
SIMULATING INFINITE CURVED SPACES USING VERTEX SHADERS

M. C. Bouterse,
A. Eliëns,

Department of Computer Science
Faculty of Sciences, Vrije Universiteit

De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
E-mail: eliens@cs.vu.nl

KEYWORDS
Shader Programming, 3D In-Game Animation, Vertex
Manipulation, Curve Simulation

ABSTRACT

Rendering dynamically curved meshes can be complicated
if not impossible using traditional methods. Either it
involves creating pre-curved meshes and fixed animation
sets or processor intensive calculations to deform mesh
data on the fly. A model is presented here that can be used
to create infinite dynamic curved spaces in real-time using
a vertex shader. This makes dealing with curved meshes in
real-time rendering easier and makes procedural
animations of curves possible. Applications include
dynamically curving environments and objects for games.

INTRODUCTION

Shader programming has acquired an important position in
the field of real-time rendering. The ability to control the
rendering process by executing custom programs has
provided new possibilities for numerous applications.
Many articles have been published in the ShaderX and
GPU Gems book series describing new algorithms for
graphics hardware. Most of these articles demonstrate
techniques to improve the visual quality of the rendering
process. The ability of the vertex shader to manipulate
vertices to animate or deform meshes is less often
explored. A few articles dealing with this topic use the
vertex shader to render ocean water (Isidoro 2002a and
Finch 2004), fields of grass (Isodoro 2002b and Pelzer
2004) or soap bubbles (Isodoro 2002c). These articles
show the potential of the vertex shader in vertex-based
animation and deformation for very specific applications.
This paper builds on the concepts presented in these
articles and describes a general technique for applying
curves to vertex spaces.

This paper presents a method for using vertex shaders to
create infinite curved spaces; to apply curves in real-time
to meshes. The algorithm provides an easy way to apply
multiple curves in any direction to an arbitrary vertex
space. First a straightforward method for creating a single
curve is explained. This method is then used as a starting
point for creating a more generic model. Finally our
conclusions regarding this model are presented.

APPLICATIONS

The method described here is originally developed to
create curved tunnel systems for a yet unpublished game.
The method proved to be very useful for creating
dynamically curved environments and can also be used for
procedurally applying curves to in-game objects. The
method allows for smooth curve animations that are hard
to create with traditional technology.

APPLYING A SINGLE CURVE

To be able to apply a curve to an arbitrary vertex space, we
need a per-vertex algorithm that translates each vertex
from the original vertex space to the desired position in the
curved space. For a single curve this algorithm is relatively
straightforward to find. To illustrate the concepts presented
here we use a cylindrical mesh centred on the positive z-
axis starting from the origin. A cylinder is used here for
illustrative purposes, the algorithm works on any vertex
space, no matter what the distribution is. A cylinder is
appropriate, because one of the most obvious applications,
creating curved tunnel systems, uses meshes that resemble
cylinders.

In figure 1 the result of applying a ninety degrees curve to
the sample vertex space is shown. The length of the
segment is denoted by the letter d.

Figure 1: Applying a 90° Curve to a Cylinder

The length of d is preserved in the middle of the cylinder.
Preserving the length in the middle of the vertex space is
desirable in most cases and leads to minimal stretching and

squeezing of the original mesh. The length of the curved
space will be the same as that of the original space.

Calculating this curve can be done on a per-vertex basis.
The length of the segment (d) and the angle of the total
curve (α) must be known beforehand. From this
information the main radius (r) of the curve can be
calculated using the formula for the circumference (2πr).
Taking into account the part of a full circle that the curve
covers, the formula for the radius becomes:

r = d / α (with α in radians)

This radius is the distance from the pivot point (p) to the
centre of the vertex space (z-axis). This value is not used
directly, but used to calculate the per vertex radius as will
be shown in the next section.

To apply the 90° curve per-vertex the z-value of the
position is used in the vertex shader to determine the
position within the curve. For each vertex new coordinates
are calculated. Because the curve is applied in the xz-
plane, the y-coordinate of the vertex will be preserved. The
x and z coordinates can be computed using basic
trigonometry with the following formulas:

x’= x + r’ – cos(β) * r’
z’= sin(β) * r’

Where r’ is the per-vertex radius (r’ = r – x) and β
is the per-vertex curve angle that depends on the z position
of the current vertex (β = (z/d)*α); the further away
from the origin, the more the vertex will be displaced.

These are the calculations needed to apply a curve to a
single segment with a certain angle in the xz-plane. To
implement this in a vertex shader the following code
snippet can be used:

 // Compute per-vertex angle
 float beta = (pos.z / d) * alpha;

 // Compute per-vertex radius
 float radius = r - pos.x;

 // Calculate curved positions
 pos.x += radius - cos(beta) * radius;
 pos.z = sin(beta) * radius;

The resulting shader is capable of applying a curve to a
segment of arbitrary length by a variable angle. Although
this might have some value in practise, the model is very
restrictive; only one segment, starting at the origin can be
curved and the curve is always in the same direction (in
the xz-plane and towards the positive x-axis). A generic
model for creating infinite curved spaces is needed and
will be presented next.

