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ABSTRACT

Motivation: Understanding the processes involved in multi-cellular

pattern formation is a central problem of developmental biology, hope-

fully leading to many new insights, e.g., in the treatment of various P3.p P4.p

diseases. Defining suitable computational techniques for develop- 30 30
ment modelling, able to perform in silico simulation experiments, is

an open and challenging problem.

Results: Previously, we proposed a coarse-grained, gquantitative hyp7 ]
approach based on the basic Petri net formalism, to mimic the be-

haviour of the biological processes during multicellular differentiation. Figurel. Vulval development in the wild-typ€. elegansshowing the AC,
Here we apply our modelling approach to the well-studied process of the VPCs P3.p-P8.p), and the hyp7. The inductive signal from the AC pro-
C. elegans vulval development. We show that our model correctly re- motes thel® fate in P6.p, and stimulates the production of the lateraiadig

near the flanking cells, promoting tR2€ fate in P5.p and P7.p. TI8® fate

produces a large set of in vivo experiments with statistical accuracy. It ! i
lineage becomes a constituent of the hyp7.

also generates gene expression time series in accordance with recent
biological evidence. Finally, we modelled the role of microRNA mir-61
during vulval development and predict its contribution in stabilising
cell pattern formation. During this cell-cell interaction, the inductive epidermal growth-
Contact: feenstra@few.vu.nl factor signal is produced by the AC and transported to the three
nearest precursor cells. The signal is encoded by the protein LIN-3
and transduced by the receptor LET-23 into the Ras/MAPK path-
1 INTRODUCTION way. This has the direct effect of up-regulating MPK-1, and of
Many efforts have been undertaken to elucidate how cells are ablpromoting 1° fate in P6.p. Further downstream the Ras/MAPK
to coordinate different and sometimes conflicting signals, producpathway, LIN-12 is down-regulated (Shaye and Greenwald, 2002)
ing a precise phenotype during the animal organogenesis (Sternbettg, suppress the promotion @f fate, while production of the lat-
2005).C. elegansvulval development provides an elegant and rel- eral signal is stimulated (Chen and Greenwald, 2004). This signal
atively well-charted model to study how multiple pathways, in promotes2°® fate in the neighbouring cells P5.p and P7.p (Sun-
multiple cells, interact to produce developmental patterns. daram, 2004), and inhibits Ras signalling to block transduction of
The C. eleganshermaphrodite vulva develops from three of the the inductive signal through the Ras/MAPK pathway (Yetoal,
six vulval precursor cells (VPCs), consecutively numbered P3.p t®004). This negative feedback helps maximise LIN-12 activity in
P8.p in Figure 1. Each VPC is competent to respond to intercelluthe presumptiv@® fate cells (Yoo and Greenwald, 2005).
lar signals, and is potentially able to adopt either of the three cell The first diagrammatic model, describing the regulatory network
fates:1°, 2°, or 3°. Each fate corresponds to a specific cell divi- underlying VPC determination, was proposed by Sternberg and
sion pattern. Thea® and2° fate cell lineages constitute the vulva, Horvitz (1989). Since then, global understanding of the biologi-
generating eight and seven progeny cells, respectively.3THate cal network has improved greatly. The first computational model,
lineage becomes a constituent of the hyp7 hypodermal syncytium, proposed by Kanet al. (2003), combined multiple experimental
large cell-like structure with many nuclei enveloping the developing“scenarios” from Sternberg and Horvitz (1986) into a single model,
nematode. In the wild-type hermaphrodite, the six VPCs adopt amsing Live Sequence Charts (LSCs). Afterwards, in two landmark
invariant3°-3°-2°-1°-2°-3° pattern (Sternberg and Horvitz, 1986), papers, Fisheet al. (2005, 2007) suggested two state-based mech-
shown in Figure 1. This precise fate distribution is the result ofanistic models. The first (Fishest al, 2005) used statecharts to
the interplay between two competing signals: the spatially gradedepresent internal states of components, and LSCs to execute ac-
inductive signal produced by the anchor cell (AC), and the laterations between them. They formalised Sternberg’s model (Sternberg
signal originating from a presumptivg fate cell. and Horvitz, 1989) but did not incorporate any additional data. A
more recent approach (Fishet al, 2007) was based on Reac-
tive Modules, with modelling principles akin to the previous paper.
*To whom correspondence should be addressed. In contrast to the model presented in the current paper, the three
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listed models build on representing rules that the system adhereS. elegansvulval development, the ability of our model to cap-

to, rather than modelling the underlying biological processes. Twdure biological functions into small building blocks allows these

other insightful models of. eleganvulval development have been to be reused in new case studies on multi-cellular signalling and

published. Giurumescet al. (2006) proposed a partial model based regulation modelling.

