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Nonuniversality of elastic exponents in random bond-bending networks

D. A. Head,1,2 F. C. MacKintosh,1,2 and A. J. Levine2,3

1Division of Physics & Astronomy, Vrije Universiteit 1081 HV Amsterdam, The Netherlands
2The Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

3Department of Physics, University of Massachusetts, Amherst, Massachusetts 01060, USA
~Received 25 April 2003; published 12 August 2003!

We numerically investigate the rigidity percolation transition in two-dimensional flexible, random rod net-
works with freely rotating cross links. Near the transition, networks are dominated by bending modes and the
elastic modulii vanish with an exponentf 53.060.2, in contrast with central force percolation which shares
the same geometric exponents. This indicates that universality for geometric quantities does not imply univer-
sality for elastic ones. The implications of this result for actin-fiber networks is discussed.
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In contrast with ordered crystals, disordered mater
typically exhibit a complex connection between their colle
tive mechanical properties and the underlying interacti
between their constituent elements@1#. In this Rapid Com-
munication, we study this connection between effective e
tic theories of a flexible rod network in two dimensions a
the fundamental elastic properties of individual rods, alo
with statistical measures of the network connectivity. We
cus on cross link densities to explore the breakdown of c
lective rigidity of the network. This vanishing of the stat
shear modulus in related systems@4–9# has been termed th
rigidity percolation transition, in analogy to the better und
stood scalar, or conductivity, percolation transition@10#. Pre-
viously @2# we investigated the internal deformation field of
2d flexible rod network away from the critical point of ri
gidity percolation, and found a crossover from affine to no
affine deformation upon changing the mean density betw
cross links in the network and/or the inherent flexibility
individual rods, which was also independently corrobora
by another group@3#.

The rigidity percolation transition has been previous
studied numerically in a number of model, disordered s
tems with variations in both the nature of the links~bonds!
and the disorder of the network. While the rigidity transitio
is first order on the Bethe lattice@11# and in random net-
works of infinitely rigid rods@12#, in all other random net-
work models it is continuous and characterized by a dive
ing length scale over which the material acquires a fin
static shear modulus. From the outset, it is important to
tinguish between two different classes of physical obse
ables when discussing the long length scale physics at
transition:~i! geometricquantities which describe the fract
structure of the percolating rigid cluster at the transition; a
~ii ! elastic properties of the material near the percolati
point. In the first category are the exponentsn andb, which
describe the divergence of the correlation length as one
proaches the transition and the probability that a link will
part of the percolating cluster, respectively. In the seco
category isf, which describes the power law dependence
the system’s elastic moduli upon approach to the percola
transition from the rigid phase@see Eq.~3!#.

In lattice models, the control parameter, as for scalar p
colation, is the probability of the presence of a link in t
1063-651X/2003/68~2!/025101~4!/$20.00 68 0251
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diluted lattice. It appears that the nature of disorder is a
evant variable, since for purely central forces between n
work nodes, site and bond disorder exhibit quantitatively d
ferent scaling regimes near the critical point@4,5#. In
addition, a third universality class has been postulated in
so-called ‘‘bond-bending’’ model, where bending lattic
edges and rotation at vertices cost energy@8,9,13#. This sug-
gests that the introduction of a bending modulus in the mo
is a relevant perturbation at the transition.

Pertinent to the current work are the simulations of Latv
Kokko et al. @6,7#. These investigations, departing from pr
vious work, turned to off-lattice simulations. They co
structed two-dimensional random rod networks and applie
topological approach to investigate the rigidity percolati
point in random rod networks with Hookean central forc
and a bending modulus. The introduction of a bending mo
lus is vital at this stage since the random spring network t
is not prestressed has zero-frequency deformation mode
any finite density of links, and is thus always nonrigid@14#.
Latva-Kokkoet al.considered two variants of their model o
flexible rods, distinguished by the constraint forces impos
at a cross link: one with cross links that fix the angle betwe
intersecting rods by applying local constraint torques, a
freely rotating bonds at cross links in the other. In both t
cases they found that thegeometricexponents are consisten
with those of the rigidity percolation transition in a dilute
lattice with central forces. This result suggests that the in
duction of bending forces are not relevant perturbations
the critical point in the following restricted sense: the exp
nents associated with length scale and geometry of the s
ning, rigid cluster appear to be universal. We use this re
later. Their approach, however, did not allow them to inve
tigate the scaling exponent for the elastic quantities of th
model.

This Rapid Communication presents a study of the ela
properties of the rod network identical to the model syst
studied by Latva-Kokkoet al. We, however, concentrate o
the mechanical aspects of the network near the transitio
is important to note that this work relates to models of se
flexible polymer networks with freely rotating bonds@15#.
This detail of the model distinguishes it from its other clo
antecedent, the bond-bending model of Fenget al. That
lattice-based model has been particularly well described
©2003 The American Physical Society01-1
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both numerical simulation and real-space renormaliza
group techniques@16#. Our model differs in that the two
filaments that cross at each node contribute independent
that node’s bending energy; there is no energy cost for r
tive rotation between rods. Previous lattice calculations s
gest that the scaling of the elastic constants near the tra
tion depend on such details of the network; with this in min
we seek herein to explore the rigidity collapse of sparse a
networks.

