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We determine both the in-plane and out-of-plane dynamics of viscoelastic membranes separating two vis-
cous fluids in order to understand microrheological studies of such membranes. We demonstrate the general
viscoelastic signatures in the dynamics of shear, bending, and compression modes. We show that these modes
remain independent in the presence of hydrodynamic interactions. The full response functions for motion both
in-plane and out-of-plane are derived for the general case of viscoelastic films in contact with arbitrary viscous
fluids. Specifically, we derive closed-form expressions for the in-plane longitudinal and transverse response
functions for viscous membranes embedded in fluid media. We also find a screening of the otherwise two-
dimensional character of the response to point forces due to the presence of the solvent.
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[. INTRODUCTION “rheological microscope,” providing insights into the regu-
lation and time evolution of the mechanical properties of
Membranes and biopolymers form many of the most basivarious intracellular structures over the course of the cellular
structures of plant and animal cells. These fundamentdife cycle, or in response to various external stimuli. Such
building blocks frequently occur together in complex struc-studies of the cytoplasm are already undenj&§,17. One
tures. In animal cells, for instance, the outer membrane igssential feature of the cell is the cell membrane, an essen-
often strongly associated with a network of filamentous actially two-dimensional lipid bilayer incorporating a wide va-
tin, one of the most prevalent proteins in the cell. This actinriety of dissolved proteins and anchored to a cytoskeletal
cortex is viscoelastic and it contributes significantly to thenetwork. Fluctuation-based microrheological studies of arti-
response of whole cells to external stress. Many prior physificial biopolymer-membrane complexg,7] have been per-
cal studies, both theoretical as well as experimental, haveormed, and efforts are underway to extend such techniques
concerned the structure and dynamics of simple membrands the membranes of real cel[48]. In order to study the
[1] and interface§2-5]. Much less is known about com- rheology of the cell membrane using microrheological tech-
plexes of membranes with biopolymers. Recent experimentsiques, the previously studied methods used to extract rheo-
have demonstrated the ability to both construct and pimobe logical measurements from thermal fluctuations in three-
vitro models consisting of lipid membranes with attacheddimensional samplegl1-13,15,19,2Dneed to be extended
actin biopolymer{6—8]. By a microrheology technique, the to the problem of a viscoelastic membrane coupled to a vis-
material properties of these micrometer-scale viscoelasticous solven{6,7].
films could be measured. Here, we calculate the dynamics of In this paper we consider such an extension of these ideas,
viscoelastic membranes, and thereby determine their rewith an eye toward not only cellular microrheology, but also
sponse to external forces. We demonstrate, among othéne investigation of a wide variety of systems in soft physics,
things, the general signatures of viscoelasticity in the dynamwherein a viscoelastic membrane is coupled to a viscous
ics of both shear and bend. These effects have importariluid (typically wate). Examples include emulsions, vesicles,
implications for previous and ongoing microrheological and Langmuir monolayers. We calculate the position re-
studies of both the model biopolymer-membrane complexesponse to a force of a small rigid particle embedded in the
as well as real cells. complex, soft, viscoelastic medium. Using the fluctuation-
Microrheology[9-14] studies the rheological properties dissipation theorerf21] we can then compute the autocorre-
of a material by the use of small probe particles, which carlations of the probe particle’s position—a quantity accessible
either be actively manipulated by external for¢®@§ or im-  in experiments. As in previous theoretical work in this field
aged while subject to thermal fluctuations. It is possible, fof1,6,7,12,13,19,2) careful attention must be paid to the full
instance, to extract the viscoelastic moduli from observationsinear mode structure of the system. The observed thermal
of the fluctuating position of a smallBrownian particle fluctuations of the probe particle are in response to all such
embedded in the mediufi0-13,13. The technique holds modes that couple to the particle position, thus the full mode
out great promise as a biological probe measuring the matespectrum must be determined in order to interpret microrheo-
rial properties of living cell§9]. In effect, the judicious ap- logical data. This is in distinction to more traditional rheol-
plication of this technique may permit the creation of aogy, which is a linear response measurement of the system to
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applied shear strain and therefore measures the shear modu- z
lus directly. In particular, in this membrane study we are
required to calculate the hydrodynamic flows the low- y
Reynolds-number limjtin the viscous fluid abovésuper-
phas¢ and below(subphasethe membrane generated by
membrane distortions. The understanding of these flows is

essential in calculating the modes of the combined system {(5 X
and, hence, the response function of the probe particle. This
point has been previously recognized by Brochard and Len- @)

non[1] in their calculation of the decay of membrane bend-
ing perturbations when coupled to a viscous fluid, and was
also used in the interpretation of the recent experiments on
actin-coated membran¢s,7].

Qualitatively, we find that the introduction of a viscous
subphase and/or superphase introduces a new length scale
over which shear waves in the two-dimensional membrane
decay due to the viscous damping of the three-dimensional FIG. 1. The flat _mer_nbrane considered in this_ paper. As shown in
fluid. The appearance of a new length scale is, of course, nd® the membrane lies in they out-of-plane coordinate system. The
surprising given that the ratio of a two-dimensional mem-in-plane dlsplgcement field is defined in the plane of the mem-
brane shear modulug(w) and a three-dimensional fluid Prane. The fluid superphase 0 and subphase<0 are not shown.
shear modulusG(w) = —iw7 yields a length. In fact this In (b) the edge-on view of the _me_mbrane s_hows the \_/(_ertl_cal dis-

. . lacement of the membranésolid ling) from its flat, equilibrium
length has been commented upon previously in the conte&ape(dotted ling
of viscous films in contact with a viscous solv¢@®,23. In ’
the case of membrane dynamics and microrheology, it sets @

prqbe-partlcle—dependent, high frequgncy limit, beyondthen break the subphase/superphase symmetry in Sec. IV and
which the dynamlc_s are controlled_ennrely by the SOlvemreanalyze the response function for the general case. Finally,
[6,7). In ggneral, this _Iength determ_lnes a crossover Iengtqn Sec. V we compute the predicted position autocorrelations
below which the_ strains are two d|men3|onal in characterof a particle embedded in a membrane whose material prop-
and apove W.h'Ch they are dominated by the three'erties are typical of the various classes of systems mentioned
dlmenS|ong fluid. - L above. We pay particular attention to the system of an actin-
In addition to the role of membrane-liquid coupling in the ., lipid bilayer that has been investigated experimentally

shear modes, we perform a similar analysis of bendin Helfer et al. [6.7]. Wi lud d furth )
modes of the membrane. We reproduce the Brochard arlgly elferet al. [6,7]. We conclude and propose further ex

