RAPID COMMUNICATIONS

Nonuniversality of elastic exponents in random bond-bending networks

PHYSICAL REVIEW E 68, 025101R) (2003

D. A. Head>? F. C. MacKintosh-? and A. J. Leviné®
IDivision of Physics & Astronomy, Vrije Universiteit 1081 HV Amsterdam, The Netherlands
2The Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
3Department of Physics, University of Massachusetts, Amherst, Massachusetts 01060, USA
(Received 25 April 2003; published 12 August 2003

We numerically investigate the rigidity percolation transition in two-dimensional flexible, random rod net-
works with freely rotating cross links. Near the transition, networks are dominated by bending modes and the
elastic modulii vanish with an exponefit 3.0+ 0.2, in contrast with central force percolation which shares
the same geometric exponents. This indicates that universality for geometric quantities does not imply univer-
sality for elastic ones. The implications of this result for actin-fiber networks is discussed.
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In contrast with ordered crystals, disordered materialgiluted lattice. It appears that the nature of disorder is a rel-
typically exhibit a complex connection between their collec-evant variable, since for purely central forces between net-
tive mechanical properties and the underlying interactionsvork nodes, site and bond disorder exhibit quantitatively dif-
between their constituent elementd. In this Rapid Com- ferent scaling regimes near the critical poif4,5]. In
munication, we study this connection between effective elasaddition, a third universality class has been postulated in the
tic theories of a flexible rod network in two dimensions andso-called “bond-bending” model, where bending lattice
the fundamental elastic properties of individual rods, alongedges and rotation at vertices cost endi@,13. This sug-
with statistical measures of the network connectivity. We fo-gests that the introduction of a bending modulus in the model
cus on cross link densities to explore the breakdown of colis a relevant perturbation at the transition.
lective rigidity of the network. This vanishing of the static  Pertinent to the current work are the simulations of Latva-
shear modulus in related systefds-9] has been termed the Kokko et al.[6,7]. These investigations, departing from pre-
rigidity percolation transition, in analogy to the better under-vious work, turned to off-lattice simulations. They con-
stood scalar, or conductivity, percolation transitfdg]. Pre-  structed two-dimensional random rod networks and applied a
viously[2] we investigated the internal deformation field of a topological approach to investigate the rigidity percolation
2d flexible rod network away from the critical point of ri- point in random rod networks with Hookean central forces
gidity percolation, and found a crossover from affine to non-and a bending modulus. The introduction of a bending modu-
affine deformation upon changing the mean density betweelus is vital at this stage since the random spring network that
cross links in the network and/or the inherent flexibility of is not prestressed has zero-frequency deformation modes at
individual rods, which was also independently corroboratedany finite density of links, and is thus always nonriigt].
by another group3]. Latva-Kokkoet al. considered two variants of their model of

The rigidity percolation transition has been previouslyflexible rods, distinguished by the constraint forces imposed
studied numerically in a number of model, disordered sysat a cross link: one with cross links that fix the angle between
tems with variations in both the nature of the linfk®nds intersecting rods by applying local constraint torques, and
and the disorder of the network. While the rigidity transition freely rotating bonds at cross links in the other. In both the
is first order on the Bethe latticel1l] and in random net- cases they found that tlggometricexponents are consistent
works of infinitely rigid rods[12], in all other random net- with those of the rigidity percolation transition in a diluted
work models it is continuous and characterized by a divergiattice with central forces. This result suggests that the intro-
ing length scale over which the material acquires a finiteduction of bending forces are not relevant perturbations at
static shear modulus. From the outset, it is important to disthe critical point in the following restricted sense: the expo-
tinguish between two different classes of physical observnents associated with length scale and geometry of the span-
ables when discussing the long length scale physics at thaing, rigid cluster appear to be universal. We use this result
transition: (i) geometricquantities which describe the fractal later. Their approach, however, did not allow them to inves-
structure of the percolating rigid cluster at the transition; andigate the scaling exponent for the elastic quantities of their
(i) elastic properties of the material near the percolationmodel.
point. In the first category are the exponentand 8, which This Rapid Communication presents a study of the elastic
describe the divergence of the correlation length as one approperties of the rod network identical to the model system
proaches the transition and the probability that a link will bestudied by Latva-Kokkeet al. We, however, concentrate on
part of the percolating cluster, respectively. In the secondhe mechanical aspects of the network near the transition. It
category isf, which describes the power law dependence ofis important to note that this work relates to models of semi-
the system’s elastic moduli upon approach to the percolatiofiexible polymer networks with freely rotating bon@$5].
transition from the rigid phasesee Eq(3)]. This detail of the model distinguishes it from its other close

