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Previous research on semiflexible polymers including cytoskeletal networks in cells has suggested the
existence of distinct regimes of elastic response, in which the strain field is either uniform �affine� or nonuni-
form �nonaffine� under external stress. Associated with these regimes, it has been further suggested that a
mesoscopic length scale emerges, which characterizes the scale for the crossover from nonaffine to affine
deformations. Here, we extend these studies by probing the response to localized forces and force dipoles. We
show that the previously identified nonaffinity length �D. A. Head et al., Phys. Rev. E 68, 061907 �2003��
controls the mesoscopic response to point forces and the crossover to continuum elastic behavior at large
distances.
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I. INTRODUCTION

Semiflexible polymers such as filamentous proteins re-
semble elastic rods on a molecular scale, while exhibiting
significant thermal fluctuations on the scale of micrometers
or even less. This has made them useful as model systems
allowing for direct visualization via optical microscopy. But,
semiflexible polymers are not just large versions of their
more well-studied flexible cousins such as polystyrene. Fila-
mentous proteins, in particular, have been shown to exhibit
qualitatively different behavior in their networks and solu-
tions. A fundamental reason for this is the fact that the ther-
mal persistence length, a measure of filament stiffness as the
length at which thermal bending fluctuations become appar-
ent, can become large compared with other important length
scales such as the spacing between polymers in solutions, or
the distance between chemical crosslinks in a network.

One of the most studied semiflexible polymers in recent
years has been F-actin, a filamentous protein that plays a key
structural role in cells �1–3�. These occur in combination
with a wide range of specific proteins for crosslinking, bun-
dling, and force generation in cells. These composites, to-
gether with other filamentous proteins such as microtubules,
constitute the so-called cytoskeleton that gives cells both me-
chanical integrity and structure. This biopolymer gel is but
one example of a large class of polymeric materials that can
store elastic energy in a combination of bending and exten-
sional deformations of the constituent elements. Such sys-
tems can be called semiflexible gels or networks.

One of the important lessons from recent experimental
and theoretical studies is that the shear modulus of cross-
linked semiflexible networks bears a much more complex
relationship to the mechanical properties of the constituent
filaments and to the microstructure of the gel than is the case
for flexible polymer gels �4�. Recently, it has been shown
that semiflexible gels exhibit a striking crossover �5–9� be-
tween a response to external shear stress that is characterized
by a spatially heterogeneous strain �a nonaffine regime
�10,11�� and a uniform strain response �an affine regime

�12��. This crossover is governed primarily by cross-link
density and molecular weight �filament length�. The bulk
shear modulus of the network simultaneously increases by
about six orders of magnitude at this nonaffine-to-affine
crossover. The underlying mechanism responsible for this
abrupt crossover appears to be the introduction of a mesos-
copic length scale in the problem that is related to both the
bending stiffness of the constituent polymers and the mean
spacing between consecutive cross links along the chain
�5,8�.

One can associate this mesoscopic length with the length
below which the deformation of the network departs from
the standard affinity. The nonaffinity length �, introduced in
Refs. �5,8�, can be qualitatively understood as the typical
length over which one finds nonaffine deformation in the
network. In this previous work we presented a scaling analy-
sis that relates this mesoscopic length scale to the network
density and the stretching and bending moduli of the con-
stituent filaments. The macroscopic shear response of the
network is then controlled by a competition between � �the
nonaffinity length� and the filament length L. On the one
hand, when the filament length is long, nonaffine corrections
to the deformation field, which are localized to regions
within � of the filament ends, do not significantly affect the
mechanical properties of the network; the shear modulus of
the macroscopic system is well described by calculations
based on affine deformation reflecting the fact that nonaffine
deformations of the filament ends are subdominant correc-
tions in this limit. Moreover, the elastic energy is stored pri-
marily in the �homogeneous� extension and compression of
filaments. On the other hand, when the filaments are of a
length comparable to, or shorter than the nonaffinity length,
i.e., L�� then the nonaffine deformations of the ends play a
large, even dominant role in determining the mechanical
properties of the network. The network is found to be gen-
erally more compliant, and the elastic energy under applied
shear stress is stored in a spatially heterogeneous manner in
the bending of filaments. The existence of these distinct re-
gimes as a function of filament length reflects a fundamental
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difference of these semiflexible polymer networks with re-
spect to their flexible counterparts: polymers can maintain
their mechanical integrity and state of stress and strain across
network nodes or cross links.

These results naturally lead one to pose a number of basic
questions regarding the elastic properties of semiflexible net-
works. While these random networks must on basic theoret-
ical grounds appear as continuum, isotropic materials at the
longest length scales, these considerations do not predict the
length at which the continuum approximation applies. The
previous identification of the nonaffinity length � as the only
mesoscopic length associated with the nonaffine-to-affine
crossover in uniformly sheared semiflexible networks sug-
gests that this length should more generally control the cross-
over to continuum behavior �8�. After all, the affine deforma-
tion of the network under uniform stress at scales large
compared to � shows that in one case at least the nonaffinity
length controls the crossover to continuum behavior. One of
the principal results of the present work is the demonstration
that � more generally controls this crossover to continuum
mechanics in semiflexible gel systems.

Prior work has focused exclusively on simple shear and
uniaxial extension. In order to better examine the universal-
ity of the previous results, we study the opposite limit of a
highly localized external force in the form of a point force
monopole or dipole. If one can show that the elastic �dis-
placement� Green’s function of the system similarly depends
on only one additional parameter � then it would appear that
this quantity completes the coarse-grained elastic description
of the system on all length scales down to the mean distance
between cross links. It may be, however, that the deforma-
tion field of these semiflexible networks is much more com-
plex and the simplification introduced by � in the description
of the network’s response to uniform shear strain cannot be
generalized to deformations resulting from more general
forcing conditions.

While our results below, indeed, show that � does largely
control the crossover to �the far field� continuum elasticity,
the observed elastic Green’s function is sensitive to the local
structure of the network on length scales below �. Below we
discuss how we quantify the structure of the Green’s function
and its approach to the form required by continuum elastic-
ity. The observed elastic Green’s function, however, depends
not only on the �-dependent Lamé coefficients of the mate-
rial, but also on local properties of the displacement field
immediately surrounding the point force. In effect one may
imagine that, upon the application of the point force, the
network acts as a type of composite material: within a dis-
tance � of the point force it deforms in a way not well de-
scribed by continuum theories, while outside of that zone it
does appear to act like an elastic continuum. The complete
Green’s function depends, of course, on the material proper-
ties of both media. Unfortunately, only one of those media
�the outer zone� is well characterized by the simple con-
tinuum theory of an isotropic elastic solid, so the complete
Green’s function remains complex and depends on the de-
tailed network structure within the inner zone surrounding
the applied force.

There is another set of questions that may be addressed
via the study of the network’s response to point forces and

force dipoles. Such forces not only probe the material prop-
erties of the network in a manner complimentary to the uni-
form strains explored earlier, they also have direct physical
implications for microrheology in F-actin networks and for
the dynamics of the cytoskeleton in response to the activity
of nanoscale molecular motors, e.g., myosin. Fluctuation-
based microrheology, an application of the fluctuation-
dissipation theorem to the study of rheology via the statisti-
cal analysis of the thermally fluctuating position of
submicron tracer particles embedded in the medium, requires
one to understand the elastic Green’s function of the me-
dium. Thus understanding the response of semiflexible net-
works to localized forces has direct experimental implica-
tions and consequences for force production in the
cytoskeleton.