: ; erimental and theoretical work in Sec. VI.
Lennon results for the mode structure in the symmetric case,
in which the subphase and superphase fluids have the same
viscosity, and we assess the out-of-plane response function in

the manner outlined briefly above. We go on to calculate the We now determine the modes of the membrane coupled
response function in this more general case of two fluidsydrodynamically to thetypically aqueous subphase and
with different viscosities above and below the membranesuperphase. The essential calculation of these involves solv-
The asymmetric problem has clear physical relevance to thiag the equations of motion for the fluid above and below the
dynamics of cellular membranes as well as microemulsionsnembrane given a certain deformation mode of that mem-
Perhaps the most dramatic example of broken symmetry ogyrane. We shall do this for the three modes of membrane
curs in the study of Langmuir monolayer dynamics. In thisdeformation, which we show to be independent. These
case, the subphagéypically aqueousand the superphase modes include two in-plane modes, shémansverse and
(air) have viscosities which differ by many orders of magni- compression(longitudina), as well as the out-of-plane,
tude. In the present work, we consider the general case @fending mode of the membrane. We consider first the modes
two fluids, above and below, with a general viscoelastic filmof in-plane membrane deformation, i.e., those that do not
in between4]. involve curvature of the membrane. As long as the mem-
Finally we point out that it is well known that in mem- prane is flat in equilibrium, these modes are linearly indepen-
branes whose equilibrium shapes are not flat, there is a line@lent. They are also linearly independent of out-of-plane,
coupling of bending modes to in-plane distortions due onlybending deformations about a flat state.
to the nontrivial geometry of the surfa¢24]. We will not The membrane is assumed to lie in theplane as shown
discuss this sort of coupling in the present work and restricin Fig. 1. The strain field: is a two-dimensional vector lying
the present analysis to the dynamics of flat membranes leayn the plane of membrane. We now need to determine the
ing the role of curvature in microrheology to a later paper. fluid velocity field above the membrane*0) associated

The remainder of this paper is organized as follows. Inwith this shear wave. Working in the limit of zero Reynolds
Sec. Il we discuss the coupled modes of the membrane vislumber, we solve the Stokes equation

cous fluid system. We use this analysis of the mode structure
in Sec. Il to determine the response function of a rigid par- nVv=VP, (1)

le embedded in the membrane in the symmetric case. We

Il. THE MODES OF THE SYSTEM
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where the three-dimensional vecteris the fluid velocity ing by the surrounding fluid introduces a new decay length
field andP is the hydrostatic pressure that enforces the fluidfor shear waves in the membrane even in the case when the
incompressibility membrane was perfectly elastic, i.g(w) = ug, a real con-
stant. This will be discussed later. We now turn to the other
V.v=0. ) in-plane mode of the membrane, the longitudinal or com-

These equations must be solved subject to the boundaR/reSS'on mode.

conditions ,
B. Compression mode
_ _9 We now apply a longitudinal compression wave in the
v(xz=0)= at ux.n, @ membrane having a strain field
limv(x,z,t)=0 4 u(x,t) =xU,e' (@ (10)
Z—®

) ) N _ and determine the associated fluid velocity field in the super-
reflecting the stick boundary conditions of the fluid at thephase ¢>0).

surface of the membrane and the requirement that the fluid From an examination of the fluid flow near the fluid/
velocity field go to zero at large distances from the mem-memprane boundary, we note that the compression mode in-
brane. jects a sinusoidally varying vorticity field that is directed
_ along they axis and is varying in the direction. Since the
A. Shear deformation vorticity must satisfy the Laplace equatidiq. (7)] and
We choose membrane coordinates so that the shear wag#ce the boundary conditions require it to vary sinusoidally

propagates in th& direction and the deformation is in tye  in the x direction, the fluid vorticity must decay exponen-
direction. Thus the simple, in-plane shear deformation of thaially into the fluid, i.e., in thez direction. Based on these
membrane is described by the strain field considerations, we expect that the vorticfd=V X v takes
. ) the form
u(y,t)=yUge' @ . (5)
_ Q=7 lyelPeldlz (12)
From the symmetry of the problem we look for a solution
of Eqg. (1) with boundary conditions given by Eq&), (3),  in the superphase. The fluid velocity must vanish at large
and(4) of the form distances from the membrane so we have chosen a decaying

exponential in thez direction in Eq.(11). The constantr,

with dimensions of time, is as yet undetermined. It will be

wheref(2) is an unknown function satisfying the conditions selected to enforce the stick boundary conditions of the fluid

f(0)=1, lim__ (2)=0, so that the ansatp) satisfies the 2 he membrane's surface. From the above equation and
B s ' incompressibility we find the differential equation obeyed by

requisite boundary conditions. The Stokes equation demandge z component of the fluid velocity field in the superphase,
that the vorticity of fluid flow, V Xv, satisfies Laplace’s

equation

v=—iwUgyf(z)e (@, (6)

(92+ ag)uz=—ige-lq\2eiw. (12
V2(VXv)=0. 7

Once again, we use the ansatz far,: v,(x,2)
=—if(2)e'(™ “Y and find a differential equation fd(z) of
the form

Using our ansatz, we find that the unknown functign)
satisfies the differential equation

&t 2f=0 8 d?f
az 4170 ® & qpr=Jertie 13

Along with the boundary conditions given above fifz),

we find a solution for the velocity field in the region above ' "€ Poundary conditions at the membrane and at infinity

the membranez>0), require thatf(O)inmzﬂmf(z)zo.
o _ The homogeneous solution of the above boundary condi-
V(X,Z,t) = —i wUqye'®ldlzg=iot, (9)  tion vanishes upon the application of the boundary condi-

