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Short-Time Inertial Response of Viscoelastic Fluids: Observation of Vortex Propagation
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We probe the response of viscous and viscoelastic fluids on micrometer and microsecond length and
time scales using two optically trapped beads. In this way we resolve the flow field, which exhibits clear
effects of fluid inertia. Specifically, we resolve the short-time vortex flow and the corresponding evolution
of this vortex, which propagates diffusively for simple liquids. For viscoelastic fluids, this propagation is
shown to be faster than diffusive and the displacement correlations reflect the frequency-dependent shear
modulus of the medium.
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FIG. 1 (color online). Normalized responses of two particles, k
(filled) and ? (open) in water/glycerol [r � 8:3 �m (blue, on-
line); r � 5:7 �m (red, online)] compared to water (r �
8:3 �m) in gray and to the normalized single-particle response
function (horizontal line). For the same viscosity the decay shifts
to lower frequency for larger r (blue, online). Inset: sketch of the
experiment: two particles with separation r in two laser traps
(� � 830 nm, 1064 nm). Displacements in the plane normal to
the laser [parallel (x) and perpendicular (y)] to the line of centers
are detected using laser interferometry.
A fundamental problem in hydrodynamics is the re-
sponse of a liquid to the motion of a small embedded
particle. At sufficiently long times, the well-known
Stokes velocity field, which decreases as 1=r away from
the particle, will describe this fluid response. For an initial
disturbance due to a local force in the liquid, however, only
a small region of the liquid can be set in motion because of
the inertia of the liquid. If the liquid is incompressible,
backflow occurs that is characterized by a vortex ring
surrounding the point disturbance. Since vorticity diffuses
within the (linearized) Navier-Stokes equation, propaga-
tion of stress in the fluid drives the expansion of this vortex
ring as a function of time t as

��
t
p

. The 1=r Stokes flow is
established only in the wake of this vortex. While this basic
picture has been known theoretically for simple liquids
since Oseen [1], and has been observed in simulations
since the 1960s [2], this vortex flow pattern has not been
observed directly in experiment. Here, we use the correla-
tions in thermal fluctuations of small probe particles to
resolve this vortex flow field on the micrometer scale along
with its diffusive propagation. We find good agreement
between measured flow patterns and theoretical calcula-
tions for simple viscous fluids [1,3]. Furthermore, we
demonstrate similar vortexlike flow in viscoelastic media,
consistent with theoretical predictions in the accompany-
ing Letter [4]. In the viscoelastic case, interestingly, vor-
ticity spreads superdiffusively.

We obtain the spatial structure of the vortices by mea-
suring the cross-correlated displacements of pairs of ther-
mally excited colloidal particles in a fluid at frequencies up
to 100 kHz. This technique is related to recent high reso-
lution one- and two-particle microrheology experiments
[5–8] used to probe the shear moduli of complex fluids.
A schematic illustration of the experiment is shown in the
inset of Fig. 1. By measuring the displacement cross cor-
relations we obtain the mutual response functions of two
spherical particles, labeled 1 and 2, where the coordinate
axes are conveniently chosen to be parallel (x) to the line
connecting the particle centers and perpendicular (y) to it.
The mutual response function measures the displacement
response of particle 2 to a force acting on particle 1 and
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vice versa in the linear response regime. For separation
distances r much larger than the particle radius R, the
response function depends on r but not on particle size or
shape [8,9].

