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We provide a direct experimental test of the fluctuation-dissipation theorem (FDT) in an aging colloidal
glass. The use of combined active and passive microrheology allows us to independently measure both the
correlation and response functions in this nonequilibrium situation. Contrary to previous reports, we find
no deviations from the FDT over several decades in frequency (1 Hz–10 kHz) and for all aging times. In
addition, we find two distinct viscoelastic contributions in the aging glass, including a nearly elastic
response at low frequencies that grows during aging.
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Developing a statistical mechanical description of non-
equilibrium systems such as glasses still remains an im-
portant challenge. One of the most interesting recent
developments along these lines is the proposal to general-
ize the fluctuation-dissipation theorem (FDT) to nonequi-
librium situations [1]. The FDT relates the response of a
system to a weak external perturbation to the spontaneous
fluctuations about equilibrium [2]. The response function is
proportional to the power spectral density of thermal fluc-
tuations, with a temperature-dependent prefactor. This
suggests a generalization for systems out of equilibrium,
in which the (nonequilibrium) fluctuations are related to
the response via an effective temperature. While this has
been studied extensively theoretically [3], the experimental
support for a meaningful effective temperature is unclear
[4–6], and possible extensions of the FDT to nonequilib-
rium situations remain controversial.

Here, we introduce a combination of both active and
passive (fluctuation-based) microrheology techniques [7–
9] that provide a way to directly test the FDT. We do this in
Laponite [10–12], a synthetic clay. For this system con-
flicting results have been reported [5,6], that may in part be
due to the use of a limited experimental window in both
frequency and aging time. Here, we perform measurements
over a wide range of frequencies and aging times. Contrary
to previous reports, we find no violation of the FDT and
thus no support for an effective temperature different from
the bath temperature.

These measurements provide new insights into the phys-
ics of the aging process. By performing microrheology
during aging, we can explore the evolution of viscoelastic-
ity of the glass over a wider frequency range than hitherto
explored, spanning nearly six decades in frequency. The
measurements reveal the existence of two distinct contri-
butions to the viscoelasticity of the system: (i) a high-
frequency viscoelastic response in which the shear modu-
lus increases rapidly with frequency; and (ii) a predomi-

nantly elastic (weakly frequency dependent) response at
lower frequencies, which becomes increasingly important
as the system ages.

The Einstein relation connecting the diffusion of a par-
ticle to its mobility is a special case of the FDT. Its
generalization to a viscoelastic system relates the power
spectral density (PSD) of position fluctuations to the imagi-
nary part of the complex response function �00�!� [7,8]:

 hjx�!�j2i �
Z 1

0
hx�t�x�0�iei!t dt �

2kBT
!

�00�!�: (1)

In a nonequilibrium system this suggests the introduction
of an effective temperature Teff�!�, replacing T in Eq. (1).
Prior experiments [7] have shown apparent agreement
between (active) macroscopic rheology and passive micro-
rheology, which supports the validity of a generalized
Stokes-Einstein (SE) formula. However, since the SE for-
mula is neither necessary nor sufficient to prove the valid-
ity of FDT, we directly measure and compare the quantities
appearing in Eq. (1).

To investigate the aging of our system, we study the
motion of probe particles using optical tweezers. An in-
verted microscope [13], equipped with two overlapping
optical tweezers formed by two independent lasers (� �
830 nm and 1064 nm) focused to diffraction-limited spots.
The latter drives oscillations of a trapped particle with an
Acousto-Optical Deflector, allowing us to measure the
response function. The (x, y) position of the particle is
determined by a quadrant photo diode [14] with a spatial
resolution of�0:1 nm. The output signal is fed into a lock-
in amplifier that measures the amplitude and phase of the
particle displacement x�t� caused by an oscillatory motion
of the drive laser. From this we determine the force F�t�
acting on the particle. The response function is then given
by ��!� � x!=F!, where x! and F! denote the Fourier
transforms of x�t� and F�t�. By measuring the PSD of the
same beads under the same conditions in water, we are able
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to calibrate both trap stiffness [8,13] and particle displace-
ment [8].

For the passive measurements the shutter in front of the
driving laser was closed and the spontaneous fluctuations
of the particle position were recorded for a minimum time
of 45 s. From the displacement time series, we calculate the
displacement power spectral density by fast Fourier trans-
form [8]. Comparing the response function from the active
microrheology with the fluctuation spectra, we can directly
check the validity of the FDT, as well as resolve the
frequency-dependent viscoelastic properties during the
aging of the glass.