_ o o _ tions onf(z). This leaves only the particular solution to give
The fluid velocity in the subphase<0) is similar withz  the solution forv, in the superphase. Integrating the fluid
— —z. Returning to the Stokes equation we find that there isncompressibility equation, Eq2), then gives the accompa-

no pressure gradient associated with this fluid motion. Weyying solution forv, . We find the fluid velocity to be given
see that the shear flow induced in the three-dimensional vigyy

cous liquid phases decays over a distance comparable to the .
wavelength of the in-plane shear mode. This viscous damp- ve(X,2,t) = —iwUy[1—|qg|z]e”l9%ei@x—ot (14
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3 T d d d d where h(x,t) measures the displacement of the membrane
AR R EEE A surface in the direction normal to its surface, i.e., zhei-
P NN PR R LA R A rection. See Fig. 1. Once again, using the Stokes equation we
N N R R E LR LR LR L AR calculate the fluid flow in the superphase generated by such a
RN R P LR R R R R AL PP membrane displacement. The vorticity generated by the
T Y T e L L AR A R R R R membrane motion must still satisfy Laplace’s equation; the
1] R R R AR R R R L LR R symmetry of the problem admits flows only in tke plane.
__H‘”“““““,,,””H“,,,,. We assume that the solution takes the form
1"'11‘111111“" cetttttttttte., " .. 5
"'1;;1”“““..-rlfffffi't\\\\.. V(X,Z,t)Z[UX(Z)X-I-UZ(Z)Z]G'(qX ot), (18
. w222ttt A, . . L. .
OSFrrecviiiivnans e, Using the Laplace equation for the vorticity and the in-
DESAEAARER D - compressibility condition we find two differential equations
U nandiiibhhassssssssantiinann bk for the unknown function®,(z),v,(2),
_0‘5 i " i i i i i ] dvz
-3 -2 -1 0 1 2 3 'qvx(z)+E:01 (19

FIG. 2. The membrane compression mode with associated flow
field in the superphase. The membrane, seen edge-on as a dotted 3 2
, . d*v, . d<, dv, .
line, undergoes a compression wave of wavelength Phe vector —iqg—= - q2_ + |q3vz= 0. (20)
field represents the fluid flow in the superphase and shows the ex- dz? d7z dz
ponentially decaying vorticity.

Combining Egs(19) and (20) in order to eliminatey,, we

v,(X,2,t)=—wUyqze |zl (@x—ot), (15 arrive at a differential equation governimng alone,
Returning to the Stokes equation we can calculate the pres- d%v d2
sure field associated with the above flow. It is interesting to —— —20°— +q%,=0, (21)
note that there is a sinusoidally varying pressure field at the dz* dz

surface of the membrane. We find that, for the compressional
wave in the membrane introduced above, the pressure at thghich has the solution
upper surface of the membrane+£0*) takes the form
v,(2)=C €92+ Coe 921 Cozddz C ze 0z, (22)
P(x,t)=—2nwqUye' (b, (16)

To satisfy the boundary condition at infinity we $et=C,
It appears from the hydrodynamic flow field shown in Fig. 2, = 0. After integrating Eq(19) to obtain a solution foo,(z)
and from the pressure field calculated above in @6@) that  and applying the stick boundary conditions at the surface of
there should be a membrane deformation along its normahe membrane, we return to Ed.8) to write the solution for
accompanying the membrane compression mode. Of coursghe fluid flow field in the superphase,
in the symmetric case where the fluids in the superphase and

subphase are identical, such a normal deformation must van- v(X,2,t) = — whyqze 1Azl @x—wt) (23
ish by symmetry. As soon as this symmetry is broken, how-
ever, there should be a membrane height fluctuation in re- v,(X,2,1) = —iwho[ 1+]|g|z]e lAlZei@e0 (24

sponse to the longitudinal modes of the membrane. This is,

in fact, incorrect. A complete calculation of tr#z compo-  These flows are sketched in Fig. 3. As required, the compo-
nent of the fluid stress tensor at the surface of the membrangant of the fluid velocity field tangent to the membrane van-
shows that the pressure term is exactly canceled by the Vigspes.
cous stress arising from the gradient of the upward fluid ve- 1he pressure gradient associated with the above flow field
locity. Thus, there is no linear, hydrodynamic coupling of can pe calculated directly from the Stokes equation. We find,
this compression mode to the bending of the membrangson setting the pressure to zero at infinity, that the pressure
There will, however, be a coupling of shear and bendingie|q at the surface of the membrane takes the form
modes in membranes with finite mean curvatiz4].
P(x,z=01)=—2i w|q| 7hoe' (™~ Y. (25)
C. Bending mode

In this section we recapitulate the results of Brochard and/Ve note in passing the fact that the amplitude of the pressure
Lennon on the effect of hydrodynamics on the dynamics ofscillation is proportional ta, combmgd with the restoring
membrane bending modes. To do this we apply a sinusoiddPrce on the bent membrane depending on the wave vector,

height fluctuation to the membrane of the form asq* leads to the well-known result that the decay rate of
‘ bending modes increases as the third power of the wave vec-
h(x,t)=hge' @D, (17  tor.
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origin of the coordinate system and is sinusoidally varying in
time. We then compute the response of each Fourier mode of
the membrane deformation along with the associated fluid
motion. By integrating over these motions we determine the
motion of the point at the origin of the membrane. The re-
sponse of each Fourier mode in the viscoelastic membrane is
determined from force balance,

0=[ Uyt (u+N)dudglp] g — Sizxd*h+ ol =g+ i
(26

In the above equation, the Greek indices run over the coor-
dinates in the plane of the membraney, while the Latin
indices run over all three coordinates. The first term in
square brackets on the right-hand si@RHS) of Eq. (26)
represents the in-plane membrane viscoelastic force per area
due to shear and compression of the membrane. The quantity
5%, projects out the membrane coordinates. The membrane

FIG. 3. The membrane bending mode with associated flow fieldsiscoelasticity is described by two frequency-dependent
in the superphase. The membrane, seen edge-on as a solid lireame constants consistent with an isotropic continuum.
undergoes a bending wave of wavelength. ZThe undeformed These terms should in fact be expressed as integrals over the

membrane is shown edge-on as a dotted line. The vector field repstrain history of the membrane. We will, however, suppress
resents the fluid flow in the superphase.

IIl. THE RESPONSE FUNCTION

the frequency dependence of the Lamwnstantsand thus
the viscoelasticity of the membranentil we rewrite the
force balance in the frequency domain. The force per unit
area associated with the out-of-plane displacement of the

We now turn to the calculation of the response fU”Ction-membraneh(xa t), is given by the second term on the RHS
The calculation is similar in spirit to the calculation of the of the above equation, which represents the restoring force
response function in three dimensions. We wish to model thg, the membrane due to its bending rigidity Once again,
response to a force of a particle embedded in the membrang 5 yiscoelastic membrane, we may assume thag fre-

at the origin. Given the level of description of the membranequenCy dependent, but we suppress this dependence for now.

i.e., a continuum, single-component, two-dimensional vis-

Finally the last term on the RHS of E(6) is the force

coelastic medium, there is no distinction between the appliner ynit area exerted on the membrane by the external fluid
cation of a force to the membrane itself over an area the sizgs the subphases and superphases. The fluid stress tensor

of the particle, and the application of the same force 10 gakes the well-known form for an incompressible Newtonian
rigid particle embedded in the medium.

