On adaptive self-organization in artificial robot organisms
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Abstract—Self-organization in natural systems demonstrates
very reliable and scalable collective behavior without usig any
central elements. When providing collective robotic systas
with self-organizing principles, we are facing new problens of
making self-organization purposeful, self-adapting to chnging
environments and faster, in order to meet requirements from
a technical perspective. This paper describes on-going wlor
of creating such an artificial self-organization within artificial
robot organisms, performed in the framework of several
European projects.

Keywords-adaptive system, self-adaptation, adaptive self-
organization, collective robotics, artificial organisms

I. INTRODUCTION

Adaptivity is a much-desired property of real-world sys-
tems, where the system itself can adjust its own functionali
or behavior to uncertainties and variations of the environ- © ©)

ment. The issu_e of adaptivity has been considered in thgigure 1. Examples of swarm- and organism-mod@3:(b) Demo
theory of adaptive control (e.g. [1]), knowledge-based anchf concept, 2007: Real large-scale swarm of Jasmine robots a
deliberative systems (e.g. [2]), situated [3] and embof#éd topological model of an organism(c)-(d) Prototypes, 2009: a

systems. Many different approaches are devoted to aclgievirfew robots in a swarm-mode and in a simple organi§mages
adaptivity: different learning techniques [5], behavimsed =~ ©SYMBRION, REPLICATOR projects).

[6], bio-inspired [7], evolutionary approaches [8] and man

other.

Considering multi-robot systems, such as collectiveaggregated robots are in organism-mode. Here we observe
swarm [9], reconfigurable and cellular robotics [10], wea new challenge. Robots in swarm-mode utilize SO phe-
should note that these systems utilize another principle ofiomena as the main means of regulating functionality at
control and organization: instead of one or several centhe collective level. Aggregation, decision making, ee#ig
tral controllers, collective systems undergo differenif-se homeostasis and other collective activities are created by
organizing (SO) processes [11]. In particular, this workartificial SO through bio-inspired [6] or derived [13] local
addresses a new type of collective systems [12]: many singlaules. As shown by these and other works, the SO in the
swarm robots can aggregate into one multi-robot organismgwarm-mode provides efficient, scalable and very reliable
see Fig. 1. This system is an object of research in thdehavior. However, when measuring collective reactivity i
SYMBRION and REPLICATOR projects. Terminologically terms of how fast a collective system is able to process
we say the disaggregated robots are in swarm-mode, whereedormation [6], we should remark, that SO remains a




relatively slow organizational process.

Fig. 2, we can distinguish five self-organization processes

Considering organism-mode, we face two contradictoryrunning in the organism:

requirements: we need decentralization, scalability atiel r
ability provided by artificial SO, however we need much

« Swarm-mode.As mentioned, swarm-mode is a classi-
cal application field of different SO phenomena. The

Sec. lll gives an overview of using learning and evolv-
ing in swarms. Since the system will be in swarm-
mode only 15%-20% of the whole time, the relevance
of swarm-mode for an organism is relatively low.
Developmental level. Developmental processes de-
scribe how the structure and functionality are “grow-
ing” from non-aggregated and not-differentiated mod-
ules to organisms with complex monofunctional ac-
tuation. More generally, during developmental phase,
which can be performed on-line and on-board but also
off-line and off-board, different adaptive mechanisms
can be evolved through evolutionary/learning processes,
as described in Sec. 3. Three examples of such ap-
proaches are described in Secs. V, VI and VII.

« Homeostatic level.All modules have different levels
of energy, different genome, different goals. Being
aggregated in the organism, from all modules should
emerge an internal homeostatic system, which main-
tains endogenous steady state and protects the whole
organism. Different SO processes are utilized on the
homeostatic level, as described in Sec. VIII.

« Cognitive level. All modules possess independent sen-
sors and through aggregation there appear several ef-
fects like spatial distribution of sensors, overlapping
of functionality and increasing of redundancy. Sec. X
describes several cognitive processes, which use SO

faster and much more adaptive regulative functionality.
Making SO more self-adaptive and faster, while keeping
scalability and decentralism represents one of the maih cha
lenges here. This paper focuses on different SO processes
in the context of swarm- and organism-modes as well as .
in the transition between them. SO is viewed as a means
toward an end- the ability of the self-organized robots to
come up with a competent and robust response to an open
environment under limited resources. In Sec.ll this work
gives a short overview about different SO processes running
onboard and online in artificial organisms and introduces
these approaches in the following sections. In Sec. Xll
we discuss several open problems and finally conclude this
work.