The colloidal glass under study is a suspension of
Laponite XLG in ultrapure water. After mixing, the system
spontaneously evolves from an initially liquid and ergodic
state to a nonergodic glassy state that exhibits elastic
behavior [11]. For a particle concentration of 2.8 wt %,
the rate of aging is slow enough that no changes occur
during each individual active and passive microrheology
measurements lasting at most 2 min. Nevertheless, the
system evolves fast enough to allow us to follow the
evolution from ‘‘liquid’’ to ‘‘solid’’ (the glass no longer
flows when the sample cell is tilted) within about 8 h. The
dispersions are filtered to obtain a reproducible initial state
[10]. This defines the zero of aging time ta � 0. Immedi-
ately after filtration, a small fraction (<10�4 vol%) of
silica probe beads (diameter 1:16 �m� 5%) are mixed
with the Laponite dispersion. The solution is then intro-
duced into a sample chamber of about 50 �l volume,
consisting of a coverslip and a microscope slide separated
by a spacer of thickness 70 �m. This is sealed with vac-
uum grease to avoid evaporation. We then trap a single
silica bead and perform the active and passive experiments
on it.

Since the system evolves toward a nonergodic state, the
time average may not be equal to ensemble average for the
measured PSDs. To investigate this, we confirmed that
reproducible PSDs were obtained for the same aging
time, independent of bead position, during all stages of
aging. We also confirmed that our results do not depend on
the time interval used to compute the time average. Thus,
we can use the time-averaged PSD without averaging over
several beads in our study. Figure 1 shows the (passive)
displacement PSD for different aging times. It is evident
that the particle motion progressively slows down with
increasing aging time, reflecting the increase in viscosity
of the system. Qualitatively two regimes of aging are seen:
for ta < 200 min the PSD can be described by a single
power law. At longer aging times two distinct slopes
appear in the log-log plot (Fig. 1).

We measure the (active) response of the same bead used
in passive measurements, as a function of aging time and
for oscillation frequencies of f � 1:2, 10.8, 116, 1035, and
12 000 Hz. To directly compare the (passive) fluctuations
with the (active) response, we express our fluctuation PSDs
normalized in such a way as to permit a direct comparison
with the measured � in the form of Eq. (1). Thus, we plot

the measured PSD multiplied by !=�2kBT�. We obtain the
real part using a Kramers-Kroning (principal-value) inte-
gral [2] �0�!� � 2

�P
R
1
0
��00���
�2�!2 d�. The cutoff error due to a

finite range of frequencies sets an upper limit to �0�!�
about a decade lower than that of �00�!�. Figure 2 depicts
the real and imaginary parts obtained from the active and
passive methods at an early (ta � 100 min) and a late stage
of aging (ta � 300 min). We see that the results are iden-
tical to within the experimental accuracy, showing that
there are no deviations from the FDT in this system over
the range of frequencies and aging times probed in our
experiments. Note that the small deviations between the
respective �0�!� values at high frequencies are likely due
to cutoff errors in the Kramers-Kronig integrals because
the drawn lines, obtained by extrapolating the measured
power law of �00 to infinity, show significantly better
agreement. Since we have directly compared both the
real and imaginary parts of the response functions, this
represents a stronger test of the FDT than previous mea-
surements [6] and demonstrates that the FDT holds in this
nonequilibrium system.

In Fig. 3, we plot the extracted �00 as a function of aging
time for several different frequencies. As can be seen the
active and passive data agree very well. This figure con-
firms again that the FDT holds: the measured effective
temperature does not differ from the bath tempera-
ture. The resulting effective temperature Teff=Tbath �

�00passive=�
00
active is shown in the Table I. We conclude that

 

FIG. 1. The displacement power spectral densities (PSD) as a
function of frequency for 1:16 �m silica probe particles with
increasing age after preparing the sample. Fluctuations were
recorded for 45 seconds with the 830 nm laser focus and results
averaged in x; y directions for 1 bead several times. Aging times
are given in the legend. The solid squares show the PSD of a
bead in pure water for comparison. An acoustic noise signal
around f � 200 Hz is cut out from the curve at the latest stage of
aging where the displacement signal was the lowest. All experi-
ments were performed at 21 �C.
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the measurements show the FDT is valid for all frequencies
probed here, and can be used for all the stages of aging in
this system. The method also allows us to obtain the
viscoelastic properties over a very wide frequency range;

classical (macroscopic) rheology is limited to frequencies
up to about 10 Hz [11]. In Fig. 1 we observe a gradual
decrease of the PSD for higher frequencies and a more
rapid change at lower frequencies. The response function is
directly proportional to the PSD which in turn should be
inversely related to the complex shear modulusG	 � G0 

