
IND IV IDUAL SYSTEMS 
PRACTICAL

HTTPictionary: A Real-Time Canvas Webapp

Leonidas Diamantis

VU University 2013

Individual Systems Practical: Real-Time Canvas
 1

Individual Systems Practical: Real-Time Canvas
 1



TABLE OF CONTENTS
Introduction
 3

The concept
 3

Technology
 4

Node.js
 4

Express.js
 4

Socket.io
 7

Jade
 10

jQuery
 11

Bootstrap
 12

Heroku
 13

Future work
 15

Real-time collaborative games
 15

WebRTC
 15

Streaming APIs
 16

Conclusion
 16

Individual Systems Practical: Real-Time Canvas
 2

Individual Systems Practical: Real-Time Canvas
 2



Introduction
This report is describing the project for the Individual Systems Practical course, titled 

HTTPictionary: A Real-Time Canvas Webapp. For this project, I tried to create a web ap-

plication where the users connected to it would be able to communicate and exchange 

various types of information with each other in real time. To demonstrate my work & re-

search, I implemented a real-time, web-based canvas game. 

The structure of this report goes as follows: first, I give a brief description about the con-

cept of the application we created. I continue with some details about the different tech-

nology components I used to implement it. I provide some future work insight on the next 

section, and I finish the report with some conclusions about my work and what I gained 

from it.

The concept
The motivation for this assignment initially derived from the fact that nowadays, with the 

new features HTML5 provides such as WebSockets, it is possible for users to exchange 

information with each other in real-time, without having to care about platforms or plugins 

or browser types (under the honest assumption that browsers do their best to support the 

new technologies).

With the above thought in mind, I wondered whether it is possible for users to exchange 

visual information among other types. So I decided to create an simple web-based appli-

cation to prove that this is actually possible.

For the scope of this assignment, I built a real time communication interface on top of a 

minimal, web-based implementation of the Pictionary game, where the players will be in-

teracting with each other by means of a HTML5 canvas. The game includes two types of 

roles: the drawer, who is the one responsible to draw in their canvas the word or phrase 

that the team must find, and the guesser, who observes the canvas and tries to guess 

what it is the team is looking for. However, the game works in such way that the drawer 

and the guesser(s) can be in different places, and through this real-time interface the 

guesser is able to see what the drawer is painting at the very time when this is happening.

The game supports multiple guessers at a time, and only one drawer. Furthermore, as a 

scoping matter, the game works as a “single room” application for the time being, meaning 

that there can only be one team (one drawer and multiple guessers) playing at a time. 

However this is a game-specific issue which, by not being implemented, does not harm 

Individual Systems Practical: Real-Time Canvas
 3

Individual Systems Practical: Real-Time Canvas
 3

http://en.wikipedia.org/wiki/Pictionary
http://en.wikipedia.org/wiki/Pictionary


the purpose of this assignment. Of course it is subject for further development, given that 

this application is extended to actually implement the full feature set of Pictionary.

Technology
This section explains the technologies which were used to build the stack of the applica-

tion, their characteristics and what part each of them played in the development process.

Node.js
Node.js is a system which makes it possible to develop server-side software with JavaS-

cript, along with all the features JavaScript provides. Such features include efficient non-

blocking I/O, asynchronous communication (with the server system itself or through the 

network), prototyping and easy event-driven development. It is a packaged compilation of 

Google’s V8 Javascript Engine.

Despite the fact that it is a very “young” project, Node has already drew much attention 

with its feature set and capabilities, and a large community is built around it with projects 

that contribute to low and high levels of the stack that has been introduced by Node.

Node.js was the backbone of the real-time canvas application. The complete server-side 

implementation is written in JavaScript and in Node’s notation, and is run as a Node appli-

cation. All HTTP request & response handling, routing, I/O & event handling was made by 

means of modules implemented on top of Node.js. More information about each individual 

tool & module will follow in this section.