Il. COMMON PICTURE OF DIFFERENTSO PROCESSES IN
ARTIFICIAL ORGANISMS

To represent different SO processes in artificial organisms
let us consider a topological model of a planar (aggregated
organism on 2D plane) dog-like structure, shown in Fig. 2.
First, an organism represents an aggregation of indepen-
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: as synchronization of coupled oscillators or adaptive

hormone system, as described in Sec.XI can be used.

Despite the fact that all of these processes use SO phe-
nomena on different levels, they all contribute to making
the whole system act as one entity, being thereby fully
decentralized with scalable functionality and behavior. |
Sec.XIl we give a common view on different SO processes
dent modules, each of which possesses sensors, actuatgisy mention open problems in the organism-mode.

(shown as active joints), internal controllers and an aitifi
“genome”, which reflects configurations of a module. From 1.
this viewpoint organism-mode is very similar to swarm- LEARNING AND EVOLUTION

mode with the difference that all robots are spatially fixad o~ While biological entities are implicitly required to suvei

a grid, but with additional degrees of freedom through com-with a competitive advantage, self-organization in swafm o
mon buses and common actuation. Thus, it is expected thabbots is also assessed from the collective behaviors of all
SO phenomena, although a characteristic of swarm-modéndividuals regarding the designer’'s objective. Henoeth

can also be widely used in organism-mode. Consideringnvironmental condition@nd internal motivations define

macroscopic legs

Figure 2. Topological model of a planar dog-like organism.

SWARM -MODE : SELFORGANIZATION THROUGH



an implicit objective function. In other words, swarms of the particular setup imply that local explicit bootstrapg(e
robots should be able to converge towards an efficienturiosity fithess) or human-driven (e.g. shaped curiosity
behavioral strategy at both the individual and the popaitati fitness) criteria should be taken into account as well as
levels that maximize the intended objective and comply witha global, not straight-forward, and implicit objectivede.
the environment specific properties. This implies that eaclensuring energy autonomy) should be addressed. While
individual within the swarm must be endowed with internal explicit and implicit criteria may be correlated to some
variables, rewards and rules enforcing the desired behavi@xtent, they might diverge in the final state (e.g. maxingzin
in an environment- and self-driven fashion. On the onecuriosity may not be the best compromise to guarantee
hand, biological entities may rely on their instincts (ogity,  autonomy and survival in an extreme environment).

fear, ...) to provide a set of basic behaviors to explore

the environment that are at least partially correlated withlV. DEVELOPMENTAL LEVEL: ACHIEVING ADAPTIVITY

the optimal survival strategy. On the other hand, designing THROUGH EVOLUTION

efficient SO artificial entities raises the question on how The role of evolutionary adaptive mechanisms is essential
to provide capabilities to address survival, or in a broader
b b n all forms and at all levels of SYMBRION & REPLICA-

sense: task optimization, in complex environments. Thiél_ . . L .
P P OR projects, including individual robots in swarm mode

raises two main challenges: . . L
as well as in aggregated organisms. The main vision be-
« Defining self-driven rewards (curiosity, cognitive disso- hind these projects includes that the controllers, or be-
nance, ...) yielding a sufficient and safe exploration ofhavioral policies, undergo pervasive adaptation. Evotuti
the policy space; and learning are two pivotal components of the “adaptation
» Defining a decentralized optimization process favoringengine” facilitating this. To make such a system work one
desirable policies on the individual level and communi-basically needs good reward systems (to support selection)
cation rules enforcing convergence towards an efficienand good evolutionary and learning operators (to support
behavioral strategy at the swarm level (i.e. emergenceariation). Inherently to the SYMBRION philosophy, these
of a collective behavior). mechanisms should work without any central control, and

An integrated approach to the above challenges explore@/€n With some degree of self-adaptivity to regulate their
within SYMBRION relies on the combination of Evoly- OWn parameters. In the system we obtain this way, one can

tionary and Machine Learning methods. Typically, criterigdistinguish three levels of evolution, see 3. First, gemeti
derived from Information Theory can be used to measure

the new information gathered by an entity. A built-in instin Organism Evolution
(maximize the gathered information) provides the entitihwi organism is unit of sefection
a “curiosity-like” bias, which should at least be partially Social Evolution

correlated with the optimal strategy (e.g. curiosity is atfir collective cross-fertilization
step towards finding energy sources in order to maximize Genetic Evolution
both autonomy and exploration). An evolutionary framework robots are unit of selection

driven by (.:urIOSIty Sh.ou.ld PrOVIde a variety of behaVI.OrS’Figure 3. Achieving adaptivity through evolution: three levels dbletion.
bootstrapping the optimization process towards an efficien

