A constraint-based melody harmonizer

Rafael Ramirez! and Julio Peralta?

! National University of Singapore
Information Systems and Computer Science Department
Lower Kent Ridge Road, Singapore 119260
rafael@iscs.nus.sg
2 University of Bristol, Computer Science Department
MVB, Woodland Road, Bristol, UK
jperalta@cs.bris.ac.uk

Abstract. The aim of this work is to automatically generate a sequence
of chords that satisfactorily harmonize a given melody. We concentrate in
a very special task: the automatic harmonization of single-key melodies
using triads, 1.e. three-note chords consisting of any note of the scale
with the third above it and the fifth above it. The algorithm is com-
posed by two steps: in the first step, a whole range of chord sequences
is generated, each of which is a ’legal’ harmonization of the melody. The
second step refines the solution set by constraining the chord sequences
to follow standard chord patterns. It turns out that the task of intel-
ligent harmonization of musical melodies can be elegantly described as
a constraint satisfaction problem which can be efficiently implemented
with traditional constraint logic programming languages.

1 Introduction

Musicians are very often skeptical about computer-generated music arguing that
musical activity is, before all, a creative process and as such, it is extremely dif-
ficult (if at all possible) to be rationalized. We share this point of view and thus,
we concentrate in a very special task: the automatic generation of a sequence of
chords that satisfactorily harmonize the melody. In particular, we are interested
in the automatic harmonization of single-key melodies using triads, i.e. three-
note chords consisting of any note of the scale with the third above it and the
fifth above it. The algorithm is composed of two steps: in the first step, a whole
range of chord sequences is generated, each of which is a ’legal’ harmonization
of the melody. The second step refines the solution set by constraining the chord
sequences to follow standard chord patterns.

It turns out that the the task of intelligent harmonization of music melodies
can be elegantly described as a constraint satisfaction problem which can be
efficiently solved with traditional constraint logic programming systems.

The rest of this paper is organized as follows: Section 2 describes related work.
Section 3 describes our system. Section 4 identifies the task of harmonizing a
musical melody as an instance of the constraint satisfaction problem. Section 5

introduces constraint programming as a framework for the implementation of
our system and finally, Section 6 reports on the current status of the system and
mention some areas of future research.

2 Related work

The relationship between computers and music goes back as far as the 1950’s
when sound synthesis programs were being developed at AT&T [5]. Until the
mid-eighties, much of the attention was focused on timbres rather than the struc-
ture of music (e.g. [6], [4], [8]). Today, with increasingly more powerful computers,
samplers and sample-based synthesizers, more attention can be placed on the
music structure. There are many examples of systems producing ‘correct’ music,
most of them based on rules or databases containing style descriptions. An inter-
esting system is described in [3]. The system automatically derives a four voice
score from a given melody, i.e. it composes the bass and middle voices, in an
object-oriented framework. The composition task is represented as a constraint
system. The algorithm consists in two steps: in the first one, constraints which
represent relations of intervals between notes of a single voice are applied, while
the second step states constraints which represent relations between notes of
the four voices in a single chord. The expert system CHORAL [1] is a system
for harmonizing chorals in the style of J.S. Bach. The input is a basic soprano
melody of a choral. The system generates a four voice score according to the har-
monic rules of the 17th and 18th century. The system uses a rule-based heuristic
search with backtracking. The knowledge base contains 350 rules, which either
represent conditions that must be strictly obeyed, or which represent conditions
that do not have to be strictly satisfied (and support composition decisions).
A simulation of improvisation in Jazz is described in [2]. The system proposed
takes as input a chord progression to which a melody is automatically impro-
vised. Initially, the algorithm generates a certain contour which represents the
main shape of the melody and is derived by a regular grammar. In a second
stage, the system chooses the concrete pitches using constraints.

3 System overview

The system described here is an algorithmic harmonizer system that attempts
to model the creativity involved in harmonizing and arranging a piece of popular
music. The system was designed to reproduce very closely the creative process
that the authors use when harmonizing melodies in the guitar, although the
process is independent of the instrument in which the harmonization is based.

