MidiSpace: a Temporal Constraint-Based Music
Spatializer

FrancoisPachet, Olivier Delerue
SONY CSL Paris, 6, ruamyot, 75005 Paris, France
Email: pachetflelerue}@sl.sony.fr

Abstract:

We ae interested in developing multimedia techndogy for enriching the listening
experience of average listeners. One man issue we focus on is the design and
construction d software systems in which users interad with music in various ways
while maintaining as much as possble the semantics of the origina music. In this
context, we develop areseach adivity concerning music spatiali ztion. We propose a
system cdled MidiSpace in which users may listen to music while @ntrollingin red
time the locdization and spatialization d soundsources, througha simple interface
We then introduce the problem of mixing consistency, and propase asolution based on
a nstraint propagation mechanism. The proposed environment contains both an
authoring mode, in which sound engineas or compaosers may spedfy spatializaion
constraints to be satisfied, and a listening mode in which listeners can modify
spatiai zaion settings under the supervision d a wnstraint solver that ensures the
spatidizaion aways sisfies the wnstraints. We describe the achitedure of the
system and report on experiments done so far.

1. ActiveListening

We believe that listening environments of the future can be grealy enhanced by
integrating relevant models of musica perception into musicd listening devices,
provided we can develop appropriate software techndogy to exploit them. Thisis the
basis of the reseach condiwcted on “Active listening’ a Sony Computer Science
Laboratory, Paris. Active Listening refers to the ideathat listeners can be given some
degree of control on the music they listen to, that give the posshility of propcsing
different musicd perceptions on a piece of music, by oppaition to traditiona
listening, in which the musicd mediais played passvely by some neutral device The
objedive is bath to increase the musicd comfort of listeners, and, when passble, to
provide listeners with smoather paths to new music (music they do nd know, or do
not like). These antrol parameters crede implicitly control spaces in which musica
pieces can belistened to in various ways. Active listeningisthus related to the nation
of Open Formin compasition (Eckel, 1997 but differs by two aspeds: 1) we seek to
creae listening environments for existing music repertoires, rather than creding
environments for composition a free musicd exploration (such as PatchWork
(Laurson & Duthen, 1989, OpenMusic (Assayag, 1997, or CommonMusic (Taube,
1991), and 2 we am at creding environments in which the variations aways

preserve the origina semantics of the music, at least when this smantics can be
defined precisely.

The first parameter which comes to mind when thinking abou user control on music
isthe spatiali zation d soundsources. In this paper we study the implicaions of giving
users the posshility to change dynamicdly the mixing d soundsources. We will first
review previous approacdhes in computer-controll ed sound spatiali zation, and popose
a basic environment for controlling music spatialization, cdled MidiSpace In sedion
4, we exhibit knowledge that can be used to define asemantic on soundspatializaion,
and we propcse to use nstraint propagation algorithms to represent faithfully a
substantial part of this knowledge. After a review of basic gpproades in constraint
propagation for multimedia systems, we describe our algorithm, which handles cycles,
non linea functional constraints, and inequalities. Sedion 5 describes the overall
design and implementation of the resulting system.

2. Music Spatialization

Music spatiaizaion hes long keen an intensive objed of study in computer music
reseach. Most of the work so far has concentrated in bulding software systems that
simulate aoustic environments for existing soundsignals. These works are based on
results in psychoamustics that al ow to model the perception d soundsources by the
human hea using a limited number of perceptive parameters (Chowning, 197).
These models have led to tedhniques allowing to reaeae impresson d sound
locdizaion wing a limited number of loudspedkers. These techniques typicdly
exploit difference of amplitude in soundchannels, delays between sound channels to
acoun for interaural distances, and soundfiltering techniques such as reverberation
to recreate impressions of distance.

For instance, The Spatialisateur IRCAM (Jot & Warusfel, 1995 is a virtual amustic
processor that allows to define the soundscene & a set of perceptive fadors uch as
azamuth, elevation and aientation angles of sound sources relatively to the listener.
This procesor can adapt itself to any sound reproduction configuration, such as
headphores, pairs of loudspedkers, or colledions of loudspe&ker. Other commercial
systems with similar feaures have recently been introduced on the market, such as
Roland RSS, the Spatializer (Spatializer Audio Labs) which allows to produce astereo
3D signal from an 8tradk inpu signal controlled by joysticks, or Q-Soundlabs's Q-
Sound, which bulds extended stereophonc image using similar techniques. This
tendency to propose integrated techndogy to produce 3D soundis further refleded,
for instance, by Microsoft’s DirectX APl now integrating 3D audio.

