topical media & game development

talk show tell print

mobile-query-three-www-live-editor-js-rawinflate.js / js



  /*
   * Id: rawinflate.js,v 0.2 2009/03/01 18:32:24 dankogai Exp 
   *
   * original:
   * http://www.onicos.com/staff/iz/amuse/javascript/expert/inflate.txt
   */
  
  (function(){
  
  /* Copyright (C) 1999 Masanao Izumo <iz@onicos.co.jp>
   * Version: 1.0.0.1
   * LastModified: Dec 25 1999
   */
  
  /* Interface:
   * data = zip_inflate(src);
   */
  
  /* constant parameters */
  var zip_WSIZE = 32768;                // Sliding Window size
  var zip_STORED_BLOCK = 0;
  var zip_STATIC_TREES = 1;
  var zip_DYN_TREES    = 2;
  
  /* for inflate */
  var zip_lbits = 9;                 // bits in base literal/length lookup table
  var zip_dbits = 6;                 // bits in base distance lookup table
  var zip_INBUFSIZ = 32768;        // Input buffer size
  var zip_INBUF_EXTRA = 64;        // Extra buffer
  
  /* variables (inflate) */
  var zip_slide;
  var zip_wp;                        // current position in slide
  var zip_fixed_tl = null;        // inflate static
  var zip_fixed_td;                // inflate static
  var zip_fixed_bl, fixed_bd;        // inflate static
  var zip_bit_buf;                // bit buffer
  var zip_bit_len;                // bits in bit buffer
  var zip_method;
  var zip_eof;
  var zip_copy_leng;
  var zip_copy_dist;
  var zip_tl, zip_td;        // literal/length and distance decoder tables
  var zip_bl, zip_bd;        // number of bits decoded by tl and td
  
  var zip_inflate_data;
  var zip_inflate_pos;
  
  /* constant tables (inflate) */
  var zip_MASK_BITS = new Array(
      0x0000,
      0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
      0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff);
  // Tables for deflate from PKZIP's appnote.txt.
  var zip_cplens = new Array( // Copy lengths for literal codes 257..285
      3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
      35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0);
  /* note: see note #13 above about the 258 in this list. */
  var zip_cplext = new Array( // Extra bits for literal codes 257..285
      0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
      3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99); // 99==invalid
  var zip_cpdist = new Array( // Copy offsets for distance codes 0..29
      1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
      257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
      8193, 12289, 16385, 24577);
  var zip_cpdext = new Array( // Extra bits for distance codes
      0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
      7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
      12, 12, 13, 13);
  var zip_border = new Array(  // Order of the bit length code lengths
      16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15);
  /* objects (inflate) */
  
  var zip_HuftList = function() {
      this.next = null;
      this.list = null;
  }
  
  var zip_HuftNode = function() {
      this.e = 0; // number of extra bits or operation
      this.b = 0; // number of bits in this code or subcode
  
      // union
      this.n = 0; // literal, length base, or distance base
      this.t = null; // (zip_HuftNode) pointer to next level of table
  }
  
  var zip_HuftBuild = function(b,        // code lengths in bits (all assumed <= BMAX)
                         n,        // number of codes (assumed <= N_MAX)
                         s,        // number of simple-valued codes (0..s-1)
                         d,        // list of base values for non-simple codes
                         e,        // list of extra bits for non-simple codes
                         mm        // maximum lookup bits
                     ) {
      this.BMAX = 16;   // maximum bit length of any code
      this.N_MAX = 288; // maximum number of codes in any set
      this.status = 0;        // 0: success, 1: incomplete table, 2: bad input
      this.root = null;        // (zip_HuftList) starting table
      this.m = 0;                // maximum lookup bits, returns actual
  
