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We investigate the idea that velocity distributions in granular gases are determined mainly by �, the coef-
ficient of restitution and q, which measures the relative importance of heating �or energy input� to collisions.
To this end, we study by numerical simulation the properties of inelastic gases as functions of �, concentration
�, and particle number N with various heating mechanisms. For a wide range of parameters, we find Gaussian
velocity distributions for uniform heating and non-Gaussian velocity distributions for boundary heating. Com-
parison between these results and velocity distributions obtained by other heating mechanisms and for a simple
model of a granular gas without spatial degrees of freedom, shows that uniform and boundary heating can be
understood as different limits of q, with q�1 and q�1 respectively. We review the literature for evidence of
the role of q in the recent experiments.
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I. INTRODUCTION

Granular materials consist of macroscopic particles, such
as sand grains or metal beads, but can, nevertheless, exhibit
behavior reminiscent of the conventional phases of matter. A
layer of sand, for instance, can flow down an incline, much
like a liquid. Likewise, dilute granular systems are frequently
called gases because of many similarities to molecular gases.
In contrast with molecular gases, however, granular gases
are intrinsically dissipative and out of equilibrium. In fact,
such systems have been extensively studied both experimen-
tally and theoretically, in large part as simple model systems
exhibiting nonequilibrium and dissipative behavior. Unlike
molecular gases, the collisions in a granular gas are inelastic,
making it necessary to drive them in order to maintain a
gaslike steady state. Otherwise, inelastic collapse can occur,
in which all motion ceases after only a finite time �1,2�. In
some simulations �3–6� and in most analytic theories �7–9�,
this driving or heating is done uniformly throughout the con-
tainer �uniform heating�, with all the particles in the gas be-
ing driven independently by a white-noise source. In experi-
ments, on the other hand, the granular gas is driven by
shaking or vibrating the walls of the container. With this
boundary heating, energy is inserted in a spatially inhomo-
geneous way �10–14�, often resulting in gradients in density
and mean kinetic energy �14,15�. Uniformly heated granular
gases can also show significant deviations from equilibrium
gases, e.g., in density correlations �3�.

One of the most basic properties of ordinary gases is the
velocity distribution, which is a Maxwell-Boltzmann or
Gaussian distribution. Dilute granular systems, however, de-
viate from the Gaussian distributions that one would expect
if the collisions were elastic. It has been suggested that the
velocity distributions can be described by a sort-of stretched
Gaussian, of the form P�v�=C exp�−��v /����, where �2

= �v2� is sometimes called the granular temperature. Rouyer
and Menon �10� have reported such a distribution with ex-
ponent �=1.5 over the whole observed range of velocities,
which was unaffected by changes in amplitude and fre-
quency of driving. This same exponent is predicted for the
asymptotic high velocity tail by certain kinetic theory models
of granular gases �7�. However, it is shown in Ref. �10� that
the experimentally observed non-Gaussian distribution is not
consistent with the high velocity tail predicted by kinetic
theories. Since then, experiments and simulations have ob-
served many more, qualitatively different velocity distribu-
tions, depending on the driving mechanisms and the proper-
ties of the gas itself. As a consequence, it has remained
unclear as to what extent there exists an analog to the
Maxwell-Boltzmann equation in granular gases. Also, a clear
physical picture of the origin of non-Gaussian velocity dis-
tributions is still lacking.

In a previous publication �16�, we presented evidence that
the velocity distribution in granular gases is predominantly
determined by just two parameters: the coefficient of restitu-
tion � and q=NH /NC, the ratio between the average number
of heatings and collisions in the gas. The first is a material
parameter and describes the amount of dissipation in colli-
sions. The latter is controlled by the mechanism of energy
injection and depends sensitively on the experimental setup.
Because of the dependence on q, experiments on the same
granular gas could yield different velocity distributions de-
pending on the details of driving. This can explain the seem-
ingly inconsistent results from recent experiments. Further-
more, we showed that the velocity distributions for uniform
and boundary heating are very different. For uniform heat-
ing, the velocity distributions remain close to Gaussian. For
boundary heating, a family of distributions is observed, with
different exponents for the high velocity tail. Finally, we
found no evidence for a universal velocity distribution with
exponent �=1.5.