on ODEs, while Sun and Hong (2007) developed a model based We show that our model, encoding biological hypotheses from the

on automatically learned dynamic Bayesian networks with discretditerature (Shaye and Greenwald, 2002; Yoo and Greenwald, 2005),

states. Independent from us, ket al. (2009) recently modeled is able to reproducin silico a set ofin vivo experiments, providing

part of C. elegans vulval development using hybrid functional Petrithe necessary statistical data to establish a more detailed compari-

nets with extensions. While they focused on model validation, weson with biological observations than was previously possible. To

additionally generated new insightful predictions. the best of our knowledge, we are the first to model microRNA in-
In this paper, we apply our approach (Krepskal., 2008), which  teractions duringC. elegansvulval development. Furthermore, we

is discrete, nondeterministic, and based on Petri netS.tele-  predict a possible “tuning” role played by ttmair-61 microRNA

gansvulval development. Petri nets are a convenient formalismgene, in ensuring stability of the fate pattern.

to represent biological networks. This formalism models process

synchronisation, asynchronous events, conflicts, and in general €0 METHODS

current systems in a natural way. Moreover Petri nets offer direct

insights into causal relationships, and allow a graphical visualisatio®-1 ~ Biological Interpretation of Quantitative Petri Nets

that resembles the diagrams used to describe biological knowledgg.Petri net (Petri, 1962; Reisig and Rozenberg, 1998) is artitp directed

The reader may find recent survey papers concerning modellingraph consisting of two kinds of nodes: places that inditisgéelocal avail-

of biological systems with Petri nets in Koch and Heiner (2008);ability of resources, and transitions which are active comepts that can

Chaouiya (2007); Matsunet al. (2006); Peleget al. (2005). change the state of the resources. Each place can hold oneertokens.
Several adaptations of the Petri net formalism have been intro¥Veighted arcs connect places and transitions. _ _

duced in the context of modelling biological systems. On the one In§tead offurt_herennchmgthe formalls_m to extgnd |ts expiveness (but

hand, qualitative Petri nets (Gilbeet al, 2007) can be used for also its complexity), we focus on preserving the simplicitytef formalism,

. . . and develop an execution semantics which resembles biolaggrdpska
structural and invariant analysis, but they greatly abstract from th%t al. (2008) we explain a method to represent biological knowleaige

biological system. On the other hand, Stochastic Petri nets (G°$etri net. Places represent genes, protein species, andes@sipvhile tran-
and Peccoud, 1998) incorporate kinetic constants, but these atgjons represent biological processes. Firing of a ttamsis execution of a
mostly unknown or approximate. Hybrid Petri nets (Matsenal., process, e.g. consuming substrates or creating products.

2000) and their extensions on which Cell lllustrator (Matseanal., The number of tokens in our model does not represent direclgtimber
2006) is based, are rich and expressive, but model understandf molecules of proteins or a fixed molar concentration as ifésilet al.

ing and causal backtracking are impeded by the complexity of thé2007). In our model, we interpret this number in two ways. Femes as a
formalism. boolean value) means not present aridpresent. For proteins, we use ab-

In our model we have chosen to preserve the simplicity of thestract concentration levels— 6: going from not present, via low, medium,
. : . - o and high concentration to saturated level. The rationahnlethis approach
original Petri net formalism. Our modelling approach is aimed to. 9 > app

is to abstract away from unknown absolute molecule concémréevels,

mimic the underlying biological mechanisms as much as pOSSIbIeaS we intend to represent relative concentrations. We ehtmsise seven

and not only to reproduce the expected phenotype according t0 &ncentration levels in order to stay in between a simpledzoolevel and
specific set of mutations. To achieve this, we apply a principle of; complex ODE model, and because seven concentration leféteduo

maximal parallelism (Burkhard, 1980), and bounded execution withexpress the biological knowledge from the literaturedrelegans/ulva de-

overshooting (Krepskat al, 2008). Using this simple framework, velopmentin a satisfactory fashion. If desired, a modelletattine-tune the
we identified different modules, each corresponding to different bi-granularity of the model by adjusting the number of availallecentration
ological functions. Thus, combining functional modules into cells, levels.

and joining such cells together, we iteratively developed the whole Biological systems are highly concurrent, as in cells alttieas can hap-

network. Unlike the aforementioned works on formal modelling of Pen In parallel and most are independent of each other. Trerafie apply
a principle of maximal parallelism (Burkhard, 1980). A fullgyaachronous

approach would allow one part of the network to deploy prgkmhactivity,

while another part of the network shows no activity at all.réal life, all
vavl (R o) int2ah parts can progress at roughly the same “speed” (Fishat, 2008). Maxi-