Express.js
Express.js is a web application framework, tightly paired to Node.js. It offers a large num-

ber of features for building web applications, both in the server-side and the client-side. It 

embeds the middleware set of Connect.js, thus providing with infrastructure for building 

routes for the web application, logging, query-string parsing, defining paths for static files 

etc. An example of the usage of such middleware is demonstrated at Figure 1. Additionally, 

Express.js integrates with front-end template engines (such as Jade & EJS) for rendering 

the views of the web application and takes care of data exchange among the files which 

resemble the source code of the app.

Individual Systems Practical: Real-Time Canvas
 4

Individual Systems Practical: Real-Time Canvas
 4

http://nodejs.org
http://nodejs.org
http://en.wikipedia.org/wiki/V8_(JavaScript_engine)
http://en.wikipedia.org/wiki/V8_(JavaScript_engine)
http://expressjs.com/
http://expressjs.com/
http://www.senchalabs.org/connect/
http://www.senchalabs.org/connect/
http://jade-lang.com
http://jade-lang.com
http://embeddedjs.com/
http://embeddedjs.com/


Figure 1: Using Express.js middleware, powered by Connect.js

Express also runs as a Node package, and upon its first execution it creates the project 

structure and the dependencies file, called package.json. An example of a project structure 

created by Express and the package.json of the real-time canvas app are available in Fig-

ures 2 & 3.

Figure 2: The default structure of a Express.js project

Individual Systems Practical: Real-Time Canvas
 5

Individual Systems Practical: Real-Time Canvas
 5



Figure 3: Express.js dependency file package.json

For the real-time canvas app, the same structure was used as the one demonstrated in 

Figure 2. In detail, the structure is as follows:

• app.js: the root server-side file, the one which is run by Node and puts the server in the 

“up and running” state

• package.json: the file which defines the dependencies of the project, so that Node 

knows what packages need to be present and compiled before running the app

• node_modules/: the directory which contains the compiled dependencies of the app, as 

defined in the package.json file

• public/javascripts/: the directory which contains the client-side scripts which are used by 

the drawer, the guesser and the index pages for event handling, DOM manipulation and 

drawing on the canvas component

• public/stylesheets/: the directory which stores the CSS files for styling the pages of the 

application

• routes/: the directory which contains the respective routes for the drawer, the guesser 

and the index pages. Each route is responsible for setting any page specific variables 

which will be used by the view before rendering the view itself. An example of the drawer 

route is demonstrated in Figure 4.

• views/: the directory which contains the respective view files for the drawer, the guesser 

and the index page, that are rendered in the browser

Individual Systems Practical: Real-Time Canvas
 6

Individual Systems Practical: Real-Time Canvas
 6



Figure 4: How the routes/drawer.js file renders the drawer view, and how it returns a new word

It is clear that Express brings a set robust features to the developer and a clean & intuitive 

structure to the project, with minimal overhead and efficient modules.

Socket.io
Socket.io is a JavaScript library for realtime web applications. It has two parts: a client-side 

library that runs in the browser, and a server-side library for Node.js. Both components 

have a nearly identical API. Like node.js, it is event-driven.

Socket.IO primarily uses the WebSocket protocol, but if needed can fallback on multiple 

other methods, such as Adobe Flash sockets, JSONP polling, and AJAX long polling, 

while continuing to provide the same interface. Although it can be used as simply a wrap-

per for WebSocket, it provides many more features, including broadcasting to multiple 

sockets, storing data associated with each client, and asynchronous I/O.

Socket.io is what makes communication possible in this real-time canvas application, and 

consumes the biggest part of logic and handling in the server-side code of the app. The 

general architecture of the event mechanism is the following:

• When a guesser wants to interact with the drawer, they fire up (emit) a socket event to 

the server. The server has handlers attached to the socket for that particular event, and 

propagates the communication action of the guesser to the drawer, as illustrated in Fig-

ure 5.

