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We calculate both the micromechanical response and bulk elastic constants of composites of rods

embedded in elastic media. We find two fixed points for Poisson’s ratio with respect to rod density: there is

an unstable fixed point for Poisson’s ratio ¼ 1=2 (an incompressible system) and a stable fixed point for

Poisson’s ratio ¼ 1=4 (a compressible system). We also derive approximate expressions for the elastic

constants for arbitrary rod density, which agree with exact results for both low and high density. These

results may help to explain recent experiments [Phys. Rev. Lett. 102, 188303 (2009)] that reported

compressibility for composites of microtubules in filamentous actin networks.
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There are many natural examples of composite materials,
combining multiple components with distinct elastic prop-
erties. Wood, bone, and various tissues are all made of
composites, as is each living cell [1]. Many composites
consist of a reinforcing constituent such as stiff fibers
embedded in a weaker, less stiff matrix [2]. By varying
the relative concentration of the constituents, one can tune
the elastic moduli, resulting in materials with remarkable
properties [3,4]. The collective properties are more than
merely the sum total of those of its constituents. Among the
most prevalent natural or living composites is the cell
cytoskeleton, which consists of a complex scaffold of sev-
eral distinct filamentous proteins, some of which are very
rigid. Most previous biophysical studies of cytoskeletal
networks have focused on purified gels or networks con-
sisting of one type of filament [5–14]. The cytoskeleton,
however, contains three major types of filaments: micro-
tubules (MTs), filamentous actin (F-actin), and intermedi-
ate filaments. These filaments have vastly different bending
stiffness. A few studies of reconstituted composite cytoske-
letal networks have shown viscoelastic properties distinct
from single-component networks [15–17]. A very recent
experimental report also provides evidence of anomalous
compressibility with the addition of stiff microtubules to a
soft matrix [18].

Here, we develop a model for the mechanical response
of a composite material consisting of rods in an elastic
matrix, using a mean-field approach and a dipole approxi-
mation for the rodlike inclusions. The elastic matrix under
consideration is treated as an effective medium that is
made of the bare elastic medium (e.g., the F-actin matrix)
and a collection of rods (MTs) embedded in it. Consistent
with the experiments of Ref. [18], we find that the addition
of rigid rods can lead to enhanced compressibility of an
initially nearly incompressible medium. Specifically, we
find that for matrices characterized by Poisson’s ratio
1=4< �< 1=2, the addition of rods reduces �, while for
� < 1=4, stiff rods increase �. In this way, � ¼ 1=4 can be
thought of as a stable fixed point of such a composite. We

further evaluate Poisson’s ratio and elastic moduli as func-
tions of the concentration of rodlike inclusions. While this
mean-field approach is only approximate at intermediate
concentrations, we obtain an exact result in the limit of
high concentration.
We first study the micromechanics of our system using

the elastic response function or Green’s function for the
displacement field ~u in response to an applied force. For an
isotropic and homogenous elastic material with Lamé co-
efficients � and �, we can describe the displacement field

ui at a position ~r in the medium due to a force ~f acting at
point ~r0, uið ~rÞ ¼ �ijð~r� ~r0Þfjð ~r0Þ, with the linear response

function �ij given by

�ijð~rÞ ¼ 1

8��r
½r̂ir̂jð1� �Þ þ �ijð1þ �Þ�; (1)

where� ¼ �=ð�þ 2�Þ is the ratio of the shear modulus�
to the longitudinal modulus. For an isotropic and homoge-
neous elastic material, �ijð ~rÞ reduces to just two distinct

components corresponding to the response parallel and
perpendicular to ~r, as shown in Fig. 1(a). For an in-
compressible material in 3D, � ¼ 0, and the parallel and

FIG. 1 (color online). We consider a point force fŷ applied at
the origin (A) and calculate the response at points B located
parallel (here, along the y axis) and perpendicular (along the z
axis) to the applied force in (a). The rod center of mass is located
at a distance r from the origin and makes a polar angle � and azi-
muthal angle	. The rod is oriented in a direction as shown in (b).
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perpendicular response functions are related by a simple
factor of 2: �kðrÞ ¼ 2�?ðrÞ ¼ 1=4��r, which is the elas-
tic analogue of the Oseen tensor [19,20]. For compressible
elastic media in 3D, �> 0, �kðrÞ ¼ 1=4��r and�?ðrÞ ¼
ð1þ �Þ=8��r. Thus, � provides a measure of the degree
of compressibility.