swarm self-organization. Moreover, this kind of criterenc
be reformulated so as to cope with designer preferencesgyolution, concerning the artificial genomes in the indiwitl
standing for the Darwinian milieu. Setting the human backrobots. At this level, the individual robots form the units o
into the loop makes it possible to shape some specific desiresklection and variation operators (mutation and cros$over
behaviors related to the desired task to be solved (sparsgork on the genomes. Second, cultural or social evolution,
interactive optimization, supported by preference leaghi  concerning the controllers directly, i.e., not the undiedy
Such locally defined criteria make it possible to addresgienomes encoding them. At this level, the individual robots
the behavior bootstrapping problem in complex environmentform the units of selection and variation operators work
Then, the swarm self-organization process can be reformwn the controllers. It makes sense to see this mechanism
lated as a decentralized optimization problem where tha@s a cultural or social process, where individual learning
swarm behavior may either be homogeneous or heterog@lays the role of mutation (change of controller within
neous, and where the self-organization process is based @me robot) and individually acquired features are spread
local diffusion so as to reach an equilibrium in the DS. Thisover the group of robots through communication (cross-
implies both the definition of specific optimization operato fertilization or crossover of good ideas). At the third leve
which can be defined as stochastic, such as evolutionanye find organism evolution, where artificial organisms form
operators, or deterministic, such as babbling algoritHfors, the unit of selection and variation operators work on the
spreading behaviors and enforcing convergence. Moreovejgint genome or controller of the organism.



While in most evolutionary applications, including evo-
lutionary robotics, selection and variation is managed by
a central authority (the main EA loop or sometimes the
user), the SYMBRION system is inherently decentralized. In
particular, we will not have a master or oracle determining
which robots or organisms can mutate or transmit their
genes/controllers to others. Instead, the units of selecti
will be autonomous, running all evolutionary and learning
operators onboard, in an online fashion. Hence we will
obtain a highly sophisticated version of embodied evotutio
[14]. The resulting system will give rise to the emergence
of spatial, temporal and functional structures over tirhest
being inherently self-organizing.

One of the greatest challenges to this end is represented
by the reward functions. In general, we can use two types
of rewards here. On the one hand, self-driven rewards
that can be biased towards explorative behavior (curipsity
social behavior (e.g., sex-drive or some “basic instinot’ f
information sharing). On the other hand, we can use rewards

(&) Embryo

that are based on measurable task-performance, for example Py
related to self-maintenance (energy level, system intiggri 7 on; ot
the size of the organism the robot is part of, or even some ae &

user defined task, like the number of red rocks collected or
the time needed to identify the exit of a given room.

(c) Structured neural network
V. DEVELOPMENTAL LEVEL : SHAPING ROBOT
ORGANISMS AND CONTROLLERS BY VIRTUAL Figure 4. Development of an artificial neural network in a virtual
embryo [16]. In Fig. 4(a) the embryo is depicted. white dots
EMBRYOGENESIS indicate single cells. The shape of the embryo is influentieg
O'specialisation of cells (Fig. 4(b)) within the embryo, thater

Another approach to shape a robotic organism is tdevelop into nodes of the neural network (Fig. 4(c))

simulate the self-organising processes, observable glthin
process of biological embryogenesis [15]. In this approach

the robotic modules represent the single cells of an embryQii, gifferent functionalities, for example controllingeks

Th_e behaviour of a single modul_e (e.g., allow dogkmg,Or teaching cells, as described in [17].

switch to a predeflnegl controller) is controlled by V|rtua! The self-organised process of virtual embryogenesis [16]
morphogenes, that diffuse throughout the whole roboticaples the adaptation of a (multi-) robotic systems as in an

organism. External influences (e.g. sensor inputs) ornater g q|ytionary manner on both, the level of the single robotic
influences (e.g., defined morphogene concentrations) &ead {,nit and the level of the robotic organism.

the emission of other morphogenes. The conditions, under

which a morphogene emission or a robotic behaviour is VI. DEVELOPMENTAL LEVEL :

triggered, is coded in an artificial genome. By using artfici SOTHROUGH REAL ROBOT AUTONOMOUS

evolution on this genome, it is possible to optimise the body MORPHOGENESIS

shape. A key requirement in the SYMBRION project is the tran-

From the feedback-system, consisting of morphogene grasition from swarm to organism: autonomous morphogenesis.
dients, body-shape and robotic behaviour, a self-orgdnise This is the process by which firstly, one or more robots (in
evolvable, bio-inspired process arrieses, that allowsddte swarm-mode) ‘decide’ that they need to self-assemble into
velopment of different robotic body-shapes in a evolutigna an organism (e.g. in response to a barrier which a single
manner. robot cannot climb over) then, secondly, the robots self-

