [z1,22,4] | Yz2>1)
k)

(T > {c,z1,22,23}) A(z1 + 22 + z3) mod 12 = 0)
= (E | covlupdater : (y1,y2,y3)E(z,y1,y2,y3)&
readg : (z)z dreceive : [z1, 12, 4].

E(z,z1,22,4)&
disposeg : ()0]

(T > {c,z1,22,23}) Az1 + 22 + 23) mod 12 = 0A
(r1+224+4) mod 12=0Az2 > 1))

Chord ¢ has now one interval fixzed to value 4. Changing
this value again can only be done by "ignoring” the current
constraints (except the class constraint). This can be done in
this simple example by using new local variables, as follows:

Q = E | (ve,rr,22,33)( E(c, 21,23, 23)|c < updater
[z1,z3,4].(vy1, y2)(c Qupdater : [y1,ys,3])|N(z2 > 1))

5.1 Sub-classing

A very simple notion of sub-classing can be defined as pro-
viding extensions of a predefined class or (subclass). The ex-
tension involves new methods and new attributes. No method
overriding is considered. Subclasses may be defined as:

< SubClassName > (x0,7, ) déf!qb[f,“].( o> M |
< SuperClassName > (z,,T) )
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Where < SubClassName > represents some name in X
identifying the subclass, < SuperClassName > is the name
in % for the superclass, M represents the collection of new
methods and y represents the new attributes. The expres-
sion !¢[7, y] constraints new and old attributes. As before, M
should have special methods to read, update and destroy the
object. A subclass instance is represented as a composition
of several PiICO objects identified by the same name. One of
them represents the object containing the new methods and
attributes (M and g). Each one of the others contains the
methods of a class in the inheritance hierarchy. That is, an
instance z of a subclass of a class is represented by two objects
both identified by z, an instance of a subclass of this subclass
by three objects and so on. The collection of new methods M
should be defined as follows:

[update<subClassName> : (2, y').

To d dispose<5upercmsszvage>~i -

< SubClassName > (zo,z',y' )&
read<subClassName> : (2)z d recetve : [, ).

dispose < SuperClassName> : []-

< SubClassName > (3307557 g)&
dispose < subClassName> : ()dISPOSE< SuperClassName> : []

&.. ]

Method invocations in the subclass disposes of the object
in its superclass to preserve the right number of objects in the
representation of a subclass.

Example 5.2 We extend the previously defined class E to
define a subclass EF of ”Fstrada” chords. EF chords are re-
stricted to an octave and have one of the intervals equal to
a fifth (7 semitones). EF chords contain an additional at-
tribute, say x4, representing the pitch of the base note of the
chord. This pitch is constrained to a certain scale expressed
as a set of inlegers (say integer 60 corresponds to middle C).
Subclass EF is defined as:

def

EF($0,$1,$2,$3,$4:)
mawz (w1, v2, 23 = 7 Aws € {60,62,64,65,67}).
(zo b [player : (y)Q.disposeg : [|.EF(zo, 1, T2, v3,74)&
updategr : (Y1, Y2, Y3, y1).vo < disposeg : [].
EF(zo,y1,Y2,y3,y4)&
readgr : (2)z dreceive : [x1, T2, T3, x4].disposeg : [].
EF($0,$1,.Z‘2,$3,1‘4)&
(0]

| E(.’L‘o,fL‘l,l'Q,CL‘g)))

disposegr :

6 Using PiCO in real world problems: A
music problem

We discuss below a simple example which illustrates the kind
of musical structures that PiCO should be able to handle. The
idea is to control the evolution of two melodic voices. Each
voice evolves according to independent melodic properties,
but they must synchronize at given temporal points and they
must also satisfy a number of harmonic properties when their
notes sound at the same time.

The two melodic voices, Voice; and Voices, will start at
the same time and will be generated until a external condi-
tion is met. Notes in the two voices have three attributes:
pitch,duration and dynamics. Their pitch values should be
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in a set of allowed ambitus Amb, their durations must belong
to a given set, say, {1/2,1/4,1/8} (where 1/4 represents, say,
a quarter note). Notes must also satisfy the following four
conditions:

1. If n1 and ns are two consecutive notes in Voice; (z =
{1,2}) having pitches equal to z and y, respectively, then
'maz(z,y)—min(z, y) € Melody;, where Melody; is a given
set of integers.

2. Notes are divided into groups of duration equal to 1/2.
A group could be made to correspond to any meaningful
rhythmic division, for instance a beat or a measure. Each
group contains notes of both Voice; and Voices.

3. Notes starting a group are constrained differently. The first
note in each duration group has its dynamics equal to 127.
Others notes have its dynamics equal to 70.