Because of our reliance on a simple, coarse-grained de-

scription of the membrane, we necessarily neglect any new

fluid

Uiszﬂ(aivj+f9jvi)_P5ij . (27)

hydrodynamic modes of the membrane that may, in fact, be

present in the physical system. For example, if we were td he fluid velocity and hydrostatic pressure fields that accom-
consider a two-component membrane composed of lipidpany any membrane motion have been determined in the
and an elastic protein network anchored in the lipid bilayerpreceding section. Thus, we may rewrite the fluid stress
there should be, in analogy to the three-dimensional gel syssolely in terms of the membrane displacement fielgsand
tem, a “free draining” mode associated with the diffusive h. Specializing to the components of the fluid stress tensor
relaxation of network density. Nevertheless, we expect thatequired in Eq.(26), and noting the stick boundary condi-
such modes will be irrelevant at higher frequencies, wherdions at the surface of the membrane, we may simplify the
our single-component description of a membrane should bérm of the full fluid stress tensqEq. (27)] to its restriction
valid for many systems of experimental interest. We defetto the surfaces!,|,—o. For a membrane immersed in a fluid
the details related to the more complex descriptions of thenedium, there are actually two such terms: one for the su-
membrane internal structure and their effect on microrheoperphase and one for the subphase. In much of what follows,
logical measurements to a future publication. In addition wewe shall consider only the superphase. It is easy to combine
do not consider the effect of local perturbations of the memthe effects of both, as we shall do for the final expressions of
brane structuréand consequently its viscoelastic propeities the response functions.

due to the introduction of the probe particles. It has been As we shall see, there are no linear hydrodynamic cou-

shown experimentallj/15,25 and theoretically26] in three-

plings of in-plane shear or compression to the bending of an

dimensional systems that such local perturbations can be ininitially flat membrane: a force acting in the plane of the
portant in the one-particle response function, but that intermembrane excites only the in-plane deformation modes dis-
particle response functions do not depend on such effects wussed above. Similarly, the component of applied force act-
leading order.
We apply a force on the membrane that is localized at théormations. Furthermore, in-plane shear and compression

ing along the membrane normal only generates bending de-
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retain their linear independence in the presence of hydrodyspherical particle in the limit that the membrane elasticity
namic interactions. Using this decoupling of the in-plane andranishes. Having done this, we find that the position re-
out-plane of plane modes we may calculate the response honse of the embedded tracer sph@rkich is along thex
in-plane forces and forces along the membrane normjal ( axis by symmetrytakes the form

separately. We begin with in-plane forces.

d?q cos¢
A. In-plane response Ux(X, @) = Fof 2 2_p;
(2m)?2 [ (2u+N)g2—4diwy|q|
We rewrite the force-balance equati@6), specializing
to the case of an in-plane forde(x), and we Fourier trans- 1-cos'¢ (34)
form it in two-dimensional membrane subspace. We arrive at w?—2iwg|q| '

2
HQ7Ua(G, @)+ (1 FN)GapUp(0,0) = 7We(0, ) where the anglep is defined byr-x=cos¢. Clearly the
=f,(q,w), (29) integral is the response function that we seek and via the
fluctuation-dissipation theorem, it contains the information

where we have defined,=d,v,|,—o. This actually repre- necessary to determine the experimentally measured power
sents only the upper half space or the superphase. For spectrum. Performing the integrals we arrive at the final form
symmetric situation with identical fluids above and belowof the in-plane response function. Since it is diagonal in the
the membrane, the last term on the LHS should be doubleth-plane indices we suppress them and write
here, and correspondingly in Eq29)—(32) below.

Projecting out the longitudinal and transverse parts of the o2 M
above equation and writingi“ = u, g, ,ul =P, zu,z with a”(w)zm In 1+|3wna +2,u+7\
P = Sap—0alg, We have (20
(2ut NG W8 =f(Dabar (29) T R %9
©q2ul— WPZ,BW/F PZ,Bf(q)B' (30) Here, and in all that follows, we use only the natural loga-

rithm. We have chosen the wave vector cutoff here to be
Using the results of Sec. II, in which we have computeddma=8/(37a) so that in the limit of vanishing membrane
the fluid flows associated with the longitudinal and trans-elasticity, u,A—0 with u/\ finite, the response function re-
verse modes of the membrane, we can determine the form ofuces to the standard Stokes drag result from low-Reynolds-
w in terms ofu. In this way we can write Eq$29) and(30) number hydrodynamics for a particle of radiasAlterna-
solely in terms ofu and thus solve for the membrane dis- tively, one could require agreement with the calculated drag
placement in terms of the externally applied forteFrom  coefficient in Ref[27] for a disk of radiusa (and heighth

the preceding section one finds —0) in a thin viscous film. This requires a slightly different
A prefactor of order one relating,,,, to 1/a. Naturally, the
w,0,=2iwu-(q)|q|, (3D precise prefactor depends on the detailed particle geometry.
PZ,BWB: i wUZ(Q)|Q|- (32 B. Out-of-plane response