  /* Given a list of code lengths and a maximum table size, make a set of
     tables to decode that set of codes.        Return zero on success, one if
     the given code set is incomplete (the tables are still built in this
     case), two if the input is invalid (all zero length codes or an
     oversubscribed set of lengths), and three if not enough memory.
     The code with value 256 is special, and the tables are constructed
     so that no bits beyond that code are fetched when that code is
     decoded. */
      {
          var a;                        // counter for codes of length k
          var c = new Array(this.BMAX+1);        // bit length count table
          var el;                        // length of EOB code (value 256)
          var f;                        // i repeats in table every f entries
          var g;                        // maximum code length
          var h;                        // table level
          var i;                        // counter, current code
          var j;                        // counter
          var k;                        // number of bits in current code
          var lx = new Array(this.BMAX+1);        // stack of bits per table
          var p;                        // pointer into c[], b[], or v[]
          var pidx;                // index of p
          var q;                        // (zip_HuftNode) points to current table
          var r = new zip_HuftNode(); // table entry for structure assignment
          var u = new Array(this.BMAX); // zip_HuftNode[BMAX][]  table stack
          var v = new Array(this.N_MAX); // values in order of bit length
          var w;
          var x = new Array(this.BMAX+1);// bit offsets, then code stack
          var xp;                        // pointer into x or c
          var y;                        // number of dummy codes added
          var z;                        // number of entries in current table
          var o;
          var tail;                // (zip_HuftList)
  
          tail = this.root = null;
          for(i = 0; i < c.length; i++)
              c[i] = 0;
          for(i = 0; i < lx.length; i++)
              lx[i] = 0;
          for(i = 0; i < u.length; i++)
              u[i] = null;
          for(i = 0; i < v.length; i++)
              v[i] = 0;
          for(i = 0; i < x.length; i++)
              x[i] = 0;
  
          // Generate counts for each bit length
          el = n > 256 ? b[256] : this.BMAX; // set length of EOB code, if any
          p = b; pidx = 0;
          i = n;
          do {
              c[p[pidx]]++;        // assume all entries <= BMAX
              pidx++;
          } while(--i > 0);
          if(c[0] == n) {        // null input--all zero length codes
              this.root = null;
              this.m = 0;
              this.status = 0;
              return;
          }
  
          // Find minimum and maximum length, bound *m by those
          for(j = 1; j <= this.BMAX; j++)
              if(c[j] != 0)
                  break;
          k = j;                        // minimum code length
          if(mm < j)
              mm = j;
          for(i = this.BMAX; i != 0; i--)
              if(c[i] != 0)
                  break;
          g = i;                        // maximum code length
          if(mm > i)
              mm = i;
  
          // Adjust last length count to fill out codes, if needed
          for(y = 1 << j; j < i; j++, y <<= 1)
              if((y -= c[j]) < 0) {
                  this.status = 2;        // bad input: more codes than bits
                  this.m = mm;
                  return;
              }
          if((y -= c[i]) < 0) {
              this.status = 2;
              this.m = mm;
              return;
          }
          c[i] += y;
  
          // Generate starting offsets into the value table for each length
          x[1] = j = 0;
          p = c;
          pidx = 1;
          xp = 2;
          while(--i > 0)                // note that i == g from above
              x[xp++] = (j += p[pidx++]);
  
          // Make a table of values in order of bit lengths
          p = b; pidx = 0;
          i = 0;
          do {
              if((j = p[pidx++]) != 0)
                  v[x[j]++] = i;
          } while(++i < n);
          n = x[g];                        // set n to length of v
  
          // Generate the Huffman codes and for each, make the table entries
          x[0] = i = 0;                // first Huffman code is zero
          p = v; pidx = 0;                // grab values in bit order
          h = -1;                        // no tables yet--level -1
          w = lx[0] = 0;                // no bits decoded yet
          q = null;                        // ditto
          z = 0;                        // ditto
  
          // go through the bit lengths (k already is bits in shortest code)
          for(; k <= g; k++) {
              a = c[k];
              while(a-- > 0) {
                  // here i is the Huffman code of length k bits for value p[pidx]
                  // make tables up to required level
                  while(k > w + lx[1 + h]) {
                      w += lx[1 + h]; // add bits already decoded
                      h++;
  