These sound spatidizaion tedhniques and systems are mostly used for building
various virtual redity environments, such as the Cave or CyberSage (Dai et a 97),
(Eckel, 97). Recently, sound spatializaion hes also been included in limited ways in
various 3D environments sich as Community Place's implementation d VRML (Lea
et al., 1996), or ET++Ackermann, 1996).

Based onthese works, we ae interested in exploiting spatialization cgpabiliti es for
building richer listening environments. A main pant of concern is to maintain some
sort of consistency of musicd pieces, while dlowing the user to navigate fredy in a

control space We will first describe our system MidiSpace which predsely alows
user to control in red time spatializaion d soundsources, withou any restriction. In
sedion 4, we will show how to add some semantics to limit the range of user adions
in a meaningful way.

3. TheBasic MidiSpace System

MidiSpaceis a software system that embodes our ideas in adive listening and user
controlled music spatialization.

3.1 Overview

MidiSpaceis ared time player of Midi files which all ows usersto control in red time
the locdizaion d soundsources througha 2D interface(extensions to audio and 3D
are discus=d in 6). MidiSpacetakes as input arbitrary Midi files (IMA, 1983. The
basic ideain MidiSpaceis to represent graphicaly soundsources in an editor, as well
as an avatar that represents the listener itself. In this editor, the user may either move
its avatar around, @ move the instruments themselves. The relative position d sound
sources and the listener’s avatar determine the overall mixing o the music, acording
to simple geometricd rules ill ustrated in Figure 1. The 2D interfaceof MidiSpaceis
represented in Figure 2. Additional fedures such as muting sources are provided bu
not discussed here. Thered time mixing d soundsourcesisredized by sending Midi
volume and panoramic messages. More detail s on the implementation are given in
sectionb.

sound source

\ot P
li sténer’ S
avatar

Figure 1. Volume of sound_source = f(distance(graphical-objed, listener_avatar)). f is a function mappng
distance to Midi volume (from 0 to 127. Stereo pasition d sound source i = g(ande(graphical_Objed,
listener_avatar)), where ande is computed relatively to the vetical segment crossng the listener’s avatar, and g
is a function mapping angles to Midi panoramic positions (0 to 127).

It is important to understand here the role of Midi in this reseach. On the one hand,
there ae stronglimitations of using Midi for spatialization per se. In particular, using
Midi panoramic and vdume ntrol changes messages for spatializing sounds does
nat allow to read the same level of redism than when using aher techniques (delays
between channels, digital signal processng techniques, etc.), since we exploit only
difference in amplitude in sound channels to reaede spatializaion. However, this
limitation is not important for two reasons : 1) this Midi-based technique still alows

to achieve areasonable impression of sound spatialization which is enough to validate
our ideas, and 2) more sophisticated techniques for spatialization can be added in
MidiSpace, independently of its architecture (see section 6 about the extension to
audio files).

(=5 Applet Viewer: midiSpacel.Editor2D.class

M DESReE 1

B EE &=
-*

Authoring mode switch

Listener’s avatar

File :C:\MUSIC\Midifiles\ Jazz\triojazz.mus

Figure 2. The 2D Interface of MidiSpace. Here, a tune by Bill Evans (Jazztrio) is being performed.

3.2 The Temporal Aspect of MidiSpace Interaction

3.2.1 Annotations and Representation of Content

The neal for representing and exploiting representation d content in multimedia
systems is now widely adknowledged. The Mpeg7 pojed for instance ams at
standardizing content representation d multimedia documents for future multimedia
applicaions. Other standards in use or in progress are more dedicaed to musicd
information, such as SMDL or HyTime. However, these formats are not primarily
designed for real time applications.

