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ABSTRACT
Motivation: Understanding the processes involved in multi-cellular
pattern formation is a central problem of developmental biology, hope-
fully leading to many new insights, e.g., in the treatment of various
diseases. Defining suitable computational techniques for develop-
ment modelling, able to perform in silico simulation experiments, is
an open and challenging problem.
Results: Previously, we proposed a coarse-grained, quantitative
approach based on the basic Petri net formalism, to mimic the be-
haviour of the biological processes during multicellular differentiation.
Here we apply our modelling approach to the well-studied process of
C. elegans vulval development. We show that our model correctly re-
produces a large set of in vivo experiments with statistical accuracy. It
also generates gene expression time series in accordance with recent
biological evidence. Finally, we modelled the role of microRNA mir-61
during vulval development and predict its contribution in stabilising
cell pattern formation.
Contact: feenstra@few.vu.nl

1 INTRODUCTION
Many efforts have been undertaken to elucidate how cells are able
to coordinate different and sometimes conflicting signals, produc-
ing a precise phenotype during the animal organogenesis (Sternberg,
2005).C. elegansvulval development provides an elegant and rel-
atively well-charted model to study how multiple pathways, in
multiple cells, interact to produce developmental patterns.

The C. eleganshermaphrodite vulva develops from three of the
six vulval precursor cells (VPCs), consecutively numbered P3.p to
P8.p in Figure 1. Each VPC is competent to respond to intercellu-
lar signals, and is potentially able to adopt either of the three cell
fates:1◦, 2

◦, or 3
◦. Each fate corresponds to a specific cell divi-

sion pattern. The1◦ and2
◦ fate cell lineages constitute the vulva,

generating eight and seven progeny cells, respectively. The3
◦ fate

lineage becomes a constituent of the hyp7 hypodermal syncytium, a
large cell-like structure with many nuclei enveloping the developing
nematode. In the wild-type hermaphrodite, the six VPCs adopt an
invariant3◦-3◦-2◦-1◦-2◦-3◦ pattern (Sternberg and Horvitz, 1986),
shown in Figure 1. This precise fate distribution is the result of
the interplay between two competing signals: the spatially graded
inductive signal produced by the anchor cell (AC), and the lateral
signal originating from a presumptive1◦ fate cell.

∗To whom correspondence should be addressed.

Figure 1. Vulval development in the wild-typeC. elegans, showing the AC,
the VPCs (P3.p-P8.p), and the hyp7. The inductive signal from the AC pro-
motes the1◦ fate in P6.p, and stimulates the production of the lateral signal
near the flanking cells, promoting the2◦ fate in P5.p and P7.p. The3◦ fate
lineage becomes a constituent of the hyp7.

During this cell-cell interaction, the inductive epidermal growth-
factor signal is produced by the AC and transported to the three
nearest precursor cells. The signal is encoded by the protein LIN-3
and transduced by the receptor LET-23 into the Ras/MAPK path-
way. This has the direct effect of up-regulating MPK-1, and of
promoting 1

◦ fate in P6.p. Further downstream the Ras/MAPK
pathway, LIN-12 is down-regulated (Shaye and Greenwald, 2002)
to suppress the promotion of2◦ fate, while production of the lat-
eral signal is stimulated (Chen and Greenwald, 2004). This signal
promotes2◦ fate in the neighbouring cells P5.p and P7.p (Sun-
daram, 2004), and inhibits Ras signalling to block transduction of
the inductive signal through the Ras/MAPK pathway (Yooet al.,
2004). This negative feedback helps maximise LIN-12 activity in
the presumptive2◦ fate cells (Yoo and Greenwald, 2005).

The first diagrammatic model, describing the regulatory network
underlying VPC determination, was proposed by Sternberg and
Horvitz (1989). Since then, global understanding of the biologi-
cal network has improved greatly. The first computational model,
proposed by Kamet al. (2003), combined multiple experimental
“scenarios” from Sternberg and Horvitz (1986) into a single model,
using Live Sequence Charts (LSCs). Afterwards, in two landmark
papers, Fisheret al. (2005, 2007) suggested two state-based mech-
anistic models. The first (Fisheret al., 2005) used statecharts to
represent internal states of components, and LSCs to execute ac-
tions between them. They formalised Sternberg’s model (Sternberg
and Horvitz, 1989) but did not incorporate any additional data. A
more recent approach (Fisheret al., 2007) was based on Reac-
tive Modules, with modelling principles akin to the previous paper.
In contrast to the model presented in the current paper, the three
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listed models build on representing rules that the system adheres
to, rather than modelling the underlying biological processes. Two
other insightful models ofC. elegansvulval development have been
published. Giurumescuet al.(2006) proposed a partial model based
on ODEs, while Sun and Hong (2007) developed a model based
on automatically learned dynamic Bayesian networks with discrete
states. Independent from us, Liet al. (2009) recently modeled
part of C. elegans vulval development using hybrid functional Petri
nets with extensions. While they focused on model validation, we
additionally generated new insightful predictions.