In this manuscript, we systematically study the velocity
distribution as a function of the coefficient of restitution �,
the area density �, and the particle number N, both for uni-
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form and boundary heating. For boundary heating, we study
the velocity distribution as a function of the gradient in den-
sity and granular temperature that develops in the container.
We also examine the velocity distribution for different heat-
ing mechanisms and for a model without spatial degrees of
freedom. Taken together, these results strengthen the picture
in Ref. �16� that the velocity distribution is mainly deter-
mined by just two parameters � and q, as defined above. We
also review the evidence of the role of q in recent experi-
ments.

II. NUMERICAL SIMULATION

We use an event-driven algorithm to simulate N particles
of radius a moving in a two-dimensional box. Particles gain
energy by heating and lose energy through inelastic colli-
sions. When two particles i and j collide their final velocities
depend on their initial velocities in the following way:

vi� = vi −
1 + �

2
�vi · r̂ij − v j · r̂ij�r̂ij , �1�

where 0��	1 is the coefficient of restitution and r̂ij is the
unit vector connecting the centers of particles i and j.

For uniform heating we adapted a one-dimensional algo-
rithm described in �3�. When heating uniformly, each indi-
vidual particle is heated by adding a random amount to the
velocity of each particle during a time step 
t:

vi�t + 
t� = vi + �h
tf�t� , �2�

where f�t� is a random vector whose components are uni-
formly distributed between − 1

2 and 1
2 and h is proportional to

the heating rate. After heating the system is transferred to the
center-of-mass frame. Particles move in a box with periodic
boundary conditions to simulate bulk behavior. The time step

t is chosen in such a way that on average the number of
collisions per time step is less than 1. It should be noted that
this heating mechanism is significantly different from the
spatially homogeneous heating used in some experiments
�17�. In the experiment all particles feel the same forcing, so
the motion of the neighboring particles is strongly correlated
in space and time. In uniform heating however, all particles
are independently driven by a stochastic source and as a
consequence correlations are very weak.

When heating through the boundaries, particles gain ve-
locity upon collision with the boundary. For simplicity, we
assume that the collision with the boundary is elastic. In that
case, a collision occurs by reflecting v�, the component of
the velocity perpendicular to the boundary. Heating occurs
by adding a random amount of velocity to v�. Then after
collision with the boundary one has

vi� = v − 2v� + �hf�t� . �3�

Particles move in a circular box. A symmetrical container has
the advantage that it allows us to examine density and granu-
lar temperature gradients along a single coordinate r, the
distance from the center of the box, as in the one-
dimensional case �15�. This method of heating at the bound-
ary is analogous to the technique described in �14�.

We start the simulation by distributing the particles uni-
formly over the box. When using boundary heating, we give
each particle a small, uniformly distributed velocity to enable
particles to reach the boundary. Then particles are heated and
we allow the system to reach a steady state before taking
data. For both uniform heating and boundary heating, data
are collected periodically at every time step 
t. For uniform
heating, data are taken when the particles are heated, so 
t
equals the time between heating events.

III. SIMULATION RESULTS: CLUSTERING

Dense clusters of particles occur for a wide range of pa-
rameters when heating through the boundary, but are absent
for uniform heating �16�. This occurs as particles are com-
pressed in the center of the box by the pressure of particles
moving in from the boundary. As the cluster grows in size, it
can no longer be destroyed by the impact of high velocity
particles and the cluster remains stable. Examples for in-
creasing amounts of dissipation are shown in Fig. 1. As en-
ergy dissipation is increased, either by decreasing � or in-
creasing the number of collisions, the gas develops a
liquidlike cluster surrounded by a hot gas. For higher dissi-
pation, the cluster grows in size and ultimately shows crys-
talline order, including defects and disclinations. The smaller
clusters are highly dynamic and assemble and disassemble as
they move around the container.

For measurements of the velocity distribution, the gas has
to be in the homogeneous gas state. To avoid values of � and
� corresponding to the formation of clusters in our simula-
tion, we constructed a phase diagram. We did this by count-
ing for every particle the average number N6a of neighbors
with their center within a distance smaller than or equal to 6a
from that particle. When the gas is in a hexagonal close
packed state N6a=36. We obtained the distribution P�N6a� for
different values of � and �. An example for N=350 and �
=0.1 is shown in Fig. 2.

