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Abstract— We present a case study demonstrating that us-
ing the REVAC parameter tuning method we can greatly
improve the ‘world champion’ EA (the winner of the CEC-
2005 competition) with little effort. For ‘normal’ EAs the
margins for possible improvements are likely much bigger.
Thus, the main message of this paper is that using REVAC
great performance improvements are possible for many EAs at
moderate costs. Our experiments also disclose the existence of
‘specialized generalists’, that is, EAs that are generally good
on a set of test problems, but only w.r.t. one performance
measure and not along another one. This shows that the notion
of robust parameters is questionable and the issue requires
further research. Finally, the results raise the question what
the outcome of the CEC-2005 competition would have been,
if all of EAs had been tuned by REVAC, but without further
research it remains an open question whether we crowned the
wrong king.

I. BACKGROUND AND OBJECTIVES

Finding appropriate parameter values for evolutionary al-
gorithms (EA) is one of the persisting grand challenges of the
evolutionary computing (EC) field. As explained by Eiben et
al. in [7] this challenge can be addressed before the run of
the given EA (parameter tuning) or during the run (parameter
control). In this paper we focus on parameter tuning, that
is, we are seeking good parameter values off-line and use
these values for the whole EA run. In today’s practice, this
tuning problem is usually ‘solved’ by conventions (mutation
rate should be low), ad hoc choices (why not use uniform
crossover), and experimental comparisons on a limited scale
(testing combinations of three different crossover rates and
three different mutation rates). Until recently, there were not
many workable alternatives. However, by the developments
over last couple of years now there are a number of tuning
methods and corresponding software packages that enable
EA practitioners to perform tuning without much effort. In
particular, REVAC [16], [15], [18] and SPOT [3], [5], [4] are
well developed and documented.

Using algorithmic parameter tuners for EAs offers benefits
on different time scales. The immediate benefits are obtained
by the improved EA performance. Here the gains can be
substantial, while the costs are low. In particular, the tuned
EA can greatly outperform the EA based on usual parameter
values, while the costs of a tuning session are by all means
acceptable, typically in the range of hours. This makes algo-
rithmic parameter tuners interesting for practitioners as well
as EC scientists engaged in a performance-based competition
(implicitly over a sequence of publications, or explicitly
within a programming contest). The long term promise of
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good and cheap tuning methods come from the accumulated
information about the relationship between parameter values
and EA performance. For instance, we might learn that
parameter x has almost no impact on performance, that
parameter x and y have a strong correlation, or that a certain
EA will work better if we turn a constant c in its code into a
variable v and tune it. Over the years, such information can
be generalized into new insights and knowledge about EA
behavior, leading to a deeper understanding of evolutionary
computing in general.

The main objective of this paper is to demonstrate the fist
type of benefit. (Clearly, this also contributes to the long
term benefits for the whole field by obtaining and publishing
information about parameter values and EA performance.)
To this end, we carry out an experimental comparison by the
usual EC template: “Our EA beats your EA on an interesting
set of test functions”, where the only difference between
“our EA” and “your EA” is that “our EA” is simply “your
EA” with tuned parameter values. To make the demonstration
convincing we use an EA that has proved to be very good,
hence hard to improve. To find such an EA we turn to
the CEC-2005 contest on real valued function optimization,
take the overall winner (G-CMA-ES) and try to improve
its performance over the whole test suite by tuning it with
REVAC.

II. PARAMETERS, TUNERS, AND UTILITY LANDSCAPES

To obtain a detailed view on parameter tuning we distin-
guish three layers: the application layer, the algorithm layer,
and the design or tuning layer, see Figure 1.

Fig. 1. The three main layers in the hierarchy of parameter tuning.