Combining the above equations with the force-balance VVe now analyze the out-of-plane motion in a similar way
equations, Eqs(29) and (30), we solve foru(q)=€1€1uL(q) by first introducing a Fourier component of the bending de-

o Ao ) ) formation of the membrane of the form of E(.7). Using
+(6—qq)-u’(q). Thus, by Fourier transforming, one can o+ hydrodynamic results of Sec. Il C in combination with

calculate the displacement field in the membrane for an aigq (26) and computing the hydrodynamically induced stress
bitrary applied force d|str|bu'F|oria(q,w). He_re, we calcu-. _using Eq.(27), we determine the amplitude of a bending

late the response to an applied force localized at the originy,oqe of the membrane in response to an arbitrary force. We
Specifically, we integrate over the modes of the system {gnen gpecialize to the case of a point force and, by integrating

determine the disp!acement of the po?nt at the'o.rigin iN reyver the available bending modes of the system, we deter-
sponse to the applied force at that point. The rigidity of the.ine the out-of-plane response of the point at the origin to a

tracer particle at the origin is accounted for by cutting off the¢, ..o on it directed along the membrane normal.
wave vector integral at the inverse radius of the embedded \ne make use of the fluid flow field associated with the

particle,|qmad~1/a, or equivalently

fa(qiw):Fan_ith)(qmax_|q|)v (33)

bending deformation of the membrane as discussed in Sec.
Il C. From this solution and Eq27) we find that at the
surface of the membrane there is a nonvanishing component

whereF, is a constant vector, which for definiteness we takeOf the fluid stress tensor, which takes the form

to be in thex direction. We choose an order one numerical oh,= 2 wghg|q|e' (@@, (36)
prefactor in this relation betweeq,.x and 14 so that the
response function reproduces the standard Stokes drag orfFar the bending mode, the fluid stress component

061606-6



DYNAMICS OF VISCOELASTIC MEMBRANES PHYSICAL REVIEW E66, 061606 (2002

U;z: 2q2wnhqzei(qx“”t), (37) brane, we determine the viscous shear stress on the mem-
brane by demanding the continuity of the shear stress
which vanishes at the membrane. If we were to consider &,,,«=X,y at the membrane-fluid boundary. Due to the lin-
membrane to have finite thickne&nd thus able to support earity of the hydrodynamics, we can combine the solutions
internal strains in which the deformation gradient is normalof the flow fields from the longitudinalcompressionand
to the membrane’s surfagethen the bending mode would bending modes to write the full shear stress associated with a
hydrodynamically couple at linear order to internal deforma-linear combination of those membrane deformations. We find
tions of the membrane. We do not pursue this point in thehat the shear stress from the fluid at the surface of the mem-
current paper. For our present purposes, it is enough to noterane may be written as
that a force normal to the plane of the undeformed mem-
brane couples only to the bending modes. f _ . L
From thez component of the force-balance equatjéiu. Tozlz=0= 200, 2 n|u=(q)|.

(26)] we find that a force in the direction with a sinusoidal _ -
dependence om, andt generates a sinusoidal membraneHere, X7 refers to the sum of the viscosities above and

(41

bending deformation with amplitude below the membrane.
In a similar way we may compute the normal stresses on
f.(q) the membrane due to the hydrodynamic flows. The stress
h(g)=————. (38)  component normal to the membrane is
kq*—2iwn[q|
Integrating over such forces mmspace, and determining the ol =290, ~P, (42)

response to a point force at the origin using the wave vector ] ] )
cutoff introduced in Eq(33) we find the out-of-plane re- WhereP is the hydrostatic pressure computed from the fluid

sponse function velocity fi_eld and the Stokes equation. nge we find that only
the bending mode generates a nonvanishing normal stress
9ma? (1 1 component. The compression mode produces a pressure
aw)= P J dp g (399  variation across the surface of the membrane that exactly
o p°—i

cancels thez derivative of the vertical velocity field. We

. . . write the normal stress as
where the dimensionless parameter 277w2a3w 7/ (4«) is

the ratio of the viscous stressy/a to the membrane bend-
ing stressk/a* at the length scale of the probe particle. onZ|Z=O=2iw( > 77) lalh(q). (43

We have now completed our discussion of the response
function of a bead embedded in the membrane for the sym- Returning to the Fourier-transformed force-balance equa-
metric case. In this case the complete motion of the particle, .g un A equ
X(w), in the membrane is a linear combination of the in-tion we write out_the components in tlgez _subspace. The_
plane motion due to the in-plane components of the app"e@quatlon is identical to E(138). We use this result to elimi-
force and the out-of-plane motion due to the component ofiate the dependence in thesquation, which takes the form
the externally applied force normal to the membrane. Thus
the most general solution of the mechanical problem to linear
order in membrane displacements takes the form

=f(q)-q,
(44)

Bq?u™(q) -~ 2qw isgr(q)(E n)uL(q)
Xi(w)=ea)(w0)(6;—zZ)fj(0)+a(w),f(w), (40) _ _
wheref(q) is the externally applied force ar8l=2u+\.
where the response functions () anda,(w) are given by  Solving for the longitudinal part of the displacement field we
Egs. (35 and (39), respectively, and(w) is the externally arrive at
applied force responsible for the motion. We will later use

the fluctuation-dissipation theorem to explicitly compute the f(q)-q

implications of this result for the experimentally observed ut(q)= (45)
position fluctuations of the probe particle. First, we turn to Bq2—2iw|q|(2 7

the general case of two different fluids above and below the

membrane.

Combining the above result for the longitudinal part of
the in-plane displacement field with the previously calculated
transverse part of the in-plane displacement field as well as

Here we examine the system in which the membrandhe out-of-plane perpendicular displacement, we can write
separates fluids of differing viscosities. In order to studythe trajectory of any point on the membrane as
membrane dynamics in this asymmetric case we return to the R
qguestion of the hydrodynamic stresses on the membrane. R(X,,w)=zh(X,,w)+Uu(X,,), (46)
From our previous calculation of the fluid velocity fields
associated with the various deformation modes of the memwhich in the Fourier-transformed variables takes the form

IV. ASYMMETRIC SYSTEM
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Ri(q,, ,w)=iih(qa ,w)‘*‘(AZIiUL(qa L) We find only d_iag_onal terms, expressing the. linear indepen-
dence of longitudinal, transverse, and bending modes, even
+(5i/3—ai61/3)ug(qa ). (47 in the presence of hydrodynamic effects and even for differ-

ent fluid viscosities above and below the membrane. The
We now calculate the one- and two-particle responseemaining components are given by
functions for the asymmetric membrane using the above re-
sults. To do this, we localize the applied force at the origin 1 (=
by taking f(x,,»)=exp(-iwt)f5(x) and we calculate the ayy(X,w)=4—f dqq
displacement field of a particle attached to the membrane at mJo
some other locatiod¥ using the relation

Jo(qX) +J,(qX)
Bq2—2iwq(2 77)