The process of virtual embryogenesis can also be useassemble into the correct planar arrangement (as seen in
for shaping the controller of single robotic modules [16]. | Fig. 2) and, thirdly, the robots in the 2D planar organism
this approach the growth of a virtual embryo is simulated toassume the correct functionality (i.e. differentiate)ading
shape the network topology of a neural network. The usag® their position in the organism. These three steps we can
of this approach seems to be advantageous for the shapifapel as initiation, assembly and differentiation, respety;
of heterogeneous neural networks (Fig. 4) consisting d$ cel the key stages in autonomous morphogenesis. After these



three stages are complete the organism can lift itself frBm 2 LegBot if it is one of several robots joining a foot to a
planar configuration to 3D configuration and, with respectknee or other joint otjointBot if it is required to bend at
to locomotion, will function as a macroscopic whole, asthe junction between leg or arm structures. It is possita¢ th
outlined in section XI. Consider these three stages. differentiation will take place during assembly, in whicise

1. Initiation. Prior to initiation the robots are operating this will not be a separate state; it is however important to
in swarm-mode, as outlined in section Ill. Initiation reg@s  recognise that assembly and differentiation are key foneti
that only one robot in the swarm makes the decision to stamtequired by each robot’s controller in organism-mode. The
the transition from swarm to organism that robot then simplest approach to differentiation is one in which the
forms the ‘seed’ robot for the new organism. If we takefunction of each robot in the organism is also encoded in
the example of a barrier that needs to be crossed then the genetic instructions for building the organism.
single robot might determine this condition through, firstl
its collision with the fixed barrier; secondly by running ia¢p VIl. DEVELOPMENTAL LEVEL
the barrier and colliding with another robot and, thirdly, b ADAPTIVE SO THROUGH GENE EXPRESSION
then running along the barrier in the opposite direction and
colliding with a third robot. Following this sequence of sue ~ This section discusses a new approach to deal with
the robot needs to retreat from the barrier (in order to giveartificial organisms and robotic co-evolution using an agen
the Organism room to Se'f-assemb|e); Stop; select the '@enetbased framework/model, a pOWerfUI simulation modeling
instructions for ‘barrier crossing organism’; then traiosi ~ technique (see e.g. [20]).
to assembling, as outlined below. Note that this SO process Problem definition. As is commonly known, the genome
of initiation could allow several robots to make the sameand the concept of gene expression play critical roles in
decision to initiate at the same timehowever, this problem cell specification and morphogenesis. The genome encodes
might be simply resolved by arranging that the signal to docl@ bottom-up developmental approach which drives the single
(see below) also suppresses the initiation behaviour isetho stem cell developing to complicated organisms with highly
robots close enough to see the signal. specific functionality (see [21] for an example). In additio

2. Assembly. In this stage one or more of the robots this extremely complicated process is performed withoyt an
in a partially assembled organism will express its DNA centralised control while interaction with the environrhen
by signalling for other robots to dock with it, on certain allows for adaptation. These features of real-life genoates
faces, in order to build the planar organism. Several releva low biological organisms to possess a robust self-orgagizi
approaches have been described in the literature; in on@bility as well as flexible adaptation by providing various
approach aimed at self-assembling static structures3De. €xpression patterns. These features are also part of what we
‘houses’ built from intelligent autonomous robot bricks) plan to achieve in the development of an artificial organism.
each robot has a stigmergic rule set describing the whole We propose to build an agent-based framework which is
structure and decides what to be (i.e. wall, corner) acogrdi used to mimic a real-life genome and gene expression oper-
to where it finds itself after randomly attaching [18]. While ations. This way, our framework can use a similar approach
this methodology is provably correct it has the drawbackas in biology to solve the adaptive self-organization peabl
of requiring a high level of random motion (i.e. energy) in in our artificial organisms. This section discusses the g#ne
the swarm so that robots will, eventually, find themselvegdea of how our mechanism works in self-organization.
in the right position for the growing structure. Another ap- The robotic system (either in swarm or aggregated mode)
proach aimed at self-assembling planar mobile robot groupsan hence gain good functional or cooperative patterns
proposes a script (SWARMORPH) that describes how théhrough this self-organization process and the influenées o
structure self-assembles [19] the script is transferréd in the external environment.
each newly-docked robot which then interprets the script Methodology. The general idea is that of a society where
to determine whether (and on which face) it should signakach member receives a particular identification according
for another robot to dock, or not if it's at the end of the to its performance in cooperation. This identification will
chain. Since this approach actively signals for anotheotrob be used to guide the future cooperative operations. When
it (probably) requires less energy in the swarm to completesome basic cooperation/ sub-organism occurs in a group,
the assembly process. the partners in the cooperation/ sub-organism will compete

3. Differentiation. This stage is entered when the planarwith each other for leadership and the winning partner will
structure is physically complete but each robot is in effectactivate the high level information (next stage developimen
an undifferentiated ‘cell’; it is in the right place in the knowledge; for example the templates of shape, the group’s
body of the organism but has no specialised function. Innternal communication rules, ...) in its gene and build an
the differentiating state each robot assumes a specialiseabent for processing high level computation. Lower level
function: for instanceFootBot if it is at the end of a leg cooperation can combine to higher level cooperation in a
structure and will be placed on the ground during walking;similar way but only the winning partner will be involved



in this higher level combination because it can represent it : Environment inputs
PR ; ; Evolutionary
whole group as one entity in a higher level cooperation.
. . operators
Implementation. An agent-based framework will be

Agent for stage 1
loaded into each robot, along with an artificial genome.