For �=0.9 the distribution corresponds to a state with the
particles uniformly distributed over the box and the peak of

the distribution at the mean value N̄6a=3.6. For �=0.7 the
distribution becomes bimodal, with a broad peak at high N6a
corresponding to the densely-packed cluster and a peak at
N6a=1 corresponding to the surrounding dilute gas. The dis-
tribution shows a continuous variation for � in between,
which makes it hard to pinpoint an exact value of � for
which clusters first form. Still, by looking at the shape of the
distributions, it can be argued that the transition occurs
somewhere between �=0.75 and �=0.85. This was repeated
for different values of �, which allowed us to determine a
sort of phase or state diagram. Specifically, we determined
the limit of a pure gaslike phase, and all results presented
below were obtained in this state. Unfortunately, as the tran-
sistion from the homogenous gas state to the cluster state is
very gradual, we are unable to present here an accurate phase
diagram.

IV. SIMULATION RESULTS: VELOCITY DISTRIBUTIONS

The velocity distributions P�vx� for uniform heating are
shown in Figs. 3 and 4. The velocity component vx is scaled
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by �x= �vx
2�1/2 and the maximum of the distribution P�vx /�x�

is scaled to be unity. For a broad range of the parameters �
and � the velocity distributions are very close to Gaussian.
For �=0.8 the velocity distributions can be fitted by a distri-
bution with �=2.0. This decreases only slightly for �=0.1,
which can be fitted by a distribution with �=1.9. Values of �
are found to be independent of �. These exponents are con-
stant over the entire observed range of velocities and we find
no evidence of a velocity distribution with �=1.5 for the
range of � and � we examined. This agrees with observa-
tions made before in Ref. �18�.

For boundary heating the gas develops a gradient in both
density and mean kinetic energy as shown in Figs. 5 and 6.
Ideally, we want to measure velocity distributions in a region
where the gradient is small. To this end we divided the box in
five rings of width 0.2. These rings are indicated in Figs. 5
and 6. Only for values of � and � close to the clustering
state, does the density within a ring vary by more than 10%.
The velocity distributions P�vx� for particles within the dif-
ferent rings are shown in Fig. 7. Figure 7�a� shows P�vx�
with the velocity component vx scaled by �x= �vx

2�1/2 and the
maximum of the distribution scaled to be unity. When nor-
malized by �x the velocity distributions for different rings in
the container have largely the same shape for smaller veloci-
ties, even though density and mean kinetic energy vary con-
siderably between these rings. This is a feature that is ob-
served for all values of � and �, even close to the cluster
state. Similar observations have been made in Ref. �14�.

Figure 7�b� shows the behavior of the exponent �. This
behavior is very different from the case of uniform heating.
For uniform heating � has the same value over the entire
observed range of velocities. For boundary heating, on the
other hand, � has a constant value �1 over the low-velocity
range but crosses over to different value �2 when above a
critical velocity vc. For all rings the distribution for smaller
velocities is close to Gaussian with �1�1.8. For the inner
three rings the distribution for velocities higher than vc is
well described by a single exponent �2	1.5. For the outer
rings this behavior is more complicated.

In Fig. 8 we show the effect of a change in � and � on the
shape of the velocity distributions. Here we focus on the

FIG. 1. Snapshots of the clustered state for �a� N=200, �
=0.06, and �=0.5; �b� N=400, �=0.05 and �=0.6; �c� N=600,
�=0.1 and �=0.8; and �d� N=800, �=0.2 and �=0.7. The circles
indicate the current positions of the particles, while the lines show
the direction and magnitude of the velocity. The smaller clusters
show more liquidlike order, whereas in the bigger clusters the order
is crystalline. In the latter case, the hexagonal ordering of the clus-
ters sometimes shows defects. In �d�, for instance, the cluster ap-
pears to exhibit distinct crystal-like domains.

FIG. 2. Number of neighbors within a distance 6a of a given
particle for N=350, �=0.1 and �=0.7 ���, 0.75 ���, 0.8 ���, 0.85
���, and 0.9 ���. On average N6a=3.6 for �=0.1.
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velocity distribution as measured in the ring with 0.4	r
�0.6. This has the advantage of good statistics, but for val-
ues of � and � close to a cluster, we might see effects due to
the density gradient in the gas. As shown in Fig. 8�a� the
exponent �1=1.8 except for �=0.4, where �1=1.6. For �
=0.9 there is no crossover in the observed range of veloci-
ties. In the other distributions one does observe a crossover
and the point where it occurs shifts down to lower velocities
as � is decreased. It is clear that the distribution for veloci-
ties above the crossover cannot be described by a single ex-
ponent. For low enough �, the distribution seems to ap-
proach a constant exponent for high velocities. This
exponent decreases from �2=1.3 for �=0.7 to �2=1.0 for
�=0.4. Velocity distributions with a similar dependence on �
have been observed before in Refs. �5,19�.