In the biological context, the semiflexible network making
up the cytoskeleton is generally found in association with
molecular motors that, to a good approximation, generate
transient localized force dipoles in the material. To both un-
derstand force generation in the cell as well as the material
properties of these cytoskeletal networks driven into non-
equilibrium steady states by these molecular motors, one
must determine the displacement field associated with such
motor-induced forces.

Notwithstanding our biological motivation for this work,
our findings also bear on the broader problem of elastic
modes in amorphous materials. It has been shown that the
vibrational modes of deep-quenched Lennard-Jones systems
approach a continuum description only on scales exceeding
some mesoscopic length � �13,14�; for the protocols consid-
ered, a value ��30 particle dimensions was robustly found.
This was physically identified with a length scale for non-
affinity, suggesting a direct correspondence with our � �al-
though our � can be controlled by varying the mechanical
properties of the constituents�. A comparable length was also
found to control the self-averaging of the Green’s function to
the form expected by continuum elasticity �15�. These find-
ings for radially interacting particles are broadly in keeping
with our own investigations for semiflexible polymer net-
works. We also mention here that the relationship between
continuum elasticity and the Green’s function has also been
discussed for mildly disordered spring networks �16�.

The remainder of this paper is organized as follows: In
Sec. II we develop our model of semiflexible, permanently
cross-linked gels, summarize the numerical simulations used
to study it, and discuss the expected structure of the displace-
ment field when averaged over numerous realizations of the
network. In Sec. III we report our results for both point
forces in Sec. III A and force dipoles in Sec. III B. We then
discuss our studies of the bulk elastic properties of these
networks in Sec. III C before concluding in Sec. IV.

II. MODEL

A. Semiflexible network

A highly successful continuum continuum model of indi-
vidual semiflexible polymers is the wormlike chain. This
treats the linear filaments as elastic rods of fixed contour
length and negligible thickness, so that the dominant contri-
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bution to the elastic energy comes from bending modes and
the Hamiltonian linearized to small deviations from a
straight configuration that is given by

H� =
1

2
�� ��2u�2ds , �1�

where u is the transverse displacement of the filament rela-
tive to an arbitrary straight axis, s is its arc length, and the
elastic modulus � gives the bending energy per unit length
�s.

The longitudinal response of the wormlike chain model is
calculated from the increase in free energy due to an exten-
sional stress applied along the mean filament axis �12,17�.
However, the numerical algorithm used in our simulations is
based on the minimization of the Hamiltonian of the system,
and hence is fundamentally athermal. The reason for this
choice is essentially one of efficiency: assuming there are no
subtle convergence issues, minimization is expected to be
faster than stochastic modeling and, it is anticipated, give
better statistics for a given CPU time. This does, however,
mean that the entropic mechanism governing the longitudinal
response is absent, and an explicit energetic term is required.

An unconstrained filament at T=0 forms a straight con-
figuration, and thus elongation of its end-to-end distance
must be accompanied by a change in the absolute contour
length. It is therefore natural to incorporate longitudinal
modes by adding a second elastic term to the Hamiltonian
for the extension or shortening of the filament backbone,

H� =
1

2
�� �dl�s�

ds
	2

ds , �2�

where dl�s� /ds gives the strain or relative change in local
contour length, and � is the Young’s modulus of the filament
�essentially a spring constant normalized to 1/�length��. Of
course, such modes also exist in thermal systems, but may be
dominated by the entropic spring terms �12�, except possibly
for very short filament segments or very densely cross-linked
gels. The connection between thermal or entropic and ather-
mal longitudinal compliance is discussed in greater detail in
Ref. �8�.

The two elastic coefficients � and � together define a
length scale lb=
� /�, which we shall refer to as the intrinsic
bending length by observing that an isolated filament con-
strained to have different tangents at its end points will de-
form with this characteristic length. To avoid potential con-
fusion, however, we note that this is not the typical length
scale for bending deformations of a semiflexible filament.
Rather, the bending energy of filaments tends to make the
longest unconstrained wavelength bending mode the domi-
nant one. Thus, for instance, in a cross-linked gel, filaments
are expected to be bent primarily on a length comparable to
the distance between cross links. Nonetheless, lb is a useful
measure of filament rigidity, in that large lb corresponds to
rigid filaments, and small lb to flexible ones.

Although � and � have been introduced as fundamental
coefficients, if the filament is regarded as a continuous elas-
tic body with uniform cross section at zero temperature, then
they can both be expressed in terms of the characteristic

filament radius a and intrinsic bulk modulus Yf as ��Yfa
4

and ��Yfa
2. Thus lb�a, and thinner filaments are more

flexible than thick ones �as measured by lb�, as intuitively
expected. Given the possibility of entropic effects in �, how-
ever, we shall treat these as independent parameters of the
theory �8�.

The gel is constructed by depositing filaments of mono-
disperse length L and zero thickness onto a two-dimensional
substrate. The center-of-mass position vector and orientation
of the filaments are uniformly distributed over the maximum
allowed range, so the system is macroscopically isotropic
and homogeneous. Whenever two filaments overlap they are
cross linked at that point. Deposition continues until the re-
quired mass density, as measured by the mean distance be-
tween cross links lc, has been reached. The network thus
constructed can be described by three lengths, L, lb, and lc,
and one modulus scale �. In two dimensions lc characterizes
both the mass density and cross-link density in spatially ran-
dom, isotropic networks. The length lb characterizes the me-
chanical properties of the constituent filaments via the ratio
of their bending to stretching compliance. The overall modu-
lus scale � will be absorbed into the point forces applied to
the network.

Previously �5,8�, we identified an additional length �
= lc�lc / lb�z, where z�1/3. This nonaffinity length character-
ized the crossover from nonaffine to affine network response.
Specifically, for filament lengths L much larger than � �i.e.,
high molecular weight�, the bulk network properties could be
understood quantitatively in terms of affine strains, while
significant nonaffine effects were observed for L��. Al-
though this length arose naturally from considerations of
bulk network properties �5�, its dependence on lc and lb can
be understood in terms of a balance of stretching or compres-
sion and bending energies of a single filament, treated in a
self-consistent way within a network �8�. It is important to
note that this �material� length is intermediate, between the
�geometric� network length lc and the macroscopic scale. In
fact, in dilute networks, for which lc� lb, we shall argue
below that the network can be thought of on scales �� as a
quasicontinuum: continuous, as opposed to discrete, but not
necessarily described by macroscopic continuum elasticity.
We shall find that this nonaffinity length will play a key role
in our analysis of the displacement field on this intermediate
or quasicontinuum scale.

In order to apply the point forces, a cross link is chosen at
random and identified as the origin of the system; it is this
cross link that will later be perturbed. A fixed circular bound-
ary at radius R from the origin is imposed, and any filaments
or filament segments that extend beyond the boundary are
simply removed or truncated, respectively. Filaments ending
on the rigid boundary are fixed there by another freely rotat-
ing bond as are found at all cross links in the system. The
allowed free rotation at the boundary means that the bound-
ary supplies arbitrary constraint forces on the network but
cannot support any localized torques.

B. Numerical method

Details of the simulation method have been presented
elsewhere �8�. Here we briefly summarize the procedure,
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with particular attention on those aspects that are central to
the problems studied in this paper.