. : : it Agent f 2
Important knowledge concerning cooperation constraints, Initial
possible templates, etcetera will be decomposed into a|l Genome controller

robot’s genetic code. The encoding and decomposing rules Agent for stage 3

will be modeled according to Piaget stages of development
theories (see e.g. [22]). The goal is not to simply distébut
the knowledge into genes as the knowledge will be classified
corresponding to different stages in the whole development
process. Different stage developmental information wal b
encoded in different levels of abstraction in the genome. In
the initial stage, for example, the system should focus on
one-to-one docking and communication operations, so ther¢,_ .~
will have to be a layer present in the genome which is usedof level 1
to store this kind of knowledge. In a later stage, the system ‘
needs to take care of more complex aspects like shape
functionalities and physical constraints, the knowledde o Evolutionary ‘ Environment inputs ‘
which will be stored in a higher layer in the genome. operators |

In each robot, there is a controller which will be able to \ =
develop various agents to read the different genes from the. | 5. Initial
robot's genome (see Fig. 5). The controller’s functiomegit controller
will be determined by the interaction of these self-devetbp
agents and the functional patterns of the controller will _ .

i . Figure 5. Structure diagram of the agent-based framework for

emerge from the self-organizing process in swarm agentg, o cooperation.
A controller can change its knowledge and functions by
developing new agents to read new genes in its genome.
Each robot shares similar genes in this design but accordingych complex cooperation is no longer required in the
to its SpeCifiC enVironment, each robot will be able to atéiva given environment (for instance, the task is done)_ In the
different genetic options and develop different functidns-  development process, each robot controller can specify its
ing its lifetime. Initially, each robot has one basic coflep  functionality by creating new agents and remove or replace
which is built using the initial stage information stored in o|d agents. The way the system is doing this will depend on
its genes. Further, each robot also has a certain cooperatighe information in the genome and the environmental situa-
credit value from the moment the controller is built. This tion. Except for a few predefined constraints (for examp|e'
credit value shows the usefulness of this robot to the Systemlor Safety and avoiding Simp|e mistakes)’ all functionedt
When a robot wants to cooperate with other robots, itand strategies will emerge from the interaction of robots in
needs to pay some credit value to its potential partnefdevelopment processes. The formation process depends on
When another partner accepts this value, the cooperatiofie environment. The integration conditions will be cléissi

will be able to proceed. If a potential partner refuses tointo different levels of abstraction and stored in genes
receive this value (for example the partner doesn't need tghdependently.

cooperate with others or the value is not enough to meet
the partner’s expectation) the cooperation will be carttele VIII. HOMEOSTATIC LEVEL :
This way, the system will have an emerged identification SOWITHIN ROBOTIC ARTIFICIAL IMMUNE SYSTEMS
pattern which come from the self-organizing process of Each SYMBRION robot will contain an individual arti-
robot’s cooperation. ficial immune system (AIS) that is capable of identifying
Example. For example, the robot will be able to adjust its and predicting when the robot will fall out of normal
cooperation price (credit value) according to its fitheasust ~ operational conditions. This may be a fault that has ocdurre
when it is involved in cooperation. If the leading controlle  within the robot caused by some mechanical problem, or an
a cooperation can not afford the new prices of other robotsgnvironmental impact on the system. However, the AIS is not
the robots may decide to find a new leading controller inlimited to a single robot, but aartificial immune network
the group. This ensures that only good cooperating groupwill be created between robots to allow for the sharing of
will be selected. This way, a system can develop througlimmunological information between units, and the commu-
several stages to achieve better shape and functionality unnication between units to identify potential problematiitsi