The displacement u�1�x of particle 1 in the x direction is
related to the force F�2�x acting on particle 2 according to
u�1�x �!� � �k�!�F

�2�
x , where �k�!� � �0

k
�!� � i�00

k
�!� is

the parallel complex response function with real and
imaginary parts, �0

k
�!� and �00

k
�!�, and ! is the radial

frequency. Similarly, we define �?�!� � �0?�!� �

i�00?�!�, with u�1�y �!� � �?�!�F
�2�
y for the perpendicular

response function. The single-particle response functions
for each x; y direction are defined as u�1�x;y�!� �
�Auto�!�F

�1�
x;y. For homogeneous, isotropic media, these
2-1 © 2005 The American Physical Society
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FIG. 2. Normalized responses, collapsed by plotting vs scaled
separation distance r=�	 for r � 11:7 �m (circles, triangles),
8 �m (square, stars), in water (open symbols, � �
0:969 m Pa s) and water/glycerol (filled symbols, � �
6:9 m Pa s). Normalized data fall onto the two master curves
of Eq. (2) (dark and gray lines). Data shown for !> 200 rad=s,
for !< 2k rad=s one in every 5 data points.
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�k;?�!� completely characterize the linear response at any
point in the medium to a force at another point. Both
velocity and displacement response can be obtained from
�k;?�!�.

In the case of thermal excitations of two colloidal par-
ticles, �k;?�!� also determine the correlations of these
thermal fluctuations, via the fluctuation-dissipation theo-
rem of statistical mechanics [10]. Accordingly, the imagi-
nary parts �00

k;?�!� can be determined from the Fourier
transform of the cross-correlated displacement fluctuations
hu�1��t�u�2��0�i of the two particles:

�00
k
�!� �

!
R
hu�1�x �t�u

�2�
x �0�iei!tdt

2kT

and �00?�!� �
!
R
hu�1�y �t�u

�2�
y �0�iei!tdt

2kT
;

(1)

where k is the Boltzmann constant and T is the temperature
(in our experiments T � 21:5 �C, stabilized). Implicit in
�00
k;?�!� is also a dependence on the (scalar) separation r

between the two particles.
Our experiments were done with a custom-built inverted

microscope [6,11] that provides a pair of focused laser
beams with wavelengths � � 830 nm (diode laser), and
� � 1064 nm (NdVO4). A pair of silica particles of radius
R � 0:580 �m� 5% are weakly trapped (trap stiffness �
3	 10�6 N=m), in a glass sample chamber with 140 �m
inner height; the experiments were performed at least
25 �m from both surfaces. Displacements of the particles
�x; y� were detected by quadrant photo diodes [12], with a
spatial resolution of 
0:1 nm at 100 kHz bandwidth. For
the 1064 nm laser light we used a specialized silicon PN
photodiode (YAGG444-4A, Perkin Elmer), to avoid low-
pass filtering [13]. Output voltages were digitized with an
A=D interface (200 kHz) and recorded in Labview
(National Instruments). The output voltages were cali-
brated [14] as described in [15].

We consider first the spatial structure of vortices in
simple viscous liquids. As samples we used two
Newtonian fluids with different viscosities � and mass
densities �, namely, water (� � 0:969 m Pa s, � �
1000 kg m�3) and a (1:1 v=v) water/glycerol mixture
(� � 6:9 m Pa s, � � 1150 kg m�3) for probe distances r
between 2.2 and 12 �m. Figure 1 shows representative
data for �00

k;?�r; !� from pairs of silica particles, parallel
to the center line (filled symbols) and perpendicular to it
(open symbols) in water/glycerol [r � 8:3 �m (blue, on-
line); r � 5:7 �m, (red, online)] and in water (gray sym-
bols), (r � 8:3 �m). The solid black line is the measured
displacement autocorrelation of one of the particles from
the same data. The experimental �00�!� are normalized by
their low-frequency limit (i.e., the Oseen tensor and Stokes
drag coefficient), not yet accounting for fluid inertia [1]:
�00
k
�!� � 2�00?�!� � �4�r!��

�1 and �00Auto�!� �
�6�R!���1. With this normalization the data are expected
to superimpose as a horizontal line for low frequencies.
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The response �00Auto�!� does not deviate significantly from
the Stokes limit over the full experimental frequency
range. For �00

k;?�!�, however, a systematic decrease is
seen at high frequencies, which reflects the failure of
instantaneous, long-range stress propagation. For a given
probe distance r, �00?�!� turns down at lower frequencies
than �00

k
�!�. In the perpendicular channel, displacements

become eventually anticorrelated (negative values not plot-
ted), as expected from the backflow of the vortex-
displacement field. As r increases, such anticorrelations
are visible at lower frequency (blue, online). For the same
r, the anticorrelation occurs in water at a lower frequency
than in the water/glycerol mixture. The one-particle
�00Auto�!� does not exhibit inertial effects in either of the
two fluids studied, since the viscous penetration depths
remain of order of or larger than the bead size [10,13,16].