As this figure indicates, the whole scheme can be divided
into two optimization problems. The lower part of this three-
tier hierarchy consists of a problem on the application layer
(e.g., the traveling salesman problem) and an EA (e.g., a
genetic algorithm) on the algorithm layer trying to find an



TABLE I

problem solving parameter tuning
Method at work evolutionary algorithm tuning procedure
Search space solution vectors parameter vectors
Quality fitness utility
Assessment evaluation testing

optimal solution for this problem. Simply put, the EA is
iteratively generating candidate solutions (e.g., permutations
of city names) seeking one with maximal quality. The upper
part of the hierarchy contains a tuning method that is trying
to find optimal parameter values for the EA on the algorithm
layer. Similarly to the lower part, the tuning method is
iteratively generating parameter vectors seeking one with
maximal quality, where the quality of a given parameter
vector is based on the performance of the EA using the values
of it. To avoid confusion we use distinct terms to designate
the quality function of these optimization problems. Conform
the usual EC terminology we use the term fitness for the
quality of candidate solutions on the lower level, and the
term utility to denote the quality of parameter vectors. Table I
provides a quick overview of the related vocabulary.

Using this nomenclature we can define the utility land-
scape as an abstract landscape where the locations are the
parameter vectors of an EA and the height reflects utility,
based on any appropriate notion of EA performance. It is
obvious that fitness landscapes –commonly used in EC–
have a lot in common with utility landscapes as introduced
here. To be specific, in both cases we have a search space
(candidate solutions vs. parameter vectors), a quality measure
(fitness vs. utility) that is conceptualized as ‘height’, and a
method to assess the quality of a point in the search space
(evaluation vs. testing). Finally, we have a search method (an
evolutionary algorithm vs. a tuning procedure) that is seeking
for a point with maximum height.

III. TUNING DEPENDENCIES

As explained in the previous section, tuners are in essence
heuristic optimizers of utility landscapes. By the very nature
of the problem, the optimal solution depends on the test
problem(s) to be solved, the evolutionary algorithm to be
tuned, and the actual definition of utility. In practice, the
tuner will find a set of very good solutions, i.e., parameter
vectors for the EA to be tuned, that may or may not be
optimal. This is shown in Figure 2.

Given a tuner and a particular EA, the set of good
parameter vectors for this EA will depend on
• The notion of utility.
• The test suite.
It is important to note that the notion of utility is appli-

cation dependent. In general, there are two ‘atomic’ perfor-
mance measures for EAs: one regarding solution quality and
one regarding algorithm speed. The most common measures
in evolutionary computing reflecting these aspects are Mean
Best Fitness (MBF) and Average number of Evaluations
to Solution (AES) [9, Chapter 14]. Success Rate (SR) –a
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Fig. 2. The theoretical optimum of a tuning problem depends on the
problem(s) to be solved, the EA used, and the utility function. Adding the
tuner to the equation we obtain this picture showing how a set of good
parameter values obtained through tuning depends on four factors.

measure derived from a given target quality and the observed
quality– is used very often too. In any particular case, one
may tune on either of these performance measures, or a
combination of them. Such combinations can be simply
linear, using some kind of weighted average of MBF, AES,
and SR1. Additionally, one may define specific formulas to
aggregate and combine information on EA runs. Our present
study is based on three different performance measures,
MBF, SR, and Rank, where Rank is an example of a special
aggregation mechanism, as used in the CEC-2005 challenge
[10]. The exact details will be given in Section V

The second factor determining the set of good param-
eter values is the test suite. In simplest case, the utility
of a parameter vector #»p is the performance of the EA
using the values of #»p on a given test function F . Tuning
an EA (by whichever performance metric) on one single
function delivers a specialist, that is, an EA that is very
good in solving that problem with no claims or indications
regarding its performance on other problems. This can be a
satisfactory result if one is only interested in solving that
given problem. However, algorithm designers in general,
and evolutionary computing experts in particular, are often
interested in so called “robust parameter settings”, that is,
in parameter values that work well on many problems. To
this end, test suites consisting of many test functions are
used to test and evaluate algorithms. For instance, a specific
set {F1, . . . , Fn} is used to support claims that the given
algorithm is good on a “wide range of problems”. Tuning an
EA (by whichever utility function) on a set of test functions
delivers a generalist, that is, an EA that is very good in
solving various problems. Obviously, a true generalist would
perform well on all possible test functions. However, this is
impossible by the no-free-lunch theorem [20]. Therefore, the
quest for generalist EAs is practically limited to less general
claims that still raise serious methodology issues as discussed
in [8].