mal parallelism promotes activity throughout the networkited values on

I arcs really capture relative speed and concentrationdeas| corroborated
by our experiments. The maximal parallel execution semanticdeasum-
D PRO PRO ) marised informally agxecute greedily as many transitions as possible in one
VAVIIPRO VAV1DR / step A stepsS is a multi-set of transitions, i.e. a transition can occur iplet
C D Q times inS. A maximally parallel step is a step that leaves no enabled tran
et e verr S sitions in the net, and in principle should be developed ohsuway that it
a b corresponds to one time step in the evolution of the bioldgigstem. This is

possible because the modeller can capture relative speiedsappropriate
weights on arcs. Typically, if in one time unit a protein A i©guced four
Figure 2. (a) The presence of the microRNA mir-61 down-regulates VAV- times more than a protein B, then the transition that capturesugtion of
1, by enabling the transition VAV-1 DR, which is in conflict thiVAV-1 A should have a We|ght that is four times as |arge as the Wei‘gﬂ[tmone
PRO. (b) Two example modules, gene productigertical) and endocytosis  that captures B production. In case more than one maximallyiplstep is
(horizonta), interact in the Notch/LIN-12 pathway. possible, one is selected randomly. In short, implementinge maximally
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Figure 3. Basic biological functions used in more complex modules.

parallel semantics requires to generate all possible joaugiof tokens, and
select one randomly, uniformly. However, with the growth o tietwork,
this procedure becomes prohibitively slow. Therefore weaadmated it by
building a maximally parallel step incrementally, selectimg ¢ransition af-
ter another, randomly, until all enabled transitions havenbexhausted, as
explained in Krepskat al. (2008).

Unrestricted production of proteins is usually not reaisas in nature
the cell would saturate with the product, and the reactionldvslow down
or stop. Therefore, to mimic this behaviour, each place hasdefined
maximum capacity\ = 6. To guarantee that the highest concentration
level can be attained, we introduced bounded execution avignshooting.
A transition can only fire if each output place holds fewemti? tokens.
Since each transition can possibly move more than one tokencat ioto
its output places, each transition can overshoot the pengiapacity\” at
most once. Therefore, the network is bounded with a finite ddui N .

2.2 Mode Construction

We developed an executable Petri net model for cell fate ihétetion dur-
ing C. elegans/ulval induction. This large network can be visualised oa th
web page of our projetta schematic representation is given in Figure 5. The
entire network comprises 600 nodes (places and transitas 1000 arcs.
Nevertheless the simplicity of the formalism, and its graphiepresenta-
tion, helps us to identify different modules. These correspt different
biological functions, such as gene expression, proteiuaitin, and protein
degradation. It is possible to reuse modules correspondiagdunction, like
small building blocks, to compose more complex modules, and esiynt
build a full cell. The cell itself is a module that can be reusagplying
these principles, we have built the VPC network out of sielicbnnected
cells as identical modules of a multi-potent cell. We alsotlbmiseparate
block for the AC (producing the inductive signal) and for thg7. The pos-
sibility to divide the entire graph into simple, small, and miegful modules
has three main advantages: (i) the modelling process becomsies €id the
resulting network is homogeneous, and (iii) modules (at déffielevels) can
be reused throughout the model, or for modelling other orgasis

Figure 2 shows selected examples of how to represent bialogicdules
as a Petri net. Figure 2a illustrates VAV-1 down-regulatigrdecreasing the
translation rate of the gene vav-1. In fact, if mir-61 is nagent, the reaction
VAV-1 PRO is enabled and produces the protein. However, whigf61 is
present, the reaction VAV-1 DR is enabled and bidschance of firing com-
pared to VAV-1 PRO, thus the production of VAV-1 will halveigtre 2b
depicts two connected basic modules, a gene expression arghtiocy-
tosis mediated down-regulation of LIN-12. In this exampletivation of
the Ras/MAPK cascade leads to the transcription of a hithenknown

1 http://mww.cs.vu.nl/concell

gene that enhances the LIN-12 endocytosis, as hypothesys8tiaye and
Greenwald (2002). Note that here the produced LIN-12 is rempwhile

in Figure 2a the gene production was reduced. An alternateto repre-
sent down-regulation using transitions has been propog&timwaldet al.

(2008).

At the system level, a module can be viewed as a “meta-tran§igdPetri
net with specified inputs (places which can receive tokemg)oaitputs (arcs
outgoing of the module). Instead of constructing the Petrimedel using
boolean functions as basic network components (Sackrmeizain 2006) and
subsequently check the biological meaning of each subnktexiracted
by invariant analysis (Sackmaret al., 2006; Grunwaldet al, 2008), we
focused on using basic biological functions as networkdiog blocks. In
our experience, the procedure of building a modular biolidietri net can
be split into five phases:

Level 1: Basic biological function&Ve created six basic modules represent-
ing the basic biological functions used to encode the miatdescribed
in the literature related to C.elegans vulva developmentegn produc-
tion, protein activation, down-regulation, up-regulatisignalling and
constitutive degradation.

