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ABSTRACT 
 
Rendering dynamically curved meshes can be complicated 
if not impossible using traditional methods. Either it 
involves creating pre-curved meshes and fixed animation 
sets or processor intensive calculations to deform mesh 
data on the fly. A model is presented here that can be used 
to create infinite dynamic curved spaces in real-time using 
a vertex shader. This makes dealing with curved meshes in 
real-time rendering easier and makes procedural 
animations of curves possible. Applications include 
dynamically curving environments and objects for games. 

INTRODUCTION 
 
Shader programming has acquired an important position in 
the field of real-time rendering. The ability to control the 
rendering process by executing custom programs has 
provided new possibilities for numerous applications. 
Many articles have been published in the ShaderX and 
GPU Gems book series describing new algorithms for 
graphics hardware. Most of these articles demonstrate 
techniques to improve the visual quality of the rendering 
process. The ability of the vertex shader to manipulate 
vertices to animate or deform meshes is less often 
explored. A few articles dealing with this topic use the 
vertex shader to render ocean water (Isidoro 2002a and 
Finch 2004), fields of grass (Isodoro 2002b and Pelzer 
2004) or soap bubbles (Isodoro 2002c). These articles 
show the potential of the vertex shader in vertex-based 
animation and deformation for very specific applications. 
This paper builds on the concepts presented in these 
articles and describes a general technique for applying 
curves to vertex spaces. 
 
This paper presents a method for using vertex shaders to 
create infinite curved spaces; to apply curves in real-time 
to meshes. The algorithm provides an easy way to apply 
multiple curves in any direction to an arbitrary vertex 
space. First a straightforward method for creating a single 
curve is explained. This method is then used as a starting 
point for creating a more generic model. Finally our 
conclusions regarding this model are presented. 
 

APPLICATIONS 
 
The method described here is originally developed to 
create curved tunnel systems for a yet unpublished game. 
The method proved to be very useful for creating 
dynamically curved environments and can also be used for 
procedurally applying curves to in-game objects. The 
method allows for smooth curve animations that are hard 
to create with traditional technology. 

APPLYING A SINGLE CURVE 
 
To be able to apply a curve to an arbitrary vertex space, we 
need a per-vertex algorithm that translates each vertex 
from the original vertex space to the desired position in the 
curved space. For a single curve this algorithm is relatively 
straightforward to find. To illustrate the concepts presented 
here we use a cylindrical mesh centred on the positive z-
axis starting from the origin. A cylinder is used here for 
illustrative purposes, the algorithm works on any vertex 
space, no matter what the distribution is. A cylinder is 
appropriate, because one of the most obvious applications, 
creating curved tunnel systems, uses meshes that resemble 
cylinders.  
 
In figure 1 the result of applying a ninety degrees curve to 
the sample vertex space is shown. The length of the 
segment is denoted by the letter d.  
 

 
Figure 1: Applying a 90° Curve to a Cylinder 

 
The length of d is preserved in the middle of the cylinder. 
Preserving the length in the middle of the vertex space is 
desirable in most cases and leads to minimal stretching and 



squeezing of the original mesh. The length of the curved 
space will be the same as that of the original space. 
 
Calculating this curve can be done on a per-vertex basis. 
The length of the segment (d) and the angle of the total 
curve (α) must be known beforehand. From this 
information the main radius (r) of the curve can be 
calculated using the formula for the circumference (2πr). 
Taking into account the part of a full circle that the curve 
covers, the formula for the radius becomes: 
 

r = d / α (with α in radians) 
 
This radius is the distance from the pivot point (p) to the 
centre of the vertex space (z-axis). This value is not used 
directly, but used to calculate the per vertex radius as will 
be shown in the next section. 
 
To apply the 90° curve per-vertex the z-value of the 
position is used in the vertex shader to determine the 
position within the curve. For each vertex new coordinates 
are calculated. Because the curve is applied in the xz-
plane, the y-coordinate of the vertex will be preserved. The 
x and z coordinates can be computed using basic 
trigonometry with the following formulas: 
 

x’= x + r’ – cos(β) * r’ 
z’= sin(β) * r’ 

 
Where r’ is the per-vertex radius (r’ = r – x) and β 
is the per-vertex curve angle that depends on the z position 
of the current vertex (β = (z/d)*α); the further away 
from the origin, the more the vertex will be displaced.  
 
These are the calculations needed to apply a curve to a 
single segment with a certain angle in the xz-plane. To 
implement this in a vertex shader the following code 
snippet can be used: 
 
   // Compute per-vertex angle 
   float beta = (pos.z / d) * alpha; 
 
   // Compute per-vertex radius 
   float radius = r - pos.x; 
 
   // Calculate curved positions 
   pos.x += radius - cos(beta) * radius; 
   pos.z  = sin(beta) * radius; 
 
The resulting shader is capable of applying a curve to a 
segment of arbitrary length by a variable angle. Although 
this might have some value in practise, the model is very 
restrictive; only one segment, starting at the origin can be 
curved and the curve is always in the same direction (in 
the xz-plane and towards the positive x-axis). A generic 
model for creating infinite curved spaces is needed and 
will be presented next.  
 