4. Let n1 and n2 be notes from the same group in Voice;
and Voices respectively. If they sound at the same time
and their durations are both greater than 1/8 then the
absolute difference between their pitch values must be in a
certain interval set, HARMONSET1. In any other case,
the absolute difference between their pitches must be in

HARMONSET?.

The first issue is to define a suitable constraint system for
musical applications. finite domains (FD) systems ([CD96])
can handle most musical problems in the (traditional) har-
monic domain, while other aspects such as rhythm or timbre
would very likely need dense domains and a richer set of oper-
ations. For the purposes of the above problem, it is clear that
FD is adequate. To solve the above problem the constraint
system is thus defined over integer and rational arithmetic
over some suitable finite domain (for pitch, duration and the
like). Integers will be used as objects identifiers. For the sake
of simplicity expressions F such as 1+ 1, r1 — 22 and the like,
will denote a new variable, say z, where z = F. For instance,
message (¢ + 1)< : pitch[z1] is a shorthand for the process
(v2)(Wz=141) | za: pitch[z1])

Note is a persistent PiCO object having self as identi-
fier with attributes pitch,dur and dyn. For simplicity, the
notes of Voice; use positive integers as identifiers: 1 the
first one, 2 the second one and so on. Lower notes Voicez
use negative integers: -1,-2 and so on. Whenever a note is
created, its attributes are constrained by class constraint
(pitch € Ambitus A dur € {1/2,1/4,1/8}). It has methods
for reporting its attributes, others methods may be defined
for updating its attributes.

Note(self,pitch, dur, dyn) =

(pitch € Ambitus Adur € {1/2,1/4,1/8}).

sel f o [pitch : (p)!(p = pitch).Note(sel f, pitch, dur, dyn)&
duration : (d)!(d = dur).Note(sel f, pitch, dur, dyn)&
dynamics : (d)!(d = dyn).Note(sel f, pitch, dur, dyn)&

Group is defined similarly. Group objects use positive in-
tegers as identifiers: 0 the first one, 1 the second one, and
so on. A group object has four attributes: fni: its first note
in Voicer, In;: its last note in Voicer, fna: its first note in
Voices, Ins: its last note in Voicea. So, fni, fni+1,...,ln1 —
1,in; and fna, fna —1,...,Inz + 1,Inz are the notes of the
group. Class constraint (In; > fni > 0Alne < fny < 0)
specifies allowed values for its attributes.
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Group(self, fni,Iny, fna,inz) =

I(lny > fny1 >0AIne < fny < 0).sel fo

[firstV1 : (n)l(n = fnl).Group(self, fni,iny, fns,ln2)&
lastVy : (n)!(n = In1).Group(self, fni,ln1, fna,lnz)&
firstVa : (n)Y(n = fn2).Group(self, fni,lni, fns,In2)&
lastVs : (n)!(n = In2).Group(self, fni,ln1, fns,ln2)& .. ]

GenerateGroup(k, i, j,r1,r2) generates group k given re-
maining durations r; and ry for voice; and wvoices, respec-
tively. Here ¢ and j represent notes which are being generated
in Voice; and Voices, respectively. r; and ro are the remain-
ing allotted durations in the group for each voice. So, ¢ and j
will start at 1/2 —ry and 1/2 — ro (w.r.t group), respectively.
Initially, r1 and r2 are both set to 1/2.

The first ask operation in process GenerateGroup says “if
both r; and rz are equal to O then the current 1 —1 and j+1
are the last notes for the group in each voice. The second ask
operation creates a new group k and sets the current : and j
as its first notes. The remaining ask operations generate notes
satisfying the appropriate constraints (to the right of each tell
operation, there is a comment specifying the corresponding
condition that it implements, e.g. “; cond.3” corresponds to
the third condition described above).

Thus, given note 1 with duration z, and starting at 1/2—r;
and note j starting at 1/2—ry (w.r.t the group’s starting time)
then 72 will sound at the same time as 7 whenever r; —z3 < rs
and rqy > r2 > 0.