Technically, tuning an EA on collection of functions
{F1, . . . , Fn} means that the utility is not a single number,
but a vector of utilities corresponding to each of the test func-
tions. Hence, finding a good generalist is a multi-objective
problem, for which each test-function is one objective. The

1This option causes a problem of merging different measures and scales,
but these issues are out of the scope of this paper.



current parameter tuning algorithms can only deal with
tuning problems for which the utilities can be compared
directly, therefore a method is needed to aggregate the utility-
vectors into one scalar number. The need for such a higher
level utility function is not limited to parameter tuning alone.
While most recent publications, researchers present their
algorithms based on a set of problems, a strict comparison
function is not required. By showing the raw data and leaving
the interpretation up to the reader, an aggregation can be
avoided. However, in competitions, such as the one at the
CEC-2005, there is the specific need for an aggregation
method just as for parameter tuning. In this study, we restrict
ourselves to simply averaging the utilities to obtain a single
number, which can be compared easily.

Finally, let us remark that utility and test function def-
initions have very interesting interactions that can lead to
unexpected effects on the outcome of the tuning session, that
is, the preferred parameter vectors. To illustrate this, let us
assume a test suite containing easy and hard problems and
let us decide to seek parameter vectors with equally good
performance on each of the given test functions, i.e., using
equal weights balancing the results on F1, . . . , Fn. Assume
furthermore that we use MBF as utility measure and that
it is defined in such a way that it shows the mean error at
termination. (This will be the case if all test functions are
non-negative and have an optimum of zero.) Under these
circumstances, we will obtain parameter vectors that are
specialized in solving the hard problems in the test suite.
This is caused by the fact that the range of MBF values
on easy problems is much smaller, say from 10−5 to 10−6,
than the range on hard problems, say from 10−2 to 10−3.
Hence, improving the utility on an easy problem by a factor
10 is less beneficial than improving it on a hard problem.
Consequently, even though we gave all test functions the
same weight, the EA after tuning will be biased towards a
high performance on the hard test problems.

IV. SYSTEM DESCRIPTION

In this section, we give a general description of the
components that instantiate the three layers as introduced
in section II.

A. Application Layer: CEC-2005 Test-suite

We have chosen the 25 benchmark functions provided by
Suganthan et al. [19] for the CEC 2005 Special Session on
Real-Parameter Optimization. The 25 functions are supposed
to cover a whole range of different problems without favoring
certain types of algorithms. Functions F1 to F5 of the bench-
mark are unimodal (U) and F6 to F12 are basic multimodal.
Functions F13 and F14 are expanded multimodal and F15 to
F25 are hybrid multimodal test functions that are constructed
by combining multiple standard test functions. In order to
prevent exploitation of problem characteristics as symmetry,
all problems are shifted and many of them are rotated. F4

and F17 are distorted by the addition of white noise.
The CEC-2005 test-suite specifies that algorithms are

allowed for 106 fitness evaluations per problem. Furthermore,

TABLE II
TWO VIEWS ON A TABLE OF PARAMETER VECTORS.

D(x1) · · · D(xi) · · · D(xk) Utility
x̄1 {x1

1 · · · x1
i · · · x1

k} y1

...
. . .

...
x̄n {xn1 · · · xni · · · xnk} yn

...
. . .

...
x̄m {xm1 · · · xmi · · · xmk } ym

for each function a success-threshold is defined. If the best
found fitness value is below this threshold, then it is regarded
as ‘successful’. For comparison purposes, we have scaled F6

to F16 and F17 to F25 in such a way that all functions have
a success-threshold of 10−6.

B. Algorithm Layer: G-CMA-ES

As explained in the introduction, we deliberately use an
EA that is hard to improve, thus making the task to our
tuner more challenging. Our choice is the overall winner of
the CEC-2005 contest, the so-called G-CMA-ES, a variant
of the the CMA-ES from Hansen [2]. The CMA-ES is an
ES that adapts the full covariance matrix of a normal search
(mutation) distribution [11], [12], [13]. Compared to many
other EAs, an important property of the CMA-ES is its
invariance against linear transformations of the search space.
For the details of this ES we refer to [10], here we only
discuss the general principle and those aspects that play a
role in our tuning exercise.