Level 2: Protein interactionsgCombining basic modules, we built more
complex blocks, each modelling the interactions of one pmotéhe
division into protein interaction modules is presented ibl&al. Fig-
ure 3 shows an example of how basic biological functions amgbioed
to build protein interaction modules.

Level 3: Pathwaysin Figure 4, modules LIN-3, LET-23, SEM-5, LET-60,
MPK-1, and DSL constitute the Ras/MAPK pathway, and modules
LIN-12, VAV-1, MIR-61, DPY-23, LST constitute the competing
Notch/LIN-12 pathway.

Level 4: Cells Figure 4 presents the Petri net model of a single VPC cell
with four links to the environment.

Level 5: Multi-cellular interactionsIn Figure 5 we show how the six VPCs,
the AC and the hyp7 modules are connected. Adjacent cellsrdoegll
with each other, the hyp7 connects to all six cells, and theca@
directly influence cells P5.p, P6.p, and P7.p.

Figure 3 highlights the top-left portion of the VPC model d#ed in Fig-
ure 4. One can see how basic biological functions are reuselifferent
protein interaction modules, where the links describe therattions be-
tween different modules. For instance, in Figure 3 the LETR&8lule is
connected to LIN-3, which is connected to SEM-5, which imtinteracts
with LET-60. The biological mechanisms underlying theseraatgons are
found in the literature and encoded by the basic biologigatfions men-
tioned. The network shown in Figure 3 models the first stepmdugignal
transduction within the Ras/MAPK cascade, where the trangmane re-
ceptor LET-23 is activated by the ligand LIN-3. The res\gtiactivated
complex then activates the core Ras protein LET-60, by siggahrough
SEM-5.

2.3 Modéling Genetic Perturbations

For each genetic background, each gene can be in wild-type (ot i.e.
the most common form of a gene as it occurs in nature) or in oneeof th
following mutated forms: loss-of-functiorif( e.g. the gene is deleted or
dysfunctional) or gain-of-functiongf, e.g. the gene transcription is over-
stimulated). It is possible to derive an initial configuraticorresponding
to a given genetic perturbation placing a token in one of e different
places used to represent gain-of-function and wild-typeeh gene in the
genetic background. Loss-of-function mutation is represgiby token re-
moval. It is therefore possible to initiate the network in @p@priate initial
configuration by simply placing or removing tokens in oppoetpiaces.
Figure 6a depicts an example of a typical gene transcripfibie. tran-
sition LIN-12 PRO(wt) produces LIN-12 proteins when thedriype gene
lin-12(wt) is present. When the gene is not present (i.e18(wt) holds



no token), the event does not take place. Figure 6b and Figarde-
pict two different genetic backgrounds, correspondingeetvely to the
loss-of-function and gain-of-function of the lin-12 gene.

2.4 Model Calibration

We started off with assuming that initially proteins are exgsed at low basal
levels and reactions require high protein concentratieelée Therefore, we
set the initial concentration levels for proteins to zerd ame assigned high
requirements and low level production to all transitionsspestively arc
weights five and one (see the Supplementary information foxample).

We subsequently simulated the 2P vivo experiments in our calibra-
tion set (Table 2). We identified mismatches between the siioolagsults
and the expected phenotypes, and back-tracked the problgmafi overly
strong or weak down-regulation) following the causal ch&iom one
module to the other (i.e. from products, to transitions, ughtgr require-
ments). For selected modules, arc weights and occasionéilyl iprotein
concentration levels were fine-tuned to recover the exgdumtbaviour.

This manual calibration process iteratively converged upatable and
fixed set of parameters that we used for all further simulatiGnsing the
process we noticed that only in very few cases single pararadjestments
were able to sensibly change the simulation results, wheneas often com-
binations of parameters were changed to approach the egpeebaviour.
This suggests a “spectrum of sensitivities” as discuss&litenkunset al.
(2007) that should allow the modellers to focus on predidti@ther than on
parameters.

2.5 Simulation Procedure

In experimental biology, experimental replicates are neggs®e overcome
the variability intrinsic to biological systems. In our molifed approach,

Table 1. Description of modules constituting the model@felegansulval
development depicted in Figure 4 and Figure 5.

Module Function

SEM-5 Production and activation of SEM-5 from gene sem-5(wt).

LET-60 Production and activation of LET-60 from gene let-60(wt).

LIN-3 Reception of LIN-3 from AC and hyp7.

LET-23 Production and activation of LET-23 from gene let-23(wt).
Down-regulation of LET-23 by DPY-23.

LST Production and activation of LSTs from Ist-1(wt), Ist-2fwt
and Ist-4(wt) genes. Down-regulation of LSTs by MPK-1.
Up-regulation of LSTs promoted by LIN-12*

MPK-1 Production and activation of MPK-1 from mpk-1(wt) gene.
Down-regulation of MPK-1 by LST.

DSL Production of DSL signal.