GenerateGroup(k, 1, j,r1,712) «f
Nr1i =r2 =0)( ka:lastVi[i — 1] | k< :lastVa[j+1])
| 2(r1 = r2 = 1/2).(Vz,y)Group(k, i, z, 5,y) |
| ?2(r1 > r2 > 0).(ve1, 22,23, 21, 22, 23)
( Note(1,z1,x2, T3)
| H(zz <r1); cond. 2
| ?2(r1 = 1/2).!zs = 127 ; cond. 3
| ?(r1 < 1/2).!zs = 70 ; cond. 3
| ( 4+ 1)< : pitch[z1] ;next note’s pitch
| Habs(z1 — z1) € MELODY1) ; cond. 1
| 79 : duration|z2] ; Voicez note starting at 1/2 — ra
| 7<: pitch[zs]
| 2(r1 —z2 <ra Az > 1/16 A zp > 1/8).
Wabs(z1 — z3) € HARMONSET1) ;cond. 4
| 7=(r1 —22) <r2 Az > 1/16 A zp > 1/8).
W(abs(z1 — z3) € HARMONSET?2) ;cond.4
| GenerateGroup(k,t+1,j,r1 — z2,712) )
| 200 < r1 < r2).(vE1, 22,23, 21, 22, 23)
( Note(j,z1,z2,3)
| {(z2 < r2); cond. 2
(r2 =1/2).1z53 =127 ; cond. 3
(r2 < 1/2).lz3 =70 ; cond. 3
(7 — 1)« : pitch[z] jnext note’s pitch
Y(abs(z1 —z) € MELODY?2) ; cond. 1
| 14 : duration[z2] ; Voice; note starting at 1/2 — rq
| 14 : pitch[zs]
| 2(re —z2) <ri Aza > 1/8 Az > 1/8).
Wabs(z1 — z3) € HARMONSET1) ;cond. 4
| 7=(re —z2 <ri Aza >1/8A 2z > 1/8).
W(abs(z1 — z3) € HARMONSET?2) ;cond. 4
| GenerateGroup(k,1,5 —1,r1,r2 — x2) )

?
?

GenerateVoices(k, 1, j) continuously generates groups until
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an external condition is met. GenerateVoices(0,1, —1) is the
initial call for starting the whole program.
. . . def
GenerateVoices(k,t,j) =
(vz) ext — cond< : status|z].
?z =" continue”.( GenerateGroup(k, i, 3,1/2,1/2)
| (vi, 7)( k< :last — v1[7] | ka: last — v2[y] |
Generatevoices(k +1,i+ 1,7 — 1))
| GenerateVoices(0,1, —1)

7 Cordial: A visual language for PiCO

Our research project includes the development of visual pro-
gramming tools for musical composition. Cordial ([LQT97])
is a visual programming language integrating object oriented
and constraint programming intended for musical applica-
tions. The semantics of Cordial has been defined in terms of
PiCO. A first version of a visual editor for Cordial has been
implemented in Java. A translator to (the abstract machine
of) PiCO is currently under way. In this section we illustrate
briefly some constructs of Cordial together with their deno-
tation in PiCO.

Cordial is an iconic language in the spirit of [AA96]. The
basic notion is that of a patch. A patch is a layout of forms
(icons or other) on the screen. Links between forms in a patch
establish control dependencies in a computation. Data types
and structures are also defined visually. A visual class defi-
nition in Cordial, for example, has three main sections (see
figure 1): attributes, methods and constraints. A method def-
inition (see figure 2), is a collection of messages (abstracted
away in figure 2 as a cloud), conditionals and formal argu-
ments (the circles in figure 2). Links connecting two elements
define relations. The translation into PiCO process of the class
definition in figure 1 can be (roughly) defined by a function
T as:

Classl (self,attrl, attr2) =
Vr1 A r2 [attrl,atir2].self o M

where M =
T(met3)] .

Figures 3 and 4 show a message and a conditional, respec-
tively. These can be roughly translated by T' into processes
a < mety : [b] and 7g1.T(b1)|?g2.T(b2)|...|?gn.T(br), respec-
tively.

[mety : T(met2)&mety : T(met2)&met;

8 Conclusions

We defined PiCO, an orthogonal extension of TyCO to han-
dle constraints. We did this by adding variables and allowing
agents to interact through constraints in a global store. PiCO
is parameterized in a constraint system and thus independent
of a particular domain of application, but has been thought
to provide a basis for music composition tools.

We defined the operational semantics by an equivalence re-
lation and a reduction relation on configurations of an agent
and a store.

We described examples showing the generalized mechanism
of synchronization of PiCO and the transparent interaction
of constraints and communicating processes. They also show
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the possibility to define mutable data and persistent objects
in PiCO. Finally we show how classes and subclasses with
attributes containing partial and mutable information can be
easily codified in the calculus. We illustrated the implementa-

tion of a non trivial musical example in the calculus. Finally,
we mentioned the relationship between PiCO and a higher

level visual language for music composition.
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Figure 1. Class definition in Cordial
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Figure 2. Method definition in Cordial
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Figure 3. Message definition in Cordial
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Figure 4. Conditional definition in Cordial
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