2 Jo(qX) —Jo(qX)
R(X,w)=j T R (G @)e X, 48) + (52)
(2m)? uqz—iwq(E ]
From this calculation we determine the response function
tensora;; (X, ) defined by the equation for in-plane motion due to an in-plane force perpendicular to
the separation vector of the two particles. For displacements
Ri(X,0)= a;j( X,0)f;j(0,w), (490 normal to the plane of the membrane we find
so thata;;(X,w) measures the displacement of a poinfat 1 (= ]
on the undeformed membrane in response to a force applied a X,w)= _J daq 0o(gX) (59
at the origin of the coordinate system. For concreteness we e 2w Jo 4 o (2
take the displacement vector of the observation poittab “q-2le 7/

be along thex axis. Then,X simply represents théscalajy

separation. It is, of course, trivial to rewrite the resulting We have evaluated the response functions in a convenient

expressions in an arbitrary reference frame. coordinate system, in whicl, the separation between the
Using Egs.(45) and (47), our previous solutions for the point of force application and the point at which the response

bending and transverse, in-plane membrane deformations ia evaluated, defines theaxis. More generally, the response

Eq. (48) we first determine the displacement of the tracerfunction o= a,, gives the longitudinal respongee., dis-

particle in thex direction. The resulting angular integrals are Placement at one point due to a force applied at another

simply written as Bessel functions and we find point, where both the force and response are in the direction
of the line separating the two points. Likewise, =ay,
Ry (X, w) = ay( X, ow)f,, (50 gives the transverse response, where both the force and re-

_ o sponse are perpendicular to the line separating the two
where this component of the response tensor is given by points. For an isotropic membrane, there are no nonzero off-
diagonal components in the plaree., a,,= a,,=0). For

o Xow)— ifwdq q Jo(gX) —Jo(qX) the general case of a separation vecgrwe may define an
eenT 4w Jo BP—2iwg| S orthonormal basi§ X’,t,z}, wheret is chosen perpendicular
q ®q K to the other two. Then, the general response in-plane is given
by
J +J,(qX
N 0(qX) +J2(qX) _ 51) ) ) o
qu—iwq(E 7]) Rg=Xs(f- X)ay+ig(f-Da, . (54)

The integrals in the expressions for the purely in-plane

Tnllsr:ndtegral dactua;lklly 'SVOI\:jeS a Iargfi Wavehvecttcr)]r Cfumﬁ’.response in Eqg51) and(52) can be done in closed form. A
which depends on the boundary conditions where the force I8articularly interesting case is that of a purely viscous, in-

applied. For instance, for a force applied to a particle at- ; - .
tached to the surface, this cutoff depends on the particle siz%OmpreSSIbIe membrane, for whigh=—iw . Here,

and geometry, as described above for the single-particle re- 1 ] J
sponse. For separations large compared with the particle size, —lway(X,0)= f o(2)+Jx(2)

however, we can take the upper limits of these integrals to be 4mnmlo z+pB

infinity, as we have done here. In the limiting case where one

observes the displacement of the particle at the origin due to _ 1 [ZH (B)— 2

a force applied to itthe | X]—0 limit of the two-point mea- drnn| Bt B

surement, which must reduce to the one-point measurement

in this calculation, one must take into account the aforemen- - E[Yo(,@) +Y2(B)]} (55)
tioned cutoff for the integral. 2

The remaining nonvanishing components of the response
function tensor are easily calculated in an analogous manneaind
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. 1 =Jo(2)— Jo(2) tra, as determined theoretically before for bending modes of
_IwaL(X1w):47T J Py d fluid membraneq28], as well as for bending and shear
"m0 modes of viscoelastic membranes in Ré¢f.7]. These re-
- 2 sults are consistent with the experiments of Ré&7].
= any [WHo(ﬁ)— EHl(ﬁ)_" 2 Largely because of the increased interest in two-point mi-
m crorheology techniques, we also examine the correlated ther-
T mal motion of two embedded particles. The quantity that we
- E[Yo(ﬁ)—Yz(ﬂ)]}- (56)  compute is
where 8= (X2 5/ n,,), theH, are Struve functions, and the _ _ _ _ i wt
Y, are Bessel functions of the second kind. We note that the Si( &) f (Ri(ZDR;(0.0edt. 59

asymptotic behavior of both response functionspasO, is

in agreement with Ref[27], where the drag coefficient is By the fluctuation-dissipation theorem this correlation
calculated for a purely viscous membrane immersed in a visfunction can be written in terms of the imaginary part of the
cous solvent. Specifically, in this limit, response functions calculated above as

_ 1 1 2kgT
_Iwai’”zm In(2/ﬁ)—yEi§ y (57) Sij(qu): p aij X,w), (60)

up to terms of ordep. Here, v is the Euler constant. As wherea]|( X, ») is the imaginary part of the responée the
shown in Ref[27], the drag coefficient for a disk of radias

; o X N ‘ ith direction of a particle embedded in the membraneXat
In a_membbrane of vanishing thickness and finite viscosity (5 a force in thejth direction. It only remains for us to
is given by

compute the remaining integrals over the magnitude of the
wave vectorg to determine the correlation spectra.
(58) For concreteness we put the vector defining the separation

of the particles along th& direction. We first compute the
correlations of the in-plane motion of the particles perpen-
dicular to their line of centers and along their line of centers
by calculatingS, (X, w) and S;(X,w), respectively. In all

AT 7
In(2/e) — yg+O(e)’

wheree=(aX n/ 7).
It should be noted that for large values of their arguments

function for in-plane motion perpendicular to the line of cen-

ters is controlled by the shear modulus as one would ex e(:Erane to act like a perfectly elastic sheet. Other calculations
X y . uld exp ‘an, of course, be performed with the formulas given above.
In the following section we turn to the fluctuation-dissipation

. e present these results merely as an example of the corre-
theorem to compute the experimentally observable correlate, P Y P