LATERAL Transport of lateral signal (DSL) to adjacent cells.

DPY-23 Production of DPY-23 from dpy-23(wt) gene, promoted by
LIN-12*,

LIN-12 Production of LIN-12 from lin-12(wt) gene. Activation of
LIN-12 by binding to DSL. Endocytotic down-regulation
of LIN-12 mediated by VAV-1 and promoted by the
Ras/MAPK pathway.

VAV-1 Production of VAV-1 from vav-1(wt) gene. Down-
regulation of VAV-1 by microRNA mir-61.

MIR-61 Production of miR-61 microRNA.

AC Production of LIN-3 and diffusion in a graded fashion to
P6.p and the two adjacent cells P5.p and P7.p.

hyp7 Production of LIN-3 and diffusion to all VPCs.

Not shown  Constitutive degradation of various proteins.

Protein names followed by a star (*) stand for the active proteins.

AN

Figure 4. Schematic representation of a VPC in our Petri net model. Each
rounded box is a module. Note that LIN-3 and LATERAL are coneédo
the environment.

which is nondeterministic, we interpret the outcome of a sitmtarun as
the phenotype of an individual worm. Thus, to reproduce a wpopula-
tion, we performed 5000 simulation runs for each genetic backgd with
different random seeds, each for 1000 maximally parallekstep

Based on the current experimental knowledge (Shaye and Badsn
2002, 2005), we determine the fate adopted by each cell by megsu
and correlating the concentration levels of MPK-1* and L1R%. Specif-
ically, 1° fate is induced by a high level of MPK-1* and is refractory to
LIN-12*, 2° fate is induced by a low level of MPK-1* and a high level of
LIN-12*. Low levels of both MPK-1* and LIN-12* lead t@®° fate. From
the simulation we calculate the LIN-12* and MPK-1* concetita levels

Figure 5. Schematic representation of the whole system. The VPCs are

connected with the AC, the hyp7, and their adjacent cells.



lin-12(wt)  lin-12(gf) lin-12(wt)  lin-12(gf) lin-12wt)  lin-12(gf)

LIN-12 LIN-2  LIN-12 LIN-12  LIN-12 LIN-12
PRO (wt) PRO (gf) PRO (wt) PRO (gf) PRO (i) PRO (gf)
2

LIN-12 LIN-12 LIN-12

a b c

Figure 6. Gene expression with different initial conditions, copesding
to different genetic backgrounds. (a) corresponds to limil@-type, (b) cor-
responds to thin12(If) mutant, and (c) corresponds to tivel 2(gf) mutant.
Note that arcs with two heads represent two arcs, one eithgr w

as the average number of tokens over the final 50 steps to amoiecas-
sary noise from the continual movement of tokens. Predictédates are
not influenced significantly by the length of the averagingauese the pro-
tein concentration levels at the very end of the simulatiengamerally in a
steady state. Assuming thahah concentration level corresponds to more
than three tokens in a place antba level corresponds three tokens or less,
it is possible to determine the adopted fate. The correspgngiiecewise
function is formalized in the Supplementary information.

To facilitate parameter adjustments during calibration wso dample-
mented three scoring functions (one for each cell fate) andis, in order
to obtain a continuous curve instead of the discrete anauiswous pro-
file of a piecewise function. Such a continuous score was wsejul during
calibration to guide recovery of the expected behaviourdmparing slight
changes in the scores produced by different adjustments.

Each scoring function rewards (i.e. score tends$)tooncentration levels
that match the corresponding description. In the scoringtfans, more than
four tokens corresponds togh and less than two corresponddadav, while
intermediate numbers of tokens (in between 4 and 2) produc8-8teped
gradient peculiar to sigmoids. In our experience slight gearin the shape
of the functions (e.g. steepness) do not significantly chdhg results. Con-
sequently, each scoring function, using the simulated L2X&nhd MPK-1*
concentration levels as variables, computes a score in téevéh[0, 1] that
measures how closely a simulated cell reproduces the fateiptést cap-
tured by the scoring function. For each cell we calculategtscores (one for
each function), and assign to the cell the fate correspgnirthe function
that returns the highest score. The analytic form of thesetfons can be
found in the Supplementary information.

The intersection of the three scoring functions general@sdscape (Fig-
ure 7) that can be compared to the discrete representatidre gfi¢cewise
function and resembles the fate plane proposed by GiurunatsdL(2006),
in which the quadrants identify cell fates.
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0 1 2 3 4 5 6

MPK-1*

Figure7. Landscape produced intersecting the three scoring furtithe
guadrants are labelled with the corresponding cell fates.

