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The spatiotemporal MEG covariance matrix modeled as a sum

of Kronecker products
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The single Kronecker product (KP) model for the spatiotemporal

covariance of MEG residuals is extended to a sum of Kronecker

products. This sum of KP is estimated such that it approximates the

spatiotemporal sample covariance best in matrix norm. Contrary to

the single KP, this extension allows for describing multiple,

independent phenomena in the ongoing background activity.

Whereas the single KP model can be interpreted by assuming that

background activity is generated by randomly distributed dipoles

with certain spatial and temporal characteristics, the sum model can

be physiologically interpreted by assuming a composite of such

processes. Taking enough terms into account, the spatiotemporal

sample covariance matrix can be described exactly by this extended

model.

In the estimation of the sum of KP model, it appears that the sum of

the first 2 KP describes between 67% and 93%. Moreover, these first

two terms describe two physiological processes in the background

activity: focal, frequency-specific alpha activity, and more wide-

spread non-frequency-specific activity. Furthermore, temporal non-

stationarities due to trial-to-trial variations are not clearly visible in

the first two terms, and, hence, play only a minor role in the sample

covariance matrix in terms of matrix power. Considering the dipole

localization, the single KP model appears to describe around 80% of

the noise and seems therefore adequate. The emphasis of further

improvement of localization accuracy should be on improving the

source model rather than the covariance model.
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Introduction

In MEG measurements, background noise is correlated both in

space and in time. Although these correlations are unknown a
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priori, they are of interest for two reasons: they contain

physiological information and they can be used to improve source

localization (de Munck et al., 1992; Dogandžiç and Nehorai, 2000;

Lütkenhöner, 1998; Sekihara et al., 1994; Waldorp et al., 2002).

These spatiotemporal correlations can be estimated from the

measured data. The general spatiotemporal covariance matrix,

however, has a large dimension, yielding two main problems, the

first of which being its estimation and the second its storage.

Estimation would require an unrealistically high number of

measurements to achieve nonsingularity and storage would require

far more memory than commonly available.

A way of resolving these two problems has been found in the

parametrization of the spatiotemporal covariance matrix through a

Kronecker product (KP) (Langville and Stewart, 2004; Van Loan,

2000) of a spatial and a temporal covariance matrix, reducing its

dimensionality considerably (de Munck et al., 1992, 2002;

Huizenga et al., 2002). The KP parametrization assumes that an

arbitrary spatiotemporal correlation can be modeled as a product

of a spatial and a temporal factor. These two factors are

independent of each other; hence, the spatial and temporal

correlations are separated from each other in the KP model.

Physiologically, this model can be interpreted by assuming

background noise to be generated by randomly distributed dipolar

sources having amplitude functions independent of the source

locations (de Munck et al., 1992).

Applications of the KP model in source localization methods

have revealed that the accuracy improves when the spatiotempo-

ral correlations instead of no or only spatial correlations are taken

into account (de Munck et al., 2002; Huizenga et al., 2002).

Nevertheless, there are two important shortcomings of the KP

model. The first deficiency is the rigidness of the KP: the shape

of the temporal cross spectrum is forced to be fixed over all

channels. This is a simplification, as is illustrated by the alpha

rhythm: the amount of alpha activity relative to other spontaneous

activity is not equally distributed over the head. The second point

of debate is trial-to-trial variations, which have been discussed in

literature (Coppola et al., 1978; Duann et al., 2002; Gasser et al.,

1983; Jaşkowski and Verleger, 1999; Laskaris et al., 2003;

Makinen et al., 2005; Mocks et al., 1987; Pham et al., 1987). The
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Signal Plus Noise (SPN) model in evoked field experiments

assumes that no such variations occur in the data. This model can

be formulated as

m
i; j
k ¼ r i; j þ e

i; j
k ; ð1Þ

where mk
i,j is the measurement in trial k at the ith sensor and jth

time instant, ri,j is the trial-independent response to the stimulus

at the ith sensor and jth time instant ek
i,j is the residual (‘‘noise’’).

Hence, the SPN model assumes that all trial-to-trial variations are

accounted for by the and ek
i,j. The response ri,j is estimated by

the average over trials of the measurements mk
i,j . When

incorrectly assumed, i.e., when ri,j does depend on k, the SPN

model leads to nonstationarity in the temporal covariance (de

Munck et al., 2004; Truccolo et al., 2002). Nonetheless, it has

been shown for Somatosensory Evoked Field data sets that both

the temporal and the spatial covariance estimated under the SPN

assumption can be explained by a stationary model (Bijma et al.,

2003). The reason may be that the nonstationarities are

suppressed by the rigidness of the KP model: if the majority of

the channels show temporally stationary signals, this stationarity

will dominate the temporal matrix. To overcome its short-

comings, an extension of the KP model is investigated in this

study: a sum of Kronecker products.

In the sum of KP model, each term presents a combination of

a spatial and a temporal pattern. Unlike the single KP model, the

sum model allows for multiple temporal structures with specific

spatial patterns, and can, thus, account for temporal nonstationa-

rities in separate terms. The interpretation of the sum of KP

model is analogous to that of the single KP model. Assuming

that spontaneous background activity is the composite of a

number of independent ongoing processes (cf. Laufs et al.,

2003), each of which can be described by a random dipole

model as explained above, the spatiotemporal covariance matrix

becomes a sum of KP.

Although extending the single KP model to a sum of KP

may seem rather straightforward, in the practical application in

dipole localization it becomes quite delicate. The main problem

is the inversion of a sum of Kronecker products, which,

contrary to a single KP, cannot be performed by inversion of

only the smaller dimensional matrices, but requires inversion in

the large spatiotemporal dimension. Therefore, the emphasis in

this study is primarily on estimating rather than applying the

sum of KP. The aim is twofold: firstly, the estimated sum of KP

contains information about the validity of the single KP model

for dipole localization; secondly, from the estimated sum

physiological information is assembled about the spatial and

temporal features in the background activity. Hence, the goal of

this paper is not to present an improved method for source

localization; the accent is on investigating the spatiotemporal MEG

residuals.

In the next section, first the findings and formulas of the single

KP model are summarized shortly and then the estimators for the

sum of KP model are derived and discussed. In the third section,

the sum model is estimated for data sets of three types (VEF, SEF,

AEF) and results are shown. In the final section, the results are

discussed and conclusions are drawn. The technical details of the

model are put together in the appendices in order to keep the text

compact.
Model

Single KP model

In the single Kronecker product model, the covariance between

two MEG residuals, ek
i,j and ek

i V, j V, is modeled as the product of a

temporal and a spatial term:

e e
i; j
k ; ei V; j Vk V

� �
¼ Xi;i VTj; j Vdk;k V ð2Þ

where ek
i, j is the MEG residual measured at sensor i, time sample j

in the kth trial and dkk Vdenotes the Kronecker delta function. Thus,

different trials are assumed to be independent. The meaning of Eq.