In this paper, we apply our approach (Krepskaet al., 2008), which
is discrete, nondeterministic, and based on Petri nets toC. ele-
gans vulval development. Petri nets are a convenient formalism
to represent biological networks. This formalism models process
synchronisation, asynchronous events, conflicts, and in general con-
current systems in a natural way. Moreover Petri nets offer direct
insights into causal relationships, and allow a graphical visualisation
that resembles the diagrams used to describe biological knowledge.
The reader may find recent survey papers concerning modelling
of biological systems with Petri nets in Koch and Heiner (2008);
Chaouiya (2007); Matsunoet al. (2006); Peleget al. (2005).

Several adaptations of the Petri net formalism have been intro-
duced in the context of modelling biological systems. On the one
hand, qualitative Petri nets (Gilbertet al., 2007) can be used for
structural and invariant analysis, but they greatly abstract from the
biological system. On the other hand, Stochastic Petri nets (Goss
and Peccoud, 1998) incorporate kinetic constants, but these are
mostly unknown or approximate. Hybrid Petri nets (Matsunoet al.,
2000) and their extensions on which Cell Illustrator (Matsunoet al.,
2006) is based, are rich and expressive, but model understand-
ing and causal backtracking are impeded by the complexity of the
formalism.

In our model we have chosen to preserve the simplicity of the
original Petri net formalism. Our modelling approach is aimed to
mimic the underlying biological mechanisms as much as possible,
and not only to reproduce the expected phenotype according to a
specific set of mutations. To achieve this, we apply a principle of
maximal parallelism (Burkhard, 1980), and bounded execution with
overshooting (Krepskaet al., 2008). Using this simple framework,
we identified different modules, each corresponding to different bi-
ological functions. Thus, combining functional modules into cells,
and joining such cells together, we iteratively developed the whole
network. Unlike the aforementioned works on formal modelling of

a b

Figure 2. (a) The presence of the microRNA mir-61 down-regulates VAV-
1, by enabling the transition VAV-1 DR, which is in conflict with VAV-1
PRO. (b) Two example modules, gene production (vertical) and endocytosis
(horizontal), interact in the Notch/LIN-12 pathway.

C. elegansvulval development, the ability of our model to cap-
ture biological functions into small building blocks allows these
to be reused in new case studies on multi-cellular signalling and
regulation modelling.

We show that our model, encoding biological hypotheses from the
literature (Shaye and Greenwald, 2002; Yoo and Greenwald, 2005),
is able to reproducein silico a set ofin vivo experiments, providing
the necessary statistical data to establish a more detailed compari-
son with biological observations than was previously possible. To
the best of our knowledge, we are the first to model microRNA in-
teractions duringC. elegansvulval development. Furthermore, we
predict a possible “tuning” role played by themir-61 microRNA
gene, in ensuring stability of the fate pattern.

2 METHODS

2.1 Biological Interpretation of Quantitative Petri Nets
A Petri net (Petri, 1962; Reisig and Rozenberg, 1998) is a bipartite directed
graph consisting of two kinds of nodes: places that indicatethe local avail-
ability of resources, and transitions which are active components that can
change the state of the resources. Each place can hold one or more tokens.
Weighted arcs connect places and transitions.

Instead of further enriching the formalism to extend its expressiveness (but
also its complexity), we focus on preserving the simplicity ofthe formalism,
and develop an execution semantics which resembles biology. In Krepska
et al. (2008) we explain a method to represent biological knowledgeas a
Petri net. Places represent genes, protein species, and complexes, while tran-
sitions represent biological processes. Firing of a transition is execution of a
process, e.g. consuming substrates or creating products.

The number of tokens in our model does not represent directly the number
of molecules of proteins or a fixed molar concentration as in Gilbert et al.
(2007). In our model, we interpret this number in two ways. For genes as a
boolean value,0 means not present and1 present. For proteins, we use ab-
stract concentration levels0 − 6: going from not present, via low, medium,
and high concentration to saturated level. The rationale behind this approach
is to abstract away from unknown absolute molecule concentration levels,
as we intend to represent relative concentrations. We choose to use seven
concentration levels in order to stay in between a simple boolean level and
a complex ODE model, and because seven concentration levels sufficed to
express the biological knowledge from the literature onC. elegansvulva de-
velopment in a satisfactory fashion. If desired, a modeller could fine-tune the
granularity of the model by adjusting the number of available concentration
levels.