. d : tion functions for this particularly simple case. More com-
tmhg:rr}nbatlaztejctuatlons of two tracer particles embedded in theblex assumptions about the viscoelasticity of the membrane,

presumably based on microscopic models of the membrane,
can of course be incorporated in the formalism provided, and
V. POSITION CORRELATION SPECTRA the resulting integrals can be performed.
Having computed the response function to an applied We may write the imaginary part of the response funqtion
force for both single-particle and two-particle systems, wen the folloyvmg form for the motion perpendicular to the line
now turn to the question of what is the experimentally accesQf centers:
sible quantity. There are two basic types of microrheological
measurements that are possible. In active microrheology, the , 1 f’”d J(2) w\? 23%(2) 61
response function is directly probed via the linear response Gy~ AT z 224 72 + B) 24,2 (61
measurement of the displacement of a tracer due to a force
applied either to that particl@ne-particle measuremepts
to another particle embedded in the membréma®-particle
measurements The expected response functions measure
in such experiments have been directly calculated in this pa- o
per. It is, however, also possible to use the correlated thermal I7(2)=30(2) = 2(2), (62)
fluctuations of particles embedded in the membrane to access , .
the same rheological information via the fluctuation- andr andr” are frequency-dependent functions of the form

dissipation theorem, as was done for single-particle motion

0

where we have defined the functiodi$(z) to be the follow-
Cipg combinations of Bessel functions of the first kind:

in Refs.[6,7]. In this section we concentrate on such thermal w( 2 7| Xl
fluctuation spectra of one and two particles embedded in the —1_ 63)
membrane. We find the expected one-point fluctuation spec- m '
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:zw(z n)m_

r—1
T B (64)
Using the same definitions, we write the imaginary part of E
the response function for motion along the line of centers as =
+ 2 2 %B
1 o J7(z J(z -
a;X: f dz #4_ Lt # . (65 -
Ao 22+ 772 B) 22472

The physical interpretation of is clear: it measures the
ratio of the distance separating the two particles to the W—— %
screening length of shear modes in the membrane due to the -Log. (7)
coupling to the viscous subphase and superphase. The other 10
function 7' has an analogous meaning in terms of the com- F|G. 4. The graph of the dimensionless interparticle correlation
pression modes of the membrane. Up to an overall scalginction (see text for motion along the line of centers,,, and
factor, the shape of the correlation spectrum obeys @notion perpendicular to the line of centerg,, as a function of the
distance-frequency scaling relation, so that spectra obtainafimensionless variable in the combined limits of small particle
at different interparticle separations can be collapsed into aize, compared in the interparticle separation and high membrane
master curve by rescaling distances, so they are measuredbnlk modulus, compared to the membrane shear modulus.
terms of the frequency-dependent screening length. The

breakdown of this scaling relation can be used as a diagnogrt s performed numerically. The resulting correlation spec-
tic of the appearance some significant frequency dependengg, . is shown in Fig. 5, where the independent variable is

of the membrane elastic moduli. 7. It may be noted that the frequency separation scaling

hThe okr:ly d'.St'n;t'(.m betr\]/veen thfe ;WO rlespofnshe fo”Ct'_onsgroperty of the fluctuations of the particles both along their
shown above Is the interchange of the roles of the functiongng of centers and perpendicular to their line of centers fails

J7(2). The effect of this switch is that the compression re-, the case of the vertical motion. This breakdown of the
sponse dominates the long-length scale response along g ing reflects the elementary result that bending energy is
line of centers, while the shear response of the membrang, monic in the Laplacian of the vertical displacement,

controls the long-length scale response perpendicular 10 theher than in the gradient of the displacement field as in the
line of centers. This observation is intuitively obvious. We ;qa of in-plane deformation.

plot the resulting correlation spectra as a function of the di- \ve now turn to one final power spectrum calculation.

mensionless variable in the limit that the compression jpjike those discussed above, we now consider explicitly a
modulus, B=2u+\, is much larger than the shear jscoelastic membrane. Based on the work of Hadfeal,

modulus in the membrane and that the particle Size igye take as an example, an actin-coated lipid membrane
much smaller than the interparticle separatiok]>a. The  \hose viscoelastic properties are dominated by the actin
plots of the undimensionalized correlation function§,  coat. We further specialize to the high-frequency limit, where

=4mu?S; /[ 2kgT(Z 7)| Af], are shown in Fig. 4. the actin rheology is dominated by single chain dynamics. In
We now consider the same calculation for the correlated

out-of-plane fluctuations of the particles. Once again using
the fluctuation-dissipation theorem with the appropriate com-
ponent of the response tensat,( X, w),

1 o Jo(z
" fd O()

a,,= Z ,
dmprlo " Cpy

15 T T T T T T 1

(66)

2z

where we have defined a new dimensionless, frequency-
dependent variable in analogy tand+’ above. In this case,

7" measures whether the viscous damping of the bending 3
mode on the length scale of the interparticle separation is -10F .
relevant at the frequenay. It is defined by

203 n)|x13_ .

K FIG. 5. The graph of the dimensionless interparticle correlation
) ) . . . function (see text for motion perpendicular to the membrarng,,
We can write the undimensionalized correlation spectrumas a function of the dimensionless variabfein the limit of small

|,,=mK?| X]%S, (X, w) /[ 2kg T(Z %) ] in terms of an integral  particle size compared in the interparticle separation.

Log, I(®)

15 1 . \ 1 . l \ l \ 1

-2 0
- Log, ()

Tufl:
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this frequency range the effective shear modulus of the menit depends on only the bending modulus of the membrane,

brane is expected to take the form which, in principle, is also a complex, frequency-dependent
~ quantity. In particular, for the actin-coated membrane, the
pm(w)=p—iw)?, (68)  bending modulus takes into account the viscoelastic result of

. the actin in addition to the usual bending energy of the lipid
wherez=3/4, u, is a(rea) modulus scale, and=w7is a bilayer, so one should expect this quantity to have a complex
dimensionless frequency. We now use the fluctuationfrequency response. Inasmuch as this more microscopic me-
dissipation theorem in conjunction with the in-plane re-chanical issue has not been satisfactorily resolved, we will
sponse function given in E@35), in which we set the mem-  simply assume that the bending modulus is a real, frequency-
brane shear modulus to that given above in @8) and the independent quantity.
membrane compression modulus to infinity. This latter The remaining calculation, of course, is done analogously
choice is based on the near incompressibility of the underlyto the calculation presented above. We use (Bf) and the

ing lipid bilayer to which the actin network is attached. fluctuation-dissipation theorem to compute the power spec-
After some algebra we determine that the single-particlgr,m of 7 fluctuations. To do so we need to consider the
power spectrum is given by imaginary part of the response function by performing the
integral in Eq.(39). This integral depends on the dimension-
(x(w)|?)= keT o "H(w), (69) less paramete#, which is linearly proportional to frequency.
2t In the low-frequency limit, we find that to leading order the

imaginary part of integral takes the form
where the functiorH (w) is given by

9ma?(
37 Imf a()]=—5 — 55-2’%0(5—1’3)} (74)
3 cos(?) B(w)
H(w)=co g jarcta 3. From the fluctuation-dissipation theorem we then find that
l+sin( ?> B(w) the power spectrum in the low-frequency limit takes the form
13
+Esin 37 In| 1+ B?(w) +2B(w)sin 7 (Iz(0)?)=3 lz keTw >, (75
27718 @ @ 8 /| 3\ kn?