and prevent them from joining the organism. the basis of single autonomous robots, swarms of loosely
In our work, we make use of various immune systemcoupled multiple robots and tightly coupled multiple robot
metaphors for the creation of our artificial system, rangingcollections in the form of complex robot-organisms. As a
from the provision of annnateor pre-programmed type of result of this generality of the system, the robots employed
response that is typically static during the lifetime of thet, = must be able to operate under all these circumstances
and anadaptiveresponse that improves during the operationshowing great adaptability to both environmental and syste
of the unit. Each AIS has the potential to be unique onchanges. In REPLICATOR, the single robot cell has a degree
every robot, as what each robot senses and performs durirgf autonomy that is not found in other modular robotic
it's lifetime may well be different : and this will drive the systems[24][25][10]. Each robot is capable of locomotion
evolution of the adaptive AlS. on a plane and is thus able to move around freely on its own
Of most interest to work in this paper is the adaptiveunder many conditions. One of the robot designs is capable
aspect of the AIS. We envisage a system that can maimf holonomic motion on a plane and the other is capable of
tain it's own unique immune system through a combinedovercoming small obstacles and, if it finds itself flippedmnt
process of clonal selection (a way in which new artificial its back, it can continue to move around upside-down. This
detectorscan be generated that takes into account heuristitevel of autonomy places a higher degree of importance on
information) which allows us to develop a self-organisingthe single robot cell within the system as a whole.
memory structure for the AIS, based on stimulation and Sensory-Motor Coordination. From the perspective of
death of error detectors in the AIS population. For inter-sensory-motor coordination, it is a difficult problem to
robot immunity, we employ ideas from immune network implement an architecture that is capable of operating unde
theory [23]. Immune network theory is now quite datedthese different modes of operation. Sensory-motor coordi-
within the immunological community, but has many usefulnation is an essential quality for any embodied agent to
lessons for us to create self-organising memory structurepossess. It allows the efficient transfer of informatiormdro
A network occurs due to the ability of paratopes (moleculamotor actions to sensory sensations and to higher levels tha
portions of an antibody) located on B cells, to match againséire more decoupled from the sensory-motor flow that can
idiotopes (other molecular portions of an antibody) on pthe integrate dynamics over time. Also, efficient implemermtati
B cells. The binding between idiotopes and paratopes has thef sensory-motor coordination can allow the robot to seek
e?ect of stimulating the B cells. This is because the paeatop out and utilise sensory information that is most relevant to
on B cells react to the idiotopes on similar B cells, as itit under the current environmental conditions. Moreovgr, b
would an antigen. However, to counter the reaction there isleveloping a proprioceptive type sensory system, the robot
a certain amount of suppression between B cells which actgsgents can begin to ground sensory inputs to sensations that
as a regulatory mechanism. This interaction of B cells dudink them with their environment. The relationship between
to the network, was said to contribute to a stable memorghe robot and the environment in which it senses and acts
structure, and account for the retainment of memory cellsgan be learned and exploited.
even in the absence of antigen. Sensory-Motor Fusion. Our approach to the sensory-
This idea can be exploited in an artificial context throughmotor fusion for REPLICATOR modular robotic system
the creation of an artificial immune network, typically of consists in decentralising the system at the level of the
robots that can be used to determine if other units withinndividual robot cell. The single robot cell is the only unit
a network may be heading towards some form of failurethat will not physically change during its operation, ortly i
A simple binding system (or interaction) between units is interface with other units is a dynamic configuration. The
required to compare how similar states of the unit are: onsingle robot is a natural level of decomposition as each
simple metric is Euclidean distance. This bind goes towardsell is capable of acting on and sensing the environment
stimulating a B-cell (or in this case a robotic unit), with a immediately in its vicinity. Therefore any actions, seimad,
strong bind indicating a strong similarity between the sinit processes running on an individual robot will be inherently
This stimulation levelof the unit is used to help regulate relevant to that particular cell. Interfacing with othebot
the survival (or otherwise) of the robot, and help decidecells in the system can arise as part of a self-organizing
if the unit should be allowed to join an organism: as if the process that can withstand perturbing fluctuations and yet
unit is potentially faulty, then joining the organism maylive still undergo useful transformations.
be problematic. What emerges is a network of self-similar Since it is impossible to know in which situation a robot
robots supporting each other over time. will find itself at any given moment in time, the system
that implements the sensory-motor coordination should be
adaptable to change and should work for a single robot, a
robot swarm and a robot organism. What is clear from this is
A modular robotic system is a domain that crosses sevthat the robot will operate either on its own or in conjunatio
eral/all robotics domains in that the system operates omvith others. Normally, sensory-motor coordination can be