(2) is that the temporal covariance matrix T is fixed in space and

the spatial covariance matrix X does not vary over time. In other

words, space and time are not correlated.

The matrix formula for the Kronecker product model is

R ¼ T � X ; ð3Þ

where T a R
J � J is the temporal, X a R

I � I the spatial covariance

matrix and R a R
IJ � IJ is the spatiotemporal covariance matrix. I

denotes the number of sensors and J the number of time samples.

The dimensions of these two covariance matrices are much smaller

than the dimension of R, and by the structure of the Kronecker

product, the computations are much less demanding (Magnus and

Neudecker, 1995):

R�1 ¼ T�1 � X�1 ð4Þ

det Rð Þ ¼ det Tð ÞI det Xð ÞJ : ð5Þ

X and T can be estimated using either the Maximum Likelihood

(ML) paradigm or the Least Squares (LS) method. In the ML case,

the MEG residuals are assumed to have a Gaussian distribution

with the KP as the covariance matrix. The density function is

maximized with respect to the matrices X and T. In the LS case, the

KP is fitted to the spatiotemporal sample covariance matrix and the

difference in Frobenius norm is minimized with respect to X and T.

The sample covariance matrix Rs a R
IJ � IJ is defined as

Rs ¼ 1

K � 1
~
K

k ¼ 1

vec Ekð Þ vec Ekð Þ½ 	t ð6Þ

where Ek a R
I � J is the matrix containing the residuals of trial k,

Ekð Þi; j ¼ e
i; j
k ; ð7Þ

and K is the number of trials (repetitive measurements). In both the

ML and the LS case, the estimators for X and T are given by an

iterative system. For the ML model, this system is (de Munck et al.,

2002):

XML ¼ 1

JK
~
K

EkT̂T
�1
MLE

t
k ð8Þ

T̂TML ¼ 1

IK
~
K

k ¼ 1

Et
k X̂X

�1
MLEk ð9Þ



1< p � N : ð23Þ
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and for the LS paradigm, see Appendix A.1,

X̂X LS ¼ 1

K � 1

1

kT̂T LSk2
~
K

k ¼ 1

EkT̂T LSE
t
k ð10Þ

T̂T LS ¼ 1

K � 1

1

kX̂X LSk2
~
K

k ¼ 1

Et
k X̂X LSEk : ð11Þ

For the extension to the sum of KP model, the ML formulas

become prohibitively complicated because the sum does not

maintain the elegant structure for the inverse and the determinant

as the single KP does (see Eqs. (4) and (5)). For the LS paradigm, it

appears that extension is possible.

Sum KP model

As stated in the Introduction, extending the single KP to a sum

of KP allows for a more general spatiotemporal covariance

structure. The sum model is expressed as

R ¼ ~
N

n ¼ 1

Tn � Xn ð12Þ

and the corresponding LS cost function is

CLS ¼ kRs � ~
N

n ¼ 1

Tn � Xnk2 ð13Þ

where �I�2 denotes the Frobenius norm. In order to minimize the

cost function, the algorithm presented by Van Loan to find the best

sum of KP approximation to a given matrix is used (Van Loan,

2000). The matrix elements in Eqs. (12) and (13) are rearranged

according to Van Loan’s shuffle operator S : RIJ�IJ YR
I2�J 2 such

that Eq. (12) is transformed into

S Rð Þ ¼ ~
N

n ¼ 1

vec Xnð Þvec Tnð Þt; ð14Þ

and the cost function in Eq. (13) becomes

CLS ¼ kS Rsð Þ � ~
N

n ¼ 1

vec Xnð Þvec Tnð Þtk2: ð15Þ

From Appendix A.2, containing more details about S, the

formula for the shuffled sample covariance matrix follows:

S Rsð Þ ¼ 1

K � 1
~
K

k ¼ 1

Ek � Ek : ð16Þ

Note that the dimension of this shuffled matrix is I2 � J2, which

is in general not square.

LS estimators for Xn and Tn, n = 1,. . ., N, are obtained by

minimizing CLS in Eq. (13). This minimization is equivalent to

finding the best rank N approximation of S(Rs), which can be

obtained from the Singular Value Decomposition (SVD) of S Rsð Þ.
Write the SVD of S Rsð Þ (Golub and Van Loan, 1990; Magnus and

Neudecker, 1995)

S Rsð Þ ¼ UDV t; ð17Þ

where U a R
I2 � I2 and V a R

J 2 � J 2 are orthogonal matrices and

D ¼ D0; 0ð Þ a R
I2 � J 2 and D0 a R

I2 � I2 is diagonal. Here, it is
assumed that I � J. In case I > J, the expression for D becomes

D0

0

��
, with D0 a R

J 2�J 2 . The best rankN approximation ofS(Rs),

for N � min(I, J), is now given by

~
N

n ¼ 1

UnrnV
t
n ð18Þ

whereUn (Vn) denotes the nth column ofU (V) and rn =Dn,n, the (n,

n)th entry of D0. Hence, the estimators for vec(Xn) and vec(Tn) are

given by

vec X̂X n

� �
¼ Un ð19Þ

vec T̂T n

� �
¼ rnVn ð20Þ

for 1 � n � N. Note that these estimators are not unique: e.g.,

multiplyingEq. (19) and dividing Eq. (20) by the same constant yields

an equivalent solution. Throughout this section, the normalization as

in Eqs. (19) and (20) is used. It follows from Eq. (18) that the entire

sample covariance matrix can be described by a sum of KP, whenN is

taken equal to min(I, J). Furthermore, from the rn, the distribution of

explained matrix power over the KP terms is obtained:

rel pow nth term ¼ r2
n

kS Rsð Þk 2
�100% ¼ r2

n

kRsk2
� 100%: ð21Þ

Despite the straightforward application of Van Loan’s method,

the estimators in Eqs. (19) and (20) are not convenient in practice,

due to the dimensionality of the desired SVD. Therefore,

alternative estimators are deduced below.