                      // compute minimum size table less than or equal to *m bits
                      z = (z = g - w) > mm ? mm : z; // upper limit
                      if((f = 1 << (j = k - w)) > a + 1) { // try a k-w bit table
                          // too few codes for k-w bit table
                          f -= a + 1;        // deduct codes from patterns left
                          xp = k;
                          while(++j < z) { // try smaller tables up to z bits
                              if((f <<= 1) <= c[++xp])
                                  break;        // enough codes to use up j bits
                              f -= c[xp];        // else deduct codes from patterns
                          }
                      }
                      if(w + j > el && w < el)
                          j = el - w;        // make EOB code end at table
                      z = 1 << j;        // table entries for j-bit table
                      lx[1 + h] = j; // set table size in stack
  
                      // allocate and link in new table
                      q = new Array(z);
                      for(o = 0; o < z; o++) {
                          q[o] = new zip_HuftNode();
                      }
  
                      if(tail == null)
                          tail = this.root = new zip_HuftList();
                      else
                          tail = tail.next = new zip_HuftList();
                      tail.next = null;
                      tail.list = q;
                      u[h] = q;        // table starts after link
  
                      /* connect to last table, if there is one */
                      if(h > 0) {
                          x[h] = i;                // save pattern for backing up
                          r.b = lx[h];        // bits to dump before this table
                          r.e = 16 + j;        // bits in this table
                          r.t = q;                // pointer to this table
                          j = (i & ((1 << w) - 1)) >> (w - lx[h]);
                          u[h-1][j].e = r.e;
                          u[h-1][j].b = r.b;
                          u[h-1][j].n = r.n;
                          u[h-1][j].t = r.t;
                      }
                  }
  
                  // set up table entry in r
                  r.b = k - w;
                  if(pidx >= n)
                      r.e = 99;                // out of values--invalid code
                  else if(p[pidx] < s) {
                      r.e = (p[pidx] < 256 ? 16 : 15); // 256 is end-of-block code
                      r.n = p[pidx++];        // simple code is just the value
                  } else {
                      r.e = e[p[pidx] - s];        // non-simple--look up in lists
                      r.n = d[p[pidx++] - s];
                  }
  
                  // fill code-like entries with r //
                  f = 1 << (k - w);
                  for(j = i >> w; j < z; j += f) {
                      q[j].e = r.e;
                      q[j].b = r.b;
                      q[j].n = r.n;
                      q[j].t = r.t;
                  }
  
                  // backwards increment the k-bit code i
                  for(j = 1 << (k - 1); (i & j) != 0; j >>= 1)
                      i ^= j;
                  i ^= j;
  
                  // backup over finished tables
                  while((i & ((1 << w) - 1)) != x[h]) {
                      w -= lx[h];                // don't need to update q
                      h--;
                  }
              }
          }
  
          /* return actual size of base table */
          this.m = lx[1];
  
          /* Return true (1) if we were given an incomplete table */
          this.status = ((y != 0 && g != 1) ? 1 : 0);
      } /* end of constructor */
  }
  
  /* routines (inflate) */
  
  var zip_GET_BYTE = function() {
      if(zip_inflate_data.length == zip_inflate_pos)
          return -1;
      return zip_inflate_data.charCodeAt(zip_inflate_pos++) & 0xff;
  }
  
  var zip_NEEDBITS = function(n) {
      while(zip_bit_len < n) {
          zip_bit_buf |= zip_GET_BYTE() << zip_bit_len;
          zip_bit_len += 8;
      }
  }
  
  var zip_GETBITS = function(n) {
      return zip_bit_buf & zip_MASK_BITS[n];
  }
  
  var zip_DUMPBITS = function(n) {
      zip_bit_buf >>= n;
      zip_bit_len -= n;
  }
  
  var zip_inflate_codes = function(buff, off, size) {
      /* inflate (decompress) the codes in a deflated (compressed) block.
         Return an error code or zero if it all goes ok. */
      var e;                // table entry flag/number of extra bits
      var t;                // (zip_HuftNode) pointer to table entry
      var n;
  
      if(size == 0)
        return 0;
  
      // inflate the coded data
      n = 0;
      for(;;) {                        // do until end of block
          zip_NEEDBITS(zip_bl);
          t = zip_tl.list[zip_GETBITS(zip_bl)];
          e = t.e;
          while(e > 16) {
              if(e == 99)
                  return -1;
              zip_DUMPBITS(t.b);
              e -= 16;
              zip_NEEDBITS(e);
              t = t.t[zip_GETBITS(e)];
              e = t.e;
          }
          zip_DUMPBITS(t.b);
  
          if(e == 16) {                // then it's a literal
              zip_wp &= zip_WSIZE - 1;
              buff[off + n++] = zip_slide[zip_wp++] = t.n;
              if(n == size)
                  return size;
              continue;
          }
  