In Fig. 8�b� we examine the behavior of the velocity dis-
tributions as the area density is varied. Again, we find that
for smallest velocities the distribution is close to Gaussian
with �1�1.8 for all �. A crossover in exponent � is ob-
served for every � and the velocity at which the crossover

occurs hardly shifts as � is varied. The distributions ap-
proach a constant exponent for high velocities. This expo-
nent goes down from �2=1.5 for �=0.01 to �2=1.0 for �
=0.05. In general, the deviations from Gaussian become
more pronounced as dissipation increases, i.e., as � increases
or as � decreases. When �2 decreases it is increasingly dif-
ficult to describe the distribution with an single exponent �2
for the highest velocities. It may well be that this regime,
corresponding to the highest velocities in both our simula-
tions and the recent experiments, is different from the
asymptotic high-velocity tail predicted by kinetic theories
�7�.

To test whether the velocity distributions we find here are
only observed for this specific driving mechanism of heating
through a circular boundary, we constructed different sys-
tems that drive through boundaries in a different way. For
instance, we constructed a box with periodic boundary con-
ditions that includes a small circular region around the cen-
ter. Within this circular region particles are uniformly driven
but outside of the region they are not heated at all. For par-

FIG. 3. Uniform heating. �a� P�vx /�x�. �b�
−ln	−ln�P�vx /�x��
 vs ln�vx /�x�. Data for both
figures are taken for N=350 and for �=0.02 and
�=0.8 ���, 0.6 ���, 0.4 ���, 0.2 ���, and 0.1
���. A Gaussian is shown as a solid line with
slope −2 and the distribution obtained by Rouyer
and Menon is shown as the dashed line with
slope −1.5. The velocity distributions are shifted
by a constant amount C for clearity.

FIG. 4. Uniform heating. �a� P�vx /�x�. �b�
−ln	−ln�P�vx /�x��
 vs ln�vx /�x�. The dashed
lines have slopes −2 and −1.5. Data for both fig-
ures are taken for N=350 and for �=0.2 and �
=0.1 ���, 0.05 ���, 0.02 ���, and 0.01 ���.
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ticles within the circular region we observe velocity distribu-
tions that are Gaussian. On the other hand, for particles out-
side of the circular region we observe the same non-Gaussian
velocity distributions as seen in the case of a circular bound-
ary.

To test whether velocity distributions are sensitive to the
precise way of heating at the boundary, we changed our heat-
ing algorithm so that when a particle hits the boundary, the
angle of reflection is random and the magnitude of the new
velocity is drawn from a Gaussian distribution. This has a
minor effect on the distribution for the highest velocities, but
leaves all major differences between uniform and boundary
heating intact.

Finally, we studied the behavior of the velocity distribu-
tion for different particle numbers N. Figure 9�a� shows that,
as N increases, the velocity distributions become more nar-
row for smaller velocities, but fall off less rapidly in high
velocity regime. This is shown more clearly in Fig. 9�b�. We
find that the distribution for velocities larger than the cross-

over velocity is well described by a single exponent that
decreases from �2=1.7 for N=50 to �=0.7 for N=1000. The
crossover shifts to lower velocity and becomes sharper as N
is increased. Instead of approaching a limiting velocity dis-
tribution as N is increased, we find that the shape of the
velocity distribution depends not only on � and �, but also
on N for all values of N we examined. This indicates that for
boundary heating there is no thermodynamic limit. For uni-
form heating, on the other hand, the velocity distribution is
largely insensitive to changes in N, because each particle
individually is in contact with the heat bath. Even though the
velocity distribution for boundary heating depends sensi-
tively on �, �, and N, we showed in Ref. �16� that the ve-
locity distributions collapse onto each other for each � and
q= �N��−1/2.