The principal result of this communication is that the m
chanical properties of the flexible rod network at the rigid
percolation transition are distinct from previously inves
gated models of either lattice-based bond-bending netw
or central force networks. This is true despite the fact that
scaling of the size of the percolating cluster and its frac
geometry~as determined by Latva-Kokko and Timonen@6#!
are identical to that of the central force networks. This po
highlights the physical independence of geomet
topological exponents and the elastic exponents of the
work. We propose that whilst some degree of universality
the elastic properties of disordered systems may exist, s
universality classes are smaller and more numerous than
geometric properties; that is, models with the same geom
ric exponentsn andb may have distinct elastic exponentsf.
Our model system below provides a concrete example of
claim. We suspect that the underlying cause of this nonu
versality is that while the rigidity transition itself depends
large scale topological properties of the network that are
sensitive to the local details of stress transmission,
moduli of the rigid network near the transition are sensitiv
determined by only a vanishingly small set of paths for str
propagation. The moduli thus depend on local details of h
stress is transmitted through the small set network no
along the weak points of this path. Different force laws
e.g., cross links, can therefore have profound effects on
way in which the moduli vanish at the transition.

We numerically evaluated the elastic moduli of rando
networks of rods atT50, with an energydH per unit length
ds given by

dH
ds

5
m

2 S d l

dsD
2

1
k

2 S du

dsD 2

. ~1!

The first term on the right hand side describes an ela
restoring force for changes in relative length of the ro
d l /ds, with a spring modulusm. Bending by an angledu
incurs an energy cost given by the second term, where
bending modulusk is the same as in the wormlike cha
model @15#. Cross linked rods are coupled by imposing t
same coordinates at intersections.

The simulation method is described in detail elsewh
@17# ~where we also discuss behavior away from the tran
tion!, but in brief: rods of lengthL are deposited with ran
dom orientation and position into a two-dimensional sh
cell of dimensionsW3W. Each intersection is identified as
cross link, the mean distance between which~as measured
along a rod! is denotedl c , so that the mean number of cro
links per rod isL/ l c21. Deposition continues until the re
quired cross linking densityL/ l c has been reached. The sy
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tem Hamiltonian is constructed from Eq.~1!, and the me-
chanical equilibrium configuration found by th
preconditioned conjugate gradient method under the c
straint of an applied shear or uniaxial strain. An example
given in Fig. 1.

There are four lengths in the problem: the system size
rod length,W andL, respectively; the mean distance betwe
cross linksl c ; and a length characterizing the flexibility o
the rods,l b5Ak/m. We takeL/ l c as our dimensionless mea
sure of density rather thanq5NL2 with N being the number
of rods per unit area, as in Refs.@6,7,14#. It is straightforward
to convert between the two measures using the expres
derived in the Appendix. Rigidity percolation occurs
(L/ l c)trans'5.933 @6#. For L/ l c slightly above this critical
point, where «5(L/ l c)/(L/ l c)trans21;01, we write the
shear modulusG as

G5
k

L3
f S «,

l b

L
,
W

L D ~2!

with a similar expression for the Young’s modulus,Y. For
«.0, and sufficiently large system sizesW, both G and Y
depend only on« and l b /L. Figure 2 showsG andY versus
« for systems where this large-W limit has been reached
Both moduli vanish continuously as«→01, confirming both
the nature and the location of the transition, as claimed
Ref. @6#, to within our data resolution@18#.

FIG. 1. ~Color online! The energy density for a network at th
transitionL/ l c'5.933 under an applied shear strain. The line thic
ness is proportional to the logarithm of the energy density per
length. Apparent stressed ‘‘dangling’’ ends are artifacts of numer
noise and make no significant difference to the measured quan
discussed below. The calibration bar shows what proportion of

energy is due to stretching. For clarity, a smallW57 1
2 L shear cell

is shown.
1-2
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Figure 3 shows thatGL3/k is independent ofl b /L for
sufficiently small «, i.e., G is independentof m near the
transition. This suggests that the transition is dominated
bending modes, and we can infer thatG would vanish if
there were only central force terms in agreement with R
@14#. We can confirm the dominance of bending modes at
transition by measuring the proportion of stretching ene
for increasingW. As shown in inset of this figure, this frac
tion is always small,,4%, and may vanish asW→`, as
suggested by the figure and in agreement with both Ref.@14#
and our observation thatG}k.

By fitting the data to the functional form

G5A« f~11B«!, ~3!

FIG. 2. Dimensionless shear modulus~lower data set! and
Young’s modulus~upper set! for l b /L50.006 versus« on log-log
axes. The best fit of Eq.~3! to the data forG is plotted, and then
shifted vertically to show agreement withY.