In lattice models, the control parameter, as for scalar perantecedent, the bond-bending model of Festal. That
colation, is the probability of the presence of a link in thelattice-based model has been particularly well described by
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both numerical simulation and real-space renormalization | A v 2
group technique$16]. Our model differs in that the two KT 7 |
filaments that cross at each node contribute independently ti X TS \ >0
that node’s bending energy; there is no energy cost for rela: : )
tive rotation between rods. Previous lattice calculations sug- =dl /7 ; \
gest that the scaling of the elastic constants near the trans \ S 4
tion depend on such details of the network; with this in mind, = -
we seek herein to explore the rigidity collapse of sparse actir
networks. w{
The principal result of this communication is that the me- X -~ s 4
chanical properties of the flexible rod network at the rigidity . e o N
percolation transition are distinct from previously investi- 7 —
gated models of either lattice-based bond-bending network:
or central force networks. This is true despite the fact that the
scaling of the size of the percolating cluster and its fractal !
geometry(as determined by Latva-Kokko and Timonjei) \ A\

.
L)
v
| §

/ i -
AW 4 £
are identical to that of the central force networks. This point 5 L /5'\ \ / |
highlights the physical independence of geometric/ - N, AL ‘_,
topological exponents and the elastic exponents of the net
work. We propose that whilst some degree of universality in Stictol - Benid
the elastic properties of disordered systems may exist, suc!.
universality classes are smaller and more numerous than for

geometric properties; that is, models with the same geomeE— FIG. 1. (Color onling The energy density for a network at the

fic exnonentsy and 8 mav have distinct elastic exponerits ransitionL/l ;~5.933 under an applied shear strain. The line thick-
P B y P .ness is proportional to the logarithm of the energy density per unit

Olu_r model system bﬁ Iowhprowgesl a concrete e)f(aanle of th'_ ngth. Apparent stressed “dangling” ends are artifacts of numerical
claim. We suspect that the underlying cause of this nonunizise ang make no significant difference to the measured quantities

versality is that while the rigidity transition itself depends on giscyssed below. The calibration bar shows what proportion of the
large scale topological properties of the network that are in-

sensitive to the local details of stress transmission, the o 9 s due to stretching. For clarity, a smia=73L shear cell
moduli of the rigid network near the transition are sensitively S shown.

determined by only a vanishingly small set of paths for stress L

propagation. The moduli thus depend on local details of how€M Hamiltonian is constructed from El), and the me-
stress is transmitted through the small set network node§hanical —equilibrium configuration found by  the
along the weak points of this path. Different force laws atPreéconditioned conjugate gradient method under the con-

e.g., cross links, can therefore have profound effects on thetraint of an applied shear or uniaxial strain. An example is

way in which the moduli vanish at the transition. given in Fig. 1. _ _
We numerically evaluated the elastic moduli of random | N€re are four lengths in the problem: the system size and

networks of rods aT=0, with an ener er unit lenath rod length,W andL, respectively; the mean distance between
ss given by 9T P g cross linksl.; and a length characterizing the flexibility of

the rods),= V«/u. We takelL/l; as our dimensionless mea-
SH M( Sl )2 P ( 59)2 sure of density rather thajp=NL? with N being the number

s 2

5 5| 58 (1) ofrods per unit area, as in Ref6,7,14. It is straightforward

to convert between the two measures using the expression

The first term on the right hand side describes an elastif(jf/r;ved TStggsAgpeEdlxl.—”Imgll(_thIpergolanoE. oceurs Iat
restoring force for changes in relative length of the rods, ~. Jrans™ 5. [6]. For L/l slightly "1 ove this critica
6l/8s, with a spring moduluge. Bending by an angl&é point, where & =(L/lg)/(L/lc)yans=1~0", we write the
incurs an energy cost given by the second term, where th%hear moduluss as

