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ABSTRACT 

We explore theoretically the zero frequency shear modulus of a polymer network constructed from 
semiflexible polymers and find that the mechanical properties can be varied remarkably by small changes 
in the length of the constituent polymers or cross-linker density. This sensitive dependence of rheology 
upon network microstructure is due to the presence of a cross-over from a regime of affine deformation 
under uniformly applied stress to one of spatially heterogeneous, nonaffine deformation signally the 
breakdown of continuum elasticity of significant mesoscopic length scales. This cross-over from affine to 
nonaffine deformation may play an important role in the understanding of the rheology of the 
cytoskeleton. Moreover, the presence of this cross-over suggests a new mechanism for the construction of 
highly adaptive gels based on a biomemetic design motif.  
 

INTRODUCTION 

Semiflexible gels may be defined as cross-linked 
polymer networks in which the mean distance 
between cross links is less than the thermal 
persistence length of the constituent polymers. 
Thus, the microstructure of the solid is better 
described as an interwoven mesh of flexible rods 
rather than the canonical picture of a network of 
entropic springs used to describe gels constructed 
from flexible polymer chains.  In this note we 
focus our discussion solely on the rheological 
properties of such networks. Nevertheless, to 
explain our interest (and that of numerous other 
groups) in these materials we point out that such 
semiflexible gels are in fact highly ubiquitous in 
nature as they form the cytoskeleton of all 
eukaryotic cells [1]. This intracellular structure 
constructed primarily of cross-linked semiflexible 
protein filaments is source of cellular mechanical 
integrity, motility, and is implicated in the ability 
of certain cells to sense and response to their 
external stress environment.  

In this note we summarize recent results 
[2,3] suggesting that semiflexible networks are 
remarkably adaptable materials in the sense that 
their rheological properties can be dramatically 
modified via modest chemical changes. This 
dramatic rheological change is due to breakdown 
of continuum elasticity on mesoscopic length 
scales in the material. Under uniformly applied 
shear stress the statistically homogeneous network 
can have a highly spatially inhomogeneous strain 

field over length scales much larger than the mesh 
size of the network. In particular we show that 
these semiflexible networks admit a new length 
scale λ that depends on both the mean spacing 
between cross-links the thermal persistence length 
of the constituent filaments.  The zero-frequency 
elastic properties of semiflexible gels depend very 
sensitively on the dimensionless ratio of the 
filament length to this new length scale: L/λ. 
 The ratio L/λ can be thought of as a 
novel source of the rheological control of adaptive, 
biomemtic gels based on the design motif 
perfected in the cytoskeleton. The sensitive 
dependence of the zero frequency (and low-
frequency) rheological properties on filament 
length emphasizes unusual form of the 
deformation field in the network. For flexible 
polymers the zero frequency shear modulus of a 
gel or the plateau modulus of a polymer solution 
is independent of the polymerization index and 
depends only on the mesh size.  The underlying 
cause of the independence of the network’s 
rheological properties on the length of the 
polymers is that each entanglement length of the 
polymer chain is an independent dynamical agent 
in flexible polymers. In semiflexible polymer 
networks, however, the long thermal persistence 
length of the chains enforces new long-range 
mechanical interactions between distant 
entanglement lengths in the network that happen 
to part of the same polymer. These long-range 
interactions extend over the length of the 
individual polymers so that their length L plays a 
new role in the rheology of such materials.  



 Proc. XIVth Int. Congr. on Rheology 
Edited by: 

Copyright 2004 – The Korean Society of Rheology 

August 22-27, 2004 
Seoul, Korea 

 

The Deformation Field 

To explore the mechanical/rheological properties 
of semiflexible networks we constructed a two-
dimensional numerical model of the network.  
Filaments, which are taken to be straight line 
segments, are deposited in the shear cell with 
random orientations and random positions of their 
center of mass. Whenever two filaments cross, 
they are permanently linked by a cross-linker that 
provides arbitrary constraint forces but no 
constraint torques; filaments are free to rotation at 
each cross-link. Further angle constraints at each 
cross-link do not substantially change our results. 
The structure of the network is represented by the 
complete set of the coordinates of the cross-links 
and of the midpoints along each polymer between 
cross-links. These latter points are included in 
order to account for first bending mode between 
any two cross links. 
 The network thus constructed is stress-
field and at its energy minimum. Relative motion 
of the cross-links and midpoints incurs an energy 
cost associated with the stretching of the 
intervening filament of length l0 by an amount δl 
according to  
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where µ is the extensional modulus of an 
individual filament. Similarly, a nonzero angle δθ 
between consecutive chain tangents contributes 
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to the energy where l is the mean of the 
consecutive filament lengths associated with the 
aforementioned chain tangents. We have 
introduced the filament bending modulus κ . The 
network can then be sheared in the standard Lees-
Edwards manner and is then relaxed by moving 
the positions of the midpoints and crossing points 
according to a conjugate gradient scheme.  

