topical media & game development
mobile-query-three-vendor-three.js-loaders-UTF8Loader.js / js
Loader for UTF8 version2 (after r51) encoded models generated by:
http://code.google.com/p/webgl-loader/
Code to load/decompress mesh is taken from r100 of this webgl-loader
THREE.UTF8Loader = function () {};
Load UTF8 encoded model
parameter: jsonUrl - URL from which to load json containing information about model
parameter: callback - Callback(THREE.Object3D) on successful loading of model
parameter: options - options on how to load model (see THREE.MTLLoader.MaterialCreator for basic options)
Additional options include
geometryBase: Base url from which to load referenced geometries
materialBase: Base url from which to load referenced textures
THREE.UTF8Loader.prototype.load = function ( jsonUrl, callback, options ) {
this.downloadModelJson( jsonUrl, options, callback );
};
// BufferGeometryCreator
THREE.UTF8Loader.BufferGeometryCreator = function () {
};
THREE.UTF8Loader.BufferGeometryCreator.prototype.create = function ( attribArray, indexArray ) {
var ntris = indexArray.length / 3;
var geometry = new THREE.BufferGeometry();
var positionArray = new Float32Array( 3 * 3 * ntris );
var normalArray = new Float32Array( 3 * 3 * ntris );
var uvArray = new Float32Array( 2 * 3 * ntris );
var i, j, offset;
var x, y, z;
var u, v;
var end = attribArray.length;
var stride = 8;
// extract positions
j = 0;
offset = 0;
for( i = offset; i < end; i += stride ) {
x = attribArray[ i ];
y = attribArray[ i + 1 ];
z = attribArray[ i + 2 ];
positionArray[ j++ ] = x;
positionArray[ j++ ] = y;
positionArray[ j++ ] = z;
}
// extract uvs
j = 0;
offset = 3;
for( i = offset; i < end; i += stride ) {
u = attribArray[ i ];
v = attribArray[ i + 1 ];
uvArray[ j++ ] = u;
uvArray[ j++ ] = v;
}
// extract normals
j = 0;
offset = 5;
for( i = offset; i < end; i += stride ) {
x = attribArray[ i ];
y = attribArray[ i + 1 ];
z = attribArray[ i + 2 ];
normalArray[ j++ ] = x;
normalArray[ j++ ] = y;
normalArray[ j++ ] = z;
}
// create attributes
var attributes = geometry.attributes;
attributes[ "index" ] = { itemSize: 1, array: indexArray, numItems: indexArray.length };
attributes[ "position" ] = { itemSize: 3, array: positionArray, numItems: positionArray.length };
attributes[ "normal" ] = { itemSize: 3, array: normalArray, numItems: normalArray.length };
attributes[ "uv" ] = { itemSize: 2, array: uvArray, numItems: uvArray.length };
// create offsets
// (all triangles should fit in a single chunk)
geometry.offsets = [ { start: 0, count: indexArray.length, index: 0 } ];
geometry.computeBoundingSphere();
return geometry;
};
// GeometryCreator
THREE.UTF8Loader.GeometryCreator = function () {
};
THREE.UTF8Loader.GeometryCreator.prototype = {
create: function ( attribArray, indexArray ) {
var geometry = new THREE.Geometry();
this.init_vertices( geometry, attribArray, 8, 0 );
var uvs = this.init_uvs( attribArray, 8, 3 );
var normals = this.init_normals( attribArray, 8, 5 );
this.init_faces( geometry, normals, uvs, indexArray );
geometry.computeCentroids();
geometry.computeFaceNormals();
return geometry;
},
init_vertices: function ( scope, data, stride, offset ) {
var i, x, y, z;
var end = data.length;
for( i = offset; i < end; i += stride ) {
x = data[ i ];
y = data[ i + 1 ];
z = data[ i + 2 ];
this.addVertex( scope, x, y, z );
}
},
init_normals: function( data, stride, offset ) {
var normals = [];
var i, x, y, z;
var end = data.length;
for( i = offset; i < end; i += stride ) {
// Assumes already normalized to <-1,1> (unlike previous version of UTF8Loader)
x = data[ i ];
y = data[ i + 1 ];
z = data[ i + 2 ];
normals.push( x, y, z );
}
return normals;
},
init_uvs: function( data, stride, offset ) {
var uvs = [];
var i, u, v;
var end = data.length;
for( i = offset; i < end; i += stride ) {
// Assumes uvs are already normalized (unlike previous version of UTF8Loader)
// uvs can be negative, need to set wrap for texture map later on ...