bending modulusk is the same as in the wormlike chain

model[15]. Cross linked rods are coupled by imposing the K ( Iy W)

same coordinates at intersections. G=— S’E’f

E @

The simulation method is described in detail elsewhere
[17] (where we also discuss behavior away from the transi-
tion), but in brief: rods of lengthL are deposited with ran- with a similar expression for the Young’'s modulug, For
dom orientation and position into a two-dimensional sheak>0, and sufficiently large system siz#$ both G and Y
cell of dimensiondVxX W. Each intersection is identified as a depend only ore andl,/L. Figure 2 showss andY versus
cross link, the mean distance between whial measured & for systems where this largé- limit has been reached.
along a rod is denoted, so that the mean number of cross Both moduli vanish continuously as—0*, confirming both
links per rod isL/lI.—1. Deposition continues until the re- the nature and the location of the transition, as claimed in
quired cross linking densitl/l . has been reached. The sys- Ref.[6], to within our data resolutiopl18].
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. , TABLE |. Quotedf for 2d uncorrelated networks.
10% o
o Model f Ref.
-
* T Site percolation 1.350.06 [4,5]
i 10° | e ] Central force percolation 3.570.3 [4,5]
>; Bond-bending model 3.960.04 [4,8,20
: ‘ This work 3.0:0.2 n/a
o et ]
© P we findf=3.0x 0.2, consistent with Ref3], where the error
P estimate gives the spread of values when the fitting proce-
w0l Shear modulus G —+— | dure is repeated over different data subs@&sis always
P , Young's modulus + - 0O(1), suggesting Eq(3) is a “sensible” choice. This is
0.1 0.25 0.5 075 1 compared to known values in Table I. The only possible
€ equality is with central force bond percolation; however,

since the modulus near the transition is dominatedbéyd-

ing forces, we do not believe that this near agreement is
meaningful. The fit forG can be made to agree with the
Young’s modulus data by simply rescalidg—A’ with f and

B fixed, as shown in Fig. 2 fot,/L=0.006. A'/A=2.7
+0.2, so that the Poisson ratie=Y/2G—1=0.35+0.1 at

Figure 3 shows thaGL® « is independent of,/L for " : : ; i "
< i o the transition, consistent with the claimed “universal” value
sufficiently smalle, i.e., G is independentof x near the of & [19]
3 .

transition. This suggests that the transition is dominated by Independent confirmation éfan be found by placing the

bending modes, and we can infer tHatwould vanish if " L o .
. . system at the critical poit=0 and considering the varia-
there were only central force terms in agreement with Ref;.

[14]. We can confirm the dominance of bending modes at th(liIOn 9:,53 with W [.4’8'9]' Scaling argumen.ts suggest tat
~W for sufficiently largeW, where v is the exponent