The alternative way of estimating the terms (Tn, Xn) in the KP

sum uses Lagrange multipliers (Marsden and Tromba, 1988). To

find the best rank N approximation, it suffices to first find the best

rank 1 approximation and successively find all the subsequent

terms one after another. The initial term, n = 1, corresponds to the

best rank one approximation of the sample covariance matrix and

is estimated by the system of Eqs. (10) and (11). As the higher-

order terms are estimated one by one, for any p satisfying 1 < p �
N, the first p � 1 terms, (Tn, Xn) for n = 1,. . ., p � 1, will have

been estimated at the instant of estimation of the pth term. In other

words, the best rank p � 1 approximation of S Rsð Þ is known and

the best rank p approximation has to be estimated. This step is

explained in Appendix A.3 from which expressions for Xp and Tp

follow:

X̂X p ¼ 1

K � 1ð ÞkT̂T pk2

� ~
K

k ¼ 1

EkT̂T pE
T
k � ~

p � 1

n ¼ 1

tr X̂X nEkT̂T pE
t
k

� �
X̂X n

#"
for 1 < p V N

(22)

T̂T p ¼ 1

K � 1ð Þ

� ~
K

k ¼ 1

Et
k X̂X pEk � ~

p � 1

n ¼ 1

1

kT̂T nk2F
tr T̂T nE

t
k X̂X pEk

� �
T̂T n

#"
for
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The starting value for this iterative system and for the system

in Eqs. (10) and (11) is to set Tp = IJ and start with updating

Xp. The iteration stops when the relative difference in matrix

power between an estimate and the next estimate is less than

10�12, i.e., when
kAs � As þ 1k2F

kAsk2F
< 10�12 for both A = Tp and A =

Xp, where As indicates the sth estimate in the iteration. To verify

the iterative estimators in Eqs. (22) and (23), the SVD

estimation method in Eqs. (19) and (20) was applied to small

data sets (I = 30, J = 30). For these small data sets, the first

four iteratively estimated KP terms were compared to the

estimated terms from the SVD. This comparison showed that

both methods yielded identical matrices.

Note that, although the cost function CLS in Eq. (13) is

expressed in terms of the spatiotemporal sample covariance

matrix Rs, the solution in the iterative system of Eqs. (22) and

(23) does not require the storage of this huge matrix Rs in

memory. In order to find the solution, apart from the recorded

data, one only needs to store the terms (Xn, Tn) in memory,

which is of order (I2 + J2).

Rewriting the sum of 2 Kronecker products

The terms in the sum of KP are estimated under the constraint

of orthogonal ‘‘vecced’’ matrices, see Eqs. (55) and (56) of

Appendix A.3. In order to interpret the matrices (Xn, Tn) in each

term as covariance matrices of the underlying physiological

processes, these matrices should be positive definite. However,

the orthogonality constraint forces the higher-order terms to be

indefinite matrices. This can be explained by the following

reasoning. The first term consists of two positive definite matrices,

T1 and X1, representing the best rank 1 approximation of S Rsð Þ.
Therefore, there exists a nonsingular matrix W1 a R

J � J such that

T1 = W1W1
t > 0. To show that any higher-order temporal matrix Tn

for n > 1 must be indefinite, it is demonstrated below that the

assumption of Tn being positive (negative) definite leads to a

contradiction. Assuming Tn to be positive definite implies that

there exists a matrix Wn a R
J � J such that Tn = WnWn

t > 0.

Substituting W1 and Wn, the orthogonality constraint can be

written as

0 ¼ vec T1ð Þvec Tnð Þt ¼ tr T1Tnð Þ ¼ tr W1W
t
1WnW

t
n

� �
¼ tr W t

1WnW
t
nW1

� �
¼ jjWt

1Wnjj2 > 0 ð24Þ

which is a contradiction. For Tn negative definite, a similar

contradiction can be derived. Hence, Tn must be indefinite. The

same holds true for all the higher-order spatial matrices Xn. The

Kronecker product of two indefinite matrices, A and B, is again

indefinite, because the eigenvalues of A � B are given by kil j, all

possible combinations of ki an eigenvalue of A, and lj an

eigenvalue of B (Van Loan, 2000). Consequently, the higher-order

terms in the sum, Tn � Xn for n > 1, are indefinite. In sum, this

implies that the higher-order terms cannot be interpreted as

physiologically meaningful covariance matrices. Therefore, the

estimated sum is converted to an interpretable sum of KP. For this

conversion, the freedom of a best rank N approximation is

exploited.
In general, the freedom in the shuffled sum of N Kronecker

products in Eq. (14) can be exhibited by a nonsingular matrix

H a R
N � N :

S Rð Þ ¼ ~
N

n ¼ 1

vec Xnð Þvec Tnð Þt

¼ vec X1ð Þ> vec XNð Þð Þ
vec T1ð Þt

s
vec TNð Þt

1
A

0
@

¼ vec X1ð Þ> vec XNð Þð ÞH½ 	 H�1
vec T1ð Þt

s
vec TNð Þt

1
A

0
@

3
5

2
4

¼ vec X̃X 1

� �
>vec X̃X N

� �� � vec T̃T 1

� �t
s

vec T̃T N

� �t
1
A

0
@ R ð25Þ

In this rewritten expression, the X
~
n (T

~
n) matrices are linear

combinations of the Xn (Tn) matrices and are thus symmetric.

Furthermore, note that this rewriting does not damage the KP

structure: ~s = ~n Tn � Xn = ~n T
~
n � Xn. To convert the estimated

sum to an interpretable sum of KP, one should try to find a matrix

H such that the (T
~
n, X

~
n) are positive (semi-)definite for n = 1,. . .,

N. The remainder of this section concentrates on the special case

N = 2.

For N = 2, the matrix H becomes a nonsingular (2 � 2) matrix

and can be written as

H ¼ a b

c d

��
ð26Þ

with ad � bc = 1 such that H�1 ¼ d � b

� c a

��
. In practice, it

appears that the best ‘‘orthogonal’’ sum of two KP is not always

positive definite, but usually contains some small negative

eigenvalues. Although these values are very small, this indicates

that the orthogonally estimated sum of two KP is indefinite.

Consequently, it is not possible to rewrite this sum of two KP as a

sum of two positive definite KP, because a positive definite sum

cannot equal an indefinite expression. Therefore, we seek a matrix

H that is optimal in a slightly different way. Given the estimated

sum, T1 � X1 + T2 � X2, the shuffled version of the rewritten sum

in terms of a, b, c, and d is

vec X1ð Þ vec X2ð Þð Þ a b

c d

��
d � b

� c a

��
vec T1ð Þt
vec T2ð Þt

��

¼ ða vec X1ð Þ þ c vec X2ð Þ b vec X1ð Þ þ d vec X2ð ÞÞ
� d vec T1ð Þt � b vec T2ð Þt

� c vec T1ð Þt þ a vec T2ð Þt
��
:

Hence,

X1 ¼ a X̃X 1 þ c X2 ð27Þ

X1 ¼ b X̃X 2 þ d X2 ð28Þ

T1 ¼ d T̃T 1 � b T2 ð29Þ

T2 ¼ � c T1 þ a T̃T 2: ð30Þ



Fig. 1. Illustration of the computation of the contribution of the rewritten

terms. Vector v1 (v2) presents the first (second) rewritten term and the

vector v corresponds to the rewritten sum. The contribution of v1 (v2) to the

length of v is the length w1 (w2).
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As noticed above, these matrices cannot be all four positive

definite. These matrices are uniquely decomposed into a symmetric

positive part and a symmetric negative part, the latter of which

might be zero for some but not all of the four matrices. This can be

expressed as:

X̃X 1 ¼ UX̃X 1
Dþ
X̃X 1
Ut

X̃X 1
� VX̃X 1

D�
X̃X 1
V t
X̃X 1

ð31Þ

X̃X 2 ¼ UX̃X 2
Dþ
X̃X 2
Ut

X̃X 2
� VX̃X 2

D�
X̃X 2
V t
X̃X 2

ð32Þ

T̃T 1 ¼ UT̃T 1
Dþ
T̃T 1
Ut

T̃T 1
� VT̃T 1

D�
T̃T 1
V t
T̃T 1

ð33Þ

T̃T 2 ¼ UT̃T 2
Dþ
T̃T 2
Ut

T̃T 2
� VT̃T 2

D�
T̃T 2
V t
T̃T 2

ð34Þ

where all U# and V# are matrices with orthogonal columns, and the

D#
+ and D#

� are positive diagonal matrices with descending entries

along the diagonal. Now a, b, c, and d are estimated such that the

matrix power corresponding to the negative eigenvalues of the four

matrices, i.e., the power of the D#
� matrices, is minimum. Then, the

D#
� matrices are set to zero, such that the final rewritten sum,

denoted by T̆1 � X̆1 + T̆2 � X̆2, only contains positive (semi-)

definite matrices:

X˘ 1 ¼ UX̃X 1
Dþ
X̃X 1
Ut

X̃X 1
ð35Þ

X˘ 2 ¼ UX̃X 2
Dþ
X̃X 2
Ut

X̃X 2
ð36Þ

T˘ 1 ¼ UT̃T 1
Dþ
T̃T 1
Ut

T̃T 1
ð37Þ

T˘ 2 ¼ UT̃T 2
Dþ
T̃T 2
Ut

T̃T 2
ð38Þ

Summarizing, the cost function used to find a, b, c, and d is

C a; b; c; dð Þ ¼ kRs � T˘ 1 � X˘ 1 � T˘ 2 � X˘ 2k2

kRsk2
ð39Þ

and the relative matrix power of the sample covariance matrix

explained by the rewritten sum, T̆1 � X̆1 + T̆2 � X̆2, is defined as

rel pow rewr sum

¼ 1� kRs � T˘ 1 � X˘ 1 � T˘ 2 � X˘ 2k2

kRsk2

! 

� 100%: ð40Þ

Compared to the contribution of the orthogonally estimated

terms in Eq. (21), the relative contribution of the two rewritten

terms, T̆1 � X̆1 and T̆2 � X̆2, is less well-defined because the terms

are not orthogonal anymore. To compute the contribution of the

two terms, the vecced KP terms are considered as elements in

R
I2J 2 . In Fig. 1, this embedding is illustrated; the first term is

represented by vector v1 and the second by v2. The sum is drawn as

vector v. The relative contribution of v1 (v2) to v is the length

w1 ¼ v1:
v
kvk w2 ¼ v2:

v
kvk

� �
divided by the length of v:

w1

kvk ¼ v1:v

kvk2
ð41Þ

w2

kvk ¼ v2:v

kvk2
ð42Þ
Here the aIb denotes the inner product of vectors a and b. Note

that the sum of the contributions of the vectors equals the

contribution of the sum of the vectors, that is 1. This principle is

applied to vn = vec (T̆n � X̆n), for n = 1,2. The relative explained

power of the sum, Eq. (40), is split into two parts, proportional to

the relative contributions of the two terms, yielding

rel pownthrewr term : ¼
kT˘nk2kX˘nk2 þ tr T˘1T

˘
2ð Þtr X˘1X

˘
2ð Þ

kT˘1 � X˘1 þ T˘2 � X˘2k2

kRsk2�kRs � T˘1 � X˘1 � T˘2 � X˘2k2

kRsk2
ð43Þ

for n = 1, 2. The computation of this power distribution requires the

computation of�Rs�
2. It appeared that, compared to the estimation

of the orthogonal terms in Eqs. (22) and (23), the calculation of

�Rs�
2 requires considerably more computation time.
Results

The sum of KP model was applied to evoked response MEG

data sets of three different kinds: Somatosensory Evoked Field

(SEF) (4 subjects), Visual Evoked Field (VEF) (3 subjects), and

Auditory Evoked Field (AEF) data (3 subjects). First, for each

data set considered, the average signal over trials was subtracted

to obtain the MEG residuals and an offset correction over one

alpha period was applied. The alpha period was obtained from

the frequency spectrum of the raw data. The offset correction

over one alpha period is optimal to reduce the introduction of

nonstationarities in the temporal covariance due to alpha

background activity, as explained in Bijma et al. (2003) (single

KP model) and Appendix A.4 (sum KP model). After the first

KP was estimated using Eqs. (10) and (11), the second KP was

found from the iterative system in Eqs. (22) and (23). Then, the
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relative matrix power explained by the first two KP terms was

calculated according to Eq. (21). To find the optimal values for

a , b , c , and d, a global search was performed for a

spatiotemporally downsampled data set. This reduced data set

was obtained by downsampling both in space and in time to

approximately 30 time samples and 30 sensors. The so-obtained

optimal values for a, b, c, and d were used to rewrite the

original data set. Finally, the relative matrix power explained by

the rewritten terms was computed according to Eq. (43).

Table 1 presents the resulting power distributions of both the

orthogonally estimated and the rewritten sum of two KP as well

as the values for a, b, c, and d for all data sets in this study. This

table shows that the first KP describes between 62% and 91%

power of the sample covariance matrix, and the second term

between 1% and 12%. Rewriting the first two terms into two

positive semi-definite terms only reduces the total amount of

explained matrix power by a negligible amount (less than 1.4%).

As can be seen from Table 1, the power distribution over the

rewritten terms varies over subjects and data types. These values

are directly related to the varying values for a, b, c, and d. In the

global search over a, b, c, and d for the downsampled data sets, it

appeared that the cost function contains several local minima that

are very close to the global minimum in cost value. Apparently,

rewriting the sum is not very sensitive to (small) changes in a, b,

c, and d.

Table 2 contains the positivity percentages of the temporal and

spatial matrices for all data sets. By positivity percentages, the

relative matrix power explained by the positive eigenvalues of

matrix is meant. The first orthogonally estimated term is always

positive definite, and therefore the entries of the first two

columns, X01 and T01, all equal 100%. The third and fourth

columns contain the positivity percentages of the matrices in the

second KP of the orthogonally estimated sum. Clearly, these

matrices are far from positive definite, and can be even mainly

negative (e.g., subject 5 VEF). After rewriting, all four matrices

(XR1, TR1, XR2, and TR2) are well-nigh or completely positive

definite. Subject 5 VEF is the only case showing positivity

percentages below 95%. This table reveals the effect of rewriting

in terms of interpretability: before rewriting, the second term does

not possess interpretability as a covariance matrix, while after

rewriting, both terms can be interpreted as covariance matrices.