The velocity response function for the fluid surrounding
a moving sphere within the unsteady Stokes approximation
was calculated by Oseen [1]. To compare with our�00

k;?�!�,
we need the frequency dependence, which has the form
[3,4]

�00
k
�

1

4�r!�
�00
k

�
r

��������
�!
2�

s �

and �00? �
1

8�r!�
�00?

�
r

��������
�!
2�

s �
;

(2a)

where

�00
k
�x��

e�x

x2 ��1�x�sin�x��xcos�x��

and �00?�x��
e�x

x2 ��x�2x2�cos�x���1�x�sin�x��:

(2b)

Normalized �00
k;?�!� (e.g., 4�r!��00

k
) for different viscous
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liquids should thus collapse onto these master curves �00
k;?

when plotted versus distance normalized by the frequency
dependent viscous penetration depth �	 �

��������������
�=!�

p
.

Figure 2 demonstrates the expected collapse of our data
for water and the water/glycerol mixture onto �00

k;?, with no
adjustable parameters. Figure 2 clearly shows the anticor-
relation in the perpendicular channel at high frequencies,
which is a direct consequence of the vortex flow. Scaling
with !1=2 implicit in the data collapse demonstrates the
diffusive propagation of this vortex. Prior experiments
have reported diffusive propagation in longitudinal corre-
lations between two particles in a Newtonian liquid [17],
although transverse correlations (where backflow is appar-
ent) were not observed. Here the �00

k;? are defined such that
�k;?�!� ! 1 as !! 0. Thus the data collapse at low ! is
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FIG. 3. Normalized responses 4�rjGj�00
k

(filled) and
8�rjGj�00? (open) vs scaled distances r=�	e for solutions of
wormlike micelles, (a) [Cm � 0:5 wt %, r � 8:3 �m (circles);
1 wt %, r � 10 �m (squares) and 2 wt %, r � 10 �m (tri-
angles)]. (b) Entangled actin solutions with [C � 0:5 mg=ml,
r � 13:6 �m (circles); 1 mg=ml, r � 16:2 �m (squares)] and
for weakly cross-linked actin network [C � 1 mg=ml, r �
10:2 �m (triangles)]. Solid lines: predictions for a viscoelas-
tic fluid with z � 0:68 in micelles, and z � 0:75 in actin. Inset
of (a): the fit parameter A increases linearly with micelle
concentration.
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consistent with the static Oseen tensor. The vortex propa-
gation is faster in the glycerol/water mixture than in water,
since �=� is larger by a factor of 6.

In viscoelastic media [see accompanying Letter [4] ],
anticorrelations and oscillations are expected to be more
pronounced. The vortex or stress propagation is also ex-
pected to be qualitatively different: it is no longer diffusive.
In addition, polymer solutions are expected to have a larger
penetration depth at a given frequency than a simple vis-
cous fluid, given the higher modulus. We present experi-
mental results from solutions of flexible, wormlike
micelles, and solutions of entangled or sparsely cross-
linked semiflexible actin filaments, both of which confirm
the expectations.

We use wormlike micelles made from cetylpyridinium
chloride (CPyCl) in brine (0.5 M NaCl) with sodium
salicylate (NaSal) as counterions, molar ratio Sal=CPy �
0:5 (diameter 3 nm, persistence length 10 nm, length
several �m) [18]. We have measured �00

k
and �00? for three

different micelle concentrations (Cm), and varying dis-
tances between the particles. Figure 3(a) shows the re-
sults for a particular distance in each concentration (Cm �
0:5 wt %, r � 8 �m; 1 wt %, r � 10 �m; 2 wt %, r �
10 �m).