• The drawer, in contrast to the guessers, needs to let all the guessers know of their ac-

tions. Thus, when the drawer performs an action, a socket event is fired to the server 

and the respective server-side handler for that event is responsible for broadcasting all 

relevant information about that particular action the drawer wants to broadcast. Figure 6 

shows what this scheme looks like.

Individual Systems Practical: Real-Time Canvas
 7

Individual Systems Practical: Real-Time Canvas
 7

http://socket.io/
http://socket.io/
http://en.wikipedia.org/wiki/WebSocket
http://en.wikipedia.org/wiki/WebSocket


Figure 5: An action from the guesser to the drawer via the server

Figure 6: An action from the drawer being broadcasted by the server to all the guessers

Individual Systems Practical: Real-Time Canvas
 8

Individual Systems Practical: Real-Time Canvas
 8



Several events where defined for this application, and each one is handled in a different 

way in the server and the client side. These events are:

• drawerconnected: emitted when a user with the drawer role is connected to the system. 

In this case the server stores the socket id of this user for future end-to-end communica-

tion.

• drawingaction: emitted when the drawer is drawing on their canvas. The server handles 

this event by collecting the relevant information of the drawing action (action type and 

coordinates) and broadcasts that data to all the guessers.

• passiveDraw: used by the server to notify the guessers that there is a drawing action tak-

ing place, carrying specific data. On the client side, the guessers listen in their sockets 

for that event and they handle it by passively drawing on their canvas based on the data 

they receive by the server.

• clearcanvasaction: fired up when the drawer clicks their ”clear canvas” button. The 

server handles this by broadcasting a “clearcanvasaction” command to all the guessers 

and the guessers handle that event by passively clearing up their canvas.

• guessaction: emitted by the guesser when they perform a guess about what the drawer 

is drawing. The server handles this by sending the guess data only to the drawer.

• guessinteraction: emitted by the drawer when they interact with an incoming guess by 

rating it. The server handles this event by broadcasting the rating of the drawer to all the 

guessers.

• gamefinished: fired up when the team has found the word they are looking for, and is 

broadcasted to everyone by the server.

• playagain: emitted by any team member when they click the “play again” button. In this 

case, the server performs a check on whether someone else had already requested to 

play again, and if this is not the case then it broadcasts the “playagain” command to all 

connected users.

• pokedrawer: emitted by the guesser when they want to let the drawer know that they are 

waiting for some interaction to one of their guesses. The server handles this event by 

sending the “poke” command to the drawer only, and the drawer raises an alert upon 

arrival of such command.

Individual Systems Practical: Real-Time Canvas
 9

Individual Systems Practical: Real-Time Canvas
 9



• disconnect: fired up automatically when somebody disconnects from the system. The 

server checks then whether the client who disconnects is the drawer, and if this is the 

case it broadcasts a “drawerdisconnected” message to all the guessers.

Socket.io allowed the creation of a flexible communication platform between the con-

nected users, making real-time communication and information exchange in the web a 

relatively easy process, since it took care of all the underlying infrastructure concerning 

networking and socket support. It is the kind of technology that made this project happen 

in the first place.

Jade
Jade is a template engine built for Node, which allows for cleaner development of the 

front-end markup of a website. It is the default template engine that Express.js uses, and it 

works in perfect harmony with the javascript infrastructure created by the framework. More 

specifically, Jade allows inline interpolation of strings which are stored in JavaScript vari-

ables, supports conditional & loop statements, mixins and partials among others. Figure 7 

illustrates how Jade syntax is translated & rendered as HTML.

Figure 7: Jade syntax translated to HTML

For this application, four different Jade views where implemented:

Individual Systems Practical: Real-Time Canvas
 10

Individual Systems Practical: Real-Time Canvas
 10

http://jade-lang.com/
http://jade-lang.com/
http://en.wikipedia.org/wiki/Mixin
http://en.wikipedia.org/wiki/Mixin


• views/layout.jade: the root layout view, where the document type, the <head> part and 

the outer <body> of the document are defined

• views/index.jade: the view of the homepage

• views/drawer.jade: the view of the drawer’s page

• views/guesser.jade: the view of the guesser’s page

Each view contains included files, layout components and content which are specific to 

the nature of the page, for example the drawer’s view requires scripts for drawing in the 

canvas, whereas the guesser’s view requires scripts so that the canvas is being drawn 

passively. Figure 8 shows how part of the index view looks.