We calculate the change in the response function and
Lamé coefficients upon addition of rods as follows. We
consider a single rod of length a embedded in the elastic
medium, as shown in Fig. 1(a). The presence of the rod
represents a constraint on the displacement field induced
by the applied force. For a force fŷ applied at A, the net
displacement of the ends of the rod of length a oriented
as in Fig. 1(a) is given by � ~uð~rÞ ¼ ½ ~uð ~rþ ~a=2Þ�
~uð ~r� ~a=2Þ�. We approximate the constraint of an incom-
pressible rod by a dipole at its center of mass. This induced
(tensile) dipole is oriented along the rod and its strength is
chosen so as to enforce a constant end-to-end distance of
the rod: p ¼ ��að ~a �� ~uÞ=2 ¼ 
�, where 
 ¼ ��a3=2,

� ¼ â � ðâ � ~rÞ ~u, and where we keep only leading-order
terms in a, which is assumed to be small compared to the
other lengths in the figure. The resulting displacement field
at B allows us to determine the change in the linear
response functions. In our effective medium picture, we
obtain the change in response as arising from a cloud of
induced dipoles in the elastic continuum.

The changes in the parallel and perpendicular response
functions with the addition of the rods are ��k ¼
�ð�=30Þna3�k and ��? ¼ 1

2 ð1þ 3�2Þ��k, where n is

the rod number density and we have averaged over rod
orientation. This is equivalent to �� ¼ �� ¼ 1

15
n. For a

small increment dn in added rods, we obtain the differen-
tial equation d�=dn ¼ �

30 a
3�ð1� 3�Þ. Thus, � increases

for 0<�< 1=3 and decreases for �> 1=3, while � is
unchanged for � ¼ 0 and � ¼ 1=3. Therefore, for a
slightly compressible medium, adding rods enhances the
compressibility relative to the shear compliance, while for
a highly compressible medium, the rods reduce the com-
pressibility, as illustrated in Fig. 2. For finite compressibil-
ity, addition of rods tends to drive the system towards a

state with � ¼ 1=3. This suggests a stable fixed point (to
the addition of rods) at � ¼ 1=3 and hence Poisson’s ratio
� ¼ 1=4. Similarly, � ¼ 0 and � ¼ 1=2 corresponds to an
unstable fixed point. These results are also apparent from
the full solution to the differential equation above for �,
which is shown in Fig. 3 for several different initial values
�0 in the absence of added rods. Our results are qualita-
tively consistent with recent microrheology experiments
on a composite of microtubules embedded in filamentous
actin [18], which reported enhanced compressibility
(� < 0:5) when stiff microtubules were added to an almost
incompressible actin matrix (� ’ 0:5), as inferred from the
measured parallel and perpendicular response functions.
We can also calculate the effect of the addition of stiff

rods by considering uniform strain of a composite, as
follows. We apply a uniaxial strain �zz to the medium
along the z direction and clamp its boundaries along the
x and y directions. We consider a particular rod making
polar and azimuthal angles � and 	 with respect to the
coordinate axes, as shown in the schematic Fig. 1(b). In a
way similar to the above, the presence of this rigid rod is
equivalent to a dipole, here of strength p ¼ 
�, where 
 is
the same as above, and � ¼ �zzcos

2�. We calculate the
additional stresses on the boundaries due to an isotropic
distribution of such rods with number density n. These
stresses are given by ��xx ¼ ���zz and ��zz ¼ ð2��þ
��Þ�zz. For rod orientations in a given solid angle d� ¼
sin�d�d	, the stress associated with the induced dipole is
given by ��ij ¼ n