(70) Note that the above result is independent of tracer particle

size. The power-law decay of fluctuations with the exponent

5/3 has already been calculated by Zilman and Grda&k

for the case of a pure fluid membrane. For a viscoelastic
2T ~ membrane, the overall exponent of frequency is expected to

Blo)=7 o v (7)) be (5+2)/3[6,7).

g In the high-frequency limit, the effect on the tracer of the

In the limit of high frequencysmall B) it is simple to show Membrane bending stress on the dynamics is dominated by

that the power spectrum scales with frequency.as, asis  the viscous stress coming from the fluid. The power spec-

expected for simple Brownian motion. One can show that ifffum for the Brownian fluctuations of the bead reduces to

The functionH(w) depends on frequency only through the
dimensionless quantity

this limit the power spectrum takes the form that of afree Brownian sphere,
2 -2
(|x*(w)])— 3777;aw as w—oo, (72 (|z(w)] >_>37_”’aw as w—x. (76)

On the other hand, at intermediate frequencies high The full power spectrum of the out-of-plane tracer particle
enough so that Eq68) accurately describes the membranefluctuations is shown in Fig. 6; this plot demonstrates the
rheology, but low enough so th@t is small,H is indepen- ~ crossover from the low-frequency, bending stiffness domi-
dent of frequencyup to logarithmic correctionsand we find ~ nated dynamics, to the high-frequency dynamical regime
that the power spectrum of the tracer particle position fluccontrolled by the viscous stresses in the surrounding fluid.
tuations decays as a different power law with frequency. In
this frequency range we find that VI. SUMMARY

(|x2(w)|)~w’7’4. (73 In this paper we have examined the dynamics of flat, vis-
coelastic membranes either immersed in a viscous Newton-
More generally, the exponent above is expected to-ljé ian fluid, or separating two Newtonian fluids of differing
+2), wherez is defined above. viscosities. We have paid particular attention in this analysis
We also compute the power spectrum of out-of-planeto dynamical issues related to microrheological measure-
fluctuations for the membrane. This result does not depenrthents. Thus, we have calculated in some detail the correlated
on the frequency-dependent shear modulus of actin. Rathetuctuation spectrum of two rigid particles embedded in the
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W77 T T T T T cases, and especially the latter, surface tension will play a
significant role. This effect can be incorporated by including
a term of the formyq?, in addition toxq®* in, for example,

Eq. (38), wherey is the surface tension.

A number of extensions of this work are both possible and
interesting to pursue. The first is to study the role of equilib-
rium (backgroungl membrane curvature on the dynamics.
Since it is already known that there is a purely geometric
coupling between in-plane strains and out-of-plane bending
modes, one should find a rich structure in the cross correla-
tions of in-plane and out-of-plane motion resulting from the
interplay of the geometric and hydrodynamic couplings of
-204 |6 . '4 : _'2 : (') : é : "‘ : é : these modes. In addition, such an analysis is necessary to

Log_(d) extend the methods of microrheology to highly curved sur-
10 faces. Other important extensions of the present theory in-

FIG. 6. The out-of-plane tracer particle fluctuation spectrum include_the analysis of the co_upling of a viscoelastic membrane
arbitrary units plotted against a dimensionless frequency. See tH& @ Viscoelastic bulk material. The cell membrane coupled to
definition of 8 immediately following Eq(39). At low frequencies,  the Viscoelastic cytoplasm is an important realization of such
where the dynamics of the tracer is dominated by the membran@ SyStem.
bending stiffness, the-5/3 power law is obtained. At high frequen-  Along the lines of applying these results to cellular mi-
cies where the fluid viscosity dominates the dynamical response diforheology, it must be noted that we have studied a one-
the particle, this power law crosses over to th exponent, which ~ component continuum model of the membrane, whereas the
is expected for the Brownian motion of a free particle. physical cell membrane is a highly heterogeneous material

on the submicron length scale. It is therefore important to
S%xamine a more complex, 'multicomppnent model for the
function of a single particle in such a membrane. Both 0fmembrane. Such more detailed dynamical models have been

these calculations can be directly applied to the analysis 0li)rewously studied in the context of three-dimensional mi-

experimental data, whether it be from an actual linear re_crorheology. These studies, in accord with very general ar-

sponse measurement of the force-position response of %umgntls, hgve_sf:r?wg I;hat there are néacleszarlly extrz dy;j
tracer particle(e.g., with magnetic particles, or laser twee- namical modes In hé heterogeneous Models. However, base

zerg or from the measurement of the autocorrelations or inoN the three-dimensional worl§, we expect that the principal
terparticle correlations of tracer particles undergoing ther—effeCt of these extra modes will be to change th_e correlation
mal, Brownian motion on the membrane. In addition, theSPectra only at the lowest measurable frequencies.
general response functions can be used to calculate the full
flow and displacement fields in the membrane and fluid for a
variety of extended objects embedded in viscoelastic films. We thank L. Bourdieu, D. Chatenay, R. Granek, J. L.
The range of applications is quite large. At the momentHarden, E. Helfer, J. F. Joanny, T. Liverpool, D. Lubensky, T.
we restrict the equilibrium shape of the viscoelastic mem-C. Lubensky, C. F. Schmidt, D. Pine, D. Weitz, and D. Wirtz
brane to be flat, although we expect the results in this papdor useful discussions. We are especially grateful to G.
to be applicable to curved systems as long as the particlS8galari for very careful and critical reading of this manu-
motion and interparticle separation in the case of the twoscript. A.J.L. is particularly grateful for the hospitality of the
particle measurements remain small compared to the radivgije Universiteit Division of Physics and Astronomy where
of curvature. The above work can be applied to lamellamuch of this work was done. F.C.M. is grateful for the hos-
phases in agueous surfactant systems, lipid bilayers, emupitality of the LDFC group of the University of Strasbourg.
sion droplets, “polymersomes{as long as they are large This work was supported in part by the National Science
enough—see the above comments regarding curvatureFoundation under Grant Nos. DMR98-70785, INT99-10103,
Langmuir monolayers, and cell membranes. In some of thesend PHY99-07949.
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membrane. In addition, we have computed the respon
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