Namely, the rewritten matrices are slightly singular – their small
Table 1

The power distribution in the orthogonally estimated sum and in the rewritten su

S TW BPF 01 02 0 a

1SEF 574 None 84.79 3.10 87.89 1.30

2SEF 574 None 71.82 11.98 83.80 1.00

3SEF 574 None 77.66 5.80 83.46 0.90

4SEF 574 None 86.63 1.16 87.79 1.30

5VEF 480 0–50 86.36 2.71 89.07 0.85

6VEF 480 0–50 90.77 1.58 92.35 1.15

7VEF 480 0–50 90.67 2.25 92.92 0.95

8AEF 480 None 62.12 5.16 67.28 0.60

9AEF 480 None 77.10 10.35 87.45 1.10

10AEF 480 None 78.25 7.02 85.28 1.00

The first column (S) denotes the subject and the kind of data (SEF/VEF/AEF), T

band pass filtering is stated in the BPF column. 01 (02) denotes the relative matri

estimated term and 0 is the sum of 01 and 02. The columns ADD and AL denote th

widespread background activity, and AL the alpha activity. RS is the sum of ADD

c, and d are the values used for rewriting the sum.
negative parts were set to zero – and this singularity can be

interpreted as a light linear dependency among the signals.

For one data set of each kind (SEF, VEF, AEF), the results are

illustrated here. In Figs. 2–4 the temporal matrices of the three data

sets are shown. The visualization of the temporal covariance

matrices is through plotting the entries of the matrix in color. In

order to plot a temporal covariance matrix, the entries are scaled

such that the entry that is largest in absolute value equals 1 or �1.

The color scale used for these covariance plots is presented in Fig.

5. As with usual printing of matrices, all entries are arranged in a

square, and instead of values, corresponding colors are plotted.

Nonstationarities and oscillations in the temporal domain can now

easily be detected: a stationary temporal covariance matrix has a

constant value (color) along its (sub-)diagonals and oscillations in

the covariance are reflected by a line pattern parallel to the

diagonal. Figs. 2 and 4 show in panels (A) and (B) (the orthogonal

terms) a clear oscillation in the covariance. The frequency of this

oscillation is approximately 10 Hz; hence, this oscillation shows

the alpha activity in the background noise. As expected, these

matrices are not purely oscillatory, that is, more noise features are

present besides alpha activity. In rewriting the terms, the different

noise characteristics of the orthogonally estimated terms are

rearranged such that the cost function in Eq. (39) is minimum. It

appears that after rewriting, the alpha activity is contained mainly

in the second term, while most of the remaining activity is gathered

in the first rewritten term. Note that the cost function in Eq. (39) is

not frequency specific. For the VEF data set, presented in Fig. 3,

alpha oscillations in the orthogonal terms are much smaller and are

mainly visible in the second term, panel (B). Nonetheless, after

rewriting, no alpha activity is visible in the first term, whereas the

second term mainly consists of alpha activity.

Regarding the nonstationarities, Figs. 2–4 show predominantly

stationary temporal matrices. However, some nonstationary pat-

terns can be detected; that is, the color along the (sub-)diagonal

varies somewhat. The main nonstationarity that can be seen from

the color plots is the increase along the diagonal and the sub-

diagonals. This is the common consequence of the offset correction

over the pre-stimulus interval, which artificially pulls the (co)vari-

ance over that time window towards zero (Bijma et al., 2003).

Further nonstationarities generally occur in the second orthogonal

component (panel (B)), and in one or both rewritten terms. These

nonstationarities may be caused by beta activity for which the
m of 2 KP for all data sets in the study

b c d ADD AL RS DIF

�0.20 1.43 0.55 59.46 27.47 86.93 0.96

�0.70 0.79 0.45 38.63 44.79 83.42 0.38

�0.55 1.00 0.50 37.18 45.05 82.23 1.23

�0.15 1.03 0.65 72.88 14.76 87.64 0.15

�0.20 0.96 0.95 68.13 19.59 87.72 1.34

�0.10 0.80 0.80 83.41 8.92 92.33 0.02

�0.10 0.98 0.95 81.96 10.99 92.90 0.02

�0.20 2.15 0.95 37.51 29.71 67.22 0.06

�0.05 0.20 0.90 76.00 11.25 87.26 0.19

�0.15 0.67 0.90 70.87 14.36 85.23 0.05

W indicates the length of the time window analyzed in milliseconds. Used

x power of the sample covariance matrix in the first (second) orthogonally

e relative matrix power explained by the rewritten terms, ADD indicates the

and AL. DIF is the difference between 0 and RS. The given values for a, b
,



Table 2

The positivity percentages of the matrices in both terms in the orthogonally estimated sum and in the rewritten sum

S X01 T01 X02 T02 XR1 TR1 XR2 TR2

1SEF 100.00 100.00 51.97 74.50 100.00 98.38 100.00 99.75

2SEF 100.00 100.00 52.31 71.40 99.77 99.07 100.00 100.00

3SEF 100.00 100.00 64.49 84.89 98.43 97.12 100.00 100.00

4SEF 100.00 100.00 39.91 66.61 100.00 100.00 97.70 99.77

5VEF 100.00 100.00 38.29 20.98 100.00 100.00 94.36 91.38

6VEF 100.00 100.00 67.93 87.02 100.00 100.00 99.68 99.80

7VEF 100.00 100.00 78.28 91.02 100.00 99.97 99.98 100.00

8AEF 100.00 100.00 54.61 63.48 100.00 99.82 99.99 99.99

9AEF 100.00 100.00 91.51 96.39 100.00 100.00 99.00 99.14

10AEF 100.00 100.00 70.68 86.82 100.00 100.00 99.67 99.85

The positivity percentage of a matrix equals the relative matrix power that is accounted for by the positive eigenvalues of that matrix. The first column indicates

the subject. Columns X01 (X02) and T01 (T02) show the percentages of the spatial and temporal matrices in the first (second) term of the orthogonally

estimated sum of 2 KP. All entries in the X01 and T01 column equal 100% because the first orthogonal term is positive definite. The positivity percentages after

rewriting are given in the columns XR1 (XR2) and TR1 (TR2) for the spatial and temporal matrices in both rewritten terms.
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offset correction window is not optimal. The relative matrix power

corresponding to these nonstationarities is very small in compar-

ison to that of the alpha activity. Namely, this feature only occurs in
Fig. 2. Estimated temporal matrices in the 2SEF data set. Frames A and B show th

and D show the first two temporal matrices of the rewritten sum of two matrices. T

color. The percentages show the relative matrix power of the sample covariance ma

Second term in orthogonal sum (12.0%). (C) First term in rewritten sum (38.6%)
the second orthogonal term, and the power in this second

orthogonal term is much smaller than the power of the first.