4�
�âiâjd�. Thus, the Lamé constants

can be calculated by

�� ¼ n

Z

cosð�Þ2 sinð�Þ2 cosð	Þ2 d�
4�

ð2��þ ��Þ ¼ n

Z

cosð�Þ4 d�
4�

: (2)

Solving for �� and ��, we find the same values as in the
previous micromechanical calculation.
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FIG. 2 (color online). The flow diagram for the degree of
compressibility � showing a stable fixed point at � ¼ 1=3 and
an unstable fixed point at � ¼ 0.
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FIG. 3. The degree of compressibility � and Poisson’s ratio �
of the composite as a function of mesh size 
 for inextensible
rods, for different values of the degree of compressibility �0 of
the medium in the absence of rods. The mesh size 
 is related to
the rod density n by 1=
2 � na.
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We now consider the rods to have finite stretch modulus
K ¼ �b2Er, where b is the radius of the rod with Young’s
modulusEr. When the rod is subject to an extensional strain
�, the resulting force balance for an extension � of the rod

is now given by � ¼ a�� 2p
��a2

¼ p
K , where p ¼ 
�, and


 ¼ �a3�=ð2þ �a2�=KÞ. For a density n of rods, we
obtain the following nonlinear relations for the Lamé
coefficients:

�� ¼ �� ¼ �

30
�na3

��
1þ �a2�

2K

�
: (3)

In the limit of very stiff rods, this reduces to the expression
above. For highly compliant rods, by contrast, this is
consistent with the elastic moduli of an affinely deforming
rod network of volume fraction ’ ¼ �ab2n; e.g., �� ¼
1
15’Er.

The result in Eq. (3) is valid at small density, in which the
shear modulus � on the right-hand side is that of the (bare)
matrix. If we consider n ¼ dn to be a small increase in the
number density of rods, then Eq. (3) can be thought of as a
set of differential equations representing the increase of the
moduli upon the addition of stiff rods. By treating the
resulting composite system as an isotropic and homogene-
ous effective medium, this differential equation suggests a
way of calculating the properties of composites with finite
rod density. This is similar to self-consistent methods em-
ployed for aligned fiber-reinforced composites [21]. While
this represents an uncontrolled approximation, we find that
integrating Eq. (3) yields an exact expression for the limit of
a high density of rods. The solution for � is given by

� ¼ �rW

�
�0

�r

exp

�
�0

�r

þ �na3

30

��
; (4)

where �0 is the shear modulus of the medium in the
absence of rods and �r ¼ 2K=ð�a2Þ. Here, WðzÞ is the
principal value of the LambertW function, which is defined
by z ¼ WeW . From this, we also obtain � ¼ �0 þ���0.
The results are shown in Fig. 4 for various initial conditions
�0 and �0. For small n and large K, this reduces to � ’
�0ð1þ �na3=30Þ, since WðzÞ ’ z for small z. This is
consistent with the above results for dilute, inextensible
rods. As the density of rods and corresponding shear modu-
lus increase, however, WðzÞ ’ lnðzÞ and � ! 1

15’Er,

which is the modulus of a high density meshwork of elastic
rods.

So far, we have not accounted for the tension profile
along the rod. Our dipole approximation is expected to
overestimate the effect of the rod, since the real displace-
ment field along a finite rod is expected to vary more
smoothly than for a dipole. The displacement field corre-
sponds to a strain and consequent tension along the rod that
is uniform at its center and vanishes at its ends. This strain
field can be calculated from the force balance: Kv00ðxÞ ¼
�½vðxÞ � �x�, where vðxÞ is the displacement field along

the rod in the presence of a background strain � of the
matrix and � represents the elastic coupling of the rod to
the matrix. The longitudinal strain of the rod is given by
v0ðxÞ, and the gradient of this corresponds to a net force per
unit length on the rod, which we take to be proportional to
the displacement of that section of the rod relative to the
background medium. This is similar to the viscous drag on
a slender body in the presence of a background velocity
field [22], in which case � is the drag coefficient per unit
length of the rod. For an elastic medium, we approximate
� ¼ 2��= lnð
=bÞ, as in Ref. [23]. Here, the screening
length 
 is taken to be of order the average separation or
mesh size of the rod network, which depends on density.
Given the weak logarithmic dependence on 
, however, we
will treat � as a constant.
Once again, the rod can be considered as a force dipole

on scales large compared with the rod length a. Using the
condition of tension-free ends, the strength of this dipole
can again be expressed as p ¼ 
�, but now with