In essence, the G-CMA-ES is a regular ES using µ parent
vectors, λ offspring vectors, and self-adaptive mutation step-
sizes (σ’s). The variables µ and λ are the usual parameters
of this EA. Additionally, σ’s must be given an initial value
before a run. The default population size prescribed for the
CMA-ES grows logarithmically with the dimension of the
search space (D) through the formula λ = 4 + 3 log2(D).
On multi-modal functions the optimal population size λ can
be considerably greater than the default population size [10].
Furthermore, the value of µ is related to λ by the equation
µ = λ

2 .
The other relevant feature of the CMA-ES is its restart

policy. The definition of the algorithm includes a list of
stopping criteria, and whenever one of these stopping criteria
is met, an independent restart is launched with the population
size increased by a factor of d = 2. Hansen and Auger [2]
report that values between 1.5 and 5 could be reasonable
for the increasing factor d. For the purposes of our present
investigations only one of these stopping criteria is relevant:

Stop if the range of the best objective function values of
the recent generations is below a certain threshold e.

C. Design Layer: REVAC

On the design layer, REVAC [14] is used for tuning the
parameters of the G-CMA-ES. For a good understanding
of the method it is helpful to distinguish two views on a
given set of parameter vectors as shown in Table II. Taking
a horizontal view on the table, a row is a vector of k



parameter values and we can see the table as a list of vectors
(first column), together with the utility of each vector (last
column), defined through the performance of the EA in
question. However, taking a vertical view on the table, the
ith column in the inner box shows m values from the domain
of parameter i and this can be seen as a distribution over the
range of that parameter.

To understand how REVAC is generating parameter vec-
tors we can take the horizontal view. From this perspec-
tive, REVAC can be described as an evolutionary algorithm
working on a population of m parameter vectors. This
population is updated by selecting parent vectors, which are
then recombined and mutated to produce one child vector
that is then inserted into the population. The exact details
are as follows.

• Parent selection is deterministic in REVAC as the n
vectors of the population that have the highest measured
utility are selected to become the parents of the new
child vector.

• Recombination is performed by a multi-parent crossover
operator, uniform scanning [6]. In general, this operator
can be applied to any number of parent vectors and
the ith value in the child 〈c1, . . . , ck〉 is selected from
the ithe values, x1

i , . . . , x
n
i , of the parents uniform

randomly. Here we create one child from the selected
n parents.

• Mutation, applied to the offspring created by recombi-
nation, is rather complicated. It works independently on
each parameter i in two steps. First, a mutation interval
[xia, x

i
b] is calculated, then a random value is chosen

uniformly from this interval to be the mutated value.
To define the mutation interval for mutating a given ci
all values x1

i , . . . , x
n
i for this parameter in the selected n

parents are also taken into account. After sorting them in
increasing order, the begin point of the mutation interval
can be specified as the h-th lower neighbor of ci, while
the end point of the interval is the h-th upper neighbor of
ci. The mutated value c′i is drawn from this interval with
a uniform distribution and the child will be composed
of these mutated values 〈c′1, . . . , c′k〉. (As there are no
neighbors beyond the upper and lower limits of the
domain, we extend it by mirroring the parent values
as well as the mutated values at the limits.)

• Survivor selection is also deterministic in REVAC as the
newly generated child always replaces the vector in the
population with the worst performance.

• Evaluation The utility of the newly generated child is
estimated by running the EA to be tuned with the values
it contains.

V. EXPERIMENTAL SETUP

Here we complement the general description of the system
components from the previous section by defining their pa-
rameters and other specific details as used in our experiments.

A. G-CMA-ES

Unlike most evolutionary algorithms, the G-CMA-ES does
not have generally recommended default values for its pa-
rameters. To be precise, its default parameter values are
not defined as fixed numbers, but as a function of other
parameters and/or problem characteristics, [10]. This may
suggest fewer parameters, however, most of these functions
still contain “magic constants” like the 2 in µ = λ

2 or the 3
in λ = 4 + 3 · log2(n). To be able to tune the population
size, the offspring size, and the initial mutation stepsize,
we decided to tune these “magic constants”. In this way,
we combine the knowledge of the authors about parameter
interactions enclosed in these formulas, and the power of
REVAC to tune parameters. The parameter-functions and the
constants tuned are summarized in Tables III and IV. This
setup requires k = 5 parameters to be tuned. The G-CMA-
ES is implemented in Java by Hansen and integrated into the
MOBAT toolkit. 2

TABLE III
PARAMETERS, DEFINING FORMULAS, AND MAGIC CONSTANTS OF THE

G-CMA-ES

Parameter Symb. Defining Magic
formula const.