u = data[ i ];
v = data[ i + 1 ];
uvs.push( u, v );
}
return uvs;
},
init_faces: function( scope, normals, uvs, indices ) {
var i,
a, b, c,
u1, v1, u2, v2, u3, v3;
var end = indices.length;
var m = 0; // all faces defaulting to material 0
for( i = 0; i < end; i += 3 ) {
a = indices[ i ];
b = indices[ i + 1 ];
c = indices[ i + 2 ];
this.f3n( scope, normals, a, b, c, m, a, b, c );
u1 = uvs[ a * 2 ];
v1 = uvs[ a * 2 + 1 ];
u2 = uvs[ b * 2 ];
v2 = uvs[ b * 2 + 1 ];
u3 = uvs[ c * 2 ];
v3 = uvs[ c * 2 + 1 ];
this.uv3( scope.faceVertexUvs[ 0 ], u1, v1, u2, v2, u3, v3 );
}
},
addVertex: function ( scope, x, y, z ) {
scope.vertices.push( new THREE.Vector3( x, y, z ) );
},
f3n: function( scope, normals, a, b, c, mi, nai, nbi, nci ) {
var nax = normals[ nai * 3 ],
nay = normals[ nai * 3 + 1 ],
naz = normals[ nai * 3 + 2 ],
nbx = normals[ nbi * 3 ],
nby = normals[ nbi * 3 + 1 ],
nbz = normals[ nbi * 3 + 2 ],
ncx = normals[ nci * 3 ],
ncy = normals[ nci * 3 + 1 ],
ncz = normals[ nci * 3 + 2 ];
var na = new THREE.Vector3( nax, nay, naz ),
nb = new THREE.Vector3( nbx, nby, nbz ),
nc = new THREE.Vector3( ncx, ncy, ncz );
scope.faces.push( new THREE.Face3( a, b, c, [ na, nb, nc ], null, mi ) );
},
uv3: function ( where, u1, v1, u2, v2, u3, v3 ) {
var uv = [];
uv.push( new THREE.Vector2( u1, v1 ) );
uv.push( new THREE.Vector2( u2, v2 ) );
uv.push( new THREE.Vector2( u3, v3 ) );
where.push( uv );
}
};
// UTF-8 decoder from webgl-loader (r100)
// http://code.google.com/p/webgl-loader/
// Model manifest description. Contains objects like:
// name: {
// materials: { 'material_name': { ... } ... },
// decodeParams: {
// decodeOffsets: [ ... ],
// decodeScales: [ ... ],
// },
// urls: {
// 'url': [
// { material: 'material_name',
// attribRange: [#, #],
// indexRange: [#, #],
// names: [ 'object names' ... ],
// lengths: [#, #, # ... ]
// }
// ],
// ...
// }
// }
var DEFAULT_DECODE_PARAMS = {
decodeOffsets: [-4095, -4095, -4095, 0, 0, -511, -511, -511],
decodeScales: [1/8191, 1/8191, 1/8191, 1/1023, 1/1023, 1/1023, 1/1023, 1/1023]
// TODO: normal decoding? (see walt.js)
// needs to know: input, output (from vertex format!)
//
// Should split attrib/index.
// 1) Decode position and non-normal attributes.
// 2) Decode indices, computing normals
// 3) Maybe normalize normals? Only necessary for refinement, or fixed?
// 4) Maybe refine normals? Should this be part of regular refinement?
// 5) Morphing
};
// Triangle strips!
// TODO: will it be an optimization to specialize this method at
// runtime for different combinations of stride, decodeOffset and
// decodeScale?
