\setlength{\unitlength}{0.01cm}
\nop{
)
}
\hspace{1cm}
\begin{tabular}[t]{|p{ 11.2cm}|} \hline
\multicolumn{1}{|c|}{ \it remote goal evalueation } \\ \hline \hline
\begin{picture}(1120,429)(0,0)
\put(280,363){\makebox(0,0){ } }
\put(784,363){\makebox(0,0){ } }
\put(784,231){\makebox(0,0)[l]{ } }
\put(560,363){ \makebox(0,0){ } }
\put(280,231){\makebox(0,0)[r]{ } }
\put(280,99){\makebox(0,0)[r]{ } }
\put(560,99){\makebox(0,0)[l]{ } }
\put(560,198){\makebox(0,0)[l]{ G } }
\put(280,99){\circle{10}}
\put(280,231){\circle{10}}
\put(560,99){\circle{10}}
\put(560,198){\circle*{10}}
\put(784,231){\circle{10}}
\put(784,99){\circle{10}}
\put(280, 241){\line(0,6){ 66}}
\put(280, 89){\line(0,-6){33}}
\put(784, 241){\line(0,6){ 66}}
\put(784, 89){\line(0,-6){ 66}}
\multiput(560, 109)(0, 20){ 4}{\line(0,6){10}}
\multiput( 290,99)(10,0){ 28}{\line(6,0){5}}
\put( 300,99){\vector(-4,0){ 20}}
\multiput( 290,231)(10,0){ 50}{\line(6,0){5}}
\end{picture}
\\ \hline
\nop{
\small
We assume that O is bound to , the constructor process
for an object. Process
is a variant of in that they refer to the same object.
In accepting the call a goal is inserted,
with Q bound to .
The substitution are the answer substitutions
computed in evaluating .
\\ \hline
}
\end{tabular}