Offspring size λ λ = 4 + a · log2(n) a

Population size µ µ = λ
b

b
Step size σ σ = c · (Lu − Lb) c
Population multiplication d
Stop Crit. theshold e

TABLE IV
SETUP OF THE G-CMA-ES. THIS TABLE SUMMARIZES THE “MAGIC”

CONSTANTS INTRODUCED IN TABLE III.

To be tuned Value-range Recommended Value
a [1, 10] 3
b [1, 5] 2
c [0.02, 10] 0.5
d [1, 4] 2
e [0, 0.001] 10−12

Termination 10.000 evals

B. REVAC

On the design layer, REVAC [14] is used for tuning the
parameters of the Evolutionary Algorithm. REVAC itself has
some parameters too, which need to be specified. The values
of the REVAC parameters used in these experiments are
shown in Table V. It can be argued that by using REVAC,
the number of parameters that need to be specified is hardly
reduced. Instead of five G-CMA-ES parameters, one now
needs to specify four REVAC parameters while the runtime
is 5000 times as long. However, one has to bear in mind that
the goal of parameter tuning is not to find the best possible
solution for the problem at the application layer, but the best

2Based on our verification experiments, we can conclude that the imple-
mentation in Java slightly differs from the version implemented in Matlab



possible setup (parameter vector) for the algorithm. Once
found, this setup can be reused in further runs and similar
applications.

TABLE V
REVAC PARAMETERS

Population Size 80
Best Size 40
Smoothing coefficient 10
Repetitions per vector 5
Maximum number of vectors tested 5000

C. Utility functions

The CEC-2005 optimization contest crisply specifies the
metrics used to compare the competing evolutionary algo-
rithms. The two principal components of these metrics are
the test suite and the EA performance measure. Furthermore,
there are rules on technical details, for instance about the
required precision when optimizing the given objective func-
tions, the number of fitness evaluations EAs are allowed
to do, or the number of independent runs with an EA
to calculate its performance. In general, any experimental
comparison between EAs is based on some metric X . Then
it is a natural idea to use this metric X as utility function
within the tuner to find an EA that scores well on X . In
principle, this guarantees that (the parameters of) the EAs are
optimized for the right objectives. Our present study follows
this rationale, but makes a number of practical compromises
that amount to using slightly modified version X ′ of the final
comparison metric as utility function. The modifications are
such that X ′ is in essence the same as X , but it can be
calculated much faster.

As for the test suite, the CEC-2005 rules specify that a con-
testant EA is to be tested on each of the 25 problems (equally
weighted), and is allowed to use D · 104 fitness evaluations
per run per problem, where D is the dimensionality of the
given problem. In order to reduce the time used for tuning,
we decided that REVAC calculates utility values based on
D ·103 fitness evaluations only. This reduces the duration of
the tuning sessions at the cost of the quality of information
used to guide the tuning algorithm. Although it is likely that
the best possible parameter vector with D · 103 evaluations
differs from the best with D · 104 evaluations, our results
indicate that the best parameter vector found also performs
well using D · 104 evaluations without the corresponding
tuning costs.

As for the EA performance measures, the official CEC-
2005 list contains three of them,
• MBF,
• SR,
• Rank (defined below),

and the rules prescribe that the performance of each EA
is to be calculated based on 25 independent runs. In this
study all three performance measures are used to form utility
functions and we tune the G-CMA-ES for each of these
independently. This implies that we perform three complete

tuning sessions such that REVAC is using either of these
performance measures to calculate the utility of parameter
vectors. For each of these utility functions it holds that
u(~p) of a parameter vector ~p is calculated by running the
G-CMA-ES 5 times independently on the whole test suite
with the parameter values in ~p. This represents a second
modification of the final comparison metrics meant to deliver
computationally cheaper utility functions. Once again, we
deliberately trade quality of information for execution speed,
and the results show that this is not harmful.