We assume power-law behavior [4] for our viscoelastic
solutions at high frequency, explicitly including the sol-
vent: G � A��i!�z � i!�. Analogous to the viscous case
presented in Fig. 2, the normalized compliances,
4�rjGj�00

k
and 8�rjGj�00?, are plotted against particle

separation scaled by the viscoelastic penetration depth,

�	e �
�������������������
jGj=!2�

p
. In order to collapse data for different

distances r and micelle concentrations we need to deter-
mine two adjustable (highly correlated) parameters, the
exponent z and the (concentration-dependent) prefactor
A. The exponent z for a semidilute solution of flexible
polymers is expected to lie between 1=2 and 2=3 depend-
ing on hydrodynamic effects [19]. We found the best
collapse of all data sets with each other and with the model
curves for all five probed distances r (3–10 �m) and three
concentrations, using a single z � 0:68� 0:05 and A �
0:012� 0:0045, A � 0:028� 0:0085, and A � 0:0575�
0:012 Pa sz for 0.5, 1, and 2 wt % micelles, respectively,
[Fig. 3(a)] Our results are consistent with an expected
linear concentration dependence of A (see inset).
Furthermore, measured shear moduli in the low-frequency
limit are in agreement with both macro- and micro-
rheological measurements for wormlike micelles using
different experimental methods [20]. The observed expo-
nent z is consistent with the Zimm exponent of 2=3 [19].
The appearance of an elasticlike plateau of the shear modu-
lus at low frequencies accounts for the observed downturn
of both �00

k
and �00? at low frequencies [11], which becomes

more apparent for the concentrated micelle solutions.
F-actin is the polymeric form (filament diameter 7 nm,

average length and persistence length 
17 �m) of the
major cytoskeletal protein actin. Entangled networks of
2-3
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F-actin have high-frequency viscoelastic behavior qualita-
tively different from that of flexible polymer systems [21].
We looked at both entangled and weakly cross-linked net-
works of actin [22]. Figure 3(b) shows good data collapse
after normalizing both �00

k
and �00? for entangled actin at

two concentrations (0.5 and 1 mg=ml) and for a weakly
cross-linked actin gel (1 mg=ml). The best collapse of the
data was found for parameters z � 0:8� 0:1 and A �
0:085� 0:05, 0:18� 0:13, 0:21� 0:13 Pa sz, respectively.
The actin solutions have a larger shear modulus than the
micelle solutions, so the vortex-caused anticorrelation oc-
curs at higher frequencies or larger separations. This is
most evident in the case of the cross-linked actin solutions,
with the highest shear modulus of all samples. Here, we see
anticorrelation (backflow) set in only at 
40 kHz, which
leads to a larger inaccuracy in the determination of A and z.
The viscoelastic exponent z found for actin solutions is
consistent with z � 0:75 [5,6,24] and because of the large
error bars (particularly for A) we chose z � 0:75 to plot the
data. The amplitude A is approximately a factor of 2
smaller than predicted [24].

We have shown how inertial flow in fluids can be
directly resolved on micrometer and microsecond time
scales using a new high-bandwidth laser interferometry
technique. Inertia causes a vortexlike flow surrounding a
localized disturbance at short times which leads to en-
hanced correlations in the thermal velocity fluctuations in
liquids. Awell-studied consequence of these correlations is
the slow, algebraic decay of velocity correlations, known
as the long-time tail [2], as can be seen in the crossover
from ballistic to Brownian motion of colloidal particles
[25]. This vortex flow leads to a diffusive propagation of
stress in liquids, which is evident in our results. In visco-
elastic media, however, the propagation of stress becomes
superdiffusive as shown here. The implications of this for
colloidal motion (e.g., long-time tail) in viscoelastic fluids
have yet to be explored.
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