The system Hamiltonian H��xi
� is constructed from dis-
crete versions of Eqs. �1� and �2� applied to the geometry
generated by the random deposition procedure described
above. The degrees of freedom �xi
, or “nodes,” are the po-
sition vectors of both cross links and midpoints between
cross links, the latter so as to incorporate the first bending
mode along the filament segments. Additional nodes could
be included at the cost of additional run time, but are ex-
pected to have a small effect, since the longest unconstrained
wavelengths tend to dominate bending deformations. Cross
links are treated as constraints on the relative position of
each connected filament segment, but not on their relative
rotation. Physically this corresponds to an inextensible but
freely rotating linkage. As previously noted, constrained
bending at cross links has a small effect except at high net-
work concentrations �specifically, when lc becomes compa-
rable to a� �8�. Nodes on the boundary are immobile. Note
that, as in our earlier work �5,7,8�, the network is assumed to
be initially unstressed on both macroscopic and microscopic
length scales.

There are two ways in which the system may be per-
turbed. The first, which we call monopole forcing, is to apply
an arbitrarily small external force �fext to the cross link at the
origin. The network is then allowed to relax to a new con-
figuration consistent with mechanical force balance at every
node. The second, which we call dipole forcing, is to intro-
duce a geometrical defect into the system by moving the
central cross link along the contour length of one of the
filaments to which it belongs, but not the other. Physically,
this corresponds, e.g., to a motor introducing relative motion
of one filament with respect to another filament. In the simu-
lations, this effect is incorporated by infinitesimally “shift-
ing” the image of the central node with respect to other
nodes on one filament.

Once the perturbation has been specified, the displace-
ments of the nodes in the new mechanical equilibrium are
calculated by minimizing the system Hamiltonian H��xi
�
using the conjugate gradient method �18�. This generates a
displacement field for the particular geometry under consid-
eration, as shown in Fig. 1. Note that H��xi
� is linearized
about small nodal displacements ��xi
 from their original
positions �xi
, so linear response is assured. The bulk re-
sponse to nonlinear strains has been recently studied by
Onck et al. �19�.

C. Decomposition of mean displacement field

As shown in Fig. 1, the displacement field for a particular
network is quite complex and generically shows anticorrela-
tions between displacements and the local mass distribution.
Although these fluctuations reflect inherent and possibly in-
teresting physical properties of the gels, a more basic and
immediately applicable quantity to measure is the mean dis-
placement field, found by averaging many individual runs
with differing geometries but identical system parameters R,
L, lc, and � �or equivalently R, L, lc, and lb�. Two examples
for differing � �the radius of the circle centered on the point

of force application� are given in Fig. 2. These plots demon-
strate one of the primary results of this paper, namely that the
crossover between continuum �or quasicontinuum� response
at large lengths, to a more exotic displacement field at
shorter lengths, happens at a length of order ��� with a pref-
actor close to unity.

In order to precisely describe the structure of the defor-
mation field, we consider its most general possible form. For
monopole forcing, the displacement field u�r� at position
vector r relative to the origin can be projected onto three

other vectors, namely the direction of the external force f̂, the
unit position vector r̂, and the axis n̂ of one of the filaments
to which the cross link is attached,

ui = Gij f̂ j ,

Gij =
f

�aff
�g�r�r̂ir̂ j + g�n�n̂in̂j + g�f��ij
 , �3�

where f is the magnitude of the external force, and �aff is the
shear modulus as predicted for affine deformation. This de-
pends on L and lc but not �, and is included here to factor out
the density dependence of the response. As defined, the g�·�

�and the h�·� below� are dimensionless quantities in two di-
mensions.

Each g�·� can be further decomposed into angular modes
in 	, where cos 	= n̂ · r̂,

g�·� = g0
�·� + 2 �

m
0,

m even

gm
�·� cos�m	� . �4�

Terms in sin�m	� vanish since the ensemble-averaged re-
sponse must be invariant under 	↔−	, and cos�m	� terms

FIG. 1. �Color online� An example of a network of filaments of
uniform length L �grey line segments� perturbed by an external
force, denoted by the large arrow, applied to the cross link at the
origin of a circular system of radius R=L. The arrow lengths are
logarithmically calibrated to the magnitude of the displacement of
at each cross link. In this example, L / lc�29.1, � /L�0.191, and
the force is perpendicular to one of the filaments that form the
central cross link; forces can also be applied parallel to a filament.
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with m odd also vanish due to n̂↔−n̂ invariance. This latter
symmetry may appear to violate the known polarity of typi-
cal semiflexible biopolymers such as F-actin and microtu-
bules �20�; however, we are interested here in the mechanical
properties of the filaments, which, within the approximations
of our model, are indeed invariant under n̂↔−n̂.

For dipole forcing, the above procedure is followed with

the additional simplification that n̂ is proportional to f̂, since
the displacement �and hence force� dipole induced by the
motion of a motor will always be parallel to one filament
axis. The decomposition is therefore somewhat simpler,

ui = Hijn̂j ,

Hij =
f

�aff
�h�r�r̂ir̂ j + h�n��ij
 . �5�

The scalar f is the magnitude of the force dipole; since it is
actually a displacement that is imposed, f is unknown as will
be treated as a fitting parameter. The angular decomposition
is identical to before,

h�·� = h0
�·� + 2 �

m
0,

m even

hm
�·� cos�m	� . �6�

Later sections will refer to the continuum solution for
each of the two forms of forcing. These are given in the
Appendix. For the monopole case, only two continuum
modes are nonzero, namely g0

�r� and g0
�f�. We shall refer to

these components of the Green’s function as continuum
modes in order to distinguish from those components �non-
continuum modes� that must vanish in the continuum. We do
this even though for our finite systems the noncontinuum
modes do not vanish.

The dipole modes are slightly more subtle: after averaging
of many dipole fields generated by the simulation, the result-
ing field is quadrupolar. This is an immediate consequence
of the means of forcing the system. Recall that in an elemen-
tary step, a motor moves parallel to one filament axis. This
has the effect of compressing the filament in front of the
dipole, while stretching the trailing segment. Thus two fila-
ment segments are perturbed, each of which can be treated as
a force dipole which, for a particular network geometry, will
be of different magnitudes and hence the resulting field is
dipole. However, the net bias of this dipole is symmetrically
distributed around zero, and thus vanishes after averaging,
leaving a quadrupole field as shown in Fig. 3. As derived in
the Appendix, the nonzero modes for this field are h0

�r�, h2
�r�,

h0
�f�, and h2

�f�.

III. RESULTS

The mechanical response to a localized perturbation de-
pends on the distance from the point of perturbation. We
divide the discussion of these results into the following parts.
First, we examine the response to a point force using the
decomposition of the displacement field outlined in previous
section. We contrast the decay of the noncontinuum modes
of the displacement field with the behavior of the continuum

FIG. 2. �Color online� Mean response after averaging O�105�
networks with the same parameters as in Fig. 1 �including one
filament fixed perpendicular to the external force� except for �,
which is �a� � /L�0.089 and �b� � /L�0.42. For easy visualization,
a circle of radius � has been inserted into the background of each
plot. Vectors near the center of each system have not been plotted
for clarity.