THREE.UTF8Loader.prototype.decompressAttribsInner_ = function ( str, inputStart, inputEnd,
output, outputStart, stride,
decodeOffset, decodeScale ) {
var prev = 0;
for ( var j = inputStart; j < inputEnd; j ++ ) {
var code = str.charCodeAt( j );
prev += ( code >> 1 ) ^ ( -( code & 1 ) );
output[ outputStart ] = decodeScale * ( prev + decodeOffset );
outputStart += stride;
}
};
THREE.UTF8Loader.prototype.decompressIndices_ = function( str, inputStart, numIndices,
output, outputStart ) {
var highest = 0;
for ( var i = 0; i < numIndices; i ++ ) {
var code = str.charCodeAt( inputStart ++ );
output[ outputStart ++ ] = highest - code;
if ( code === 0 ) {
highest ++;
}
}
};
THREE.UTF8Loader.prototype.decompressAABBs_ = function ( str, inputStart, numBBoxen,
decodeOffsets, decodeScales ) {
var numFloats = 6 * numBBoxen;
var inputEnd = inputStart + numFloats;
var outputStart = 0;
var bboxen = new Float32Array( numFloats );
for ( var i = inputStart; i < inputEnd; i += 6 ) {
var minX = str.charCodeAt(i + 0) + decodeOffsets[0];
var minY = str.charCodeAt(i + 1) + decodeOffsets[1];
var minZ = str.charCodeAt(i + 2) + decodeOffsets[2];
var radiusX = (str.charCodeAt(i + 3) + 1) >> 1;
var radiusY = (str.charCodeAt(i + 4) + 1) >> 1;
var radiusZ = (str.charCodeAt(i + 5) + 1) >> 1;
bboxen[ outputStart++ ] = decodeScales[0] * (minX + radiusX);
bboxen[ outputStart++ ] = decodeScales[1] * (minY + radiusY);
bboxen[ outputStart++ ] = decodeScales[2] * (minZ + radiusZ);
bboxen[ outputStart++ ] = decodeScales[0] * radiusX;
bboxen[ outputStart++ ] = decodeScales[1] * radiusY;
bboxen[ outputStart++ ] = decodeScales[2] * radiusZ;
}
return bboxen;
};
THREE.UTF8Loader.prototype.decompressMesh = function ( str, meshParams, decodeParams, name, idx, callback ) {
// Extract conversion parameters from attribArrays.
var stride = decodeParams.decodeScales.length;
var decodeOffsets = decodeParams.decodeOffsets;
var decodeScales = decodeParams.decodeScales;
var attribStart = meshParams.attribRange[0];
var numVerts = meshParams.attribRange[1];
// Decode attributes.
var inputOffset = attribStart;
var attribsOut = new Float32Array( stride * numVerts );
for (var j = 0; j < stride; j ++ ) {
var end = inputOffset + numVerts;
var decodeScale = decodeScales[j];
if ( decodeScale ) {
// Assume if decodeScale is never set, simply ignore the
// attribute.
this.decompressAttribsInner_( str, inputOffset, end,
attribsOut, j, stride,
decodeOffsets[j], decodeScale );
}
inputOffset = end;
}
var indexStart = meshParams.indexRange[ 0 ];
var numIndices = 3 * meshParams.indexRange[ 1 ];
var indicesOut = new Uint16Array( numIndices );
this.decompressIndices_( str, inputOffset, numIndices, indicesOut, 0 );
// Decode bboxen.
var bboxen = undefined;
var bboxOffset = meshParams.bboxes;
if ( bboxOffset ) {
bboxen = this.decompressAABBs_( str, bboxOffset, meshParams.names.length, decodeOffsets, decodeScales );
}
callback( name, idx, attribsOut, indicesOut, bboxen, meshParams );
};
THREE.UTF8Loader.prototype.copyAttrib = function ( stride, attribsOutFixed, lastAttrib, index ) {
for ( var j = 0; j < stride; j ++ ) {
lastAttrib[ j ] = attribsOutFixed[ stride * index + j ];