The views are rendered from their respective routes, with all relevant local information that 

might concern them. For example, Figure 4 shows how the drawer’s route calls the render 

function to create the drawer’s view, together with its local variables. This call triggers the 

compilation of the Jade template (namely drawer.jade) and it’s rendering to the browser.

Figure 8: Part of index.jade view

jQuery
jQuery is a multi-browser JavaScript library designed to simplify the client-side scripting of 

HTML. jQuery's syntax is designed to make it easier to navigate a document, select DOM 

elements, create animations, handle events, and develop Ajax applications. jQuery also 

provides capabilities for developers to create plug-ins on top of the JavaScript library. This 

enables developers to create abstractions for low-level interaction and animation, ad-

Individual Systems Practical: Real-Time Canvas
 11

Individual Systems Practical: Real-Time Canvas
 11

http://jquery.com/
http://jquery.com/


vanced effects and high-level, theme-able widgets. The modular approach to the jQuery 

library allows the creation of powerful dynamic web pages and web applications.

All the client-side scripting operations in the real-time canvas application were imple-

mented with the use of various jQuery components, either the generic selectors it provides 

or particular plugins built on top of jQuery. Figure 9 shows the client-side initialization func-

tion of the guesser, where the HTML5 canvas and the guessing form are initialized and the 

guesser-specific socket events are defined.

Figure 9: Client-side initialization function of the guesser

Bootstrap
Twitter Bootstrap is a free collection of tools for creating websites and web applications. It 

contains HTML and CSS-based design templates for typography, forms, buttons, charts, 

navigation and other interface components, as well as optional JavaScript extensions.

Bootstrap was used to define the general layout & look-and-feel, the typography and the 

color scheme of the application. Moreover, Bootstrap’s modal plugin was used for the in-

formation pop-ups which appear when opening each page. The modal plugin is based on 

jQuery.

Individual Systems Practical: Real-Time Canvas
 12

Individual Systems Practical: Real-Time Canvas
 12

http://twitter.github.io/bootstrap/
http://twitter.github.io/bootstrap/


Heroku
Heroku is a cloud “platform as a service” (PaaS) supporting several programming lan-

guages. Heroku is one of the first cloud platforms, and when its development began it 

supported only the Ruby programming language, but has since added support for Java, 

Node.js, Scala, Clojure and Python and PHP. The base operating system is Debian or, in 

the newest stack, the Debian-based Ubuntu.

Heroku was used to deploy & host the application demo. The deployment process re-

quires three steps.

The first step is the Heroku-specific configuration of the application. Heroku’s stack does 

not support WebSockets yet, so the application’s sockets need to be configured so that 

they use Ajax long polling for communicating and pushing the events among the con-

nected users. In addition to this, the Socket.io instance of the application needs to be 

specifically configured so that it allows access to the sockets from all origins, to avoid get-

ting 403 Forbidden responses from the Heroku servers. Figure 10 shows how the real-time 

canvas application’s sockets are configured for Heroku servers.

Figure 10: Heroku-specific configuration of sockets

The second step for deployment to Heroku concerns version control. Heroku servers ac-

cept applications which are deployed by means of GIT, so this tool needs to be installed. 

Additionally, Heroku servers have to know which command needs to be executed in order 

for the application to start running. For this purpose, a special file called Procfile needs to 

be created in the root path of the application. This file will contain the command which will 

make the application run once it has been deployed. The necessary command placement 

for this application is shown in Figure 11.