 ¼ Ka½1� 2‘0 tanhða=2‘0Þ=a�: (5)

Here, ‘0 ¼
ffiffiffiffiffiffiffiffiffiffi
K=�

p
represents the length over which the

longitudinal state of strain of the rod varies [23]. For highly
compliant rods, this becomes a small length, corresponding
to a nearly constant state of strain and tension along the
rod, except very close to the ends. In the other limit, of very
stiff rods, the strain exhibits a quadratic dependence, with a
maximum at the center of the rod and vanishing at the ends
of the rod. In this case, 
 ¼ �a3=12, which is smaller by a
factor of 3 lnð
=bÞ than the value above for the simple
dipole approximation. Interestingly, independent of the
parameters of the system, we still find that both Lamé
coefficients evolve in the same way upon the addition of
rods: d� ¼ d� ¼ dn
=15 [24]. This means that the
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FIG. 4 (color online). The solid gray (blue) lines show the
shear modulus of the composite as a function of the mesh size for
different values of the ratio of the rod and medium compliance,
while the dashed gray (red) line represents the affine result. The
inset shows the Lamé coefficient � for different values of the
initial degree of compressibility �0 of the medium for both
extensible and inextensible rods. The ratio �0=�r ¼ 0:001 in
the inset, except for the inextensible rod (dashed line), where
�0 ¼ 0:1.
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qualitative form of d�=dn in Fig. 2, as well as our con-
clusions regarding the fixed points at � ¼ 0 and � ¼ 1=3,
remains unchanged. For rods that only interact with each
other through their matrix (either a viscous fluid or a homo-
geneous elastic matrix), the concentration of rods only
enters the calculation via the screening length 
. Fur-
thermore, the modulus appearing in the coefficient � is
that of the bare matrix. For rods that interact directly with
each other, we employ a self-consistent approximation, as
discussed above [21]. Amore detailed analysis of the effects
of direct interfiber interactions would likely require a nu-
merical simulation that is beyond the scope of the present
work. Nevertheless, we can derive a differential equation for
� accounting for the tension profile along the rods using our
self-consistent approach. Although this is more complicated
than Eq. (3), the dipole strength derived from Eq. (5) is well
approximated by that used in Eq. (3), apart from the factor
of 3 lnð
=bÞ. Thus, the functional forms in Figs. 3 and 4 are
expected to be good approximations.

We have studied the collective mechanical response of
composites of rods embedded in elastic media, such as stiff
MTs in a softer cytoskeletal matrix or carbon nanotubes in
synthetic gels [25], using a mean-field approach similar in
concept to homogenization methods introduced for elastic
composites [21]. We find a very general result that the
addition of elastic rods or fibers leads to a monotonic
evolution of Poisson’s ratio toward the value 1=4, either
from above or below. On the one hand, this is consistent
with recent numerical calculations for fiber-reinforced
concrete, showing a weak increase in � with fiber density
in the range 0:2 � � < 0:25 [26]. On the other hand, our
results may help to explain recent experiments [18] that
have reported � < 1=2 for composites of microtubules and
F-actin networks, while � ’ 1=2 for single-component F-
actin networks. This suggests an important role for stiff
filaments such as MTs and stress fibers in the mechanics of
the cell cytoskeleton—they not only enhance the stiffness
of the cytoskeleton [27] and its ability to bear large forces,
but may also endow it with enhanced compressibility
relative to the shear compliance.
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