          // exit if end of block
          if(e == 15)
              break;
  
          // it's an EOB or a length
  
          // get length of block to copy
          zip_NEEDBITS(e);
          zip_copy_leng = t.n + zip_GETBITS(e);
          zip_DUMPBITS(e);
  
          // decode distance of block to copy
          zip_NEEDBITS(zip_bd);
          t = zip_td.list[zip_GETBITS(zip_bd)];
          e = t.e;
  
          while(e > 16) {
              if(e == 99)
                  return -1;
              zip_DUMPBITS(t.b);
              e -= 16;
              zip_NEEDBITS(e);
              t = t.t[zip_GETBITS(e)];
              e = t.e;
          }
          zip_DUMPBITS(t.b);
          zip_NEEDBITS(e);
          zip_copy_dist = zip_wp - t.n - zip_GETBITS(e);
          zip_DUMPBITS(e);
  
          // do the copy
          while(zip_copy_leng > 0 && n < size) {
              zip_copy_leng--;
              zip_copy_dist &= zip_WSIZE - 1;
              zip_wp &= zip_WSIZE - 1;
              buff[off + n++] = zip_slide[zip_wp++]
                  = zip_slide[zip_copy_dist++];
          }
  
          if(n == size)
              return size;
      }
  
      zip_method = -1; // done
      return n;
  }
  
  var zip_inflate_stored = function(buff, off, size) {
      /* "decompress" an inflated type 0 (stored) block. */
      var n;
  
      // go to byte boundary
      n = zip_bit_len & 7;
      zip_DUMPBITS(n);
  
      // get the length and its complement
      zip_NEEDBITS(16);
      n = zip_GETBITS(16);
      zip_DUMPBITS(16);
      zip_NEEDBITS(16);
      if(n != ((~zip_bit_buf) & 0xffff))
          return -1;                        // error in compressed data
      zip_DUMPBITS(16);
  
      // read and output the compressed data
      zip_copy_leng = n;
  
      n = 0;
      while(zip_copy_leng > 0 && n < size) {
          zip_copy_leng--;
          zip_wp &= zip_WSIZE - 1;
          zip_NEEDBITS(8);
          buff[off + n++] = zip_slide[zip_wp++] =
              zip_GETBITS(8);
          zip_DUMPBITS(8);
      }
  
      if(zip_copy_leng == 0)
        zip_method = -1; // done
      return n;
  }
  
  var zip_inflate_fixed = function(buff, off, size) {
      /* decompress an inflated type 1 (fixed Huffman codes) block.  We should
         either replace this with a custom decoder, or at least precompute the
         Huffman tables. */
  
      // if first time, set up tables for fixed blocks
      if(zip_fixed_tl == null) {
          var i;                        // temporary variable
          var l = new Array(288);        // length list for huft_build
          var h;        // zip_HuftBuild
  
          // literal table
          for(i = 0; i < 144; i++)
              l[i] = 8;
          for(; i < 256; i++)
              l[i] = 9;
          for(; i < 280; i++)
              l[i] = 7;
          for(; i < 288; i++)        // make a complete, but wrong code set
              l[i] = 8;
          zip_fixed_bl = 7;
  
          h = new zip_HuftBuild(l, 288, 257, zip_cplens, zip_cplext,
                                zip_fixed_bl);
          if(h.status != 0) {
              alert("HufBuild error: "+h.status);
              return -1;
          }
          zip_fixed_tl = h.root;
          zip_fixed_bl = h.m;
  