{G00. With increasing aging time, as the sample becomes
more viscous and solidlike, one would expect that both the
elastic modulus G0 and the viscous modulus G00 increase.
This is consistent with the decrease of the PSD and con-
sequently of the response function. As was mentioned
above, at late stages of aging two distinct slopes appear
in the PSD (Fig. 1). This suggests the existence of two
distinct contributions to the viscoelasticity during aging.
Assuming the generalized Stokes formula for the visco-
elastic response function [7,8], we obtain excellent fits to
the data assuming a simple addition of two power-law
contributions to the complex shear modulus (only a single
power-law contribution at the early stages of aging):

 ��!� �
1

6�RG	�!�
�

1

C1��{!�a 
 C2��{!�b
: (2)

The fit of the imaginary part of the response function
from the passive measurements with the imaginary part of
the above functional form is shown by the drawn lines in
Fig. 2. To demonstrate the quality of this model for de-
scribing the data, we also plot the real part with the fitting
parameters obtained from the imaginary part. The agree-
ment is remarkable, especially with the active data at high
frequencies. Figure 4 depicts the evolution of the fitting
parameters, i.e., the exponents of power laws and the
weight factors for the contribution of the two viscoelastic
contributions as a function of aging time. The exponent and
amplitude of one of the components do not change with
aging time while the amplitude of the other one grows
appreciably for aging times longer than about 250 min.

These results demonstrate the existence of two distinct
contributions in the viscoelasticity of the system. In addi-
tion to a strongly frequency-dependent viscoelastic re-
sponse at high frequencies, we also observe the slow
development of a more elastic (weakly frequency-
dependent) response during the aging. In fact, this appears
to be the main characteristic of the aging in this system. A
similar description in terms of a network in a more fluidlike
background has been suggested before for polymeric gels

 

FIG. 3. The comparison of �00 extracted from passive (open
symbols) and active (solid symbols) measurements as a function
of aging time. For the lowest frequency, we could not measure
reliable data longer than 300 min, since the signal to noise to
ratio became of the order of 1 with increasing aging time, as the
material became stiff.

TABLE I. The effective temperature obtained for different
frequencies averaged over 2 h time intervals. Within the uncer-
tainty in the experiments, Teff=Tbath � 1.

Teff=Tbath

ta 7:5 rad=s 68 rad=s 728 rad=s 6:5 rad=s 75 rad=s

0–2 h 0:75� 0:3 1� 0:1 0:95� 0:1 0:85� 0:1 1:0� 0:1
2– 4 h 1:2� 0:3 1� 0:1 1� 0:1 0:9� 0:1 1:0� 0:1
4–6 h 1:4� 0:3 1� 0:1 1:1� 0:1 1:1� 0:1 1:1� 0:1
6–8 h 0:85� 0:1 1:0� 0:1 1:1� 0:1 1:0� 0:1

 

FIG. 2. Comparison of active and passive results: Real �0�!�
and imaginary �00�!� at ta � 100 and 300 min obtained from
active (solid symbols) and passive (open symbols) microrheol-
ogy performed on the same 1:16 �m diameter silica bead in the
same sample. For the passive experiments, the imaginary parts of
the response functions are obtained directly and real parts are
calculated with a Kramers-Kronig integral. The lines show the
fits to Eq. (2). At early stages of aging the data can be described
with one power law, while at later stages, a superposition of two
power laws is needed to describe the whole frequency range. The
amplitude of oscillation for the active experiments was 77 nm.
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[15,16]. In that case, this can be attributed to a tenuous
elastic network structure, in the presence of a viscous
background.

In summary, we see a good quantitative agreement be-
tween the response function and the spontaneous thermal
fluctuations, implying that we observe no violation of the
FDT in this nonequilibrium system. Equivalently, we find
an effective temperature that does not differ from the
system temperature. It is important to note that these
measurements provide a direct test of the FDT, since we
directly measure the response and the corresponding fluc-
tuations over the same wide range of frequencies. This
technique has the potential for application to a wide range
of nonequilibrium situations such as biological systems
[17].
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FIG. 4. For ta < 150 min, the complex response function can
be described by single power law of the form 1=��{!�a. After
about 150 min, a slowly relaxing contribution emerges leading to
a response function of the from in Eq. (2).
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