3 RESULTS
3.1 Model Validation

To determine the capability of our model to reproduce and predict
the biological behaviour, we simulated 64 different experimental
conditions. Twenty-two experiments (Table 2) previously selected
in Fisheret al. (2005) were used for model calibration. Thirty
perturbations were used for validation: 26 (see the Supplementary
information) from Fishegt al. (2005), three (Table 4) from Stern-
berg (2005), and one (Exp. 52, Table 5) from Yoo and Greenwald
(2005). Particularly, experiment 51 (Table 4) was never simulated
in any previous work that we are aware of. The remaining twelve
simulations constitute new predictions. Of these, the most remark-
able (Table 5) are discussed in Section 3.2. Statistical details for all
simulations and a short animation displaying a typical single run are
available in the Supplementary information.

Our model reliably reproduces all the mutant combinations, ex-
cept for the double mutatin-12(gf);lin-15(If) (Table 2, Exp 21 and
45), even if in these cases, a fraction of the predictions matches the

Table 2. In vivo experiments selected in Fisher al. (2005), and used by
us for model calibration. In th&C column, — stands for no AC, while +
means that the AC is present. In t8enotypeolumn, for each gene a loss of
function (f or knock-out) or gain of functiorgf or overexpression) mutation
is indicatedlstis the group of Ist-1, Ist-2, Ist-3, Ist-4, dpy-22ul is the group
of let-23, sem-5, let-60, mpk-1. In tHeate Patterncolumn, 1 indicated®
cell fate, 2,2° fate, 3,3° fate, and 12 either1® or 2° fate.

Exp. AC Genotype Fate Pattern Ref.
Ist Vul lin-15 lin-12 P3.p P4.p P5.p P6.p P7.p P8.p

1+ 3 3 2 1 2 3 a
2+ 3 3 1 1 1 3 b
3+ If 3 3 3 3 3 3 ¢
5 o+ If N2 12 2 1 2 12 c
6  + If If 1 1 1 1 1 1 d
7+ IfIf 3 3 3 3 3 3 e
9 + # 3 3 1 1 1 3 f
10+ I f 3 3 1 1 1 3 g
1+ If f 3 3 3 3 3 3 ¢
13+ foof 1 1 1 1 1 1 ¢
17+ of 2 2 2 1 2 2 ¢
19 + If of 2 2 2 2 2 2 ¢
21+ Foogf 1212 2 1 2 12 ¢
25 — 3 3 3 3 3 3 h
26 — If 3 3 3 3 3 3 d
29 — If 1\2 1\2 1\2 1\2 1\2 1\2 ¢
33— f 3 3 3 3 3 3 ¢
37— foof 1 1 1 1 1 1 ¢
a1 - of 2 2 2 2 2 2 ¢
2 — of 2 2 2 2 2 2 d
43 — If of 2 2 2 2 2 2 ¢
45— fogf 1\2 1\2 1\2 1\2 1\2 1\2 ¢

a: Sulston and Horvitz (1977): Bersetet al. (2005); Yooet al. (2004). c: Sternberg
and Horvitz (1989)d: Bersetet al. (2001).e: Ferguson and Horvitz (1989); Sternberg
and Horvitz (1989); Cuét al.(1977). f: Sternberg and Horvitz (1989); Greenwaelthl.
(1983).¢: Berset and Hajnal, unpublished data Kimble (1981).



Table 3. Detailed statistical results for the 5000 simulationinfvivo
experiment 5, Table 2i-15(f)). 5

MPK-1%/P6.p 1

a
i
2 ar 1 MPK-1%/P7.p =]
Exp. Fate Pattern Occur-  Percen- I egl-17p::cfp-lacZ | MRy L —
P3p P4p P5p P6.p P7p P8p rences tage a t ; 3 i
1
X Psp P6.p i
5 Combinations matching the commonly observed pattern: 86.2% 7 i

1 2 2 1 2 1 1348 27.0%

Soooocscosooosososoooo Nl ed

2 1 2 1 2 1 1180 23.6% b

2 1 2 1 2 2 946  19.0% l .

1 2 2 1 2 2 830 16.6% S0
Three or more adjacegf fate cells: 4.5% a b

2 2 2 1 2 1 132 2.6%

2 ) 2 02 1 ) g 2 93 1.9% Figure 8. Comparison between photomicrographs of gene activity by flu-
Two adjacent® fate cells: 2.7% 0 orescently labelled gene products, and simulation res{ajsPhotomicro-

1 i ; 1 ; ; 22 (l)gc;" graphs of the graded expression of the inductive signaltadafpom Yoo

=70 et al. (2004), Science Magazin&) 2004, AAAS. (b) Time series plot gen-

erated by our model, showing the graded expression of thefivéwsignal,

initially faintly present in P5.p and P6.p. A running avezagver 50 steps
is used for clarity of presentation. Concentration leveks an the verti-

cal axis while maximally-parallel steps on the horizontale@an correlate
expected pattern. The noticeable differences of biological observashotomicrographa andb with pointa andb in the time series.

tions from different labs, and the few worms examimedivo, do

not help to establish a trustworthy expected outcome.