Each network so constructed can be 
described in terms of three lengths: (i) The mean 
distance between cross-links, lc, which in two 
dimensions fully characterizes the structure of the 
random network, and (ii) the filament length L for 
the monodisperse rod network, and (iii) a bending 
length lb = (κ/µ)1/2, which characterizes the elastic 
properties of the individual rods. Now µ sets the 

only energy scale in the problem and we report all 
moduli in terms of µ/L. Further details can be 
found in reference [3].   

We calculate the elastic modulus of the 
system from the elastic energy storage at this new 
minimum. Examples of sheared networks are 
shown in figure 1.  In that figure one observes 
qualitatively the affine to nonaffine cross-over. In 
figure 1(a) on the left, the mean number of cross-
links along a filament is seven - a density above 
the rigidity percolation transition in the network 
[4] but well in the nonaffine regime. Here the 
network deforms in a highly heterogeneous 
manner and the elastic energy storage is almost 
entirely in the bending modes of a few filaments. 
If one were to increase the mean number of cross-
links per filament to e.g. 46, the network is now 
deep into the affine regime where the deformation 
field is spatially uniform and the elastic energy is 
stored entirely in the stretching modes of the 
filaments.  The nonaffinely deforming network 
must have a smaller modulus than the networks in 
the affine regime. One can imagine imposing an 
artificial set of constraints on the nonaffine 
network to enforce affine deformation. Removing 
those additional constraints the network can only 
further relax the stored elastic energy hence the 
moduli of the nonaffine gel will be smaller than in 
an affine one. To examine this issue more 
quantitatively we plot in the upper panel of figure 
2 the numerically determined shear modulus for a 
variety of networks having differing filament 
elastic properties (characterized by L/lb) and 
network densities (characterized by L/lc). We find 
that these numerical data can be collapsed onto a 
single master curve provided we scale the 
observed modulus by prediction of affine network 

(b)(a) (b)(a)  

Figure 1: Sheared semiflexible networks. The lines 
draw at the undeformed positions of the filaments 
has thickness proportional to the total elastic 
energy stored under shear (shown by the green 
arrows). The color coding reflects the partitioning 
of that energy into bending (pink) or stretching 
(blue) deformations of the filament. In (a L/lc=9, 
while in (b) L/lc=47.  
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and plot on the abscissa the filament length L 
scaled by the length λ defined by 
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with the exponent z=1/3 to collapse the data. 

Geometry and Rheology 

It is apparent from the upper panel of figure 2 that 
there is an extreme sensitivity of the shear 
modulus upon the dimensionless parameter L/λ 
allowing an O(106) change in modulus for about 
an order of magnitude change in the control 
parameter. How are we to understand this 
unexpected rheological control of the material?  
The terminology used above suggests that the 
explanation lies in the geometry (i.e. affine vs. 
nonaffine) of the deformation field in the network. 
In essence we seek to link collective mechanical 
or rheological behavior of the network to the 
geometry of the strain field.  To do so we need an 
independent, purely geometric measure of the 
deformation field.  

To quantify the degree of nonaffinity at 
a given length scale, consider the infinitesimal 
change in angle under an imposed shear strain 

between two network nodes separated by a 
distance r.  Denoting this angle by θ and its 
corresponding affine prediction by θaffine, we 
arrive at a suitable measure for the deviation from 
affinity on the length scale r by defining 

 ( ) ( )22
affinerθ θ θ∆ = −  (1.5) 

where the angled brackets denote averaging over 
both network points and different network 
realizations. Clearly at system-spanning length 
scales we expect that all deformations will be 
affine as required by the spatially uniform shear. 
As we further refine our analysis by successively 
resolving finer and finer network structures, one 
expects deviations from affinity to grow 
monotonically. In fact, we see in the lower panel 
of figure 2 that there are two classes of networks 
with respect to this measure of nonaffinity. In one 
the measure of nonaffinity (scaled by the total 
shear strain γ) plateaus around order 0.1 even 
down to length scales on the order of the network 
mesh size; these networks have a shear modulus 
that is well-described by theories based on mean-
field, affine deformation. In nonaffine networks 
with significantly weaker shear moduli, the purely 
geometric measure of nonaffinity grows without 
bound as one resolves deformations on 
successively finer length scales.  

We have shown that semiflexible gels 
admit a new rheological control parameter that, 
by changing the geometry of the internal 
deformation field, can dramatically change the 
rheological properties of the network through 
small changes in either the length of the 
constituent filaments or in the cross-link density. 
This unprecedented sensitivity of network moduli 
on gel microstructure suggests the importance of 
developing a biomemtic semiflexible gel 
technology. 
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Figure 2 The upper figure shows the dramatic 
decrease in shear modulus accompanying the 
cross-over from affine to nonaffine networks. This 
cross-over is controlled by the L/λ as described in 
the text. The lower figure directly measures the 
affinity of the deformation field as a function of 
length scale in the network. Identical networks are 
represented by the same symbols to facilitate a 
comparison.  