The process of harmonization is difficult to formalise and the way a given
melody is harmonized varies from person to person according to his/her taste and
background. Thus, the system here presented makes no attempts at providing

the user with a definite answer. It should be thought of as a tool which produces
a variety of ’correct’” harmonizations that the user can choose from. We will
assume that the melodies provided as input for the system are in the key of
C'. Note that this assumption does not make the system less general since all
melodies are isomorphic to a melody in the key of C'.

The system, represented in Figure 1, is composed of two parts: the chord
sequence generator and the filter.

Melody (melody’s mesure, sequence
of notes and their durations)

Chord
Sequence

Generator

All possible "legal"
harmonizations

Solution harmoni zations

Fig. 1. System overview

The chord sequence generator produces all possible chord sequences which
are not in conflict with the notes of the melody. This is, for each bar, the system
generates chords which harmonize the main notes in the melody. At this stage,
the criteria used for generating such chords consists of identifying the main notes
in the melody and for each note, producing the triads which contain the note.

For instance, given the following melody fragment

the chord generator produces chords C', Am and F for the first note and chords
Em, C', Am for the second note. In general, given a melody, the chord generator
produces a sequence of sets of the form

{X17 Y17 Zl}a {X27 Y27 Z‘Z}, . '{XTMYTL’ ZTL}
which represents a set of 3" possible harmonizations. X;,Y; and 7; (1 <i < n)

are triads harmonizing the i-th main note in the melody.

Once this set of possible harmonizations has been generated, the filter pro-
gressively refines the solution set by constraining the chord sequences to follow
standard chord patterns. This is done by representing the solution chord for each
note in the melody by a variable and imposing constraints on the relative values
of these variables. The constraints express popular music chord patterns such as

IIV,V, I

where I, IV and V denote the first, fourth and fifth grades of the scale, respec-
tively, e.g. in the key of C', they denote C', F and G chords.

Erample. Consider the following melody:

|
[
Z] @ L

AJﬂ%ﬂ%ﬁdJ.fi -

Fig. 2. Sample melody

Abstracting the relative height of the notes in the melody, we encode every note

as a pair (Nj, D;) where each N; represents the note, e.g. C, F#, and D; is the
duration associated with ;. The resulting sequence is

(G,2),(E,15),(C,05),(D,2),(E,1),(F,0.5),(A,0.5),

(G,2),(E,15),(C,05),(D,2),(E,1),(F,0.5),(A,0.5),

(G,2),(E,1.5),(C,05),(D,2),(E,1),(E,1),(C,4)

Further processing of the melody identifies the sequence of variables associ-
ated with the main notes as

1 1 1 2 2 3 2 4 3 5 3 6 1
VG;VE:VD:VEaVGaVE:VDaVEaVG’VE’VDﬂvE’VC

Domains for the above variables, regardless of their subscripts, are

Ve = {C, Em, G}
Ve = {Am,C, Em}
Vb = {G, Bdis, Dm}
Ve = {F, Am, C)

Given the chord pattern {I,IV,I11,111,1} and the use of substitution chords
we obtain two possible harmonizations for the melody as shown in Figure 3.

C Am Dm G C Am Dm G C Am Dm G C
CcC Am Dm Em 1 C Am Dm Em CcC Am Dm Em (o}
dy e Ay
® I'[| @ . @ '[| ® @
7 @ & ®

Fig. 3. Harmonizations

4 Harmonizing as an instance of the constraint
satisfaction problem

The theory of constraint satisfaction problem [7] is an attractive framework in
which to formalize the harmonizing task described above. In its general form, a
constraint satisfaction problem consists of a finite set of n variables

S={W,...V,}

where each variable V; (1 < ¢ < n) has a domain D; = {V;1,...Vi} associated
with it, and consisting of k values. Related to these variables is a set of constraints
C = {C4,...Cy} each specified over a subset of the n variables in S. These
constraints limit the possible combinations of values that the variables in that
subset can take. To solve the problem it is necessary to find an assignment of
values to the variables which satisfies all the constraints simultaneously.

A large number of problems in artificial intelligence, operations research and
symbolic logic can be viewed as special cases of the general constraint satisfaction
problem. Examples of its use can be found in machine vision, belief maintenance,
scheduling, planning, database consistency checking, temporal reasoning, etc.
The task of harmonizing a musical melody can be seen as an instance of the
constraint satisfaction problem:

— There are n variables, where n is the number of main notes identified in the
melody.