Biological systems are highly concurrent, as in cells all reactions can hap-
pen in parallel and most are independent of each other. Therefore, we apply
a principle of maximal parallelism (Burkhard, 1980). A fully asynchronous
approach would allow one part of the network to deploy prolonged activity,
while another part of the network shows no activity at all. Inreal life, all
parts can progress at roughly the same “speed” (Fisheret al., 2008). Maxi-
mal parallelism promotes activity throughout the network, sothat values on
arcs really capture relative speed and concentration levels, as corroborated
by our experiments. The maximal parallel execution semantics can be sum-
marised informally asexecute greedily as many transitions as possible in one
step. A stepS is a multi-set of transitions, i.e. a transition can occur multiple
times inS. A maximally parallel step is a step that leaves no enabled tran-
sitions in the net, and in principle should be developed in such a way that it
corresponds to one time step in the evolution of the biological system. This is
possible because the modeller can capture relative speeds using appropriate
weights on arcs. Typically, if in one time unit a protein A is produced four
times more than a protein B, then the transition that captures production of
A should have a weight that is four times as large as the weight of the one
that captures B production. In case more than one maximally parallel step is
possible, one is selected randomly. In short, implementing a pure maximally
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Figure 3. Basic biological functions used in more complex modules.

parallel semantics requires to generate all possible partitions of tokens, and
select one randomly, uniformly. However, with the growth of the network,
this procedure becomes prohibitively slow. Therefore we approximated it by
building a maximally parallel step incrementally, selecting one transition af-
ter another, randomly, until all enabled transitions have been exhausted, as
explained in Krepskaet al. (2008).

Unrestricted production of proteins is usually not realistic, as in nature
the cell would saturate with the product, and the reaction would slow down
or stop. Therefore, to mimic this behaviour, each place has a predefined
maximum capacityN = 6. To guarantee that the highest concentration
level can be attained, we introduced bounded execution withovershooting.
A transition can only fire if each output place holds fewer than N tokens.
Since each transition can possibly move more than one token at once into
its output places, each transition can overshoot the pre-given capacityN at
most once. Therefore, the network is bounded with a finite bound k ≥ N .

2.2 Model Construction
We developed an executable Petri net model for cell fate determination dur-
ing C. elegansvulval induction. This large network can be visualised on the
web page of our project1; a schematic representation is given in Figure 5. The
entire network comprises 600 nodes (places and transitions)and 1000 arcs.
Nevertheless the simplicity of the formalism, and its graphical representa-
tion, helps us to identify different modules. These correspond to different
biological functions, such as gene expression, protein activation, and protein
degradation. It is possible to reuse modules corresponding to a function, like
small building blocks, to compose more complex modules, and eventually
build a full cell. The cell itself is a module that can be reused. Applying
these principles, we have built the VPC network out of six interconnected
cells as identical modules of a multi-potent cell. We also built a separate
block for the AC (producing the inductive signal) and for thehyp7. The pos-
sibility to divide the entire graph into simple, small, and meaningful modules
has three main advantages: (i) the modelling process becomes easier, (ii) the
resulting network is homogeneous, and (iii) modules (at different levels) can
be reused throughout the model, or for modelling other organisms.

Figure 2 shows selected examples of how to represent biological modules
as a Petri net. Figure 2a illustrates VAV-1 down-regulationby decreasing the
translation rate of the gene vav-1. In fact, if mir-61 is not present, the reaction
VAV-1 PRO is enabled and produces the protein. However, whenmir-61 is
present, the reaction VAV-1 DR is enabled and has0.5 chance of firing com-
pared to VAV-1 PRO, thus the production of VAV-1 will halve. Figure 2b
depicts two connected basic modules, a gene expression and the endocy-
tosis mediated down-regulation of LIN-12. In this example, activation of
the Ras/MAPK cascade leads to the transcription of a hitherto unknown

1 http://www.cs.vu.nl/concell

gene that enhances the LIN-12 endocytosis, as hypothesisedby Shaye and
Greenwald (2002). Note that here the produced LIN-12 is removed, while
in Figure 2a the gene production was reduced. An alternativeway to repre-
sent down-regulation using transitions has been proposed by Grunwaldet al.
(2008).

At the system level, a module can be viewed as a “meta-transition”, a Petri
net with specified inputs (places which can receive tokens) and outputs (arcs
outgoing of the module). Instead of constructing the Petri net model using
boolean functions as basic network components (Sackmannet al., 2006) and
subsequently check the biological meaning of each subnetwork extracted
by invariant analysis (Sackmannet al., 2006; Grunwaldet al., 2008), we
focused on using basic biological functions as network building blocks. In
our experience, the procedure of building a modular biological Petri net can
be split into five phases:

Level 1: Basic biological functions. We created six basic modules represent-
ing the basic biological functions used to encode the relations described
in the literature related to C.elegans vulva development: protein produc-
tion, protein activation, down-regulation, up-regulation, signalling and
constitutive degradation.