}
};
THREE.UTF8Loader.prototype.decodeAttrib2 = function ( str, stride, decodeOffsets, decodeScales, deltaStart,
numVerts, attribsOut, attribsOutFixed, lastAttrib,
index ) {
for ( var j = 0; j < 5; j ++ ) {
var code = str.charCodeAt( deltaStart + numVerts*j + index );
var delta = ( code >> 1) ^ (-(code & 1));
lastAttrib[ j ] += delta;
attribsOutFixed[ stride * index + j ] = lastAttrib[ j ];
attribsOut[ stride * index + j ] = decodeScales[ j ] * ( lastAttrib[ j ] + decodeOffsets[ j ] );
}
};
THREE.UTF8Loader.prototype.accumulateNormal = function ( i0, i1, i2, attribsOutFixed, crosses ) {
var p0x = attribsOutFixed[ 8*i0 ];
var p0y = attribsOutFixed[ 8*i0 + 1 ];
var p0z = attribsOutFixed[ 8*i0 + 2 ];
var p1x = attribsOutFixed[ 8*i1 ];
var p1y = attribsOutFixed[ 8*i1 + 1 ];
var p1z = attribsOutFixed[ 8*i1 + 2 ];
var p2x = attribsOutFixed[ 8*i2 ];
var p2y = attribsOutFixed[ 8*i2 + 1 ];
var p2z = attribsOutFixed[ 8*i2 + 2 ];
p1x -= p0x;
p1y -= p0y;
p1z -= p0z;
p2x -= p0x;
p2y -= p0y;
p2z -= p0z;
p0x = p1y*p2z - p1z*p2y;
p0y = p1z*p2x - p1x*p2z;
p0z = p1x*p2y - p1y*p2x;
crosses[ 3*i0 ] += p0x;
crosses[ 3*i0 + 1 ] += p0y;
crosses[ 3*i0 + 2 ] += p0z;
crosses[ 3*i1 ] += p0x;
crosses[ 3*i1 + 1 ] += p0y;
crosses[ 3*i1 + 2 ] += p0z;
crosses[ 3*i2 ] += p0x;
crosses[ 3*i2 + 1 ] += p0y;
crosses[ 3*i2 + 2 ] += p0z;
};
THREE.UTF8Loader.prototype.decompressMesh2 = function( str, meshParams, decodeParams, name, idx, callback ) {
var MAX_BACKREF = 96;
// Extract conversion parameters from attribArrays.
var stride = decodeParams.decodeScales.length;
var decodeOffsets = decodeParams.decodeOffsets;
var decodeScales = decodeParams.decodeScales;
var deltaStart = meshParams.attribRange[ 0 ];
var numVerts = meshParams.attribRange[ 1 ];
var codeStart = meshParams.codeRange[ 0 ];
var codeLength = meshParams.codeRange[ 1 ];
var numIndices = 3 * meshParams.codeRange[ 2 ];
var indicesOut = new Uint16Array( numIndices );
var crosses = new Int32Array( 3 * numVerts );
var lastAttrib = new Uint16Array( stride );
var attribsOutFixed = new Uint16Array( stride * numVerts );
var attribsOut = new Float32Array( stride * numVerts );
var highest = 0;
var outputStart = 0;
for ( var i = 0; i < numIndices; i += 3 ) {
var code = str.charCodeAt( codeStart ++ );
var max_backref = Math.min( i, MAX_BACKREF );
if ( code < max_backref ) {
// Parallelogram
var winding = code % 3;
var backref = i - ( code - winding );
var i0, i1, i2;
switch ( winding ) {
case 0:
i0 = indicesOut[ backref + 2 ];
i1 = indicesOut[ backref + 1 ];
i2 = indicesOut[ backref + 0 ];
break;
case 1:
i0 = indicesOut[ backref + 0 ];
i1 = indicesOut[ backref + 2 ];
i2 = indicesOut[ backref + 1 ];
break;
case 2:
i0 = indicesOut[ backref + 1 ];
i1 = indicesOut[ backref + 0 ];
i2 = indicesOut[ backref + 2 ];
break;
}
indicesOut[ outputStart ++ ] = i0;
indicesOut[ outputStart ++ ] = i1;
code = str.charCodeAt( codeStart ++ );
var index = highest - code;
indicesOut[ outputStart ++ ] = index;
if ( code === 0 ) {
for (var j = 0; j < 5; j ++ ) {
var deltaCode = str.charCodeAt( deltaStart + numVerts * j + highest );
var prediction = ((deltaCode >> 1) ^ (-(deltaCode & 1))) +
attribsOutFixed[stride*i0 + j] +