To coop with the two notions of algorithm quality (pa-
rameter quality) we introduce the term estimated utility and
verified utility. Estimated utility stands for the one used
during the tuning session, i.e., during a REVAC run. In
general, this is the X ′ in the first paragraph of this section;
here this is based on D · 103 fitness evaluations and 5
repetitions. By verified utility we mean the one used for
reporting the final outcomes. In general, this is the X in
the paragraph above, and it corresponds to the ultimate
comparison metric behind the given experimental study. Here
we use the official CEC-2005 definitions, based on D · 104

fitness evaluations and 25 repetitions.
To complete this section EA performance measures need

to be specified. MBF and SR are commonly used ones, there-
fore we omit their definitions. Rank, however, is not that well
known. Conceptually, ranks is a lexicographic ordering based
on SR (primary measure) and MBF (secondary measure)
such that the best parameter vector gets rank 1. An important
difference between MBF and SR on the one hand, and Rank
on the other hand is that SR and MBF can be calculated for
any parameter vector v in isolation, while Rank is a relative
measure showing how good v is within a set of vectors V .
Technically, given a set V of parameter vectors, the rank
R(v) of any v ∈ V is calculated in two different ways,
depending on its SR value:
• if SR(v) > 0, then R(v) equals its SR-based rank in
{u ∈ V : SR(u) > 0}

• if SR(v) = 0, then R(v) equals its MBF-based rank in
{u ∈ V : SR(u) = 0} plus |{u ∈ V : SR(u) > 0}|

This definition allows us to calculate rank R for any set of
parameter vectors. During a tuning session with REVAC, the
set V is changing over time and at any time t it is the set
of all parameter vectors that have been generated and tested
till that time.

D. Software and Hardware Description

The complete experiment is defined in MOBAT[17] (Meta-
Heuristic Optimizer Benchmark and Analysis Toolbox), a
toolbox for defining, tuning and evaluating Evolutionary
Algorithms on a distributed system. The default package
of MOBAT contains all the components for composing the
evolutionary algorithm used in these experiments, the test-
functions and REVAC. MOBAT is open source and freely
available via SourceForge.net. The experiments are ran using
the distributed-features of MOBAT on a 2.93 GHz Intel Core
2 Duo and a 2.8 GHz Dual Quad Core Xeon machine, and



took 12 days to finish all together, costing roughly 4 days
per performance measure.

VI. RESULTS

The results from the experiments can be investigated from
two different viewpoints, namely the performance of the best
parameter vectors (one for each utility function), and the
values of the best parameter vectors themselves (again, one
for each utility function).

A. Performance

In this section we present the outcomes of our experiments
by showing the verified utilities of the three best parameter
vectors (one for each utility function) in Table VI,VII and
VIII, together with the results obtained by using the rec-
ommended parameter values in the G-CMA-ES. From these
data it is immediately clear that the performance measure
used for tuning highly influences the utilities. Comparing
the outcomes discloses that for each of our three measures,
the best parameter vector is the one that is tuned on that
specific measure. While this is not surprising per se, it is
worth mentioning as it confirms that REVAC is capable of
tuning an EA for a specific user preference, e.g., MBF, SR,
or Rank.

It also shows that the recommended parameters that are
used in the G-CMA-ES are very good for solving the ‘easy’
functions, but on ‘hard’ functions they perform far worse.

From Table VI we can observe how the choice for Mean
Best Fitness as performance measure has influenced the
results. The best found vector does not perform well on the
‘easy’ functions, hardly reaching values below 10−6. How-
ever, on the ‘hard’ functions, especially F15 it outperforms
all other vectors. As predicted in section III, during tuning it
was mainly aimed at improving the MBF on functions with
high objective values, rather than generally improving the
MBF. This effect is clearly visible in table VII. Furthermore,
on hardly any of the problems, the best found fitness dropped
below the success-threshold. The opposite is true for the
parameter vector found by using success-rate as performance
measure. On most of the easy functions, it outperformed the
other vectors, and was often able to get the perfect score of 25
successes out of 25 runs. However, on the ‘hard’ functions it
performed much worse. Table VIII shows this ‘all or nothing’
behavior in which it either is the best, or the worst of the
three tuned vectors. The recommended parameters perform
reasonably well on the success-rate, which was one of the
main criteria in the evaluation of the CEC-2005 competition.