In MidiSpace we developed a simple format for representing annatations on musicd
pieces, that can be interpreted in red time to influence the spatiali zation. Examples of
annaations useful for spatializaion are : the structure of the musicd piece (how a
piece is divided into various sgments such as introduction, chorus, coda, etc.),
harmonic information (e.g. the chord sequence aociated with the music), analyticd
information (e.g. the underlying keys or tondlities), etc. Our format is based on a
time-tagged attribute/value representation. The time information is expressed in
musicd beds, andis therefore independent of the tempo. For instance, the structure of
the musical piece illustrated Figure2 looks as follows:

[structure]

start=1.000 dur=8 type=Introduction instr=piano
start=9.000 dur=32 type=Exposition instr=piano
start=41.000 dur=32 type=Exposition instr=piano
start=73.000 dur=64 type=Chorusinstr=piano

start=137.000 dur=32 type=Expositiorinstr=piano
start=169.000 dur=32 type=Expositiorinstr=piano
start=201.000 dur=8 type=Codainstr=piano ...

Figure 3. Structure of a musical piece. Start time audations are expressed in musical beats.

Similarly, the harmonic information is represented as a chord sequence, and is
Illustrated in Figure 4. Chords are represented using a format derived from the chord
format of SMDL (SMDL, 1995; Sloan, 1993), and adapted for tonal popular music
(Jazz, rock, pop) tunes. Chord sequences are divided into parts (such as A, B, C), and
the overall structure of the chord sequence is described in terms of these parts (e.g.
AABA). This harmonic information is typically used for analytical process, such as
harmonic analysis (Pachet, 1998). In our context, this information can also be used to
emphasi ze particular musical segments, e.g. for pedagogical purposes.

[chordSequence]

parts = A, B

structure = AABA

begin part A

start=1.000 dur=4 chord = Bb maj7
start=5.000 dur=4 chord =Eb maj7
start=9.000 dur=4 chord =D min 7
start=13.000 dur=4 chord =G 7
start=17.000 dur=4 chord = C min
start=21.000 dur=4 chord =G 7
end part A

begin part B

start=1.000 dur=4 chord = C min
start=5.000 dur=4 chord =F 7
start=9.000 dur=4 chord = C min 7

Figure4. A Chord sequence annotation

3.2.2 Authoring Mode

The existence of annotations makes it necessary to differentiate between two modesin
MidiSpace: an authoring mode, in which the user may create annotations, and a
listening mode, in which the annotation are used for spatialization. The switching
between these two modes is triggered by a simple icon (see Figure 2). The only
difference between the two modes is a facility to record, while playing, the user
actions which generate annotations files. The user actions are analyzed in rea time,
and produce annotations in a format similar to the one described in the preceding
sections. The recorded information is movements of sound sources, as illustrated in
Figure 5. A specific editor of temporal structures (not represented here) allows to edit

manually the information once recorded.
[movements]
startBeat=7.692 duration=0nstr=bass x=127 y=329
startBeat=7.698 duration=(nstr=bass x=127 y=329

startBeat=7.881 duration=(nstr=bass x=127 y=329
startBeat=8.067 duration=nstr=piano x=127 y=329
startBeat=8.214 duration=nstr=piano x=127 y=329
startBeat=8.463 duration=nstr=piano x=127 y=329
startBeat=8.631 duration=nstr=piano x=127 y=329
startBeat=9.36 duration=0nstr=bass x=127 y=329
startBeat=9.531 duration=@nstr=bass x=127 y=329...

Figure 5. Temporal information representing movements of musical sources are represented as annotations.

The achitedure of MidiSpaceis ill ustrated in Figure 6. It mainly consists in a red
time player which takes as inpu a musicd data (a Midi file in the aurrent version),
and an annotation file containing all the annotations pertaining to the musical piece.

Music input data Music metadata Musicinput data Music meta data
(midi fil es) (annotations) (midi files) (annotations)
[Real Time player — Interface f— User] [Real Time player }-—‘ Inter[ace }-—
Audio devices Audio devices Music meta data
(synthetizers & (synthetizers & (annotations)
mixing console) mixing console)
loudspeakers loudspeakers

Figure 6. On the left, the architedure of MidiSpae in the listening mode. On the right, the architedure in
authoring mode: the main output is an annotation file, which can be used in the listening mode by users.

The system described here has been fully implemented. Experiments condicted on
various users have brouglt to evidence the nead o including semantic information to
our system. The next sedion introduces the semantic information we dtempted to
represent in the context of MidiSpace: mixing consistency.