attribsOutFixed[stride*i1 + j] -
attribsOutFixed[stride*i2 + j];
lastAttrib[j] = prediction;
attribsOutFixed[ stride * highest + j ] = prediction;
attribsOut[ stride * highest + j ] = decodeScales[ j ] * ( prediction + decodeOffsets[ j ] );
}
highest ++;
} else {
this.copyAttrib( stride, attribsOutFixed, lastAttrib, index );
}
this.accumulateNormal( i0, i1, index, attribsOutFixed, crosses );
} else {
// Simple
var index0 = highest - ( code - max_backref );
indicesOut[ outputStart ++ ] = index0;
if ( code === max_backref ) {
this.decodeAttrib2( str, stride, decodeOffsets, decodeScales, deltaStart,
numVerts, attribsOut, attribsOutFixed, lastAttrib,
highest ++ );
} else {
this.copyAttrib(stride, attribsOutFixed, lastAttrib, index0);
}
code = str.charCodeAt( codeStart ++ );
var index1 = highest - code;
indicesOut[ outputStart ++ ] = index1;
if ( code === 0 ) {
this.decodeAttrib2( str, stride, decodeOffsets, decodeScales, deltaStart,
numVerts, attribsOut, attribsOutFixed, lastAttrib,
highest ++ );
} else {
this.copyAttrib( stride, attribsOutFixed, lastAttrib, index1 );
}
code = str.charCodeAt( codeStart ++ );
var index2 = highest - code;
indicesOut[ outputStart ++ ] = index2;
if ( code === 0 ) {
for ( var j = 0; j < 5; j ++ ) {
lastAttrib[ j ] = ( attribsOutFixed[ stride * index0 + j ] + attribsOutFixed[ stride * index1 + j ] ) / 2;
}
this.decodeAttrib2( str, stride, decodeOffsets, decodeScales, deltaStart,
numVerts, attribsOut, attribsOutFixed, lastAttrib,
highest ++ );
} else {
this.copyAttrib( stride, attribsOutFixed, lastAttrib, index2 );
}
this.accumulateNormal( index0, index1, index2, attribsOutFixed, crosses );
}
}
for ( var i = 0; i < numVerts; i ++ ) {
var nx = crosses[ 3*i ];
var ny = crosses[ 3*i + 1 ];
var nz = crosses[ 3*i + 2 ];
var norm = 511.0 / Math.sqrt( nx*nx + ny*ny + nz*nz );
var cx = str.charCodeAt( deltaStart + 5*numVerts + i );
var cy = str.charCodeAt( deltaStart + 6*numVerts + i );
var cz = str.charCodeAt( deltaStart + 7*numVerts + i );
attribsOut[ stride*i + 5 ] = norm*nx + ((cx >> 1) ^ (-(cx & 1)));
attribsOut[ stride*i + 6 ] = norm*ny + ((cy >> 1) ^ (-(cy & 1)));
attribsOut[ stride*i + 7 ] = norm*nz + ((cz >> 1) ^ (-(cz & 1)));
}
callback( name, idx, attribsOut, indicesOut, undefined, meshParams );
};
THREE.UTF8Loader.prototype.downloadMesh = function ( path, name, meshEntry, decodeParams, callback ) {
var loader = this;
var idx = 0;
function onprogress( req, e ) {
while ( idx < meshEntry.length ) {
var meshParams = meshEntry[ idx ];
var indexRange = meshParams.indexRange;
if ( indexRange ) {
var meshEnd = indexRange[ 0 ] + 3 * indexRange[ 1 ];
if ( req.responseText.length < meshEnd ) break;
loader.decompressMesh( req.responseText, meshParams, decodeParams, name, idx, callback );
} else {
var codeRange = meshParams.codeRange;
var meshEnd = codeRange[ 0 ] + codeRange[ 1 ];
if ( req.responseText.length < meshEnd ) break;
loader.decompressMesh2( req.responseText, meshParams, decodeParams, name, idx, callback );
}
++idx;
}
};
getHttpRequest( path, function( req, e ) {
if ( req.status === 200 || req.status === 0 ) {
onprogress( req, e );
}
// TODO: handle errors.