Level 2: Protein interactions. Combining basic modules, we built more
complex blocks, each modelling the interactions of one protein. The
division into protein interaction modules is presented in Table 1. Fig-
ure 3 shows an example of how basic biological functions are combined
to build protein interaction modules.

Level 3: Pathways. In Figure 4, modules LIN-3, LET-23, SEM-5, LET-60,
MPK-1, and DSL constitute the Ras/MAPK pathway, and modules
LIN-12, VAV-1, MIR-61, DPY-23, LST constitute the competing
Notch/LIN-12 pathway.

Level 4: Cells. Figure 4 presents the Petri net model of a single VPC cell
with four links to the environment.

Level 5: Multi-cellular interactions. In Figure 5 we show how the six VPCs,
the AC and the hyp7 modules are connected. Adjacent cells are linked
with each other, the hyp7 connects to all six cells, and the ACcan
directly influence cells P5.p, P6.p, and P7.p.

Figure 3 highlights the top-left portion of the VPC model depicted in Fig-
ure 4. One can see how basic biological functions are reused in different
protein interaction modules, where the links describe the interactions be-
tween different modules. For instance, in Figure 3 the LET-23module is
connected to LIN-3, which is connected to SEM-5, which in turn interacts
with LET-60. The biological mechanisms underlying these interactions are
found in the literature and encoded by the basic biological functions men-
tioned. The network shown in Figure 3 models the first steps during signal
transduction within the Ras/MAPK cascade, where the transmembrane re-
ceptor LET-23 is activated by the ligand LIN-3. The resulting activated
complex then activates the core Ras protein LET-60, by signalling through
SEM-5.

2.3 Modelling Genetic Perturbations
For each genetic background, each gene can be in wild-type form (wt, i.e.
the most common form of a gene as it occurs in nature) or in one of the
following mutated forms: loss-of-function (lf, e.g. the gene is deleted or
dysfunctional) or gain-of-function (gf, e.g. the gene transcription is over-
stimulated). It is possible to derive an initial configuration corresponding
to a given genetic perturbation placing a token in one of the two different
places used to represent gain-of-function and wild-type for each gene in the
genetic background. Loss-of-function mutation is represented by token re-
moval. It is therefore possible to initiate the network in an appropriate initial
configuration by simply placing or removing tokens in opportune places.

Figure 6a depicts an example of a typical gene transcription.The tran-
sition LIN-12 PRO(wt) produces LIN-12 proteins when the wild-type gene
lin-12(wt) is present. When the gene is not present (i.e. lin-12(wt) holds
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no token), the event does not take place. Figure 6b and Figure6c de-
pict two different genetic backgrounds, corresponding respectively to the
loss-of-function and gain-of-function of the lin-12 gene.

2.4 Model Calibration
We started off with assuming that initially proteins are expressed at low basal
levels and reactions require high protein concentration levels. Therefore, we
set the initial concentration levels for proteins to zero and we assigned high
requirements and low level production to all transitions, respectively arc
weights five and one (see the Supplementary information for an example).

We subsequently simulated the 22in vivo experiments in our calibra-
tion set (Table 2). We identified mismatches between the simulation results
and the expected phenotypes, and back-tracked the problem (e.g. an overly
strong or weak down-regulation) following the causal chainfrom one
module to the other (i.e. from products, to transitions, up totheir require-
ments). For selected modules, arc weights and occasionally initial protein
concentration levels were fine-tuned to recover the expected behaviour.

This manual calibration process iteratively converged upona stable and
fixed set of parameters that we used for all further simulations. During the
process we noticed that only in very few cases single parameter adjustments
were able to sensibly change the simulation results, whereasmore often com-
binations of parameters were changed to approach the expected behaviour.
This suggests a “spectrum of sensitivities” as discussed inGutenkunstet al.
(2007) that should allow the modellers to focus on predictions rather than on
parameters.

2.5 Simulation Procedure
In experimental biology, experimental replicates are necessary to overcome
the variability intrinsic to biological systems. In our modelling approach,

Table 1. Description of modules constituting the model ofC. elegansvulval
development depicted in Figure 4 and Figure 5.

Module Function

SEM-5 Production and activation of SEM-5 from gene sem-5(wt).
LET-60 Production and activation of LET-60 from gene let-60(wt).
LIN-3 Reception of LIN-3 from AC and hyp7.
LET-23 Production and activation of LET-23 from gene let-23(wt).