4. Introducing Mixing Consistency in MidiSpace

The notion d musicad semantics in general has been extensively debated (see eg.
Meyer, 1956. Withou committing to a particular general semantic theory of music,
we believe that it is possble to define areasonable and ragmatic notion d musicd
semantics in the context of interadive systems, based on the properties of the
navigational spacesthat may be enforced automaticdly. The main clam of this paper
is that in the context of spatialization, this ssmantics may be represented as a set of
properties imposed on the overall mixing, and that these properties may in turn be
represented as constraints between the sound sources and the listener's avatar.
Moreover, we propase to represent these cnstraints as annaations, to be defined in
real time, in order to produce dynamically evolving navigational spaces.

4.1 Mixing Consistency

The knowledge of the sound engineer is difficult to explicit and even more to
represent as awhole. Its basic actions are modifications of mixing consoles controls,
such as faders. However, mixing involves a set of actions that can often be defined as
compositions of these atomic actions. For instance, sound engineers use knowledge
on sound energy to ensure that the overal energy level of the recording aways lies
between reasonable boundaries. One effect of this property is that sound levels are
usually not set independently of one another. Typically, when a fader is raised,
another one, (or agroup of other faders) should be lowered. Conversely, several sound
sources may be logically dependent. For instance, the rhythm section may consist in
the bass track, the guitar track and the drum track. Other typical mixing action is to
assign boundaries to instruments or groups of instruments, and so forth.

The main proposal of this paper is to show how to encode this type of knowledge on
sound spatialization as constraints, which are interpreted in real time by a constraint
propagation algorithm, in the context of MidiSpace. We will first review the main
approach in constraints for multimedia systems, and then give examples of typica
constraints we need to represent. These examples in turn determine the requirements
for the solving algorithm. We then propose an algorithm which achieves some of
these requirements.

4.2 Constraints for Interactive Systems

Constraints may be defined as relations between objects that should aways be
satisfied. Constraints are interesting because they are stated declaratively by the
programmer, thereby avoiding him to program complex algorithms. Constraint
techniques are traditionally divided into two categories. constraint satisfaction
algorithms (CSP) and constraint propagation algorithms. CSP are used mostly for
solving complex combinatorial problems, and are particularly efficient on finite
domains, but are usually not usable for reactive systems, which makes them
unsuitable in our context.

Constraint propagation agorithms are particularly relevant for building reactive
systems (see eg. (Hower & Graf, 1996) for a review), typicaly for layout
management of graphical interfaces, from the pioneer ThingLab system (Borning,
1981), to Kaleidoscope (Lopez et al., 1994) and more recently OTI Constraint Solver
(Borning & Freeman-Benson, 1995). Currently, the choice of a constraint algorithm
depends on the nature of constraints, and the nature of constraint sets. One can
roughly divide constraint propagation systems into three families : 1) simple
algorithms, based on propagation of degrees of freedom, but usually limited to acyclic
dataflow constraints, such as DeltaBlue (Sanella et a., 1993) or QuickPlan
(VanderZanden, 1996), 2) specific agorithms addressing particular classes of
constraints, such as the algorithm for linear constraints and inequalities proposed in
(Borning et al., 1997), and 3) hybrid algorithms, such as UltraViolet (Borning &
Freeman-Benson, 1998) or DETAIL (Hosobe et al., 1996), that attempt to cover all
cases by using specialized and cooperating subsolvers.

In the next sedion we describe the mnstraints required for MidiSpace and conclude
on the requirement of the constraint propagation agorithm. In sedion 4.4 we will
describe the algorithm designed to solve these constraints efficiently.

4.3 Constraints and Mixing Consistency

This sdion describes the main constraints needed to define mixing consistency in
MidiSpace Constraints are defined by relations holding on \ariables. We will first
describe the variables needed, and then the relations.

4.3.1 MidiSpace Variables

In MidiSpace the variables are the following. First there ae @& many variables as
soundsources on the interface More predsely, ead soundsourceis represented by a
point p,, i.e. two integer variables (one for each coordinate):

p., where p, ={x,y,} with x,, y,0[0100g (in a typical screen)
Moreover, there is one variable representing the position d the listener’s avatar, itself
consisting of two integer coordinate variables:

|, wherel ={x,y,} with x,,y, 0[0,1004

4.3.2 MidiSpace Constraints

Most of the constraints on mixing invave a olledion d sound sources and the
listener. We describe here the most useful ones.