IX. COGNITIVE LEVEL : SENSOR¥MOTORFUSION IN A
MODULAR ROBOTICSSYSTEM



achieved on a single robot by tightly coupling the sensory Problem definition. The type of robots that are addressed
and motor systems in order to exploit specific sensor flowsn this article are so-called modular robots. They can un-
however, in a multi-robot multi-configuration system, tlis dergo drastic metamorphosis from say, a snake to a spider
not enough. The single robot should be able to sense if iform. This poses stringent requirements on the way sensor
is operating alone or in cooperation with others, i.e. ifsit i data is processed and the nature of the sensor fusion archi-
physically connected to another robot cell or within commu-tecture. The scientific challenge is coined meso-morphosis
nication range of another cell. By identifying these sittilaé  internal change alongside (body) metamorphosis. Or inrothe
a robot cell can adapt its sensory-motor coordination tb suiwords: how to survive from caterpillar to butterfly.
a particular context. Leading example.Consider a robot snake with cameras
We propose a Recurrent Neural Network (RNN) thatturned on at the head and the tail. First visual processing
takes inspiration from similar models used for language promight occur at the modules near the head and the tail.
cessing, recognising sensory-motor flows and for imitatiorHigher-level processing at subsequent modules. The sensor
[26][27][28][29]. What is common to these models is that fusion architecture is aligned alongside the body of thé&ena
they are able to articulate sensory-motor flows over exténderobot. Then, the snake morphs into a spider robot. The body
periods of time and that they do so in a dynamic and selfmay now contain the cameras and the legs the visual data
organising fashion. The benefit of using an RNN is that itprocessing units.
is capable of learning temporal sequences by automatically Related work. There are so-called cognitive frameworks
fusing information from many sensors of possibly differentthat allow for awareness of not only the environment, but
modalities and across varying timescales. For mobile sobotalso the body itself. Vernon et al. [32] have an excellent
that operate in changing environments it is important thapverview on cognitive frameworks. They distinguish the
they can extract and exploit the dynamics of the environmengognitivist approach from the emergent systems approach.
and RNNs have been shown to be a suitable control repréFhe former being defined as operations on symbolic rep-
sentation for evolving this capability [30][31]. The dramdk  resentations. The latter as an umbrella term for dynamical,
of using neural networks can be that they do not lendconnectionist and enactive systems. Their twelve distinst
themselves well to the extraction of the rules on which theywill not be reiterated over here, but an example will be given
operate. This drawback can be outweighed by their ability tdn the context of sensor fusion. The cognitivist approach
both generate new, but similar behaviours, on unseen inpwyould ask for primitives like “is there a hole in the ground
data or to recognise and generalise unseen sensor patterhgfween me and robot X". The designer defines a symbol
The idea of a Parametric Bias (PB) in the RNN model“hole” and the visual architecture to classify entities e t
is to allow an outside interaction with the model that canfield as a hole. An emergent approach would define a goal
change the way that it behaves according the learned/alolvdike “go to robot” or “aggregate”. It needs an environment
behaviours or sensory-motor patterns. It is through theofise with holes and it uses a reinforcement strategy to let the
these PB nodes that the RNN is capbale of both recognisingpbot acquire sufficient knowledge about holes to reach the
and generating sensory-motor flows. This enables both goal.
bottom-up and top-down approach to building intelligent Methodology. In this section the emergent approach is
systems. Another advantage of this approach is that meiltiplendorsed. Vernon et al. explain: “adaptation ... in emergen
models residing on separate robot cells can be dynamicallgystems ... entails a structural alteration or reorgaioiza6
hooked together to produce a more complex system frorgffecta new set of dynamics”. In essence, sensor fusion com-
similar individual units. The dynamics of the system shouldbines data from multiple sensors across several modalities
self-organise according to a distal fitness function omgy ~ into representations that can be used in subsequent stages.
signal that promotes stability within the system. For that reason, data processing units, or filters, are used
Allowing individual robots to encapsulate and process thén topological configurations. Filter output is fed into the
sensory-motor flow within a single robot cell enables theinput of next “layer” filters in a hetero-hierarchical sqg-u
distributed processing of sensory information that can bd=or emergent cognitive sensor fusion three components are
shared through specific channels of docked robots cells dieeded in this methodology for self-organized sensor fusio
through communication channels of more loosely cooperat- 1) A network of primitive filters that perform sparse

ing swarming robots. coding, auto-associative coupling, saliency detection,
etcetera;
X. COGNITIVE LEVEL : SELF-ORGANIZATION IN 2) A reconfigurable topology of those filters and meta-
COGNITIVE SENSOR FUSION information that guides reconfiguration;
This section describes a self-organizing approach for 3) A search process that finds those topologies that corre-
sensor fusion on modular robots. It follows the course spond to cognitive notions like attention, anticipation
of problem definition, illustrative example, current work, as in existing cognitive models.

methodology, implementation and discussion. Implementation. All three points of the methodology are



addressed in this section:

1.) The type of filters that have been implemented are
2D feature maps as described by Itti and Koch [33]. An
orientation filter decomposes an image in patches that only
respond to lines with a specific orientation. This can be
done for color, intensity and even other modalities. The
feature filters contribute to an overall saliency map. Now,
the horizontal line filter might need to be downscaled in
importance with respect to color and intensity. The desired
weights of the feature maps (also a weight of zero) is almost
impossible to tell in advance and might differ per task
and robot morphology. Hence, a self-organized system that
comes up with a proper filter topology is what is required
over here.