FIG. 3. �Color online� Mean displacement field after averaging
over O�105� individual fields induced by imposing a displacement
dipole at the origin. The orientation of the dipole is given by the
arrow. As explained in the text, the mean dipole moment vanishes
after averaging and the resulting field is quadrupole. A circle at a
radius �=0.191L from the origin is also shown.
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modes of the displacement field and discuss the finite-size
effects in the simulations. At large length scales, we find that
the deformation field approaches a quasicontinuum form, in
which all but a small number of ensemble-average modes
decay rapidly toward zero. The remaining modes of the de-
formation field are the same as those predicted by continuum
elasticity. In other words, the strain field about a point force
reflects the expected tensorial character and rotational sym-
metries based on continuum elasticity theory. We find that �
again plays a central role in controlling the crossover from
the near field to the quasicontinuum.

We then turn to the spatial structure of the elastic energy
density field around the point force paying particular atten-
tion to the partitioning of that energy density between
stretching and bending modes of the filaments. We observe
that the ratio of these energy contributions achieves the bulk
value over much shorter distances from the point force than
does the structure of the displacement field acquire its far
field, or bulk structure. We then extend our analysis to con-
sider force dipoles in the medium. Last, we extend our pre-
vious analysis of the bulk elasticity of the filament network
by examining both the Young’s modulus and the Poisson
ratio of the network.

A. Response to point forces

1. Displacement field

In this section we focus on the short length scale behavior
of the monopole response, for which the noncontinuum
modes are nonzero. We wish to distinguish two distinct
forms of this noncontinuum behavior: �i� higher angular
modes gm

�r� and gm
�f� with m
0 are nonzero, and �ii� the gm

�n�

modes do not vanish, i.e., the response depends on the ori-
entation of the filament to which the force is applied. This
latter observation gives a clear indication of how the re-
sponse can “see” the microscopic structure of the gel on
short length scales.

An example demonstrating the appearance of noncon-
tinuum modes at short lengths is given in Fig. 4, which
shows the g2

�f� mode for systems with different cross-link
densities L / lc but with the filament flexibility chosen to give
the same ��0.191L in each case. This plot shows the decay
of the cos�2	� amplitude of the component of the displace-
ment field in the direction of the applied force �at the origin�.
In all three systems one observes a rapid decay of this angu-
lar harmonic that must vanish for a continuum isotropic sys-
tem. Moreover, the characteristic length scale for this decay
appears to be of order � ��0.2R�, although we examine this
point more quantitatively below. For all network densities
and values of � studied it is clear that the magnitude of g2

�f�

vanishes rapidly with distance from the point force. No data
are shown for larger values of L / lc since at high network
densities the numerical convergence of the strain field is so
slow as to prevent attaining meaningful statistics.

This picture of noncontinuum modes decaying to near
zero at a length comparable to � holds also for the m
2
modes of gm

�f� and for all the m
0 modes of gm
�r�. For reasons

of space we do not show these data here. Instead we present

data in Fig. 5 that demonstrate the decay of g0
�n� with r for

three networks’ densities such that in each case ��0.191L.
This noncontinuum mode of the displacement field measures
the circularly averaged amplitude of the component of dis-
placement in the direction n̂, i.e., along the axis of the rod to
which the force has been applied. Clearly, such behavior has
no counterpart in an isotropic continuum elastic model. It is
interesting to note that this amplitude also appears to decay
exponentially with a decay length of order �.

In order to test quantitatively whether � indeed controls
the decay of those components of the displacement field that
have no counterparts in the continuum theory, we examine,
as an example, g2

�f� vs r more closely in Fig. 6. Here we plot
this for a range of values of networks density and of �. If, as
suggested above, the decay is exponential with characteristic
length �, then plotting these data log-linear with radial dis-
tances scaled by � should cause all these curves to exhibit
the same slope. We have shifted the data sets vertically in
order to facilitate visual comparison. �We note that, although
a known force is applied to the origin of our sample, since

FIG. 4. g2
�f� �which is dimensionless� vs distance from point of

force application r for systems with the same � /L�0.191 and
cross-link densities L / lc as given in the key �L is the filament
length�. The system radius R=L in all cases.

FIG. 5. g0
�n� vs r /R for � /L�0.191, R=L, and the L / lc given in

the key.
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we expect the unknown local constitutive relations in our
system to depend on density and other parameters, the am-
plitudes cannot be directly compared. Here, we wish only to
establish the nature of the decay of the noncontinuum
modes.� We have also introduced the solid lines correspond-
ing to exp�−r /�� merely as guides to the eye. These are not
fits, although fits to these data for various L / lc and � dem-
onstrate decay lengths of � within 10%.

Thus we observe a near-field regime in which the decay
of the g2

�f� appears to be generically more rapid than
exp�−r /�� followed by the quasicontinuum regime where the
exponential decay with decay length � is observed. This
demonstrates that the nonaffinity length �, indeed, controls
the approach toward the expected continuum behavior �i.e.,
vanishing of the noncontinuum modes�. Similar results �not
presented here for reasons of space� are also found for the
other noncontinuum modes. Specifically, the decay lengths
are also found to be � within 10%.

Of course, the fixed zero-displacement boundary condi-
tion at r=R requires all components of the displacement field
to vanish there. The essential distinction between the con-
tinuum and noncontinuum modes lies in the manner in which
their amplitudes decay upon approach to the rigid boundary.
The noncontinuum modes examined above decay exponen-
tially with a decay length proportional to �. We demonstrate
in the next section that the continuum mode amplitudes, in
contrast, do not appear to decay in the same way. In particu-
lar, their approach to zero at the rigid boundary is not con-
trolled by �.

2. Continuum modes and finite-size effects

In this section we address two related points: �i� the fun-
damental change in the structure of the displacement field as
one moves away from the immediate vicinity of the applied
force, and �ii� the role of finite-size effects in our numerical
simulation in two dimensions. We cannot address the former
point without confronting the latter one for the following
reason. Due to the presence of the rigid boundary, all modes

of the displacement field decay to zero at the boundary.
We show in this section, however, that the decay of the

noncontinuum modes is controlled by internal, mesoscopic
length scales in the network, while the decay of the con-
tinuum modes is determined by the macroscopic geometry of
the system including the presence of the rigid boundary.
Since the distinction between the continuum and noncon-
tinuum modes depends essentially on the presence of the
boundary and specifically on the separation of the system
size R from the internal length scales controlling the decay of
the noncontinuum modes ����, we consider this distinction
along with a more general discussion of finite-size effects in
our simulation.

To have a well-defined elastic response in two dimensions
�meaning that the displacement field vanish at large distances
from the applied point force� one needs to impose a rigid
boundary. In order to eliminate the differential influence of
the boundary on the various angular modes of the displace-
ment field we chose this boundary to be a circle of radius R
centered on the point of force application. This rigid bound-
ary forces all components of the displacement field to vanish
exactly at r=R. Such a rigid boundary can be expected to
introduce a boundary layer near the edges of our system,
which we observe and discuss below.

Figure 7 shows the decay of the g0
�r� mode amplitude for

systems of size R=L and ��0.191L. We note that the decay
of this continuum mode is qualitatively distinct from the de-
cay of the noncontinuum modes shown in Figs. 4–6. We do
not observe an exponential decay of this continuum mode
amplitude. Nevertheless, observing an exponential decay
having a long decay length, or, more reasonably, the product
of an algebraic function and such a weak exponential decay
would be difficult to resolve in this plot.