» Constant Energy Level

The simplest constraint is the constraint stating that the energy level between several
soundsources (i = 1, .., n) shoud be kept constant. According to o model of sound
mixing, this constraint can be stated between varigib)és- 1, .., n as follows:

[ln-1l=ce

Intuitively, it means that when ore source is moved toward the listener, the other
sources hodd be “pushed away”, and viceversa. The @nstant value on the right-
hand side of the cnstraint is determined by the airrent values of p,and | when the

constraints are defined. In pradice the total energy level may be gproximated by a
linear expression, yielding:

5 |p -1l =ce

Note that this constraint is non linea. Moreover, the aonstraint is not functiondl,
except in the case of two sources only.

» Constant Angular Offset
This constraint is the anguar equivalent of the precaling ore. It expresss that the
spatial organizaion ketween sound sources shoud be preserved, i.e. that the angle
between two oljeds and the listener shoud remain constant. It can be stated between
variables pand p as follows:

(p.l,p,)=Cte

The onstraint is generalized to a mlledion d objeds between variables p,,...,
P...\P,
(pul,p,)=Cte,; (p,l,p)=Cte;; (pyl,p,)=Cte,

» Constant Distance Ratio
The @nstraint states that two or more objeds shoud remain in a onstant distance
ratio to the listener:

[P =1 =a]p: -]
This constraint can be generalizedtobjects and the listener:
Oi,j<n:|p -1 :ori,j”pj —I||

* Radial Limits of Sound Sources
This constraint al ows to impaose radial limitsin the passble regions of soundsources.
These limits are defined by circles whose center is the listener’ s avatar (as represented
graphically inFigure8).

|p 1|z @, (lower limit)

inf
|p. —1|<ag, (upper limit)

» Grouping constraint

This constraint states that a set of nsoundsources shoud remain grouped, i.e. that the

distances between the objeds shoud remain constant (independently of the listener’'s
avatar position):

Oi,j<n: (xi —xj) = Ctx; | and(yi - yj):Ctyi,j

4.3.3 More complex constraints

Other typicd constraints include symbadlic constraints, hdding on non gographicd
variables. For instance an “Incompatibility constraint” imposes that only one source
shoud be audible & atime : the dosest source only is head, the others are muted.
This constraint cannot be expressed as a relation between coordinates.

More cwmplex constraints include the “Equalizing constraint”, which states that the
frequency ratio o the overal mixing shoud remain within the range of an equali zer.
For instance, the global frequency spectrum of the sound should be flat.

4.4 Constraint algorithm

The examples of constraints given above show that the wnstraints have the foll owing

properties:

» the @nstraints are nat linea. For instance the constant energy level (between two
or more sources) isnot linea. This prohibits the use of simplex-derived agorithms,
such asBorning, 1997).

e The mnstraints are not al functional. For instance geometricd limits of sound
sources are typically inequality constraints.

» The constraints quickly induce cycles. For instance, a ssmple configuration with
two sources linked by a constant energy level constraint and a constant angular
offset constraint already yields a cyclic constraint graph.

There is no general agorithm, to our knowledge, which handles non linear, non
functional constraints with cycles. Indigo (Borning et al., 1996) is an algorithm for
functional constraints with inequalities, but does not handle cycles. Conversdly, cycle
solvers such as Purple (linear constraints) and DeepPurple for linear inequalities
(Borning & Freeman-Benson, 1998), do not handle non linear constraints. The
genera solution as proposed in the literature consists in using hybrid algorithms such
as Detail or UltraViolet as mentioned in section 4.2. However, these algorithms add a
considerable level of complexity: they are difficult to implement and tune, and may
have unexpected behavior (Borning et al., 1996).