Down-regulation of LET-23 by DPY-23.
LST Production and activation of LSTs from lst-1(wt), lst-2(wt),

and lst-4(wt) genes. Down-regulation of LSTs by MPK-1.
Up-regulation of LSTs promoted by LIN-12*

MPK-1 Production and activation of MPK-1 from mpk-1(wt) gene.
Down-regulation of MPK-1 by LST.

DSL Production of DSL signal.
LATERAL Transport of lateral signal (DSL) to adjacent cells.
DPY-23 Production of DPY-23 from dpy-23(wt) gene, promoted by

LIN-12*.
LIN-12 Production of LIN-12 from lin-12(wt) gene. Activation of

LIN-12 by binding to DSL. Endocytotic down-regulation
of LIN-12 mediated by VAV-1 and promoted by the
Ras/MAPK pathway.

VAV-1 Production of VAV-1 from vav-1(wt) gene. Down-
regulation of VAV-1 by microRNA mir-61.

MIR-61 Production of miR-61 microRNA.
AC Production of LIN-3 and diffusion in a graded fashion to

P6.p and the two adjacent cells P5.p and P7.p.
hyp7 Production of LIN-3 and diffusion to all VPCs.
Not shown Constitutive degradation of various proteins.

Protein names followed by a star (*) stand for the active proteins.

Figure 4. Schematic representation of a VPC in our Petri net model. Each
rounded box is a module. Note that LIN-3 and LATERAL are connected to
the environment.

which is nondeterministic, we interpret the outcome of a simulation run as
the phenotype of an individual worm. Thus, to reproduce a wormpopula-
tion, we performed 5000 simulation runs for each genetic background with
different random seeds, each for 1000 maximally parallel steps.

Based on the current experimental knowledge (Shaye and Greenwald,
2002, 2005), we determine the fate adopted by each cell by measuring
and correlating the concentration levels of MPK-1* and LIN-12*. Specif-
ically, 1◦ fate is induced by a high level of MPK-1* and is refractory to
LIN-12*. 2◦ fate is induced by a low level of MPK-1* and a high level of
LIN-12*. Low levels of both MPK-1* and LIN-12* lead to3◦ fate. From
the simulation we calculate the LIN-12* and MPK-1* concentration levels

Figure 5. Schematic representation of the whole system. The VPCs are
connected with the AC, the hyp7, and their adjacent cells.
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a b c

Figure 6. Gene expression with different initial conditions, corresponding
to different genetic backgrounds. (a) corresponds to lin12wild-type, (b) cor-
responds to thelin12(lf) mutant, and (c) corresponds to thelin12(gf)mutant.
Note that arcs with two heads represent two arcs, one either way.

as the average number of tokens over the final 50 steps to avoid unneces-
sary noise from the continual movement of tokens. Predicted cell fates are
not influenced significantly by the length of the averaging because the pro-
tein concentration levels at the very end of the simulation are generally in a
steady state. Assuming that ahigh concentration level corresponds to more
than three tokens in a place and alow level corresponds three tokens or less,
it is possible to determine the adopted fate. The corresponding piecewise
function is formalized in the Supplementary information.

To facilitate parameter adjustments during calibration we also imple-
mented three scoring functions (one for each cell fate) as sigmoids, in order
to obtain a continuous curve instead of the discrete and discontinuous pro-
file of a piecewise function. Such a continuous score was veryuseful during
calibration to guide recovery of the expected behaviour by comparing slight
changes in the scores produced by different adjustments.

Each scoring function rewards (i.e. score tends to1) concentration levels
that match the corresponding description. In the scoring functions, more than
four tokens corresponds tohigh and less than two corresponds tolow, while
intermediate numbers of tokens (in between 4 and 2) produce theS-shaped
gradient peculiar to sigmoids. In our experience slight changes in the shape
of the functions (e.g. steepness) do not significantly change the results. Con-
sequently, each scoring function, using the simulated LIN-12* and MPK-1*
concentration levels as variables, computes a score in the interval [0, 1] that
measures how closely a simulated cell reproduces the fate description cap-
tured by the scoring function. For each cell we calculate three scores (one for
each function), and assign to the cell the fate corresponding to the function
that returns the highest score. The analytic form of these functions can be
found in the Supplementary information.

The intersection of the three scoring functions generates alandscape (Fig-
ure 7) that can be compared to the discrete representation of the piecewise
function and resembles the fate plane proposed by Giurumescuet al.(2006),
in which the quadrants identify cell fates.

Figure 7. Landscape produced intersecting the three scoring functions. The
quadrants are labelled with the corresponding cell fates.