The most obvious difference between uniform and bound-
ary heating is that in the first case heating takes place homo-
geneously throughout the box, whereas in the latter case en-
ergy is injected inhomogeneously at the boundaries. That this

FIG. 5. Boundary heating. �a� The average
number density � as a function of distance r to
the center of the box. The container has radius R.
Data taken for N=350, �=0.02, and �=0.9 ���,
0.8 ���, 0.7 ���, 0.6 ���, 0.5 ���, and 0.4 ���.
�b� The mean kinetic energy �v2� per particle as a
function of r, for the same values of � and �. The
dashed lines indicate the concentric rings, within
which the velocity distributions were separately
calculated.

FIG. 6. Boundary heating. �a� The average
number density � as a function of distance r to
the center of the box. Data taken for N=350, �
=0.9 and �=0.1 ���, 0.05 ���, 0.02 ���, and
0.01 ���. �b� The mean kinetic energy �v2� per
particle as a function of r, for the same values of
� and �. Note that even for the dilute case �
=0.01 the mean kinetic energy profile is not con-
stant, but drops at the boundary of the box. The
profile only becomes constant after a certain dis-
tance into the container, which corresponds to the
mean free path of particles leaving the boundary.
This feature, together with the rise in density that
we observe close to the boundary, has been de-
scribed also in Ref. �19�.
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is not the cause for the difference in velocity distributions,
we show by using a different heating mechanisms that is
spatially homogenous but where the ratio q can be adjusted.
With this heating mechanism, described in Ref. �4�, we can
reproduce the entire family of distributions as observed for
boundary heating. In this case, for every time step 
t we
select at random two particles and add to these particles a
random but opposite velocity to conserve the total momen-
tum. On average heating is spatially homogeneous and in the
limit of small 
t this heating mechanism approaches uniform
heating. When 
t is small, many heatings occur for every
collision whereas for large 
t, particles collide many times
before being heated. By increasing 
t, the parameter q is
decreased.

The effect of changing 
t is shown in Fig. 10. Here, we
show the velocity distribution for N=350, �=0.02, and �
=0.4. The gas is heated using the two-point heating algo-
rithm described above, while we vary the time between heat-
ings, 
t. For 
t=0.01 the distribution has a exponent �

=1.7 that is approximately constant over the observed range.
When 
t is reduced a clear crossover develops. The behavior
of the velocity distribution for velocities higher than the
crossover velocity is more complicated than in boundary
heating. There is also a sharp kink at the high-velocity end
that we have been unable to explain so far. For small 
t, the
velocity distribution is Gaussian over the entire range of ve-
locities. For larger 
t, the resulting velocity distribution is
reminiscent of the distributions seen for boundary heating,
where a crossover in the exponent occurred for similar val-
ues of �. This reinforces the idea in Ref. �16� that uniform
heating and boundary heating describe different limits of the
same granular gas, for q�1 and q�1, respectively.

V. A SIMPLE MODEL WITHOUT SPATIAL DEGREES OF
FREEDOM

In Ref. �16� we studied a simple model of an inelastic gas
without spatial degrees of freedom. With this model, we are

FIG. 7. Velocity distributions for boundary
heating calculated separately within the concen-
tric rings shown in Figs. 5 and 6, i.e., for 0	r
�0.2 ���, 0.2	r�0.4 ���, 0.4	r�0.6 ���,
0.6	r�0.8 ��� and 0.8	r�1 ���, where r is
distance to the center. Data were taken for N
=350, �=0.05, and �=0.8. �a� P�v /�x�. �b�
−ln	−ln�P�vx /�x��
 vs ln�vx /�x�. The local slope
corresponds directly to the local exponent �.

FIG. 8. Boundary heating. �a� −ln	
−ln�P�vx /�x��
 vs ln�vx /�x� for N=350, �=0.02
and �=0.9 ���, 0.8 ���, 0.7 ���, 0.6 ���, 0.5
���, and 0.4 ���. �b� −ln	−ln�P�vx /�x��
 vs
ln�vx /�x� for N=350, �=0.7 and �=0.01 ���,
0.02 ���, 0.03 ���, and 0.05 ���.
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able to reproduce the velocity distributions observed in uni-
form and boundary heating by adjusting the parameter q.
This shows that spatial correlations or inhomogeneities due
to the presence of driving boundaries play a minor role in
explaining the non-Gaussian velocity distributions observed
in experiments. Even though kinetic theories have estab-
lished that certain specific non-Gaussian velocity tails arise
in the absence of spatial correlations �7–9�, it has remained
an open question whether the entire family of non-Gaussian
velocity distributions observed in experiments can be ex-
plained without spatial correlations �20�. In this section, we
explore the behavior of this model in more detail by system-
atically varying the two parameters of the model, � and q.