Moreover, the second orthogonal term is still mainly stationary.
e first two temporal matrices of the orthogonally estimated terms, frames C

he time scale is 574 ms by 574 ms. The entries of the matrices are plotted in

trix explained by the KP term. (A) First term in orthogonal sum (71.8%). (B)

. (D) Second term in rewritten sum (44.8%).



Fig. 3. Estimated temporal matrices in the 7VEF data set. Frames A and B show the first two temporal matrices of the orthogonally estimated terms, frames C

and D show the first two temporal matrices of the rewritten sum of two matrices. The time scale is 478 ms by 478 ms. The entries of the matrices are plotted in

color. The percentages show the relative matrix power of the sample covariance matrix explained by the KP term. (A) First term in orthogonal sum (90.7%). (B)

Second term in orthogonal sum (2.2%). (C) First term in rewritten sum (81.9%). (D) Second term in rewritten sum (11.0%).
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The rewritten spatial variances of these three data sets are

presented in Figs. 6–8. The spatial covariance matrices are

visualized by projecting the variance (the diagonal of the matrix)

in color scale on the MEG helmet. For all data sets, the second

term, corresponding to the alpha pattern in the temporal matrix,

shows a focal highlighted area in the parieto-occipital area. The

spatial distribution of the first term is more widespread, though

tends to be more in the temporal region.

In sum, minimizing the cost function in Eq. (39) yields two

rewritten KP terms, each of which describes a distinct process in the

background activity. The first rewritten term describes a rather

widespread, not frequency-specific process, while the second term

describes the focal alpha activity with its characteristic 10 Hz

frequency.
Discussion

The sum of Kronecker products provides a general model for

the spatiotemporal covariance matrix of MEG residuals. Different

terms in the sum can describe different, independent phenomena in
the ongoing background activity, each of which has its own

temporal and spatial characteristics. These processes can be

interpreted as generated by randomly distributed dipoles with a

certain spatial and temporal distribution. This way, the sum model

solves the rigidness drawback of the single KP model. Theoret-

ically, when enough terms are taken into account, the sum

describes the sample covariance matrix exactly.

The first aim of this study is the validation of the single KP

model for dipole localization in terms of accuracy. In practice, it

occurred that the first KP term describes roughly between 62% and

91% of the sample covariance matrix and the second between 1%

and 12%, whereas the sum of 2 KP explains between 67% and

93%. The higher the order of the term, the smaller the amount of

explained power. Therefore, taking into account more than 1 KP

term in the localization is not expected to yield a major

improvement. Namely, the common practice to neglect all the

correlations, i.e., both in space and in time, yields an acceptable

accuracy at high signal-to-noise ratio. This accuracy is enhanced

by taking into account the spatial correlations only, and a further

improvement is achieved when the spatiotemporal covariance, the

first KP term, is taken into account (de Munck et al., 2002).



Fig. 4. Estimated temporal matrices in the 10AEF data set. Frames A and B show the first two temporal matrices of the orthogonally estimated terms, frames C

and D show the first two temporal matrices of the rewritten sum of two matrices. The time scale is 318 ms by 318 ms. The entries of the matrices are plotted in

color. The percentages show the relative matrix power of the sample covariance matrix explained by the KP term. (A) First term in orthogonal sum (78.3%). (B)

Second term in orthogonal sum (7.0%). (C) First term in rewritten sum (70.9%). (D) Second term in rewritten sum (14.4%).
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Considering the matrix power explained already by the first term,

the second and higher-order terms are not expected to enhance the

localization accuracy considerably (see Table 1). To improve the

source localization further, the emphasis should be on improving

the source model, which is likely to be more beneficial. This

indicates that the existing covariance model for source localization,

the single KP, is adequate.

Nevertheless, the estimated sum of KP contains interesting

physiological information, which is the second goal of the present

study. There are two aspects regarding this aim: the separation

between alpha activity and the remainder, and nonstationarities.

For all subjects, the two terms of the rewritten sum show one term
Fig. 5. The color scale used in Figs. 2–4. White indicates zero, purple is

positive, red is negative.
corresponding to alpha activity and the other to additional noise. It

is emphasized that this separation comes forth by minimizing the

cost function in Eq. (39) and is not caused by an a priori,

frequency-specific constraint. The alpha term is characterized by

frequency-specific (10 Hz) temporal features and a focal parieto-

occipital pattern in space. The additional term shows more

widespread characteristics, both in space and in time: there is no

frequency-specific character in time and the spatial distribution is

widespread, though seems to be enhanced in the temporal region.

The power distribution over the rewritten terms in Table 1 suggests

that the VEF data sets contain less alpha background activity than

the SEF and AEF data. This can be interpreted in line with the

discussion in the literature about whether the visual stimulus resets

the phase of the spontaneous alpha rhythm (e.g., Brandt, 1997;

Klimesch et al., 2004; Kolev et al., 1997; Makeig et al., 2002). If

this is true, subtracting the average includes subtracting a major

amount of alpha activity and less alpha activity will remain in the

MEG residuals. Nevertheless, for all subjects, including the VEF

subjects, separation between the alpha activity and the additional

activity is striking, although the entireness of the separation varies

slightly over subjects. This separation can be interpreted in line



Fig. 6. Rewritten spatial variances in the 2SEF data set. The diagonal entries of the spatial covariance matrix, the variances, are plotted in color on the MEG

helmet. Only the left side of the helmet is shown, the right side is similar. (A) First term in rewritten sum. (B) Second term in rewritten sum.
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with the Poisson Modulated Alpha Model (Bijma et al., 2003),

which models the background activity in the temporal domain as a

sum of alpha activity and additional random activity.