2.) For_ a re_conflgl_JrabIe.topology a deve_lopmental engin igure 6. Schematic representation of a hormone concentration; in
as described in section V is used. It is an implementation of, first phase, an artificial organism of two robotic modulesve®
the gene regulatory network by Bongard [34]. This type ofgoverned by an oscillating hormone concentration; in a seco
engine takes a genome as input and has a graph as outppitase, an environmental change (obstacle) disturbers Ithig
The graph is in Bongard's work interpreted as the body of arfycle .behavior; in a thi.rd .phase, a third module connectshe t
artificial organism or as a neural network. For sensor fusiorP'ganism and another limit cycle is established.
the graph will be interpreted as a topology between filters
and connections between them. o ) N

3.) Comparison of the developed sensor fusion topologyVithin the robot/organism from the position of the sensor
with cognitive models is necessary to describe its levef© the opposite side. _Homeostatlc processes are intriosic t
of cognition. The basal ganglia analogue in Shanahan'such systems and will pe formed automatically. Thus, the
robot [35] intercepts the recommendations of the saliency?0rmone system can be interpreted as a SO dynamic system.
based system and modifies them using an internal simulatiofiVen a static sensor input or unchanged periodic sensory
mechanism. In a world of power outlets and other robotsStimuli for longer periods the system will always converge
detecting the first might become biased (attention) when th& an attractor/equilibrium (e.g., fixed point, limit cycteee
robot is running low on batteries. Fig. 6). A changing environment or the robots’ actions them-

Discussion.The current implementation is at the secondS€lves change the sensory input, thus, disturbing the murre
step, however, it is already worthwhile to look forward to €quilibrium. As a reaction, the hormone system rearranges
step 4 and beyond. There are two additional steps necessdf§e hormone concentrations and will reach (possibly ampthe
to obtain full-fledged meso-morphosis: equilibrium in a self-organized process (see Fig. 6).

4.) Post-development use of the gene regulatory network. Furthermore, there exists a second process besides the dy-
The network level is then able to make changes from spidel@mic environment which is a disturbing factor to the curren

to snake form without the need for a new genome: onlineequilibrium of the hormone values. A reconfigurable robot
self-organization; organism consists of autonomous robot modules. Further

5.) Online self-organization that preserves cognitive camodules dock to or connected modules release themselves
pabilities. To put it simply: the snake should be able tofrom the organism. This change of the shape of the robot
remember things from its life as spider. organism has, in turn, an effect on all the other modules of
the organism (see Fig. 6).

In an organism forming a simple line (e.g., snake-like
shape, see Fig. 6), environmental influence triggers, titrou

An option to generate SO processes, that are leveragesknsory input, the production of hormones that result in
to control complex multi-modular robot organisms, is thea gradient of hormone concentrations within the organism.
mimicry of hormone systems. Our approach is based omhn a process of symmetry breaking a differentiation into a
differential equations, that model the production, flomgan head module and a tail module is generated. Furthermore,
reduction of hormones, and on structures of compartmenta threshold of a “head-" and a “tail-hormone” determines
containing hormone concentrations that create the embodihe positions for legs in the middle of the snake-organism.
ment of the hormone system, see [36], [37]. The compartin this way different body shapes are established by self-
ments establish a certain locality either within the robot o organized reconfiguration processes. We prefer SO as the
within the robotic organism. Hormone productions, that aremain design paradigm instead of standard approaches (e.g.,
triggered by sensor input, will establish a decreasingigrad predefined hand-coded shapes) because the latter would be

Xl|. LEVEL OF MACROSCOPIC LOCOMOTION :
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constricted to situations for which they were designed. How artificial organisms face similar problems — getting energy
ever, our applications will have dynamic environments withsurviving in environment, different forms of self-protict
unforeseen properties. The approach of self-organization and self-awareness, organization of long-term and skeont-t
connection with evolutionary methods will help to overcomedevelopmental processes and others. On the basis of attifici
the challenge of designing adaptive behavior in dynamimrganisms we can gain deeper insights into such issues
environments. The possibility of self-reconfigurationegiv as long-term evolution and its controllability, phenomena
the organism the needed plasticity and adaptability. of individual and collective intelligence, mechanisms of
multi-cellular regulation and others issues which are lyigh

XIl. CoNcLUSION: COMMON VIEW : ; . ;
) _ ) relevant in our understanding of the complexity of life.
In this paper we represented an overview over diverse
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