3 RESULTS

3.1 Model Validation
To determine the capability of our model to reproduce and predict
the biological behaviour, we simulated 64 different experimental
conditions. Twenty-two experiments (Table 2) previously selected
in Fisher et al. (2005) were used for model calibration. Thirty
perturbations were used for validation: 26 (see the Supplementary
information) from Fisheret al. (2005), three (Table 4) from Stern-
berg (2005), and one (Exp. 52, Table 5) from Yoo and Greenwald
(2005). Particularly, experiment 51 (Table 4) was never simulated
in any previous work that we are aware of. The remaining twelve
simulations constitute new predictions. Of these, the most remark-
able (Table 5) are discussed in Section 3.2. Statistical details for all
simulations and a short animation displaying a typical single run are
available in the Supplementary information.

Our model reliably reproduces all the mutant combinations, ex-
cept for the double mutantlin-12(gf);lin-15(lf) (Table 2, Exp 21 and
45), even if in these cases, a fraction of the predictions matches the

Table 2. In vivo experiments selected in Fisheret al. (2005), and used by
us for model calibration. In theAC column,− stands for no AC, while +
means that the AC is present. In theGenotypecolumn, for each gene a loss of
function (lf or knock-out) or gain of function (gf or overexpression) mutation
is indicated.lst is the group of lst-1, lst-2, lst-3, lst-4, dpy-23.Vul is the group
of let-23, sem-5, let-60, mpk-1. In theFate Patterncolumn, 1 indicates1◦

cell fate, 2,2◦ fate, 3,3◦ fate, and 1\2 either1◦ or 2◦ fate.

Exp. AC Genotype Fate Pattern Ref.
lst Vul lin-15 lin-12 P3.p P4.p P5.p P6.p P7.p P8.p

1 + 3 3 2 1 2 3 a

2 + lf 3 3 1 1 1 3 b

3 + lf 3 3 3 3 3 3 c

5 + lf 1\2 1\2 2 1 2 1\2 c

6 + lf lf 1 1 1 1 1 1 d

7 + lf lf 3 3 3 3 3 3 e

9 + lf 3 3 1 1 1 3 f

10 + lf lf 3 3 1 1 1 3 g

11 + lf lf 3 3 3 3 3 3 c

13 + lf lf 1 1 1 1 1 1 c

17 + gf 2 2 2 1 2 2 c

19 + lf gf 2 2 2 2 2 2 c

21 + lf gf 1\2 1\2 2 1 2 1\2 c

25 − 3 3 3 3 3 3 h

26 − lf 3 3 3 3 3 3 d

29 − lf 1\2 1\2 1\2 1\2 1\2 1\2 c

33 − lf 3 3 3 3 3 3 c

37 − lf lf 1 1 1 1 1 1 c

41 − gf 2 2 2 2 2 2 c

42 − lf gf 2 2 2 2 2 2 d

43 − lf gf 2 2 2 2 2 2 c

45 − lf gf 1\2 1\2 1\2 1\2 1\2 1\2 c

a: Sulston and Horvitz (1977).b: Bersetet al. (2005); Yooet al. (2004).c: Sternberg
and Horvitz (1989).d: Bersetet al. (2001).e: Ferguson and Horvitz (1989); Sternberg
and Horvitz (1989); Cuiet al.(1977).f : Sternberg and Horvitz (1989); Greenwaldet al.
(1983).g: Berset and Hajnal, unpublished data.h: Kimble (1981).
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Table 3. Detailed statistical results for the 5000 simulation ofin vivo
experiment 5, Table 2 (lin-15(lf)).

Exp. Fate Pattern Occur- Percen-
P3.p P4.p P5.p P6.p P7.p P8.p rences tage

5 Combinations matching the commonly observed pattern: 86.2%
1 2 2 1 2 1 1348 27.0%
2 1 2 1 2 1 1180 23.6%
2 1 2 1 2 2 946 19.0%
1 2 2 1 2 2 830 16.6%

Three or more adjacent2◦ fate cells: 4.5%
2 2 2 1 2 1 132 2.6%
2 2 2 1 2 2 93 1.9%

Two adjacent1◦ fate cells: 2.7%
1 1 2 1 2 1 88 1.8%
1 1 2 1 2 2 46 0.9%

expected pattern. The noticeable differences of biological observa-
tions from different labs, and the few worms examinedin vivo, do
not help to establish a trustworthy expected outcome.