In fact, the underlying noise model of the sum model

consisting of N Kronecker products, is a model that describes

the noise as the sum of N independent random dipole processes

(Grasman, 2004):

e
i; j
k ¼

XN
n ¼ 1

XPn

p ¼ 1

C fk;n
� �

ip
S
k;n
pj : ð44Þ

Each of these processes consists of Pn randomly distributed

dipoles with source parameters fk,n = (f1
k,n,. . .,fPn

k,n) and forward

fields C(fk,n). The corresponding source time function of each

dipole p, Spj
k,n, is assumed to be independent of the location and

orientation in fp
k,n, and of the source time functions at other

locations pV. This assumption leads to a Kronecker product structure

in the spatiotemporal covariance of the n th process,

Tn � Xn, as shown in de Munck et al. (1992). The composite of

N such independent processes then has a sum of N Kronecker

products as covariance structure, because the sum of independent

Gaussian variables again has the normal distribution. Each of these

processes presents an ongoing process in the brain, for example,

alpha activity, pathological theta activity, or beta waves. The entire

sum in Eq. (44) may be interpreted as the so-called resting state

network (Greicius et al., 2003; Raichle et al., 2001). The present

study, separating only two processes in the background noise,

detects an alpha process and an additional process which is likely
Fig. 7. Rewritten spatial variances in the 7VEF data set. The diagonal entries of

helmet. Only left side of the helmet is shown, the right side is similar. (A) First
to be a collection of many small processes. Ideally, one would wish

to estimate all parameters of this noise model, e.g., the numbers N

and Pn, the distribution of the source parameters fk,n and the N

Kronecker products. In practice, though, this estimation is

hampered by the need for a nonconventional amount of computer

power and the large number of (nonlinear) parameters. Therefore,

simplifying assumptions need to be made in the practical

estimation, e.g., fitting the sum of two KP to the sample covariance

matrix as in the present study.

The second aspect of physiological information is about the

temporal nonstationarities. As stated in the Introduction, the

temporal covariance matrices will contain nonstationarities when

the SPN model is assumed incorrectly. However, in the presented

results, the temporal matrices are mainly stationary. The most

apparent nonstationarity is the increase along the (sub-)diagonals,

caused by the offset correction. Furthermore, along the diagonal,

one can see small oscillations, reflected in the colored bands

having varying width. After rewriting the sum, these small

oscillations are mainly visible in the alpha term (Figs. 2–4). A

possible explanation for these oscillations again lies in the offset

correction: for oscillatory background activity with the beta

frequency, the offset correction window of one alpha period is

not optimal and will introduce a small oscillation along the

diagonal and sub-diagonals (Bijma et al., 2003). Further non-

stationarities that indicate real trial-to-trial variabilities are very

limited in the color plots. Despite the minor role of these real

nonstationarities in terms of matrix power, the present study does

not disapprove their existence.
spatial covariance matrix, the variances, are plotted in color on the MEG

term in rewritten sum. (B) Second term in rewritten sum.



Fig. 8. Rewritten spatial variances in the 10AEF data set. The diagonal entries of the spatial covariance matrix, the variances, are plotted in color on the MEG

helmet. Only the right side of the helmet is shown, the left side is similar. (A) First term in rewritten sum. (B) Second term in rewritten sum. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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In sum, it appears from the distribution of explained matrix

power that it is unlikely that dipole localization will improve

considerably by adding more terms to the single KP noise model.

Secondly, rewriting the sum of two KP suggests that the noise

consists of a focal parieto-occipital alpha part and a more

widespread noise part. And finally, nonstationarities due to real

trial-to-trial variations in this study appeared to be very limited in

terms of matrix power. In a forthcoming study, the possibilities of

modeling the generators of these two noise parts will be

investigated and an explanation for the small nonstationarities will

be sought.
Appendix A

A.1. Estimating a single Kronecker product

In this appendix, expressions for the LS estimators of X and T

in the single KP model are derived. The LS cost function can be

written as:

kRs � T � Xk2 ¼ tr RsR
t
s

� �
þ tr T 2

� �
tr X 2
� �

� 2
1

K � 1
~
K

k ¼ 1

tr EkTE
t
kX

� �
: ð45Þ

The optimal X and T are found by differentiating Eq. (45) and

subsequently equating the first derivative to zero. Differentiation

with respect to matrices is performed according to the rules derived

in Magnus and Neudecker (1995). For X, this yields

dX kRs�T � Xk2 ¼ 2tr T 2
� �

tr X dXð Þ�2
1

K�1

XK
k ¼ 1

tr EkTE
t
kdX

� �

¼ 2tr tr Tð Þ2X � 1

K�1

XK
k ¼ 1

EkTE
t
k

" #
dX

 !
¼ 0

`tr Tð Þ2X � 1

K � 1

XK
k ¼ 1

EkTE
t
k ¼ 0 ð46Þ

Rewriting this equation yields Eq. (10) as LS estimator for X and a

similar derivation yields Eq. (11) for T.
A.2. Van Loan’s shuffle operator

The shuffle operator S is defined by

vec  S ¼ IJ � KJ ;I � II
� �

 vec; ð47Þ

where the composition operator  is defined as (L1  L2) A =

L1(L2(A)) and Kp;q; : R
1 � pq ! R

1 � qp is the general commutation

matrix (Magnus and Neudecker, 1995):

Kp;q vec Að Þð Þ ¼ vec Atð Þ ð48Þ

for any matrix A a R
p � q. To see. Eq. (47), the following equality

from (Magnus and Neudecker, 1995) is used

In � Km;q � Ip
� �

vec A � Bð Þ ¼ vec Að Þ � vec Bð Þ: ð49Þ

for any A a R
m � n and any B a R

p � q. Applying this equality

with A = T and B = X and using

vec vec Xnð Þvec Tnð Þt
� �

¼ vec Tnð Þ � vec Xnð Þ ð50Þ

one arrives at Eq. (47). Applying Eq. (47) to Eq. (6) and

successively applying Eqs. (50) and (49) yields the formula for

the shuffled sample covariance, S(Rs), in Eq. (16).

A.3. The LS estimators for the higher-order terms in the sum of KP

In this appendix, the LS estimators for the higher-order terms in

the sum of KP model are derived. The pth order term is estimated

after the terms 1,. . ., p � 1 have been estimated. Estimation of the

pth term is by differentiation of the cost function in Eq. (13) and

applying Lagrange multiplication (Marsden and Tromba, 1988).

Abbreviate

xn ¼ vec Xnð Þ ð51Þ

tn ¼ vec Tnð Þ: ð52Þ

Suppose the first p � 1 terms have been estimated, where the

normalization is chosen such that �xn�
2 = 1 for n = 1,. . ., p � 1.
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The cost function for the pth term is then