transition by measuring the proportion of stretching energy - ; : o
for increasingW. As shown in inset of this figure, this frac- Ere]g\(;vrr']b'% % ttmzsgigtar;crisoiéhEecoi;retfgOrgger;gg]i; XV;"?C his
tion is always small<4%, and may vanish ad/—», as +0.02[6]. We att ted to fit data t thg ' func-
suggested by the figure and in agreement with both[Re¢f. ™ [6]. We attempted to hit our data fo the same func
. tional form used in Ref.9], but the precision with which we
and our observation th&to: «. X . . .
By fitting the data to the functional form can extract the exponent using thls approach is not sufficient
to distinguish our results from either central force or bond-
bending models. The number of networks for each attempted
G=As'(1+B¢), (3) W ranged from 400 to 2000, comparable to lattice models
which give much smaller errors. Our lack of precision is
105 . . . — likely due to the random nature of our networks, in which the
004 } 1 - distance between cross links varies continuously down to
) { 7 zero so that the strength of coupling between connected
0t L0 { T =] nodes can vary greatly, introducing a significant additional
i noise source into the problem.
0.03 % In summary, we have shown that the elastic moduli of
— - | flexible random networks with freely rotating cross links
WL scale ass' near rigidity percolation. The modulus itself is
dominated by bending modes near the transition and van-
2L | ishes with an exponenit=3.0+0.2. This exponent differs
from previous reported exponents for models that include
bond bending. Our introduction of bending forces, motivated
ol : ;ll:fg.ggs —C— as it was by modeli_ng cross linkdglactin networks, differs _
- LT in detail from previous work. Our results suggest that, in
01 025 05 075 1 125 contrast to the geometric exponents previously reported for
this system, the modulus exponent is more highly model de-
FIG. 3. The dimensionless shear modulus:vier two different ~ Pe€ndent. To address the experimental implications of these
I,/L on log-log axes. For clarity, the error bars are not plotted inf€sults for physical actin networks, we note that the continu-
this figure(see F|g 2 but are no |arger than the Symb0|3' The solid OUs transition with true scale invariant behavior exists at Only
line is a best fit to Eq(3) for I,/L=0.006 ands<1, with each ~ Z€ro temperature. However, zero temperature phase transi-
point weighted by its fractional deviation from the fitnsep) The  tions can have experimental consequences at finite tempera-
fraction of stretching energy to the total, as a function of system ture[21] as long as it is possible to experimentally access the
size forl,/L=0.006. The line is a best-fit to the scaling forn{@].  critical region. We expect that in sparse actin networks the

FIG. 2. Dimensionless shear modul@®wer data set and
Young's modulus(upper set for 1,/L=0.006 versug on log-log
axes. The best fit of Eq3) to the data forG is plotted, and then
shifted vertically to show agreement with

GL3/x
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algebraic decay of the static shear modulus will be cut oftotal number of rods in the systeNW?, i.e., pNW?
only by the entropic elasticity of the netwofR2], a small  =2L2N/7=2q/7 (assumingNW?>1). The distributiorP,,
quantity for a stiff polymer network. The experimental ob- of the numbem of cross links for any given rod is Poisson
servation of this predicted decay, a signature of Te0  with a mean 2/ . If each intersection is imagined to “cut”
transition at finite temperature, may be possible, but suclthe rod inton+1 line segments, then the mean length of all
quantitative predictions await a more complete description ouch segments is jukt({n)+1)=L/(2g/7+1). However,

the critical regime. I is defined between cross linksot between cross links and
the ends of the rod$which are dangling and thus do not
ACKNOWLEDGMENTS contribute to the stregsin fact, onlyn— 1 segments contrib-

ute tol.. Thus, to evaluaté,, we must average the quantity
A.J.L. thanks A.D. Dinsmore for useful discussions andL/(n+1) over all validP,, with a weightingn—1, and nor-
would like to acknowledge the hospitality of the Vrije Uni- malize accordingly, i.e.,
versiteit. D.A.H. was partly funded by a European Commu-
nity Marie Curie Fellowship. This work is supported in part “ L
by the National Science Foundation under Grants Nos. > e UL
DMR98-70785 and PHY99-07949. _n=

(A1)

e

n—1)P
APPENDIX nZZ ( )P

Here we derive the relationship betweesl; and the —ysing the shorthandl=2q/ and the standard properties of
quantity g=NL*, whereN is the number of rods per unit e pPoisson distribution, we find:

area, as used in Reff3,6,7,14. Suppose a rod of length

lies along thex axis of aWxX W box, whereWsL so that the L Nter_1
box shape should not matter. The probability of a second rod, —= , (A2)
deposited with orientatio® to the x axis and random posi- Ic

2
L . o : 1+e M —(e -1
tion, intersecting thex axis is (L/W)sin 6. Hence the prob- )\( )

ability of intersecting the first rod isL{W)?sin6, which,

when uniformly averaged over aWe[0,7], becomesp  which is a monotonic increasing function af Note that

=2L2%/(7W?). L/l.~2q/m asq—oe, and also that/|.—3 asq—0", as it
Since the rods are deposited at randpnis independent should since(in this limit) the dominant contributions th,

of how many other cross links each rod has. The mean nunwill come from rods withn=2 cross links, for whicH is

ber of intersections per rod is therefore simpltimes the indeedL/3.
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