To study these issues further, we plot in Fig. 8 g0
�r� for

various system sizes from R=L /2 to 5L. We observe both an
apparent convergence for the larger systems to a common
curve when distances are measured relative to the size of the
system, as well as a systematic downturn near the boundary.
The first of these observations suggests that the sample ge-
ometry controls the dependence of this continuum mode, as

FIG. 6. Log linear plots of g2
�f� vs the scaled distance from

perturbation r /� for systems with various values of � as given in
the key. The system radius R=L in all cases. Data within a bound-
ary layer of width � from r=R is not shown �see text for details�.

FIG. 7. g0
�r� vs r /R for � /L�0.191, R=L, and differing L / lc as

shown in the legend.
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opposed to intrinsic lengths like �. The downturn in these
data within a distance of order � �here, �0.2L� of the bound-
ary is to be expected from the observations above concerning
the role of the length scale �. One can view this crossover
length as the distance along a filament over which a force
applied to the filament dissipates or expands into a �quasi-
�continuum stress or displacement field. Thus the effects of
the boundaries on the individual filaments contacting the
boundary are expected to propagate at least this distance into
the system. Because of this, we have also removed all data
within a distance � of the boundaries in Fig. 6 above, which
exhibit a similar downturn near the boundary.

In Fig. 9 we examine the radial dependence of g0
�r� for

three different values of � /L for a large system where
R=3L. In this case, we see a coincidence of the data for
different �, indicating that the long-range behavior of g0

�r� is
not controlled by �.

Although we were unable to obtain sufficient statistics on
the noncontinuum �and subdominant� modes for larger sys-
tems, the combination of the qualitatively different behavior
from the continuum modes, together with the consistent de-
pendence on the crossover length � lead us to conclude that
the principal results of the prior section are not strongly in-
fluenced by finite-size effects. Thus � controls the disappear-
ance of the noncontinuum modes of the system.

We also see a large discrepancy between the expected
continuum solution and the observed displacement of the
simulated filament network as shown in Fig. 8. This differ-
ence cannot be simply attributed to finite-size effects; as can
be seen in Fig. 8, there is no observable convergence of the
larger system data for the continuum modes to the predic-
tions of continuum elasticity for a material having the appro-
priate Lamé coefficients. Nevertheless, we clearly observe
the more rapid decay of the noncontinuum modes on a length
scale controlled by �. One is left with the following puzzle:
The tensorial structure and the rotational symmetry of each
component of the displacement field approaches the form
required by the continuum theory, but the continuum model
appears to never quantitatively agree with the numerical
data.

We may speculate about the underlying cause of this dis-
crepancy. It is clear that the deformation of the material in
the immediate vicinity of the point force �this “near zone”
extends out to a distance �� from the point force� and in a
boundary region at the rigid wall is not well described by any
continuum theory. We suggest that under the application of
the point force at the origin, the network effectively
partitions itself into three different elastic materials. In the
near-field region r�� around the point force the deformation
response to the point force is quite complex. Similar com-
plexities appear to exist near the rigid wall, where R−r��.
These regions apply a complex set of tractions on the circles
r�� and r�R−r bounding the intermediate region that de-
forms in a manner consistent with some continuum elastic
material. Because these tractions are not themselves deter-
mined by a simple, continuum model, the resultant deforma-
tion of the intermediate region is also not simply derivable
from an analysis of the elastic Green’s function for a con-
tinuum.

One might imagine that for very large systems having a
consequently larger intermediate region, the complexities of
the tractions in the transition zones become less significant.
Because of the rigid boundary at r=R and the low dimen-
sionality of the system, this may not be the case. The con-
tinuum Green’s function contains logarithmic terms and, due
to the rigid boundary, growing polynomial terms as well.
Thus we do not expect convergence to the continuum
Green’s function even for significantly larger systems. One
may ask whether three dimensional systems will show simi-
larly poor convergence to the continuum solutions. Further
research here is needed.

We suggest that we do indeed observe the approach of the
structure of the elastic Green’s function to that predicted by
continuum theory. We term the region surrounding the point
force where the deformation field has the expected form the
quasicontinuum. Based on our numerical data, we do not
expect to find a region in which the deformation field agrees

FIG. 8. g0
�r� vs r /R for � /L�0.191, L / lc�29.1, and the system

radii R given in the key. The continuum response for the bulk elas-
tic moduli corresponding to these parameter values �as given by Eq.
�A3�� is shown as a solid line.

FIG. 9. g0
�r� vs r /R for R=3L on log-linear axes, with � /L and

L / lc as given in the key. Each curve has been shifted vertically by a
�-dependent scale factor to attempt data collapse. Since � varies by
over a factor of 4, the rough collapse is enough to rule out any
significant � dependence on the decay. Error bars are not shown for
clarity.
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quantitatively with the predictions of continuum elasticity
using the Lamé coefficients appropriate to the medium as
determined by uniform stress measurements. This suggests
that semiflexible networks admit a highly complex point
force response that cannot be fully captured by continuum
elasticity even in the far field. The full implications of this
complexity have not been explored.

3. Energy density

Another instructive measure of the monopole response is
the density of elastic energy 
E at a given distance from the
point perturbation, which measures gradients of the displace-
ment field and therefore complements the analysis of u�x�
given above. In addition, since the simulation contains ex-
plicit terms for the transverse and longitudinal filament de-
formation modes, it is straightforward to measure the parti-
tioning of the energy between these modes. Based on
previous work �5,6,8�, under homogeneous shear strain the
partitioning of elastic energy between the bending and
stretching modes of the filaments is determined entirely by
the affine-to-nonaffine crossover. The ratio of L /� was found
to control this energy partitioning at a macroscopic or aver-
age level. It remains to be seen how this partitioning of the
elastic energy occurs in vicinity of a point force.

The freedom to choose the angle between the point force
and the direction of the filament to which that force is ap-
plied allows one to determine locally the partitioning of the
elastic energy between bending and stretching modes of the
filaments. Forces directed along the filament axis generate
primarily stretching deformations in the immediate vicinity
of the origin �where the force is applied�. Forces directed
perpendicular to the filament axis, however, locally create a
large bending deformation. As seen in the previous homog-
enously imposed strain deformation calculations, for any
given value of L /� the network responds very differently to
the bending or stretching deformations. Thus it is not surpris-
ing that the decay of the energy density from the point of
force application to the boundary is strongly dependent on
whether the force is applied parallel or perpendicular to one
of the filaments at the crosslink.

Figure 10 shows 
E for parallel forces, where � is fixed
but the filament density L / lc varies. There is an approximate
data collapse onto a single curve as shown. The most notable
discrepancy occurs near the boundary, where the low-density
data remain higher than those for larger L / lc values. This is
most likely due to the boundary layer already discussed
above for the displacement modes.

In contrast, 
E for forces perpendicular to a filament ex-
hibits much richer behavior, as shown in Fig. 11, which
shows the same data plotted against r / lc and r /�. For large
distances, the data for different L / lc appear to differ by only
a scale factor. Since there is one arbitrary multiplicative fac-
tor for each curve �as only the magnitude of the applied force
is fixed, not its displacement and hence work done on the
network�, these portions of the curves can be made to col-
lapse after scaling, as in the parallel force case, suggesting
that beyond some near-field regime, the decay of elastic en-
ergy density is once again exponential and governed by
�—see Fig. 11, lower panel. However, in this near-field re-

gime for perpendicular forces there is clearly no possibility
of such a collapse. Instead, it appears that the more rapid
decay of elastic energy density in this near-field regime is
governed by the length lc, as can be seen in the upper panel
of Fig. 11 where the �rescaled� energy density data are plot-
ted vs r / lc and shown to decay as �exp�−r / lc� for distances
r�5lc �ignoring finite-size effects�.