Individual Systems Practical: Real-Time Canvas
 13

Individual Systems Practical: Real-Time Canvas
 13

http://www.heroku.com/
http://www.heroku.com/
http://git-scm.com/
http://git-scm.com/


When all files are ready, a new repository needs to be created as shown in Figure 12. A 

note at this point: the node_modules directory does not have to be included in the reposi-

tory, because it gets created every time the application is built and is usually unnecessarily 

large, which makes deployment slower.

Figure 11: Creating the Procfile and inserting the necessary command to be run once deployed in 
Heroku

Figure 12: Adding all necessary files to the GIT repository

The final step of deployment involves Heroku Toolbelt, a tool which carries all necessary 

command-line binaries to help connecting to Heroku’s platform and deploying the project.

After installing Toolbelt, one needs to navigate to the root directory of the project, login to 

Heroku and create a remote app with the create binary, as shown in Figures 13 & 14. 

Once the remote app (which is actually an empty remote GIT repository) is created, the 

code of the project needs to be pushed to the remote, as shown in Figure 15. After this 

step, the command specified in Procfile is executed, and Heroku determines the type of 

application its dependencies, and proceeds by building the app and making it accessible 

via a URL, which can be defined by the user upon the creation of the remote app.

Figure 13: Logging in at Heroku with Toolbelt 

Individual Systems Practical: Real-Time Canvas
 14

Individual Systems Practical: Real-Time Canvas
 14

https://toolbelt.heroku.com/
https://toolbelt.heroku.com/


Figure 14: Creating a Heroku remote GIt repository

Figure 15: Deploying (pushing) the project to Heroku remote repository

Future work
During my research and implementation, I came across several ideas and concepts of 

web-based solutions that can take advantage of real-time communication and data ex-

change. It is clear that having such an advanced, flexible and interactive way for users to 

communicate with each other can result in equally advanced and interactive user experi-

ence. Below I mention a few of such ideas & concepts.

Real-time collaborative games
Following the same implementation philosophy of my project, all types of collaborative 

games (such as board games, turn-based or concurrently playable) whose rules can be 

implemented through message-passing between the players, can now be implemented in 

the browser, in a native way, without third-party plugins or software required from the 

user's side and with complete transparency of what the nature of the server is.

A good example of this notion is the recent experiment from the developers of Google 

Chrome called Racer, a collaborative game for the mobile version of Chrome which allows 

sharing of the racing track for up to five players.

WebRTC
WebRTC (Web Real-Time Communication) is an API definition being drafted by the 
World Wide Web Consortium (W3C) to enable browser to browser applications for 
voice calling, video chat and P2P file sharing without plugins.

Individual Systems Practical: Real-Time Canvas
 15

Individual Systems Practical: Real-Time Canvas
 15

http://chrome.com/racer
http://chrome.com/racer
http://en.wikipedia.org/wiki/WebRTC
http://en.wikipedia.org/wiki/WebRTC


Given this Node.js - Socket.io - Jade stack (or any other template engine for that mat-
ter), such scenarios become reality and the browser acquires a special position in a 
user’s workflow, replacing P2P, messaging & communication software with native web 
applications which perform just as good as the standalone software we are all using 
nowadays.

Streaming APIs
Real-time platforms & interfaces enforce distribution of information in real time and to mul-

tiple users at once, which is the quintessence of a streaming API. Thus, in a web-based 

real time environment, we have the possibility to implement such API's with a very adminis-

trator friendly and lightweight server infrastructure, capable of handling distribution, con-

currency and data volume issues with good performance.

Conclusion
My research has shown me that real-time communication in the web is a real situation. 

With all these new technologies and tools which solve so many problems that seemed un-

solvable before, we can build systems and applications which would really shift the com-

munication paradigm. Moreover. there is a large community out there full of people who try 

to take this one step further every day, and the results are really impressive. And we must 

not forget that these technologies are still “young” and under development, and the tools 

that provide with all these new possibilities are still under development, so when they be-

come more mature I believe we shall see even more impressive achievements.

Individual Systems Practical: Real-Time Canvas
 16

Individual Systems Practical: Real-Time Canvas
 16