In our model, every time step we select at random C pairs
of particles i and j and let them collide. At the same time we
randomly select H particles k and heat those by adding a
random amount to their velocity. We model collisions as fol-
lows: Eq. �1� can be cast into the following form:

vi� = vi −
1 + �

2
� cos2 � sin � cos �

sin � cos � sin2 �

�vi − v j� , �4�

where vi and vi are the velocities of particles i and j, � is the
coefficient of restitution and � is the angle between the sepa-
ration vector rij and a reference axis. Collisions in our model
occur by selecting at random particles i and j and an uni-
formly distributed impact parameter −2R	b	2R. We then
use the above collision rule with �=arcsin�b /2R�
+arccos�v · ŝ /v�, where v= �v j −vi� /2 is the velocity in the
center-of-mass frame and ŝ is a unit vector along the refer-
ence axis. We discard values of � corresponding to �v j

−vi� ·rij 	0 as these represent unphysical collisions. We heat
the particles k by adding a random amount of velocity ac-
cording to Eq. �2�. To prevent the velocities from running
away, we subtract the center-of-mass velocity after heating.
In a single time step, NH=H particles are heated and NC

FIG. 9. Boundary heating. �a� P�vx /�x� for
different values of N. �b� −ln	−ln�P�vx /�x��
 vs
ln�vx /�x�. Data are taken for �=0.05, �=0.8 and
N=50 ���, 100 ���, 200 ���, 500 ���, 700 ���,
and 1000 ���.

FIG. 10. Two-point heating. �a� P�vx /�x� for
different values of 
t. �b� −ln	−ln�P�vx /�x��
 vs
ln�vx /�x�. Data are taken for N=350, �=0.02,
�=0.4, and 
t=0.01 ���, 0.03 ���, 0.05 ���,
0.10 ���, 0.30 ���, 0.50 ��� and 1.00 ���.
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=2C particles collide. As a consequence, q=H / �2C�. This
model is similar to the inelastic Maxwell model with white-
noise forcing �8�, but here, in addition, we can explicitly
adjust the heating and collision independently, allowing us to
study the behavior as a function of q. As such it is based
upon the work of Ulam �21�, but including dissipation.

In Fig. 11 we plotted the result for an inelastic gas with
�=0.4. We varied the number of heatings and the number of
collisions in a single time step from H=100 and C=1 to H
=1 and C=1000. As q is lowered, the velocity distributions
develop a crossover and for q
1 the distributions are
strongly non-Gaussian, similar to the velocity distributions
obtained for 
t�1 in two-point heating. In Fig. 12 we keep
q=0.025 fixed and vary �. We see that the crossover point
shifts to lower velocities as � is lowered.

Whereas we showed in Ref. �16� that this model yields
velocity distributions comparable to uniform and boundary
heating for similar values of q, here it is clear that the model
also qualitatively reproduces the family of distributions ob-
served for the simulations. The transition in Fig. 11 as q is

increased compares well to the same transition in Fig. 10,
where 
t is decreased. Also, the crossover that develops in
Fig. 8 as � is increased is similar to those seen in Fig. 12.
This confirms that the velocity distributions are non-
Gaussian not because of spatial correlations. Rather, it is the
flow of energy through the system, mediated by the inelastic
collisions, that determines the shape of the velocity distribu-
tion.

VI. RELATION TO EXPERIMENTS

Unfortunately, experimental results for velocity distribu-
tions have remained ambiguous. Different setups and driving
mechanisms usually give different velocity distributions. The
distribution with a universal exponent of �=1.5 was ob-
tained by Rouyer and Menon for a setup where particles
were confined between two vertical plates and driven in the
vertical direction. However, for a different setup, where par-
ticles on a horizontal plate were driven in the vertical direc-
tion, Olafsen and Urbach �17� found crossovers from expo-

FIG. 11. Velocity distribution for the simple
model with N=500 and �=0.4. �a� P�vx /�x�. �b�
−ln	−ln�P�vx /�x��
 vs ln�vx /�x�. Data are for dif-
ferent values of q=H /2C: q=50 ���, q=5 ���,
q=1 ���, q=0.5 ���, q=0.05 ���, q=5�10−3

���, and q=5�10−4 ���.