Of the 22 experiments in Table 2, particularly interesting are them vulval development. In Figure 8, the gene expression time series

Sgeenerated by our model are compared with the fluorescent photomi-
rographs published by Yai al.(2004). They show evidence of the
raded expression of the egl-17p::cfp-lacZ reporter that responds to
e Ras/MAPK pathway. Figure 8b depicts the time series gener-
ated by our model from the simulation results of a wild-type animal.
1initially MPK-1* (downstream product of the Ras/MAPK pathway
as EGL-17) is faintly expressed in P5.p and P7.p. Subsequently,
expression in P5.p and P7.p disappears, and MPK-1* remains at
a high level only in P6.p, in accordance with the fluorescent pho-
tomicrographs of Figure 8a. We note that the concentration levels
at the end of the simulation are approximately constant, indicating
a steady state. In a related experiment, ¥al. (2004) divided

. : . [st genes into two groups: pattern A which contains dpy-23 and Ist-
|mgnts three adJaceQ_t’ _fate, or two adJ_acenIO fa_te cells are very 3, and pattern B to which Ist-1, Ist-2 and Ist-4 belong. Each group
unlikely. In the remaining 6.8% (not included in Table 3) one or has its own characteristic temporal expression pattern that corre-

‘r‘nore cr?lls ?dOpB,, .fateh.aﬂd V\{etlnterptrek:l thlgse outcomesbas the ponds closely to the time series generated by our simulation (see
rare phenotypes” in which uninterpretable lineages are observeg | Supplementary information).

(i.e. in betweer2® and3°), as noted for instance in Sternberg and

Horvitz (1989). . 3.2 mir-61: Developmental Switch and Modulator
In our approach, each maximally parallel step corresponds to a

time step in the ontogeny of the biological system. Thus our sim-Our computational model, besides reproducing well-known biologi-
ulations can also be interpreted as time courses of gene regulati&i@! €xperiments, encodes and unifies different published hypsthese
and conjectures, shedding light on the vulval development process.

The two hypotheses described next are related to LIN-12 down-
regulation, which is essential during vulval organogenesis (Shaye

results were already discussed in Fisgeal. (2007) and Sun and c
Hong (2007), but these discussions lacked statistical detail about th

possible outcomes. In fact, Sun and Hong (2007) observed that tk}
statecharts model of Fishetal. (2005) often produces two adjacent

1° fate cells, which they claim is rarely observed in experiments, bu
they also do not provide supplementary statistical details.

In Table 3 we provide statistical details for experiment 5 from Ta-
ble 2. More thard3.4% of the predicted patterns match one of the
expected biological \{2°-1\2°-2°-1°-2°-1\2° combinations. Of all
matching patterns, only 4.5% contain three or more adjaefate
cells, while just 2.7% have two or more adjacénfate cells. These
quantities correspond to the biological evidence that in these expe

Table4. In vivoexperiments not used for the model construction. and Greenwald, 2002; Yoet al, 2004), and link the microRNA
mir-61 to the vulva development process.
Exp. AC Genotype Fate Pattern Ref. Shaye and Greenwald (2002) propose that, besides the degree
let-60 lin-3 P3.p P4.p P5.p P6.p P7.p P8.p of constitutive internalisation displayed by LIN-12, Ras activa-

tion leads to transcription of an unknown factor that enhances the

49 + If 3 3 3 3 3 3 i rate of internalisation, promoting the endocytic routing of LIN-
50 + If 3 3 3 3 3 3 3 12. In Figure 9 one can see how we captured this hypothesis
51 + of 3 2 1 1 1 2 j in our model. Activation of Ras enables the transcription of the
unknown gene, which down-regulates LIN-12 post-translationally.
i: Beiteletal. (1990).5: Sternberg (2005). Notably, changing the model of LIN-12 down-regulation from post-



eI Table 5. Selection of microRNA experiment outcomes predicted by

@ our model.mir-61(ce)stands for constitutive expression of mir-61.
lin-12(wt) LIN-12* I
@ L'T;lf:ﬁgvvvit)ion _____ > ,,FQJE;%LH Exp. AC Genotype Fate Pattern Ref.
I o= T mir-61 Vullst  P3.p P4.p P5.p P6.p P7.p P8.p
7 vav-1(wt)
LIN-12 // constitutive
production + endocytic routing 52 + ce 2 2 2 2 2 2 k