}, onprogress );
};
THREE.UTF8Loader.prototype.downloadMeshes = function ( path, meshUrlMap, decodeParams, callback ) {
for ( var url in meshUrlMap ) {
var meshEntry = meshUrlMap[url];
this.downloadMesh( path + url, url, meshEntry, decodeParams, callback );
}
};
THREE.UTF8Loader.prototype.createMeshCallback = function( materialBaseUrl, loadModelInfo, allDoneCallback ) {
var nCompletedUrls = 0;
var nExpectedUrls = 0;
var expectedMeshesPerUrl = {};
var decodedMeshesPerUrl = {};
var modelParts = {};
var meshUrlMap = loadModelInfo.urls;
for ( var url in meshUrlMap ) {
expectedMeshesPerUrl[ url ] = meshUrlMap[ url ].length;
decodedMeshesPerUrl[ url ] = 0;
nExpectedUrls ++;
modelParts[ url ] = new THREE.Object3D();
}
var model = new THREE.Object3D();
// Prepare materials first...
var materialCreator = new THREE.MTLLoader.MaterialCreator( materialBaseUrl, loadModelInfo.options );
materialCreator.setMaterials( loadModelInfo.materials );
materialCreator.preload();
// Create callback for creating mesh parts
var geometryCreator = new THREE.UTF8Loader.GeometryCreator();
var bufferGeometryCreator = new THREE.UTF8Loader.BufferGeometryCreator();
var meshCallback = function( name, idx, attribArray, indexArray, bboxen, meshParams ) {
// Got ourselves a new mesh
// name identifies this part of the model (url)
// idx is the mesh index of this mesh of the part
// attribArray defines the vertices
// indexArray defines the faces
// bboxen defines the bounding box
// meshParams contains the material info
var useBuffers = loadModelInfo.options.useBuffers !== undefined ? loadModelInfo.options.useBuffers : true;
if ( useBuffers ) {
var geometry = bufferGeometryCreator.create( attribArray, indexArray );
} else {
var geometry = geometryCreator.create( attribArray, indexArray );
}
var material = materialCreator.create( meshParams.material );
var mesh = new THREE.Mesh( geometry, material );
modelParts[ name ].add( mesh );
//model.add(new THREE.Mesh(geometry, material));
decodedMeshesPerUrl[ name ] ++;
if ( decodedMeshesPerUrl[ name ] === expectedMeshesPerUrl[ name ] ) {
nCompletedUrls ++;
model.add( modelParts[ name ] );
if ( nCompletedUrls === nExpectedUrls ) {
// ALL DONE!!!
allDoneCallback( model );
}
}
};
return meshCallback;
};
THREE.UTF8Loader.prototype.downloadModel = function ( geometryBase, materialBase, model, callback ) {
var meshCallback = this.createMeshCallback( materialBase, model, callback );
this.downloadMeshes( geometryBase, model.urls, model.decodeParams, meshCallback );
};
THREE.UTF8Loader.prototype.downloadModelJson = function ( jsonUrl, options, callback ) {
getJsonRequest( jsonUrl, function( loaded ) {
if ( ! loaded.decodeParams ) {
if ( options && options.decodeParams ) {
loaded.decodeParams = options.decodeParams;
} else {
loaded.decodeParams = DEFAULT_DECODE_PARAMS;
}
}
loaded.options = options;
var geometryBase = jsonUrl.substr( 0, jsonUrl.lastIndexOf( "/" ) + 1 );
var materialBase = geometryBase;
if ( options && options.geometryBase ) {
geometryBase = options.geometryBase;
if ( geometryBase.charAt( geometryBase.length - 1 ) !== "/" ) {
geometryBase = geometryBase + "/";
}
}
if ( options && options.materialBase ) {
materialBase = options.materialBase;
if ( materialBase.charAt( materialBase.length - 1 ) !== "/" ) {
materialBase = materialBase + "/";
}
}
this.downloadModel( geometryBase, materialBase, loaded, callback );
}.bind( this ) );
};
// XMLHttpRequest stuff
function getHttpRequest( url, onload, opt_onprogress ) {
var LISTENERS = {
load: function( e ) { onload( req, e ); },
progress: function( e ) { opt_onprogress( req, e ); }
};
var req = new XMLHttpRequest();
addListeners( req, LISTENERS );
req.open( 'GET', url, true );
req.send( null );
}
function getJsonRequest( url, onjson ) {
getHttpRequest( url,
function( e ) { onjson( JSON.parse( e.responseText ) ); },
function() {} );
}
function addListeners( dom, listeners ) {
// TODO: handle event capture, object binding.
for ( var key in listeners ) {
dom.addEventListener( key, listeners[ key ] );
}
}
(C) Æliens
04/09/2009
You may not copy or print any of this material without explicit permission of the author or the publisher.
In case of other copyright issues, contact the author.