— The domain of these variables is given by the sequence of sets of chords
produced by the chord generator as described in the previous section.

— The standard chord patterns can be formulated as constraints ruling two or
more variables.

Operations research approaches are not suitable for accounting the variety
of constraints that our problem involves. Thus, we use constraint programming
which we briefly describe in the next section.

5 Constraint programming

The aim in constraint programming is to progressively restrict the set of possible
values for a set of variables using some given constraints until finally, a unique
value has been found for each variable.

The set of possible values for each variable is kept in the constraint store. For
instance, the initial constraint restricting the possible chords for the note C'in the
melody is specified by placing the constraint 77 € {C, Am, F'} in the constraint
store, where T} is the variable whose final value is the triad harmonizing the

Propagator Propagator Propagator

Constraint store

Fig. 4. Propagators and constraint store

initial part of the melody. More complex constraints are expressed by propagators
that observe the constraint store and modify it if possible (see Figure 4).

A propagator inspects the constraint store with respect to a fixed set of
variables. When more information about a particular variable is available in
the store it may add further information on other variables to the store, i.e. 1t
modifies the store by adding more constraints to it. For example, suppose T;,
Tiv1, Tit2 and T;4s are four variables representing four consecutive chords in
the harmonization which are constrained to {C, Em}, {Am, F, Dm},{G, Em}
and {C, Am, F'} respectively, and we have a unique propagator implementing
the common chord sequence C, F,G,C. If T; is further constrained to {C}, the
propagator will reduce the domains of T; 41, Ti42 and T;43 to {F},{G} and {C},
respectively.

Propagators remain active, waiting for more information to be added to the
store. A propagator only ceases to exist when i1t becomes clear that it will never
modify the store again. Propagators are viewed as concurrent entities that ob-
serve the constraint store and modify it whenever possible.

Constraint propagation typically does not suffice to determine the values for
all the variables of the constraint propagation problem. Thus, after exhaustive
propagation, a variable is speculatively constrained to one of its remaining val-
ues. This decision typically enables some propagators to further constrain other
variables. In this way, the search space is continuously pruned while it is being
explored.

6 Current status

We have a prototype implementation of the system described in this paper, which
takes a melody input in the form of a list of pairs [(N1, D1), (Na, D2) ... (Ng, Dg)]

where each N; (1 < i < k) represents a note, e.g. C', D, F#, and D; is the dura-
tion associated with the note N; for all i (1 < i < k). The system allows the user
to visualize the search tree as it is searched to find the harmonization solutions.
The user can interactively listen to a solution by clicking on the solution tree
nodes.

Further work includes the implementation of a good user interface for the
input of the melodies to the system and the generation of MIDI output. An
important research direction is to consider more complex chords with more than
three notes.

References

1. Ebcioglu, K. 1992. An ezpert system for harmonizing chorales in the style of J.S.
Bach. In Balaban, M. et al, editors, Understanding Music with Al: Perspectives on
Music Cognition, The AAAI Press, pp. 3-28. The MIT Press, Cambridge, Menlo
Park, London.

2. Johnson-Laird, P. 1991. Jazz improvisation: a theory at the computation level. In
Howell, P. et al editors, Representing Musical Structure, pp. 291-325. Academic
Press, London.

3. Pachet, F. and Roy, P. 1995. Mizing constraints and objects: a case study in auto-
matic harmonization. In Proceedings of TOOLS Europe, Versailles.

4. Risset, J.C. 1985. Computer music experiments 1964-.... Computer Music Journal,
9(1).

5. Roads, C. 1989. An interview with Max Mathews. In Roads, C., editors, The Music
Machine. MIT Press, Cambridge MA.

6. Truax, B. 1982. Timbral construction in Arras as a stochastic process. Computer
Music Journal, 6(3).

7. Tsang, E. 1993. Foundations of constraint satisfaction. Computation in Cognitive
Science. academic Press, San Diego CA.

8. Vaggione, A. 1982. The making of Octuor. Computer Music Journal, 8(2).

This article was processed using the I#*TEX macro package with LLNCS style