Based on the two different regimes of data collapse shown
in Fig. 11, we conclude that there is a near-field region in
which the decay of elastic energy is governed by a micro-
scopic length scale—the mean distance between cross
links—and a longer-range regime in which the spatial decay
of elastic energy density is controlled by the mesoscopic
length �. To better study this crossover, we examine the par-
titioning of elastic energy between bending and stretching
modes of the filaments. Recall that in the affine limit, the
elastic energy is stored primarily in the stretching and com-
pression of the filaments. In the nonaffine regime, on the
other hand, the elastic energy is stored almost entirely in
bending modes of the filaments.

Plotted in Fig. 12 is the proportion of elastic energy due to
longitudinal filament deformation for the perpendicular force
case. Three data sets are displayed having different values of
lc and �—see figure caption. The distance from the point of
force application has been scaled by the geometric mean of lc
and L leading to the observed coincidence of the crossover
between regimes in the data. Close to the point of the appli-
cation of the force, the displacement response is clearly
dominated by bending modes of the filaments. This is to be
expected since the perpendicularly directed force directly in-
jects bending energy into the system at the origin—the point
of force application. The energy partitioning is inconsistent
with that which is expected based on previous homogeneous
shear measurements. From that work, one expects the net-
work to determine the energy partitioning based only on the
ratio: L /�. We observe the fraction of stretching energy to
rapidly increase towards the expected value based on L /�
�5,8� and we may characterize each curve has having a
“knee” separating the region of varying energy ratio from a

FIG. 10. Density of elastic energy 
E �in arbitrary units� vs
distance r from an externally applied force that is directed along the
filament to which it is applied. L / lc is varied as given in the key,
and R=L and � /L�0.191 in all cases.
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nearly constant intermediate regime where the partitioning of
elastic energies corresponds well with the previously identi-
fied fraction of stretch or compression energy under macro-
scopic strain. This correspondance is demonstrated in Fig.
13. The horizontal lines show the fraction of stretching en-
ergy in periodic systems subjected to macroscopic shear, and
clearly coincide with the plateau reached beyond the knee.
At the largest distances one notices the vanishing of bending
energy as the fraction of stretching energy approaches unity.
This last effect is due to the fact that each filament has a
freely rotating bond at the outer, rigid wall. As this wall
cannot support torques, the bending energy vanishes in a
boundary layer whose width is determined by the mean dis-
tance between cross links. We return to this point below.

The observed coincidence of the knees of all three curves
under the rescaling of distances by 
lcL suggests that this
length sets the scale over which injected bending energy is

redistributed into the combination of bending and stretching
appropriate for long-length scale deformations.

Based on these observations we note that in all networks
the strain field acquires the structure of the point force re-
sponse based on continuum elasticity over a �typically me-
soscopic� length scale of �. When the networks is subjected
to large, local bending deformations, however, it readjusts
the partitioning of bending to stretching energy over a gen-
erally much shorter length scale lc. Thus the system is able to
repartition the local elastic energy storage to the value appro-
priate for its L /� ratio over smaller length scales than does
the system recover the expected long-length scale structure
of its continuum elastic response.

We have already shown that in the intermediate field re-
gime the fraction of stretching elastic energy in the system

FIG. 11. Scaled elastic energy density vs distance from the point
force for a variety of networks—see legend. In each case the force
is directed perpendicularly to the filament where it is applied. In the
upper panel distances are scaled by lc and the data have been col-
lapsed in the small r / lc regime. The solid line is proportional to
exp�−r / lc�, showing lc controls the initial decay of elastic energy. In
the lower panel the same energy densities are plotted against dis-
tance scaled by �. This shows the energy density decays with that
characteristic length scale at longer ranges. Error bars are not
shown for reasons of clarity.

FIG. 12. Proportion of elastic energy due to filament stretching,
H� / �H� +H��, for three systems having differing values of lc �see
key� but the same value of �.

FIG. 13. The fraction of elastic energy due to filament stretching
in networks with the same L / lc�29.1 �in fact, the exact same ge-
ometries�, R=L but different �. The different values of the stretch-
ing energy fraction in the intermediate regime reflect the differing
values of the ratio L /� for the networks. For comparison, the mac-
roscopic energy fraction under bulk shear is shown as horizontal
dashed lines, in the same order as the data points �i.e., � /L
�0.089, 0.191, and 0.412 from top to bottom�.
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approaches its far-field value as determined by the ratio: L /�.
Nevertheless, we in fact find that at the edges of our sample
the network energy becomes stored solely in stretching
modes regardless of the value of L /�. As mentioned above
we attribute this final redistribution of the elastic energy den-
sity between bending and stretching modes to a boundary
effect imposed by the freely rotating nature of coupling of
the network filaments to the rigid boundary. To further test
that this final redistribution is indeed a boundary effect, we
consider a few larger system sizes as shown in Fig. 14. In
that figure the force remains perpendicular to the direction of
the filament to which it is applied while the system size is
varied from R=L to R=5L for a network of fixed �. When
the data are plotted against the radial distance from the point
force scaled by system size, we find an excellent collapse in
the intermediate regime and in the putative boundary layer.
For the smallest system size considered, R=L, we note
poorer data collapse in the near-field region suggesting that
one must study systems that are are least larger than a single
filament length to access the bulk behavior of the network
with quantitative accuracy. Clearly, all three curves taken
together are consistent with the notion of an elastic boundary
layer that is produced by the freely rotating boundary at the
wall and that extends distance approximately equal to � into
the sample.

B. Network response to force dipoles

We now consider the mechanical response of the network
to localized force dipoles at the origin. Understanding this
response function is central to elucidating the effect of mo-
lecular motor activity in the cytoskeleton. Many of the gen-
eral features observed in the response of the system to point
force monopoles are also in evidence. For example, in Fig.
15 we see the rough collapse in the far field of the mode
amplitude h0

r�r� to the continuum solution for three different
networks having the same value of �. Note that the ampli-
tude has been scaled by lc

2 since the magnitude of the im-

posed force dipole for each realization of the network will
depend on the distance to the next constraint, i.e., cross link,
which is lc. Since the displacement field when averaged over
network realizations is quadrupolar, being the difference in
two dipole, that length must enter squared. The analogous
displacement field amplitude h0

r�r� from the continuum solu-
tion �solid line in Fig. 15� was calculated using unit forces so
this amplitude is known only up to an overall scale factor;
that scale factor was adjusted to best fit the data. A similar
comparison can be made for the other continuum modes of
the displacement field �see the Appendix�. Figure 16, for
example, shows h0

f �r� with the same arbitrary prefactor. The
agreement to the continuum theory scaled as discussed above
is quite poor. As is also seen in the point-force response of

FIG. 14. The fraction of elastic energy stored in the H� term of
the Hamiltonian for perpendicular forces, as a function of distance
from the origin r for system sizes R=L, 3L, and 5L. In all cases
L / lc�29.1 and ��0.191L.

FIG. 15. h0
r for dipole forcing for fixed � /L�0.191 compared to

the continuum solution �smooth line�, which has one free fitting
parameter, namely the overall magnitude of the dipole forcing. Both
data and curve are negative, so the magnitudes have been plotted to
allow use of a logarithmic axis. Each data curve has been scaled by
�L / lc�2 to ensure the same mean dipole magnitude �see text�. The
system radius was R=L.