FIG. 3. The dimensionless shear modulus vs« for two different
l b /L on log-log axes. For clarity, the error bars are not plotted
this figure~see Fig. 2!, but are no larger than the symbols. The so
line is a best fit to Eq.~3! for l b /L50.006 and«,1, with each
point weighted by its fractional deviation from the fit.~Inset! The
fraction of stretching energy to the total,p, as a function of system
size forl b /L50.006. The line is a best-fit to the scaling form in@9#.
02510
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we find f 53.060.2, consistent with Ref.@3#, where the error
estimate gives the spread of values when the fitting pro
dure is repeated over different data subsets.B is always
O(1), suggesting Eq.~3! is a ‘‘sensible’’ choice. This is
compared to known values in Table I. The only possib
equality is with central force bond percolation; howev
since the modulus near the transition is dominated bybend-
ing forces, we do not believe that this near agreemen
meaningful. The fit forG can be made to agree with th
Young’s modulus data by simply rescalingA→A8 with f and
B fixed, as shown in Fig. 2 forl b /L50.006. A8/A52.7
60.2, so that the Poisson ratios[Y/2G2150.3560.1 at
the transition, consistent with the claimed ‘‘universal’’ valu
of 1

3 @19#.
Independent confirmation off can be found by placing the

system at the critical point«50 and considering the varia
tion of G with W @4,8,9#. Scaling arguments suggest thatG
;W2 f /n for sufficiently largeW, wheren is the exponent
describing the divergence of the correlation length, which
known for these networks to be in the range ofn51.17
60.02 @6#. We attempted to fit our data to the same fun
tional form used in Ref.@9#, but the precision with which we
can extract the exponent using this approach is not suffic
to distinguish our results from either central force or bon
bending models. The number of networks for each attemp
W ranged from 400 to 2000, comparable to lattice mod
which give much smaller errors. Our lack of precision
likely due to the random nature of our networks, in which t
distance between cross links varies continuously down
zero so that the strength of coupling between connec
nodes can vary greatly, introducing a significant additio
noise source into the problem.

In summary, we have shown that the elastic moduli
flexible random networks with freely rotating cross link
scale as« f near rigidity percolation. The modulus itself i
dominated by bending modes near the transition and v
ishes with an exponentf 53.060.2. This exponent differs
from previous reported exponents for models that inclu
bond bending. Our introduction of bending forces, motiva
as it was by modeling cross linkedF-actin networks, differs
in detail from previous work. Our results suggest that,
contrast to the geometric exponents previously reported
this system, the modulus exponent is more highly model
pendent. To address the experimental implications of th
results for physical actin networks, we note that the conti
ous transition with true scale invariant behavior exists at o
zero temperature. However, zero temperature phase tra
tions can have experimental consequences at finite temp
ture@21# as long as it is possible to experimentally access
critical region. We expect that in sparse actin networks

TABLE I. Quotedf for 2d uncorrelated networks.

Model f Ref.

Site percolation 1.3560.06 @4,5#
Central force percolation 3.5760.3 @4,5#
Bond-bending model 3.9660.04 @4,8,20#
This work 3.060.2 n/a
1-3
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algebraic decay of the static shear modulus will be cut
only by the entropic elasticity of the network@22#, a small
quantity for a stiff polymer network. The experimental o
servation of this predicted decay, a signature of theT50
transition at finite temperature, may be possible, but s
quantitative predictions await a more complete description
the critical regime.
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APPENDIX

Here we derive the relationship betweenL/ l c and the
quantity q5NL2, whereN is the number of rods per un
area, as used in Refs.@3,6,7,14#. Suppose a rod of lengthL
lies along thex axis of aW3W box, whereW@L so that the
box shape should not matter. The probability of a second
deposited with orientationu to thex axis and random posi
tion, intersecting thex axis is (L/W)sinu. Hence the prob-
ability of intersecting the first rod is (L/W)2 sinu, which,
when uniformly averaged over alluP@0,p#, becomesp
52L2/(pW2).

Since the rods are deposited at random,p is independent
of how many other cross links each rod has. The mean n
ber of intersections per rod is therefore simplyp times the
E
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total number of rods in the systemNW2, i.e., pNW2

52L2N/p52q/p ~assumingNW2@1). The distributionPn
of the numbern of cross links for any given rod is Poisso
with a mean 2q/p. If each intersection is imagined to ‘‘cut’
the rod inton11 line segments, then the mean length of
such segments is justL/(^n&11)5L/(2q/p11). However,
l c is defined between cross links,not between cross links and
the ends of the rods~which are dangling and thus do no
contribute to the stress!. In fact, onlyn21 segments contrib-
ute to l c . Thus, to evaluatel c , we must average the quantit
L/(n11) over all validPn with a weightingn21, and nor-
malize accordingly, i.e.,

l c5

(
n52

`
L

n11
~n21!Pn

(
n52

`

~n21!Pn

. ~A1!

Using the shorthandl52q/p and the standard properties o
the Poisson distribution, we find:

L

l c
5

l1e2l21

11e2l1
2

l
~e2l21!

, ~A2!

which is a monotonic increasing function ofl. Note that
L/ l c;2q/p asq→`, and also thatL/ l c→3 asq→01, as it
should since~in this limit! the dominant contributions tol c
will come from rods withn52 cross links, for whichl c is
indeedL/3.
ote
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