Of the 22 experiments in Table 2, particularly interesting are the
experimental conditions that lead to unstable fate patterns. These
results were already discussed in Fisheret al. (2007) and Sun and
Hong (2007), but these discussions lacked statistical detail about the
possible outcomes. In fact, Sun and Hong (2007) observed that the
statecharts model of Fisheret al.(2005) often produces two adjacent
1
◦ fate cells, which they claim is rarely observed in experiments, but

they also do not provide supplementary statistical details.
In Table 3 we provide statistical details for experiment 5 from Ta-

ble 2. More than93.4% of the predicted patterns match one of the
expected biological 1\2◦-1\2◦-2◦-1◦-2◦-1\2◦ combinations. Of all
matching patterns, only 4.5% contain three or more adjacent2

◦ fate
cells, while just 2.7% have two or more adjacent1

◦ fate cells. These
quantities correspond to the biological evidence that in these exper-
iments three adjacent2◦ fate, or two adjacent1◦ fate cells are very
unlikely. In the remaining 6.8% (not included in Table 3) one or
more cells adopt3◦ fate, and we interpret these outcomes as the
“rare phenotypes” in which uninterpretable lineages are observed
(i.e. in between2◦ and3

◦), as noted for instance in Sternberg and
Horvitz (1989).

In our approach, each maximally parallel step corresponds to a
time step in the ontogeny of the biological system. Thus our sim-
ulations can also be interpreted as time courses of gene regulation

Table 4. In vivoexperiments not used for the model construction.

Exp. AC Genotype Fate Pattern Ref.
let-60 lin-3 P3.p P4.p P5.p P6.p P7.p P8.p

49 + lf 3 3 3 3 3 3 i

50 + lf 3 3 3 3 3 3 j

51 + gf 3 2 1 1 1 2 j

i: Beitelet al. (1990).j: Sternberg (2005).
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Figure 8. Comparison between photomicrographs of gene activity by flu-
orescently labelled gene products, and simulation results.(a) Photomicro-
graphs of the graded expression of the inductive signal adapted from Yoo
et al. (2004), Science Magazine.c© 2004, AAAS. (b) Time series plot gen-
erated by our model, showing the graded expression of the inductive signal,
initially faintly present in P5.p and P6.p. A running average over 50 steps
is used for clarity of presentation. Concentration levels are on the verti-
cal axis while maximally-parallel steps on the horizontal. One can correlate
photomicrographsa andb with pointa andb in the time series.

in vulval development. In Figure 8, the gene expression time series
generated by our model are compared with the fluorescent photomi-
crographs published by Yooet al.(2004). They show evidence of the
graded expression of the egl-17p::cfp-lacZ reporter that responds to
the Ras/MAPK pathway. Figure 8b depicts the time series gener-
ated by our model from the simulation results of a wild-type animal.
Initially MPK-1* (downstream product of the Ras/MAPK pathway
as EGL-17) is faintly expressed in P5.p and P7.p. Subsequently,
expression in P5.p and P7.p disappears, and MPK-1* remains at
a high level only in P6.p, in accordance with the fluorescent pho-
tomicrographs of Figure 8a. We note that the concentration levels
at the end of the simulation are approximately constant, indicating
a steady state. In a related experiment, Yooet al. (2004) divided
lst genes into two groups: pattern A which contains dpy-23 and lst-
3, and pattern B to which lst-1, lst-2 and lst-4 belong. Each group
has its own characteristic temporal expression pattern that corre-
sponds closely to the time series generated by our simulation (see
the Supplementary information).

3.2 mir-61: Developmental Switch and Modulator
Our computational model, besides reproducing well-known biologi-
cal experiments, encodes and unifies different published hypotheses
and conjectures, shedding light on the vulval development process.
The two hypotheses described next are related to LIN-12 down-
regulation, which is essential during vulval organogenesis (Shaye
and Greenwald, 2002; Yooet al., 2004), and link the microRNA
mir-61 to the vulva development process.

Shaye and Greenwald (2002) propose that, besides the degree
of constitutive internalisation displayed by LIN-12, Ras activa-
tion leads to transcription of an unknown factor that enhances the
rate of internalisation, promoting the endocytic routing of LIN-
12. In Figure 9 one can see how we captured this hypothesis
in our model. Activation of Ras enables the transcription of the
unknown gene, which down-regulates LIN-12 post-translationally.
Notably, changing the model of LIN-12 down-regulation from post-
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Figure 9. Single model capturing different biological suggestions asex-
plained in Section 3.2.

to pre-translation disrupts this behaviour and significantly alters our
results.

