\setlength{\unitlength}{0.01cm} \nop{ ) } \hspace{1cm} \begin{tabular}[t]{|p{ 11.2cm}|} \hline \multicolumn{1}{|c|}{ \it remote goal evalueation } \\ \hline \hline \begin{picture}(1120,429)(0,0) \put(280,363){\makebox(0,0){ %a } } \put(784,363){\makebox(0,0){ %b } } \put(784,231){\makebox(0,0)[l]{ accept(any) } } \put(560,363){ \makebox(0,0){ %b' } } \put(280,231){\makebox(0,0)[r]{ O!G } } \put(280,99){\makebox(0,0)[r]{ ? } } \put(560,99){\makebox(0,0)[l]{ %h_1,%h_2,... } } \put(560,198){\makebox(0,0)[l]{ G } } \put(280,99){\circle{10}} \put(280,231){\circle{10}} \put(560,99){\circle{10}} \put(560,198){\circle*{10}} \put(784,231){\circle{10}} \put(784,99){\circle{10}} \put(280, 241){\line(0,6){ 66}} \put(280, 89){\line(0,-6){33}} \put(784, 241){\line(0,6){ 66}} \put(784, 89){\line(0,-6){ 66}} \multiput(560, 109)(0, 20){ 4}{\line(0,6){10}} \multiput( 290,99)(10,0){ 28}{\line(6,0){5}} \put( 300,99){\vector(-4,0){ 20}} \multiput( 290,231)(10,0){ 50}{\line(6,0){5}} \end{picture} \\ \hline \nop{ \small We assume that O is bound to %b, the constructor process for an object. Process %b' is a variant of %b in that they refer to the same object. In accepting the call a goal ? is inserted, with Q bound to %b'. The substitution %h_1,%h_2,... are the answer substitutions computed in evaluating m(t). \\ \hline } \end{tabular}