 
 
 

GENERIC CURVE MODEL 
 
To overcome most of the restrictions of the single curve 
model, we present a generic model that has the following 
additions: 
 
- Curves in any direction 
- Multiple curves that seamlessly connect 
 
The algorithm we have so far will be used as a basis for 
creating such a generic model. 
First the curve algorithm will be extended to support any 
curve direction. A naive approach is to simply rotate the 
model along the z-axis after the curve has been applied to 
turn it into the desired direction. This allows for curves in 
any direction, but introduces the problem that vertices are 
not in the same position as they would be if a curve was 
directly applied in that direction. A solution to this 
problem is to first rotate the vertices over the z-axis in the 
opposite of the desired direction, then apply the curve as 
shown before and finally rotating it over the z-axis again to 
its final position. The curve algorithm is now extended 
with a new parameter, a rotation angle over the z-axis. 
From now on we will use γ to denote this angle.  
The second addition in the generic model is the support of 
multiple curves. Eventually the following algorithm needs 
to be executed for each vertex: 
 

1. Determine the curve this vertex belongs to 
2. Translate start of the curve to the origin 
3. Rotate around z-axis by -γ 
4. Apply the single curve algorithm 
5. Rotate around z-axis by γ 
6. Align with end of previous curve 
7. Connect to previous curve 

 
We have already shown how to implement steps 3-5; the 
remaining steps are needed to support more than one 
curve. Before we can implement the remaining steps we 
must divide the vertex space in segments (each segment 
has separate curve parameters). The first segment starts at 
the origin and ends at the plane z = d1, the second starts at 
z = d1 and ends at z = (d1+d2), etc. Each of these segments 
has its own values for α, γ, and d. 
  
The first step of the algorithm can now be implemented by 
comparing the z value of the current vertex to the start of 
each segment until the right segment has been found. 
Translating the segment to the origin is done by 
subtracting the start value of the segment from the z value 
of the current vertex. After the translation, steps 3 to 5 are 
applied as described before. This can be implemented by a 
single matrix multiplication. This matrix is the result of 
concatenating a rotation matrix (-γ) with a curve matrix 
(described next) and finally another rotation matrix (γ). 
The curve matrix needed here can be created from the 
calculations shown for the single curve algorithm. By 
substituting the radius equation (r’= r - x) into the 



curve calculations, we get the following matrix 
multiplication: 
 

 
 
Finally the segment must be translated and rotated in such 
a way that it seamlessly connects to the previous segment 
(which can have an arbitrary curve as well). A 
transformation matrix must be computed that takes care of 
this. Given the per-segment parameters (γ, α and d), such a 
transformation matrix can be computed for each separate 
segment. The transformation matrix for segment N can 
then be computed by concatenating the matrices from 
segment 0, 1, …, (N-1).  
 
The transformation matrix for each segment is computed 
by first orienting the vertices in the right direction and 
consequently translating them to the end of the previous 
segment. Aligning segment N with the end of segment N-1 
can be done by rotating the segment using the curve 
parameters of segment N-1. First segment N is rotated 
along the z-axis with the negated γ value of segment N-1, 
then it is rotated along the y-axis with the α value of N-1 
and finally it is rotated along the z-axis again using γ from 
N-1. The final step is to connect segment N to N-1, which 
can be done with a translation vector from the origin to the 
centre of the end of segment N-1. Using basic 
trigonometry we can calculate the components of this 
vector T: 
 

Txy = r – r * cos(α) 
Tx = cos(γ) * Txy 
Ty = sin(γ) * Txy 
Tz = sin(α) * r 

 
This is the final piece of the algorithm for a generic curve 
shader. Implementing this algorithm in HLSL or another 
shader language should be straightforward using the 
presented calculations. The per-segment parameters and 
the segment offset matrices need to be supplied as shader 
constants once per frame. 
 
CONCLUSIONS 
 
In this paper a method was presented for creating infinite 
curved spaces on the GPU that can be used to dynamically 
apply curves to meshes. In a few steps a flexible model 
was presented that is capable of applying multiple curves 
in any direction. The scalability of the implementation is 
depending on the available shader constants, which is 
probably only an issue on targets lower than shader model 
3.0. Applications in game development consist of creating 
curved tunnel systems and other curved objects without the 

need for more assets or complicated animations. The 
presented technique works best on fairly dense and equally 
distributed vertex spaces. Meshes with few polygons will 
not look good when curved because the algorithm doesn’t 
add vertices and curved objects need relatively many 
vertices. This method might be used as a basis for creating 
interesting dynamically curving game objects and 
environments. Further research is needed to determine the 
full potential and scalability of the presented technique. 
The per-vertex calculations are relatively heavy, but 
because most modern games are not bottlenecked by 
vertex processing capabilities, this method should not lead 
to dramatic loss of performance. 
 
FUTURE POSSIBILITIES 
 
The presented algorithm and implementation runs 
sufficiently efficient on SM 3.0 hardware, but is still 
limited by the amount of vertex constants available. This 
limit will be almost gone on DirectX 10 hardware. Shader 
model 4.0 supports considerably more constants, making 
this limit much less important. Also the geometry shader 
introduced by SM 4.0 could lead to interesting new 
applications of the algorithm such as the generation of 
curved objects on the fly or generating extra vertices to 
curve meshes with few polygons smoothly. 
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