Yoo and Greenwald (2005) identified mir-61 as direct transcrip-
tional target of the LIN-12/Notch pathway. The gene mir-61 encodes
a microRNA which blocks expression of the mRNA encoding
VAV-1, a protein involved in LIN-12 down-regulation, possibly pro-
moting LIN-12 endocytosis. They therefore proposed that activation
of mir-61 by LIN-12 and the consequent down-regulation of VAV-
1 constitute a positive-feedback loop that promotes LIN-12 activity
in presumptive2◦ fate VPCs. Although the unknown factor conjec-
tured by Shaye and Greenwald does not seem to be required for the
initial internalisation of LIN-12, VAV-1 is necessary for the constitu-
tive internalisation of LIN-12. Notice that VAV-1 is involved in both
constitutive and enhanced post-translation (endocytosis mediated)
down-regulation of LIN-12.

Modelling these hypotheses (Figure 9) and capturing their be-
haviour has proven to be necessary to obtain the expected results
during in silico experiments. Moreover, we simulated several per-
turbations of the mir-61 microRNA gene, obtaining the outcomes
shown in Table 5. This nicely confirms the role of the positive-
feedback loop proposed by Yoo and Greenwald (2005). All exper-
iments of Table 5, as far as we know, have not been testedin vivo
(with the exception of experiment 52, which is described in Yoo and
Greenwald (2005)).

Experiments 52, 53, 54, and 55 confirm the specific role of mir-
61 in influencing the cell fate decision, as determined by Yoo and
Greenwald. Experiment 56 suggests a possible secondary role. This
is a double mutantmir-61(lf);lst(lf) variation of thelst(lf) experiment
2, Table 2. Although the single mutantlst(lf) expresses a stable VPC
fate pattern, the loss-of-function of mir-61 in the double mutant dis-
rupts the stability of the pattern, as can be seen in the statistical
breakdown of Table 6. Based on this observation, we suggest that
besides acting as developmental switch, mir-61 plays a “tuning”
role (Karp and Ambros, 2005) to ensure the stability of the cell fate
pattern formation.

Table 5. Selection of microRNA experiment outcomes predicted by
our model.mir-61(ce)stands for constitutive expression of mir-61.

Exp. AC Genotype Fate Pattern Ref.
mir-61 Vul lst P3.p P4.p P5.p P6.p P7.p P8.p

52 + ce 2 2 2 2 2 2 k

53 - ce 2 2 2 2 2 2
54 + ce lf 2 2 2 2 2 2
55 + ce lf 2 2 1 1 1 2
56 + lf lf 3 2 1 1 1 2

k: Yoo and Greenwald (2005).

Table 6. Detailed statistics for the simulation of experiment 2 (lst(lf))
Table 2 and 56 (mir-61(lf);lst(lf)) Table 5. Outcomes below 0.1% are
omitted.

Exp. Fate Pattern Occurrences Percentage
P3.p P4.p P5.p P6.p P7.p P8.p

2 3 3 1 1 1 3 4800 96.0%
3 3 1 1 1 2 199 4.0%

56 3 2 1 1 1 2 1594 31.9%
3 3 2 1 1 2 1399 28.0%
3 3 2 1 2 3 1000 20.0%
3 2 1 1 2 3 998 20.0%

To the best of our knowledge, we are the first to modelin silico
microRNA interactions duringC. elegansvulval induction, support-
ing the conjecture formulated in Yoo and Greenwald (2005) that
lin-12, mir-61, and vav-1 form a feedback loop that helps maximise
lin-12 activity in the presumptive2◦ VPCs.

4 DISCUSSION
Modelling and analysing developmental processes is a challenging
task, as these biological processes often encompass several cells and
evolve over the course of several hours. Moreover, the current lack
of precise quantitative parameters at molecular level and the de-
scriptive form of this biological knowledge welcome research on
different modelling approaches able to reach the sweet spot in be-
tween abstraction and biological significance. In the work presented
here, we abstracted the descriptive knowledge into a simple formal
model that suitably mimics the underlying biological mechanisms
and retains an adequate predictive power.

The Petri net used in our approach has a rather simple formalism,
but the network designed by us is fairly large. Although several tools
able to build extensive Petri nets with modular support exist (CPN
Tools, 1999; Peccoudet al., 2007), they are often quite complex in
order to support much richer formalisms than the one we used, or
they do not scale to the size of our Petri net model. Furthermore, the
lack of a Petri net tool with a robust and efficient implementation
of the maximal parallel execution semantics led us to build our own
simulation tool (available on the web page of our project).

In conclusion, we applied our Petri net approach toC. ele-
gansvulval development, reproducing severalin vivo experiments.
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We generated insightful and testable predictions involving the mi-
croRNA mir-61. Our model is a suitable but partial representation
of the whole intricate developmental process that leads to the for-
mation of theC. elegansvulva. New understanding of the process,
supported by further experimental analysis, can be conveniently
integrated in our model taking advantage of its modular fashion.
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