FIG. 12. Velocity distribution for the simple
model with N=500 and q=0.025. �a� P�vx /�x�.
�b� −ln	−ln�P�vx /�x��
 vs ln�vx /�x�. Data are for
�=0.9 ���, 0.7 ���, 0.5 ���, 0.3 ���, and 0.1
���.
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nential to Gaussian distributions when changing the driving
of the particles. Blair and Kudrolli �11� used a setup where
particles move along an inclined plane. Friction with the
plane during collisions reduced the coefficient of restitution
to ��0.5, much lower than the coefficients of restitution
usually reached in other setups. They found the distribution
with exponent �=1.5 only in the very dilute case. Otherwise,
the distributions deviated strongly from both Gaussian and
the distribution obtained by Rouyer and Menon. This differ-
ent behavior of the velocity distribution from experiment to
experiment has yet remained unexplained, although friction
between particles and the sidewalls may account for it to
some extent �22�.

Because of the absence of gravity and friction in our
simulations, it is not possible to do a direct comparison be-
tween our simulation and experiments. In the experiment of
Rouyer and Menon the driving is through the boundary, but
there are some significant differences between their heating
mechanism and the one we use in simulations with boundary
heating. Due to gravity and the geometry of the setup the
injection of energy in the experiment of Rouyer and Menon
is mainly in the vertical direction. This energy is transferred
into the horizontal direction by collisions between particles.
Another difference is that in the experiment the frequency of
driving is relatively low. Because of this the dynamics of the
gas close to the driving boundary is strongly dependent on
the phase of the driving cycle. In fact, it has been shown in
simulation that for a system similar to the experiment by
Rouyer and Menon, a shock wave propagates up through the
gas �23�. At a certain distance from the boundary the time
dependence has decayed and the gas enters a steady state. It
is in this steady state that the velocity distributions are mea-
sured.

It is not yet established how this time dependence and the
occurrence of a shock wave influences the velocity distribu-
tions in the steady state. A priori it is not clear if it is possible
to compare velocity distributions in systems with a strong
time dependence, like the experiments, with those that have
no time dependence, as is the case in our simulations. There
are, however, reasons to assume this is possible. The velocity
distributions in the experiment of Rouyer and Menon are
measured only in the direction orthogonal to the driving di-
rection. Simulations �23� show that the effect of the shock in
the direction orthogonal to the shock is usually relatively
weak and decay rapidly in height. In the steady state, influ-
ence of the shock is absent in the orthogonal direction, even
while it still may be apparent in the direction perpendicular
to the driving direction. So, if we only look at velocity dis-
tributions in the orthogonal direction and in the steady state,
a comparison between the experiment and our simulations is
justified.

It is also not clear how in this experiment the dynamics of
the gas shape the velocity distribution and whether it is con-
trolled by the parameter q. We speculate that in the steady
state the system behaves in fact like a one-dimensional in-
elastic gas. Fast upward moving particles inject energy in the
orthogonal direction when colliding with particles in the
steady state, effectively functioning as a heat source. In this
picture the mean number of collisions between fast upwards
moving particles and particles in the steady state would be

NH, the average number of heatings, and collisions between
the particles in the steady state mutually would be NC, the
average number of collisions. One way of changing the
shape of the velocity distribution would be to change the
fraction of particles in the steady state. More particles in the
steady state would lower NH and increase NC leading to more
non-Gaussian velocity distributions.

The above considerations not only apply to the experi-
ment of Rouyer and Menon but to most of the other experi-
ments as well. In the experiments of Blair and Kudrolli and
those of Olafsen and Urbach velocity distributions are mea-
sured orthogonal to the driving direction. In both cases it is
not so much the collisions with the bottom plate that drive
the gas in the orthogonal directions, but mainly off-angle
collisions between fast upward moving particles with par-
ticles that have low velocities in the orthogonal directions. It
is in these experiments rather than those of Rouyer and Me-
non that we find a similar dependence on � and q as de-
scribed in this paper.