Instead, we designed a simple propagation algorithm which implements only a part of
our requirements, but with predictable and reactive behavior. The current algorithm
we use is based on a simple propagation scheme, and alows to handle functional
constraints, inequality constraints. It handles cycles ssmply by checking conflicts.
Each variable v is associated to the set of constraints holding on it (predicate
constraints(v)). Each functional constraint has a set of methods, used to compute
values of output variables from values of input variables. The agorithm is triggered
by the modification of one variable, and is described below:

/I Each variable holds a list of constraints, and each constraint holds the
Il list of its variables
/I The propagation depends on the type of the constraint
propagate (Constraint c, Variable v)
if ¢ is functional : propagateFunctional(c, v)
if ¢ is inequality: propagatelnequality(c, v)

propagateFunctionalConstraint(Constraint c, Variable v)
result = true
for each variable v’ in c. variables, such as v’ Zv,
new-value = perform-method (V', v, v.new-value)
result = result && perturbate(v’, new-value, c)
endfor
return result

/I Inequality constraints are just checked
propagatelnequalityConstraint(variable v , perturbation v-perturbation)
return c.isSatisfi ed()

/I Each variable holds a value (actual current value), and a new-value,
/I which represents a perturbation, either triggered by the user or computed
perturbate(Variable v, Value new-value, Constraint c)
result = true
if v.value # v.new-value /* v has already been perturbated
return (v.new-value = new-value) /* the perturbation is the same
endif

v.new-value= new-value

for each constraint ¢’ in v.constraints suchas ¢’ !=c
result = result && propagate(c’, v)

enfor

return result

Figure 7. Propagation algorithm of MidiSpace

10

45 The interface

The interfacefor setting constraints is draightforward: ead constraint is represented
by a button, and constraints are set by first seleding the graphicd objeds to be
constrained, and then clicking on the gpropriate @nstraint button. Constraints
themselves are represented by a small ball, whose wlor depends on the nstraint’s
type, linked to the wnstrained oljeds by lines. Some @nstraints have spedfic
behavior, such as “limit constraints’, which show a drcle centered onthe listener’s
avatar to display their scope (dégure8).

constraints

the upper limit
constraint, set
on the bass

File :CAMUSIC\Midifiles\Jazz\triojazz.mus

Figure 8. The MidiSpace authoring interface for specifying mixing constraints

Since monstraints are themselves represented as graphicd objeds, they in turn can be
constrained to form hierarchies of constrained oljeds. This alows, for instance, to
constrain several groups of already constrained oljeds (as in Figure 8). Additionally,
this medhanism may be used to spedfy higher-level spedficaions such as relative
ambitus : constrain the upper limit and the lower limit constraints to remain grouped
together, using théconstant ratid constraint.

4.6 Constraints as annotations

The final step in MidiSpaceis to alow constraint sets to be dynamicaly creded in
time, to refled changes in music. A simple way to doso is by considering constraints
as particular annaations. This requires two additions to MidiSpace: 1) a format for
expressng constraints compatible with ou anndation format, and 2 a scheme for
adding and removing constraints in red time during listening. For the moment, we
experimented with a simple gproach in which the format of constraintsis smilar to
the format for other annaations, i.e. atime tag, followed by a @nstraint type (out of a
predetermined number of constraint types), and parameters when needed. In this
scheme, constraints are represented as temporal objeds with a start time and a
duration (seeFigure 9). It isto be noted that since @nstraints are wnsidered as full y-

11

fledged objects, they also can be moved, and the movements may in turn be
considered as temporal annotations.

[constraints]

startBeat=7.692 duration=2000 type=CtEnergyLevéhstr=bass, drums
startBeat=7.698 duration=1000@ype=CtEnergyLevehstr=bass, piano
startBeat=7.881 duration=1000@ype=CtAntiRelatedhstr=bass, piano
startBeat=8.067 duration=2000@ype=CtUpperBoundnstr=piano parameter=45 ...

Figure 9. Constraints as annotations

The difficult part is the real time handling of the constraint set, and raises two

problems:

1) the incrementality of the algorithm. The constraint propagation algorithm should
be able to incrementally add or remove constraints, without having to recompute
too many variables.

2) the smoothness of the interface. A main concern in building mixing interfaces is

that the user should not be lost because of too sudden movements of objects. When a

constraint is added, it can be the case that some objects are in positions that violate the

constraint. In this case, a natural solution would be to have the objects move smoothly
from the old location to the new one. This second issue is not yet handled, and is the
subject of current work.

5. Implementation

The implementation of MidiSpace consists in 1) translating Midi information and
annotation files into a set of objects within atempora framework, 2) scheduling these
temporal objects using areal time scheduler.