jj S Rsð Þ �
XP� 1

n ¼ 1

xnt
t
n

" #
� xpt

t
pjj2 ¼ kSp�1 � xpt

t
pk

2

¼ tr St
p � 1Sp � 1 � 2St

p � 1xpt
t
p þ tpx

t
pxpt

t
p

� �
; ð53Þ

where

Sp �1¼ S Rsð Þ �
XP � 1

n ¼1

xnt
t
n: ð54Þ

In other words, the pth term is the best rank-one approximation

to Sp �1. Considering Eqs. (19) and (20), this minimization is

subject to

xtnxp ¼ 0 for 1V nV p� 1 ð55Þ

ttntp ¼ 0 for 1� 02� Q� 1 ð56Þ

The derivative of Eq. (53) with respect to xp is given by

tr � 2St
p � 1dxpt

t
p þ tpdx

t
pxpt

t
p þ tpx

t
pdxpt

t
p

� �
¼ 2tr � t tpSt

p � 1 þ ttptpx
t
p

� �
dxp

� �
ð57Þ

and, similarly, with respect to tp

2tr � xtpSp � 1 þ xtpxpt
t
p

� �
dtp

� �
: ð58Þ

The derivatives of the constraints in Eqs. (55) and (56) are

xtndxp ¼ 0 for 1V nV p� 1 ð59Þ

ttndtp ¼ 0 for 1V n V p� 1 ð60Þ

The method of Lagrange multiplication now yields the

following system of equations

xtnxp ¼ 0 a R for 1V nV p� 1 ð61Þ

ttntp ¼ 0 a R for 1V nV p� 1 ð62Þ

� Sp � 1tp þ ttptpxp þ
XP � 1

n ¼ 1

knxn ¼ 0 a R
I2 � 1 ð63Þ

� St
p � 1xp þ xtpxptp þ

XP � 1

n ¼ 1

lntn ¼ 0 a R
J 2 � 1 ð64Þ

which has to be solved for xp, tp, kl,. . ., kp � l and l1,. . ., lp � 1.

The solution for km, m = 1,. . ., p � 1, follows from the inner

product of xm and the vectors in Eq. (63):

� xtmSp � 1tp þ xtmt
t
ptpxp þ

XP � 1

n ¼ 1

knx
t
mxn ¼ 0

` km ¼ 1

xtmxm
xtmSp � 1tp ¼ xtmSp � 1tp: ð65Þ
Likewise, solving the inner product of tm and the vectors in Eq.

(64) for lm yields

lm ¼
ttmSt

p � 1xp

ttmtm
: ð66Þ

Substituting Eq. (65) into Eq. (63) and using Eqs. (54) and (62)

yields

0 ¼ �Sp � 1tp þ ttptpxp þ
XP � 1

n ¼ 1

xtnSp�1tpxn

¼ � Sp � 1tp þ ttptpxp þ
XP � 1

n ¼ 1

xnx
t
n

 !
Sp � 1tp

` ¼ 1

ttptp
II2 �

XP � 1

n ¼ 1

xnx
t
n

" #
Sp � 1tp

¼ 1

ttptp
II2 �

XP � 1

n ¼ 1

xnx
t
n

#"
S Rsð Þtp ð67Þ

where the last simplification follows from the constraints in Eq.

(56). Similarly, Eq. (66) substituted into Eq. (64) together with Eqs.

(54), (55), and (61) yield

0 ¼ �St
p � 1xp þ xtpxptp þ

Xp � 1

n ¼ 1

ttnSt
p � 1xp

ttntn
tn

¼ St
p � 1xp þ xtpxptp þ

Xp � 1

n ¼ 1

tnt
t
n

ttntn

! 
St
p � 1xp

` tp ¼ 1

xtpxp
IJ 2 �

Xp�1

n¼1

tnt
t
n

ttntn

#"
St
p � 1xp

¼ 1

xtpxp
IJ 2 �

Xp � 1

n ¼ 1

tnt
t
n

ttntn

#"
S Rsð Þð Þtxp: ð68Þ

Eqs. (67) and (68) are solved iteratively and the normalization

is chosen such that �xp�
2 = 1.

Note that a closed form expression for the estimators can be

obtained by substituting Eq. (68) in Eq. (67):

xp ¼ 1

ttptp
II2 �

XP � 1

n ¼ 1

xnx
t
n

#"
S Rsð Þ IJ 2 �

Xp � 1

n ¼ 1

tnt
t
n

ttntn

#"
S Rsð Þð Þtxp;

ð69Þ

showing that xp is an eigenvector of the I2 � I2 matrix

II2 �
XP � 1

n ¼ 1

xnx
t
n

#"
S Rsð Þ IJ 2 �

Xp � 1

n ¼ 1

tnt
t
n

ttntn

#"
S Rsð Þð Þt; ð70Þ

corresponding to the largest eigenvalue in order to minimize Eq.

(53). Computing eigenvalues and eigenvectors of this I2 � I2

matrix is, like computing the SVD of S(As), in practice not

convenient.
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Finally, expressions for the iterative estimators for the matrices

Xp and Tp are derived from Eqs. (16), (67), and (68).

vec Xp

� �
¼ 1

K � 1ð ÞNTpN2
F

XK
k ¼ 1

II2 �
Xp � 1

n ¼ 1

vec Xnð Þ vec Xnð Þð Þt
#"

� Ek � Ekð Þvec Tp
� �

¼ 1

K � 1ð ÞNTpN2

F

XK
k ¼ 1

II2 �
Xp � 1

n ¼ 1

vec Xnð Þ vec Xnð Þð Þt
#"

� vec EkTpE
t
k

� �

¼ 1

K � 1ð ÞNTpN2
F

XK
k ¼ 1

"
vec EkTpE

t
k

� �

�
Xp � 1

n ¼ 1

vec Xnð Þ vec Xnð Þð Þtvec EkTpE
t
k

� �#

¼ 1

K � 1ð ÞNTpN2
F

XK
k¼1

"
vec EkTpE

t
k

� �

�
Xp�1

n¼1

tr XnEkTpE
t
k

� �
vec Xnð Þ

#
ð71Þ

This yields Eq. (22) and a similar calculation yields Eq. (23).

A.4. Offset correction in case of multiple KP

The expression for the offset corrected residual is

ĕe
i; j
k ¼ e

i; j
k � 1

L

XL
l¼1

e
i; jl
k ð72Þ

where ( j1,. . ., jL) denotes the time window over which the

correction is performed. In Bijma et al. (2003), an expression is

derived for the temporal covariance matrix of the corrected

residuals, denoted here by Tc, for the single KP model (R = T �
X) in terms of the covariance matrix of the uncorrected residuals,

T:

Tc
j; j V ¼ Tj; j V �

1

L

XL
l ¼ 1

Tjl ; j V �
1

L

XL
m¼ 1

Tj; jm

þ l

L2

XL
l¼1

XL
m¼1

Tjl; jm: ð73Þ

For the sum of KP model, A = ~ Tn � Xn, the covariance

between two uncorrected residuals, ek
i,j and ek V

iV, jV, is

e e
i; j
k ; eiV; jVkV

� �
¼ dk;kV

XN
n¼1

Xnð Þi;iV Tnð Þj; j V: ð74Þ

Applying the offset correction of Eq. (72) to the residuals in Eq.

(74), one can derive the covariance matrix of the corrected

residuals in the case of the sum of KP. Straightforward calculating
shows that each temporal matrix in this sum is altered according to

Eq. (73).
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