In the setup of Olafsen and Urbach �17� velocity distribu-
tions go from non-Gaussian to Gaussian when a rough plate
is used instead of a flat plate. On a flat plate, energy is in-
jected only in the in-plane directions by off-angle collisions
between neighboring particles. With a rough plate, energy is
injected directly into the directions parallel to the plate every
time a particle collides with the plate, effectively increasing
the number of heatings over collisions. Baxter and Olafsen
�24� observe the same behavior in a system where a layer of
heavy particles is inserted between the other layer of par-
ticles and a flat bottom plate. Particles from the upper layer
have off-angle collisions with the layer of heavy particles,
injecting energy in the in-plane directions every cycle. Par-
ticles in the upper layer show Gaussian velocity distribu-
tions, whereas particles in the lower layer have non-Gaussian
velocity distributions.

The clearest sign of a potential role of q is seen in an
experiment by Blair and Kudrollli �11�. Here the number of
collisions is increased by adding more particles. As a result,
their velocity distributions develop the same crossover that
we see both in our simulations and models. The reason why
these transitions are not visible in the experiment by Rouyer
and Menon as they increase the number of particles, is likely
that in the first case the effective coefficient of restitution is
much lower, ��0.5, due to friction with the inclined plane.
These observations have recently been reproduced in simu-
lation �25�.

Again, one of the main problems considering the velocity
distributions in granular gases is that different setups and
experiments usually find different velocity distributions. As
we have shown in this section, this variation in velocity dis-
tributions could be accounted for largely by changes in the
parameter q among the different setups and experimental
conditions. In this way, our finding of the controlling param-
eter q could ultimately explain these seemingly inconsistent
results.

VII. CONCLUSION

We compared the velocity distributions of a granular gas
that was driven by uniform heating and by heating through
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the boundary. Both in theory and simulation studies, it is
often implicitly assumed that far from the boundary the dy-
namics of granular gases is well described by uniform heat-
ing. Here and in Ref. �16�, we find that there are clear quali-
tative differences. When driven through the boundary, for
instance, the gas can form coexisting “cool” liquidlike clus-
ters surrounded by a “hot” gaseous state for certain values of
� and �. Such clusters do not occur in our simulations with
uniform heating. For increasing dissipation, these cluster
grow in size and ultimately exhibit crystalline order.

The difference between uniform heating and boundary
heating also extends to the velocity distributions. In both
cases, we studied the dynamics of the granular gases while
systematically varying all relevant parameters. For uniform
heating, we confirmed that the distribution was close to
Gaussian for a wide range of the coefficient of restitution �,
area fraction �, and particle number N. When heating
through the boundary, we found that the granular gas devel-
oped spatial gradients in density and mean kinetic energy,
with density peaking in the center and mean kinetic energy at
the boundary. Surprisingly, the velocity distribution are rela-
tively insensitive to the precise position in these gradients.
When normalized by the mean kinetic energy, the velocity
distributions collapse on each other, consistent with previ-
ously reported results �10,14�. For boundary heating, the ve-
locity distribution is often non-Gaussian, with the precise
shape depending sensitively on �, �, and N. Only for dilute
systems of almost elastic particles do we find the Gaussian
distribution that is always observed for uniform heating.

In Ref. �16� we proposed that the difference between uni-
form and boundary heating is mainly in the control param-
eter q, the ratio between the average number of heatings, and
the average number of collisions in the gas. To test whether
this difference is not due to the imhomogeneity of energy
injection, we studied the velocity distributions in a system
where the energy injection is spatially homogeneous but
where q can be varied easily. In this system, we directly
observe the transition from Gaussian to strongly non-
Gaussian velocity distributions as we decrease q. This sup-
ports our idea, that uniform heating and boundary heating
represent different limits of the same inelastic gas, but for
q�1 and q�1, respectively.

Finally, a simple model of a driven, inelastic gas without
spatial degrees of freedom reproduces the entire family of
velocity distributions we find in simulation, as we vary � and
q. This means that the velocity distributions are non-
Gaussian not because of spatial correlations. Rather, it is the
cascade of energy from a few high-energy particles to the
slow-moving bulk of the gas that is the key determinant of
the non-Gaussian velocity distributions. These observations
should aid in the construction of a kinetic theory of dissipa-
tive gases and help explain the sometimes confusing results
of recent experiments.
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