5.1 The Parser

The Parser task is to transform the information contained in the Midi file and in the
annotation files into a unified tempora structure. The temporal framework we use is
described in (Pachet et a., 1996), an object-oriented, interval-based representation of
temporal objects. In this framework, each temporal object is represented by a class,
which inherits the basic functionalities from aroot superclass TemporalObject

One main issue the Parser must address comes from the way Midi files are organized
according to the General Midi specifications. Mixing is realized by sending volume
and panoramic Midi messages. These messages are global for a given Midi channel.
One must therefore ensure that each instrument appears on a distinct Midi channel. In
practice, thisis not always the case, since Midi tracks can contain events on different
channels. The first task is to sort the events and create logical melodies for each
instrument. This is redlized by analysing program change messages, which assign
Midi channels to instruments, thereby segmenting the musical structure. The second
task is to create higher level musical structures from the basic musical objects (i.e.
notes). The Midi information is organized into notes, grouped in melodies. Each
melody contains only the notes for a single instrument. The total piece is represented

12

as a collection of melodies. A dispatch algorithm ensures that, at a given time, only
one instrument is playing on agiven Midi channel.

5.2 The Hierarchy of Playable Objects

These objects represent events that can be scheduled in time. Includes both musical
events, such as notes, and also more abstract events such as movements.

PlayableObject

play(datet)
Midi SpaceConstraint

Figure 10. The class hierarchy of playable objectsin MidiSpace.

5.3 Scheduling temporal objects

The scheduling of MidiSpace objects uses MidiShare (Orlarey et al. 1989), area time
Midi operating system, with a Java API. MidiShare provides the basic functionality to
schedule asynchronously, in real time, Midi events, from Java programs, with 1
millisecond accuracy. The main loop of the Midi player consists in 1) creating a task
that schedules all events that fall on the current date, and 2) rescheduling the task to
the next date. When an event is scheduled, it is sent the method play(t), with the date
as parameter. This method is implemented in al subclasses of PlayableObject. Note
objects implement the play(t) method by sending an appropriate Midi message.
Thanksto this representation, it is straightforward to implement dynamically changing
constraint sets, by simply ensuring that constraints implement the PlayableObject
interface, and the method play(t). This method will ssmply add the constraint to the
current constraint set at the start date, and remove it at the end date.

Tempora Object

Midi SpaceConstraint
CtEnergyLevel

[ctantirelated] \ [UpperBound]

Figure 11. An excerpt of the constraint hierarchy

6. Conclusion, Futurework

The MidiSpace system shows that it is possible to give users some degree of freedom
in sound spatialization, while preserving some semantics on the mixing of sound
sources. The prototype built so far validates our approach, but future work remains to
be donein several directions.

13

First we ae aurrently improving the @nstraint propagation algorithm to handle more
complex constraints, such as proposed in 4.3.3 These onstraints soud alow users
or composers to specify finer mixing configurations.

Semnd, we ae eperimenting with aher interfaces for navigation. A 3D version o
MidiSpacein VRML is in progress (see Figure 12), in which the VRML code is
automaticdly generated from the 2D interface Although the result is clealy
stimulating, it is not yet fully satisfying kecaise the 3D interface gives too little
information onthe overal configuration d instruments, which is a aucial parameter
for gpatialization, bu this problem is a general problem with 3D interface and is not
specific to MidiSpace.

€5 Community Place Browser

Eile \ser Bookmark Options Help

ilexiCIIUSERSIWORLD. WRL

Figure 12. MidiSpace/VRML on the Jazz trio.

Finadly, an audio versionisin progress to 1) enlarge the repertoire of available music
material to wvirtually al recrded music, and 2 improve the qudity of the
spatialization, using more advanced techniques such as the ones skef:hed in

7. References

Ackermann P.Developing object-oriented multimedia software, Dpunkt,Heidelberg, 1996.

Assayag G., AgonC., Fineberg, J., Hanappe P., “An Objed Oriented Visual Environment For Musicd
Composition”, Proceedings of the International Computer Music Conference, pp. 364367,
Thessaloniki, 1997.

Borning A., Anderson R., Freanan-Benson B., “Indigo: A Locd Propagation Algorithm for Inequality
Constraints’, Proceedings of the ACM Symposium on User Interface Software and Technology, pp.
129-136, 1996.