FIG. 16. h0
f for same systems as in Fig. 15. The only fitting

parameter for the continuum solution is the same as used previously
for h0

r , so there are no remaining free fitting parameters in this plot.
Much of the data for r /R
0.6 is negative and hence not visible on
these axes.
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the strain field, higher angular modes, which vanish in the
continuum theory such as h4

f are significantly nonzero in the
data. The amplitude of the noncontinuum modes in the dipo-
lar response is even more dramatic than in the point-force
response of the network examined earlier.

The simulation data for the response of the network to
force dipoles can be broadly summarized as follows: The
amplitude of the continuum modes of the dipolar displace-
ment field from the naive continuum theory do not agree
with simulation data. In light of the discussion regarding
such disagreements between the monopole data and the con-
tinuum calculation, this is perhaps not surprising. More in-
terestingly, the observed displacement field has significant
amplitudes of higher order angular modes. In short the uni-
versality of the response of semiflexible networks to local-
ized point forces does not appear to extend to their response
to localized force dipoles.

We speculate that the principal difference between these
two cases stems from the fact that the network’s response to
the force dipole probes the more detailed microscopic struc-
ture of the network in the immediate vicinity of the point of
the force dipole application. The amplitude of the lowest
order force multipole communicated from the near-field re-
gion to the far field where we expect a continuum based
theory to apply is not constrained by elementary force bal-
ance. Neither are the amplitudes of any higher order force
multipoles generated within the near-field region. Thus upon
reaching the inner edge of the far-field region the force di-
pole imposed at the origin has generated a highly complex
set of tractions on the rest of the material whose structure
depends on local details of the connectivity of the network
near the origin. In contrast, for the case of the force mono-
pole, the dominant term in those tractions is the fixed total
monopolar force acting on the intermediate region. The
higher order force multipoles created in the inner region de-
cay rapidly with distance from the origin leaving one with
highly reproducible results for the response of the network to
applied forces. The amplitude of the force dipole communi-
cated from the near-field region to the intermediate region,
on the other hand, is not similarly constrained. It appears that
one generically generates large amplitude higher order force
multipoles in addition to whatever force dipole is communi-
cated to the intermediate region making convergence to a
simple dipolar form slow and difficult to observe in our finite
samples.

C. Bulk moduli

Last, we present additional results on homogeneous defor-
mations of semiflexible networks. It has already been shown
that the macroscopic elastic moduli of this class of model
networks depend in a crucial way on the ratio of � to the
filament length L �5,8�. For � /L�1, the deformation is ap-
proximately affine, whereas nonaffine deformation modes
dominate when � /L�1. Previously this was demonstrated
only for the shear modulus; here we can now confirm that the
Young’s modulus Y behaves in an identical manner. Figure
17 shows Y measured from uniaxial extension of a rectangu-
lar cell, scaled by the prediction for an affine strain, plotted

against � /L for the range of L / lc considered in this paper.
There is a clear data collapse, as for the shear modulus. Fur-
thermore, the deviation from the affine prediction is small for
� /L�1, but becomes increasingly pronounced as � /L in-
creases. This confirms that � /L controls the macroscopic
elastic response of these systems.

Figure 18 gives the Poisson ratio � for the same systems
as in Fig. 17. It is striking to observe that, within error bars,
� is consistent with the value �= 1

2 , which is the value ex-
pected for an affine deformation �8�. However, it is apparent
from this figure that the measured values are consistent with
�= 1

2 for all data points, even those well into the nonaffine
regime. The mechanism behind this striking robustness cur-
rently evades us �is has nothing to do with incompressibility,
which fixes �=1 in two dimensions�. Note that � at the ri-
gidity percolation L / lc�5.933 �at which the elastic moduli
vanish� is � 1

3 �7�, which is clearly inconsistent with the data
in Fig. 18 and confirms our earlier claims that the nonaffine
regime is distinct from the scaling regime of the transition.

FIG. 17. Young’s moduli scaled by the affine prediction vs � /L
on log-log axes. The affine prediction, which depends only on L / lc,
can be found in Ref. �8�. The symbols are larger than the error bars.

FIG. 18. The Poisson ratio � for the same systems as in Fig. 17.
The solid line corresponds to �= 1

2 .
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IV. DISCUSSION

In this paper we have presented the results of numerical
studies on the response of semiflexible networks to both
point forces and to homogeneously imposed strain. The data
presented on the Young’s modulus taken in combination with
previous work on the static shear modulus shows that the
mechanical response of the system can be understood in
terms of Lamé coefficients that depend on the ratio of the
filament length to the nonaffinity length: L /�. The Poisson
ratio of the material, however, appears to be remarkably in-
sensitive to this ratio. We can offer no explanation for this
insensitivity at this time. The data presented on the point
force response form a necessary compliment to previous
work on the development of a long-length scale elastic
theory of such materials.

Based on these data, it appears that the storage of elastic
energy and the structure of the strain field is rather complex
in the immediate vicinity of the applied point force. We char-
acterize these quantities by considering three qualitatively
different regimes as a function of radial distance from the
applied point force. Immediately surrounding the point force
in the near-field regime we find that the partitioning of elastic
energy into bending and stretching is determined primarily
by the angle between the applied force and the direction of
the filament to which that force is applied. The disorder-
averaged strain field is rather complex having higher angular
harmonics that predicted by continuum elasticity theory. In
the intermediate-field regime farther from the point force the
partitioning of elastic energy is determined solely by the ra-
tio L /� as found in the homogeneous shear measurements.
The higher angular harmonics present in the strain field ap-
pear to decay exponentially with a decay length proportional
to � with a constant of proportionality near unity. These re-
sults taken in combination with our previous work suggests
that one may think of � as setting the minimum length scale
for the applicability of continuum modeling quite generally.

In the quasicontinuum regime �r
��, we find a strain
field consistent with structure of that predicted by continuum
model. The strain itself, however, cannot be simply com-
puted from a knowledge of the effective Lamé coefficients.
We believe the source of this discrepancy is the fact that the
intermediate region, being poorly described by the con-
tinuum theory, applies a much more complex set of tractions
to the material in the far field where the continuum theory
must apply. If these boundary conditions were known, we
suspect that one could in fact calculate the resulting displace-
ment field using the continuum theory. This belief is sup-
ported by the fact that in the far-field regime the displace-
ment field for different networks having the same � collapse
onto the same curve as one would expect for any effective
continuum theory in which the Lamé coefficients depend on
�.

To summarize these results, we suggest that there is an
emerging description of the mechanics’ semiflexible net-
works. There mechanical behavior over length scales longer
than � appears to be described by a modified elastic theory in
which the effective Lamé constants depend on the ratio L /�.
For point forces and presumably any force applied over re-
gions having a characteristic length scale that is small com-

pared to �, the local response of the network is quite com-
plex and the material appears to be anomalously compliant;
at longer length scales, however, the structure of the defor-
mation field appears to be consistent with the predictions of
continuum elasticity. We believe that it should be possible to
construct an elastic continuum theory of these networks that
is applicable in both the intermediate and far field and that is
based on a modified gradient expansion of the strain field
incorporating explicitly the mesoscopic length �. The behav-
ior of the strain field on scales much smaller than � appears
to depend on other, more microscopic length scales.