          // distance table
          for(i = 0; i < 30; i++)        // make an incomplete code set
              l[i] = 5;
          zip_fixed_bd = 5;
  
          h = new zip_HuftBuild(l, 30, 0, zip_cpdist, zip_cpdext, zip_fixed_bd);
          if(h.status > 1) {
              zip_fixed_tl = null;
              alert("HufBuild error: "+h.status);
              return -1;
          }
          zip_fixed_td = h.root;
          zip_fixed_bd = h.m;
      }
  
      zip_tl = zip_fixed_tl;
      zip_td = zip_fixed_td;
      zip_bl = zip_fixed_bl;
      zip_bd = zip_fixed_bd;
      return zip_inflate_codes(buff, off, size);
  }
  
  var zip_inflate_dynamic = function(buff, off, size) {
      // decompress an inflated type 2 (dynamic Huffman codes) block.
      var i;                // temporary variables
      var j;
      var l;                // last length
      var n;                // number of lengths to get
      var t;                // (zip_HuftNode) literal/length code table
      var nb;                // number of bit length codes
      var nl;                // number of literal/length codes
      var nd;                // number of distance codes
      var ll = new Array(286+30); // literal/length and distance code lengths
      var h;                // (zip_HuftBuild)
  
      for(i = 0; i < ll.length; i++)
          ll[i] = 0;
  
      // read in table lengths
      zip_NEEDBITS(5);
      nl = 257 + zip_GETBITS(5);        // number of literal/length codes
      zip_DUMPBITS(5);
      zip_NEEDBITS(5);
      nd = 1 + zip_GETBITS(5);        // number of distance codes
      zip_DUMPBITS(5);
      zip_NEEDBITS(4);
      nb = 4 + zip_GETBITS(4);        // number of bit length codes
      zip_DUMPBITS(4);
      if(nl > 286 || nd > 30)
        return -1;                // bad lengths
  
      // read in bit-length-code lengths
      for(j = 0; j < nb; j++)
      {
          zip_NEEDBITS(3);
          ll[zip_border[j]] = zip_GETBITS(3);
          zip_DUMPBITS(3);
      }
      for(; j < 19; j++)
          ll[zip_border[j]] = 0;
  
      // build decoding table for trees--single level, 7 bit lookup
      zip_bl = 7;
      h = new zip_HuftBuild(ll, 19, 19, null, null, zip_bl);
      if(h.status != 0)
          return -1;        // incomplete code set
  
      zip_tl = h.root;
      zip_bl = h.m;
  
      // read in literal and distance code lengths
      n = nl + nd;
      i = l = 0;
      while(i < n) {
          zip_NEEDBITS(zip_bl);
          t = zip_tl.list[zip_GETBITS(zip_bl)];
          j = t.b;
          zip_DUMPBITS(j);
          j = t.n;
          if(j < 16)                // length of code in bits (0..15)
              ll[i++] = l = j;        // save last length in l
          else if(j == 16) {        // repeat last length 3 to 6 times
              zip_NEEDBITS(2);
              j = 3 + zip_GETBITS(2);
              zip_DUMPBITS(2);
              if(i + j > n)
                  return -1;
              while(j-- > 0)
                  ll[i++] = l;
          } else if(j == 17) {        // 3 to 10 zero length codes
              zip_NEEDBITS(3);
              j = 3 + zip_GETBITS(3);
              zip_DUMPBITS(3);
              if(i + j > n)
                  return -1;
              while(j-- > 0)
                  ll[i++] = 0;
              l = 0;
          } else {                // j == 18: 11 to 138 zero length codes
              zip_NEEDBITS(7);
              j = 11 + zip_GETBITS(7);
              zip_DUMPBITS(7);
              if(i + j > n)
                  return -1;
              while(j-- > 0)
                  ll[i++] = 0;
              l = 0;
          }
      }
  
      // build the decoding tables for literal/length and distance codes
      zip_bl = zip_lbits;
      h = new zip_HuftBuild(ll, nl, 257, zip_cplens, zip_cplext, zip_bl);
      if(zip_bl == 0)        // no literals or lengths
          h.status = 1;
      if(h.status != 0) {
          if(h.status == 1)
              ;// **incomplete literal tree**
          return -1;                // incomplete code set
      }
      zip_tl = h.root;
      zip_bl = h.m;
  
      for(i = 0; i < nd; i++)
          ll[i] = ll[i + nl];
      zip_bd = zip_dbits;
      h = new zip_HuftBuild(ll, nd, 0, zip_cpdist, zip_cpdext, zip_bd);
      zip_td = h.root;
      zip_bd = h.m;
  
      if(zip_bd == 0 && nl > 257) {   // lengths but no distances
          // **incomplete distance tree**
          return -1;
      }
  
      if(h.status == 1) {
          ;// **incomplete distance tree**
      }
      if(h.status != 0)
          return -1;
  