GENERIC CURVE MODEL

To overcome most of the restrictions of the single curve
model, we present a generic model that has the following
additions:

- Curves in any direction
- Multiple curves that seamlessly connect

The algorithm we have so far will be used as a basis for
creating such a generic model.
First the curve algorithm will be extended to support any
curve direction. A naive approach is to simply rotate the
model along the z-axis after the curve has been applied to
turn it into the desired direction. This allows for curves in
any direction, but introduces the problem that vertices are
not in the same position as they would be if a curve was
directly applied in that direction. A solution to this
problem is to first rotate the vertices over the z-axis in the
opposite of the desired direction, then apply the curve as
shown before and finally rotating it over the z-axis again to
its final position. The curve algorithm is now extended
with a new parameter, a rotation angle over the z-axis.
From now on we will use γ to denote this angle.
The second addition in the generic model is the support of
multiple curves. Eventually the following algorithm needs
to be executed for each vertex:

1. Determine the curve this vertex belongs to
2. Translate start of the curve to the origin
3. Rotate around z-axis by -γ
4. Apply the single curve algorithm
5. Rotate around z-axis by γ
6. Align with end of previous curve
7. Connect to previous curve

We have already shown how to implement steps 3-5; the
remaining steps are needed to support more than one
curve. Before we can implement the remaining steps we
must divide the vertex space in segments (each segment
has separate curve parameters). The first segment starts at
the origin and ends at the plane z = d1, the second starts at
z = d1 and ends at z = (d1+d2), etc. Each of these segments
has its own values for α, γ, and d.

The first step of the algorithm can now be implemented by
comparing the z value of the current vertex to the start of
each segment until the right segment has been found.
Translating the segment to the origin is done by
subtracting the start value of the segment from the z value
of the current vertex. After the translation, steps 3 to 5 are
applied as described before. This can be implemented by a
single matrix multiplication. This matrix is the result of
concatenating a rotation matrix (-γ) with a curve matrix
(described next) and finally another rotation matrix (γ).
The curve matrix needed here can be created from the
calculations shown for the single curve algorithm. By
substituting the radius equation (r’= r - x) into the

curve calculations, we get the following matrix
multiplication:

Finally the segment must be translated and rotated in such
a way that it seamlessly connects to the previous segment
(which can have an arbitrary curve as well). A
transformation matrix must be computed that takes care of
this. Given the per-segment parameters (γ, α and d), such a
transformation matrix can be computed for each separate
segment. The transformation matrix for segment N can
then be computed by concatenating the matrices from
segment 0, 1, …, (N-1).

The transformation matrix for each segment is computed
by first orienting the vertices in the right direction and
consequently translating them to the end of the previous
segment. Aligning segment N with the end of segment N-1
can be done by rotating the segment using the curve
parameters of segment N-1. First segment N is rotated
along the z-axis with the negated γ value of segment N-1,
then it is rotated along the y-axis with the α value of N-1
and finally it is rotated along the z-axis again using γ from
N-1. The final step is to connect segment N to N-1, which
can be done with a translation vector from the origin to the
centre of the end of segment N-1. Using basic
trigonometry we can calculate the components of this
vector T:

Txy = r – r * cos(α)
Tx = cos(γ) * Txy
Ty = sin(γ) * Txy
Tz = sin(α) * r

This is the final piece of the algorithm for a generic curve
shader. Implementing this algorithm in HLSL or another
shader language should be straightforward using the
presented calculations. The per-segment parameters and
the segment offset matrices need to be supplied as shader
constants once per frame.

CONCLUSIONS

In this paper a method was presented for creating infinite
curved spaces on the GPU that can be used to dynamically
apply curves to meshes. In a few steps a flexible model
was presented that is capable of applying multiple curves
in any direction. The scalability of the implementation is
depending on the available shader constants, which is
probably only an issue on targets lower than shader model
3.0. Applications in game development consist of creating
curved tunnel systems and other curved objects without the

need for more assets or complicated animations. The
presented technique works best on fairly dense and equally
distributed vertex spaces. Meshes with few polygons will
not look good when curved because the algorithm doesn’t
add vertices and curved objects need relatively many
vertices. This method might be used as a basis for creating
interesting dynamically curving game objects and
environments. Further research is needed to determine the
full potential and scalability of the presented technique.
The per-vertex calculations are relatively heavy, but
because most modern games are not bottlenecked by
vertex processing capabilities, this method should not lead
to dramatic loss of performance.

FUTURE POSSIBILITIES

The presented algorithm and implementation runs
sufficiently efficient on SM 3.0 hardware, but is still
limited by the amount of vertex constants available. This
limit will be almost gone on DirectX 10 hardware. Shader
model 4.0 supports considerably more constants, making
this limit much less important. Also the geometry shader
introduced by SM 4.0 could lead to interesting new
applications of the algorithm such as the generation of
curved objects on the fly or generating extra vertices to
curve meshes with few polygons smoothly.

BIBLIOGRAPHY

Isidoro, J.; A. Vlachos, C. Brennan. 2002a. “Rendering Ocean

Water” In Direct3D ShaderX, edited by W.F. Engel.
Wordware Publishing.

Isidoro, J. and D. Card. 2002b. “Animated Grass with Pixel and
Vertex Shaders” In Direct3D ShaderX, edited by W.F.
Engel. Wordware Publishing.

Isidoro J. and D. Gosselin. 2002c. “Bubble Shader” In Direct3D
ShaderX, edited by W.F. Engel. Wordware Publishing.

Finch, M. 2004. “Effective Water Simulation from Physical
Models” In GPU Gems, edited by R. Fernando. Addison
Wesley.

Pelzer, K. 2004. “Rendering Countless Blades of Waving Grass”
In GPU Gems, edited by R. Fernando. Addison Wesley.

AUTHOR BIOGRAPHY

ANTON ELIENS studied art, psychology, philosophy,
and computer science. He is lecturer at the Vrije
Universiteit Amsterdam, where he teaches multimedia
courses. He is also coordinator of the Master Multimedia
for Computer Science. He has written books on distributed
logic programming and object oriented software
engineering.

MARCO BOUTERSE received a Master degree in
Computer Science/Multimedia at the Vrije Universiteit
Amsterdam. His master thesis was about the development
of games with a focus on shader technology. Currently he
is working as a game programmer at Two Tribes, a game
company located in Harderwijk, The Netherlands.