Understanding the response of semiflexible networks to
localized forces is necessary for both microrheological inves-
tigations of semiflexible networks and for understanding the
effect of molecular motors in the cytoskeleton. Clearly, fur-
ther numerical investigations are required as well as a theo-
retical examination of the development of elastic continuum
models applicable to the intermediate- and far-field regimes.

Moreover, additional investigations are required to exam-
ine the analogous questions in three dimensional semiflexible
networks. While we expect the basic physics outlined above,
including the existence of a mesoscopic length �, to persist
in three dimensions, the expected 1/r decay of the elastic
Green’s function should alter the results. Moreover, the more
rapid decay of the displacement field and energy density in
the continuum three dimensional system may further sim-
plify the structure of the analogous Green’s functions for the
semiflexible network.
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APPENDIX

Here we derive the displacement field u�x� predicted by
continuum elasticity for the cases of both monopole and di-
pole forcing. For the monopole case, a point force f��x� is
applied to the origin of an elastic sheet with Lamé coeffi-
cients � and �, or equivalently � and the Poisson ratio �
=� / �2�+��. For an isotropic elastic body, the stress obeys
�ij =���iuj +� jui�+��ij � ·u and the resulting equation for
force balance is �21�

�� + ���i�� · u� + ��2ui = f i��x� . �A1�

Solving this in polar coordinates �r ,�� with the boundary
condition u�0 at a radius R from the origin eventually leads
to

ui
mono =

f

8��
�4 f̂ i ln�r/R� − 4c1r̂ir̂ j f̂ j + c2�r/R�−2�2r̂ir̂ j f̂ j − f̂ i�

− �r/R�2�2r̂ir̂ j f̂ j − c2 f̂ i�
 , �A2�

where c1= �1+�� / �3−�� and c2= �5+�� / �3−��. Then the
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only two nonzero modes according to the definition of the
g�·� given in Eq. �4� are

g0
�r� =

�aff

8��
�− 4c1 + 2c2�r/R�−2 − 2�r/R�2
 , �A3�

g0
�f� =

�aff

8��
�4 ln�r/R� − c2�r/R�−2 + c2�r/R�2
 . �A4�

A naive calculation of the corresponding dipole solution
would simply superpose the above monopole solution for

two point forces, f��x� and −f��x−�� with �=�f̂, and then
take the limit �→0. However, this ignores the boundary at
radius R, which should be kept fixed but is shifted a distance
� by the above procedure. An exact calculation would re-
quire the monopole solution for force applied near to �but not
at� the center of a circular system, which, since it no longer
obeys radial symmetry, is likely to be highly complex. Here
we ignore such issues and simply use the above monopole
solution, in the expectation that it will closely approximate
the exact case except possibly near the boundary. The dis-
placement field induced by the force dipole is then

ui
dip = −

1

�
� ui

mono · � =
f

8��

1

r
�r̂i�4c1 − 2c2�r/R�−2 + 2�r/R�2�

+ 8r̂i�r̂ · f̂�2�c2�r/R�−2 − c1� + 2 f̂ i�r̂ · f̂��2�c1 − 1�

− 2c2�r/R�−2 − �c2 − 1��r/R�2�
 . �A5�

As explained in Sec. II C, the dipole solution above applies

for a single realization on large length scales, but after aver-
aging over many networks on short lengths �as in the simu-
lations� the dipole moment vanishes, leaving a quadrupole
displacement field. The required quadrupole is one consisting
of two parallel dipoles of equal and opposite magnitude,
aligned along their axes, i.e.,

ui
quad =

1

�
� ui

dip · � =
f

8��

1

r2 � f̂ i�4�2c1 − 1� − 6c2�r/R�−2 + 2�2

− c2��r/R�2� + 24r̂i�r̂ · f̂��c2�r/R�−2 − c1� + 8 f̂ i�r̂ · f̂�2�1

− 2c1 + 3c2�r/R�−2� + 16r̂i�r̂ · f̂�3�2c1 − 3c2�r/R�−2�
 .

�A6�

This gives the displacement field in response to known
forces of magnitude f . Since it is rather the displacement that
is controlled, f is a free parameter. Finally, the nonzero
modes are

h0
�r� =

�affine

��

1

r2 �− c1
 , �A7�

h2
�r� =

�affine

2��

1

r2 �2c1 − 3c2�r/R�−2
 , �A8�

h0
�f� =

�affine

4��

1

r2 �3c2�r/R�−2 + �2 − c2��r/R�2
 , �A9�

h2
�f� =

�affine

4��

1

r2 �1 − 2c1 + 3c2�r/R�−2
 . �A10�

�1� B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D.
Watson, Molecular Biology of the Cell, 3rd edition �Garland,
New York, 1994�; P. A. Janmey, Curr. Opin. Cell Biol. 3, 4
�1991�.

�2� T. D. Pollard and J. A. Cooper, Annu. Rev. Biochem. 55, 987
�1986�.

�3� E. L. Elson, Annu. Rev. Biophys. Biophys. Chem. 17, 397
�1988�.

�4� M. Rubenstein and R. H. Colby, Polymer Physics �Oxford
University Press, London, 2003�.

�5� D. A. Head, A. J. Levine, and F. C. MacKintosh, Phys. Rev.
Lett. 91, 108102 �2003�.

�6� J. Wilhelm and E. Frey, Phys. Rev. Lett. 91, 108103 �2003�.
�7� D. A. Head, F. C. MacKintosh, and A. J. Levine, Phys. Rev. E

68, 025101�R� �2003�.
�8� D. A. Head, A. J. Levine, and F. C. MacKintosh, Phys. Rev. E

68, 061907 �2003�.
�9� Alex J. Levine, D. A. Head, and F. C. MacKintosh, J. Phys.:

Condens. Matter 16, S2079 �2004�.
�10� K. Kroy and E. Frey, Phys. Rev. Lett. 77, 306 �1996�.
�11� R. Satcher and C. Dewey, Biophys. J. 71, 109 �1996�.

�12� F. C. MacKintosh, J. Käs, and P. A. Janmey, Phys. Rev. Lett.
75, 4425 �1995�.

�13� J. P. Wittmer, A. Tanguy, J.-L. Barrat, and L. Lewis, Europhys.
Lett. 57, 423 �2002�.

�14� A. Tanguy, J. P. Wittmer, F. Leonforte, and J.-L. Barrat, Phys.
Rev. B 66, 174205 �2002�.

�15� F. Leonforte, A. Tanguy, J. P. Wittmer, and J.-L. Barrat, Phys.
Rev. B 70, 014203 �2004�.

�16� C. Goldenberg and I. Goldhirsch, Phys. Rev. Lett. 89, 084302
�2002�.

�17� C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith, Sci-
ence 265, 1599 �1994�.

�18� W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, Numerical Recipies in C, 2nd ed. �CUP, Cambridge,
England, 1992�.

�19� P. R. Onck, T. Koeman, T. van Dillen, and E. van der Giessen,
Phys. Rev. Lett. 95, 178102 �2005�.

�20� D. Bray, Cell Movements: From Molecules to Motility, 2nd ed.
�Garland, New York, 2001�.

�21� L. D. Landau, and E. M. Lifshitz, Theory of Elasticity, 3rd ed.
�Reed, Oxford, 1986�.

HEAD, LEVINE, AND MacKINTOSH PHYSICAL REVIEW E 72, 061914 �2005�

061914-14