      // decompress until an end-of-block code
      return zip_inflate_codes(buff, off, size);
  }
  
  var zip_inflate_start = function() {
      var i;
  
      if(zip_slide == null)
          zip_slide = new Array(2 * zip_WSIZE);
      zip_wp = 0;
      zip_bit_buf = 0;
      zip_bit_len = 0;
      zip_method = -1;
      zip_eof = false;
      zip_copy_leng = zip_copy_dist = 0;
      zip_tl = null;
  }
  
  var zip_inflate_internal = function(buff, off, size) {
      // decompress an inflated entry
      var n, i;
  
      n = 0;
      while(n < size) {
          if(zip_eof && zip_method == -1)
              return n;
  
          if(zip_copy_leng > 0) {
              if(zip_method != zip_STORED_BLOCK) {
                  // STATIC_TREES or DYN_TREES
                  while(zip_copy_leng > 0 && n < size) {
                      zip_copy_leng--;
                      zip_copy_dist &= zip_WSIZE - 1;
                      zip_wp &= zip_WSIZE - 1;
                      buff[off + n++] = zip_slide[zip_wp++] =
                          zip_slide[zip_copy_dist++];
                  }
              } else {
                  while(zip_copy_leng > 0 && n < size) {
                      zip_copy_leng--;
                      zip_wp &= zip_WSIZE - 1;
                      zip_NEEDBITS(8);
                      buff[off + n++] = zip_slide[zip_wp++] = zip_GETBITS(8);
                      zip_DUMPBITS(8);
                  }
                  if(zip_copy_leng == 0)
                      zip_method = -1; // done
              }
              if(n == size)
                  return n;
          }
  
          if(zip_method == -1) {
              if(zip_eof)
                  break;
  
              // read in last block bit
              zip_NEEDBITS(1);
              if(zip_GETBITS(1) != 0)
                  zip_eof = true;
              zip_DUMPBITS(1);
  
              // read in block type
              zip_NEEDBITS(2);
              zip_method = zip_GETBITS(2);
              zip_DUMPBITS(2);
              zip_tl = null;
              zip_copy_leng = 0;
          }
  
          switch(zip_method) {
            case 0: // zip_STORED_BLOCK
              i = zip_inflate_stored(buff, off + n, size - n);
              break;
  
            case 1: // zip_STATIC_TREES
              if(zip_tl != null)
                  i = zip_inflate_codes(buff, off + n, size - n);
              else
                  i = zip_inflate_fixed(buff, off + n, size - n);
              break;
  
            case 2: // zip_DYN_TREES
              if(zip_tl != null)
                  i = zip_inflate_codes(buff, off + n, size - n);
              else
                  i = zip_inflate_dynamic(buff, off + n, size - n);
              break;
  
            default: // error
              i = -1;
              break;
          }
  
          if(i == -1) {
              if(zip_eof)
                  return 0;
              return -1;
          }
          n += i;
      }
      return n;
  }
  
  var zip_inflate = function(str) {
      var i, j;
  
      zip_inflate_start();
      zip_inflate_data = str;
      zip_inflate_pos = 0;
  
      var buff = new Array(1024);
      var aout = [];
      while((i = zip_inflate_internal(buff, 0, buff.length)) > 0) {
          var cbuf = new Array(i);
          for(j = 0; j < i; j++){
              cbuf[j] = String.fromCharCode(buff[j]);
          }
          aout[aout.length] = cbuf.join("");
      }
      zip_inflate_data = null; // G.C.
      return aout.join("");
  }
  
  if (! window.RawDeflate) RawDeflate = {};
  RawDeflate.inflate = zip_inflate;
  
  })();
  


(C) Æliens 04/09/2009

You may not copy or print any of this material without explicit permission of the author or the publisher. In case of other copyright issues, contact the author.