% miR-61 53 - ce 2 2 2 2 2 2

54 + ce If 2 2 2 2 2 2

55 + ce If 2 2 1 1 1 2

LIN-12 VAV-1 miRNA mediated 56 + h( |f 3 2 1 1 1 2

production  down-regulation

enhanced
UNK

endooytic routing k: Yoo and Greenwald (2005).
\
r~ . \
””;?:ﬁg;iﬁ‘°’é<~ <V ==~ - Table 6. Detailed statistics for the simulation of experiment<2({f))
~ 7/ Ras/MAPK Pathway activation .
(not shown) Table 2 and 56rhir-61(If);Ist(If)) Table 5. Outcomes below 0.1% are
omitted.
unknown gene(wt)
Exp. Fate Pattern Occurrences Percentage
Figure 9. Single model capturing different biological suggestionseas P3.p P4.p P5.p P6.p P7.p P8.p
plained in Section 3.2. 2 3 3 1 1 1 3 4800 96.0%
3 3 2 199 4.0%
56 3 2 1 1 1 2 1594 31.9%
. . . . N 3 3 2 1 1 2 1399 28.0%
to pre-translation disrupts this behaviour and significantly alters our 3 3 2 1 2 3 1000 20.0%
results. 3 2 1 1 2 3 998 20.0%

Yoo and Greenwald (2005) identified mir-61 as direct transcrip-
tional target of the LIN-12/Notch pathway. The gene mir-61 encodes
a microRNA which blocks expression of the mRNA encoding
VAV-1, a protein involved in LIN-12 down-regulation, possibly pro-
moting LIN-12 endocytosis. They therefore proposed that activation To the best of our knowledge, we are the first to madedilico
of mir-61 by LIN-12 and the consequent down-regulation of VAV- microRNA interactions durin@. elegansulval induction, support-

1 constitute a positive-feedback loop that promotes LIN-12 activitying the conjecture formulated in Yoo and Greenwald (2005) that
in presumptive2® fate VPCs. Although the unknown factor conjec- lin-12, mir-61, and vav-1 form a feedback loop that helps maximise
tured by Shaye and Greenwald does not seem to be required for thi@-12 activity in the presumptive® VPCs.

initial internalisation of LIN-12, VAV-1 is necessary for the constitu-

tive internalisation of LIN-12. Notice that VAV-1 is involved in both

constitutive and enhanced post-translation (endocytosis mediate&) DISCUSSION

down-regulation of LIN-12. Modelling and analysing developmental processes is a challenging

Modelling these hypotheses (Figure 9) and capturing their betask, as these biological processes often encompass several dells an
haviour has proven to be necessary to obtain the expected resuktsolve over the course of several hours. Moreover, the currekt la
during in silico experiments. Moreover, we simulated several per-of precise quantitative parameters at molecular level and the de-
turbations of the mir-61 microRNA gene, obtaining the outcomesscriptive form of this biological knowledge welcome research on
shown in Table 5. This nicely confirms the role of the positive- different modelling approaches able to reach the sweet spot in be-
feedback loop proposed by Yoo and Greenwald (2005). All experiween abstraction and biological significance. In the work presented
iments of Table 5, as far as we know, have not been testei/o here, we abstracted the descriptive knowledge into a simple formal
(with the exception of experiment 52, which is described in Yoo andmodel that suitably mimics the underlying biological mechanisms
Greenwald (2005)). and retains an adequate predictive power.

Experiments 52, 53, 54, and 55 confirm the specific role of mir- The Petri net used in our approach has a rather simple formalism,
61 in influencing the cell fate decision, as determined by Yoo andout the network designed by us is fairly large. Although several tools
Greenwald. Experiment 56 suggests a possible secondary role. Théble to build extensive Petri nets with modular support exist (CPN
is a double mutamir-61(If);Ist(If) variation of thdst(If) experiment  Tools, 1999; Peccouet al,, 2007), they are often quite complex in
2, Table 2. Although the single mutdst(If) expresses a stable VPC order to support much richer formalisms than the one we used, or
fate pattern, the loss-of-function of mir-61 in the double mutant dis-they do not scale to the size of our Petri net model. Furthermore, the
rupts the stability of the pattern, as can be seen in the statisticdhck of a Petri net tool with a robust and efficient implementation
breakdown of Table 6. Based on this observation, we suggest thatf the maximal parallel execution semantics led us to build our own
besides acting as developmental switch, mir-61 plays a “tuning’simulation tool (available on the web page of our project).
role (Karp and Ambros, 2005) to ensure the stability of the cell fate In conclusion, we applied our Petri net approachQo ele-
pattern formation. gansvulval development, reproducing seveiralivo experiments.




We generated insightful and testable predictions involving the mi-Gutenkunst, R. N., Waterfall, J. J., Casey, F. P., Brown, KMgers, C. R,
croRNA mir-61. Our model is a suitable but partial representation and Sethna, J. P. (2007). Universally sloppy parameter tagtss in
of the whole intricate developmental process that leads to the for- Systems biology model$2L.oS Comput Biol3(10).

mation of theC. elegans/ulva. New understanding of the process, Kam, N., Harel, D., Kugler, H., Marelly, R., Pnueli, A., HubbiaE. J. A.,

supported by further experimental analysis, can be conveniently

integrated in our model taking advantage of its modular fashion.
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