Borning A., Freanan-Benson, B. “The OTI Constraint Solver : a Constraint Library for Constructing
Interadive Graphicd User Interfaces’, Proceedings of the First International Conference on
Principles and Practice of Constraint Programming, pp. 624-628, 1995.

Borning A., Freeman-Benson, B., “Ultraviolet: A Constraint Satisfadion Algorithm for Interadive
Graphics’, Congtraints, Spedal I1ssue on Constraints, Graphics, and Visualization, Vol. 3 No. 1, pp.
9-32, April 1998.

Borning A., “The Programming Aspeds of ThingLab, a Constraint-Oriented Simulation Laboratory”,
ACM Transactions on Programming Languages and Systems, 3 (1981), pp. 353-387.

14

Borning, A. Lin, R., Marriott, K. “Constraints for the web”, Procealings of ACM Multimedia
ConferenceSeattle, pp. 173-181, 1997.

Chowing, J. (1971),The simulation of moving sound sourt¢e3AES vol. 19, n. 1, p. 2-6.

Da P., Eckel G., Gobel M., Hasenbrink F., Lalioti V., Ledchner U., Strasqer J., Tramberend H.,
Wesche G., “Virtual Spaces: VR Projedion System Techndogies and Applicaions’, Tutorid
Notes,Eurographics '97, Budapest 1997, 75 pages.

Eckel G., “Exploring Musicd Space by Meas of Virtual Architedure”, Procealings of the 8"
International Symposium on Electronic ABchool of the Art Institute of Chicago, 1997.

Hosobe H., Matsuoka S. Yonezava A., “Generalized locd propagation: a framework for solving
constraint hierarchiésProceedings of CP’ 9@Boston, August 1996.

Lopez G., Freaman-Benson B., Borning A., “Kaeidoscope: A Constraint Imperative Programming
Language”, In Constraint Programming, B. Mayoh, E. Tougu J. Penjam (Eds.), NATO Advanced
Science Institute Series, Series F: Computer and System Sciences, Vol 131, Springer-Verlag, 1994
pages 313-329.

Hower W., Graf, W. H. “aBibliographicd Survey of Constraint-Based Approachesto CAD, Graphics,
Layout, Visualization, and related topics’, Knowledge-Based Systems, Elsevier, vol. 9, n. 7, pp.
449-464, 1996.

IMA, “MIDI musicd instrument digital interfacespedficaion 10", Los Angeles, International MIDI
Association, 1983.

Jot J-M., Warusfel O. “A Red-Time Spatiad Sound Procesor for Music and Virtual Redity
Applications, Proceedings of International Computer Music Conferesaptember 1995.

Laurson M., Duthen J, “PatchWork, a graphicd language in PreForm”, Proceealings of the
International Computer Music Conferenc&an Francisco,172-175, 1989.

Lea R., Matsuda KMyashita K.,Java for 3D and VRML world&New Riders Publishing, 1996.

Meyer L.,Emotions and meaning in musidniversity of Chicago Press, 1956.

Orlarey Y., Lequay H. “MidiShare: a red time multi-tasks oftware modue for Midi applicaions’,
Proceedings of the ICM@989, ICMA, San Francisco.

Pachet F., “Computer Analysis of Jazz Chord Sequences. Is Solar a Blues 7", Readings in Music and
Artificial Intelligence Harwood Academic Publishers, to appear, 1998.

Padet F., Ramaho G., Carrive J. “ Representing temporal musica objeds and reasoning in the MustS
systent, Journal of New Music Researdol. 25, n. 3, pp. 252-275, 1996.

Sanella M., Maoney J., Freeaman-Benson B., Borning A., “Multi-way versus one-way constraints in
user interfaces: experiences with the DeltaBlue dgorithm”, Sdtware Practice and Experience,
23(5):529-566, 1993.

Sloan Donald, “Aspeds of Music Representation in Hytime/SMDL”, Computer Music Journal,
Cambridge, MA, MIT Press, 17:4, Winter 1993.

SMDL, Draft International Standard, ISO/IEC CD 10743, 1995.

Taube H., “Common Music: A Music Compasition Language in Common Lisp and CLOS’, Computer
Music Journal vol. 15, n° 2, 21-32, 1991.

Vander Zanden Brad, “An incremental algorithm for satisfying herarchies of multi-way dataflow
constraints, ACM Transactions on Programming Languages and Syste8():30-72, 1996.

15