The parameter vector found by tuning on the rank shows
the most constant behavior. It performs well on the easy
functions, and not very bad on the hard functions. What is
also clear from table VIII is that the small increase in MBF
on the hard functions was enough to compensate for the loss
in performance on the ‘easy’ functions. This shows the effect
of using the ranks, rather than the raw performance value.

Keeping the rules of the CEC-2005 contest in mind we
take the Rank-optimal parameter vector as our final recom-

mendation and in Table IX we compare our best EA with
the overall winner of that contest.

TABLE IX
COMPARING THE ORIGINAL AND THE REVAC-TUNED VERSIONS OF THE

G-CMA-ES. (FOR MBF AND RANK, LOWER IS BETTER.)

Performance over the whole test suite by
EA Mean Best Fitness Success-rate Rank
REVAC-tuned ES 2.5e-3 29.9% 1.48
CEC-2005 winner 7.7e-3 29.9% 2.80

B. Best Parameter Values
The results in the previous section clearly show that the

performance measure used withing the tuner highly influ-
ences the results on the 25 test problems. The vector tuned
on MBF is focused on a few ‘hard’ problems, while the one
tuned on success-rate is mainly focused on the easy prob-
lems. The question rises which parameters are responsible
for these different behaviors. In table X we display the three
best parameter vectors (one for each performance measure)
with their verified utility.

The difference between the recommended parameters and
the tuned values is clear. The e-value for the three tuned
vectors values are up to 105 times as big, resulting in much
more restarts without losing to much precision. However,
to indicate the differences between the three tuned vectors
figure 3 is much more informative. Figure 3 shows the
top 1% of all generated vectors in each run, based on the
corresponding utility function. The gray area shows the .05
and .95 quantile of these best performing parameter values.
From these figures it is immediately clear that e and c highly
influence the MBF. As could be expected, e needs to be large
for an optimal performance based on MBF. This ensures
that on ‘hard’ problems as many repetitions as possible are
executed. Secondly, these figure 3 and table X also show the
importance of the stepsize c, namely only very small values
lead to the best MBF performance.

Although hard to see, c and e are also the most influential
parameters when tuning on success-rate and rank. The pa-
rameters that are tuned for success-rate are mainly focused at
solving unimodal problems. Therefore, the values for stepsize
c and stop-condition e are quite low in order to gradually
climb towards to the success-threshold without restarts. How-
ever, compared to the recommended settings still much more
restarts are executed. For rank based performance, both e and
c are somewhat larger. This ensures a good fitness on ‘hard’
problems, due to a larger number op repetitions and a broader
search.

Based on these results, we can conclude that there is
no such thing as “robust parameter values”, because the
good parameter values depend strongly on the performance
measure, even for generalist EAs optimized for a large
collection of problems.

VII. CONCLUSIONS AND OUTLOOK

Perhaps the most catchy aspect of this paper is the
evidence that using REVAC we could improve the ‘world



TABLE X
BEST PARAMETERS FOUND BY REVAC

Default Performance measure used for tuning
value Mean Best Fitness Success-rate Rank

a 3 4.82 4.93 3.61
b 2 2.34 1.31 1.14
c 0.5 0.14 0.55 0.81
d 2 1.13 2.37 1.20
e 10−12 4.0 · 10−4 1.8 · 10−6 2.8 · 10−5

champion’ EA in just a few days, spent on tuning its
parameters. While this can be seen as a nice result itself,
it is the far reaching implications of this case study that
form the main message of this paper. Namely, this exercise
demonstrates the ease of improving EA performance by
using an automated tuning method. In other words, we have
shown that the costs of tuning with our technology are
by all means acceptable. Our case study also gives a hint
about the possible gains. Considering that the ‘world cham-
pion’ EA must have been carefully designed and optimized
approximating its best possible performance, the room for
possible further improvements could not be very large. Yet,
we succeeded in improving it easily. For ‘normal’ EAs that
are not pushed to their limits yet, the margins for possible
improvements are expectedly much much bigger and all
our experience with REVAC indicates that it is possible to
realize these improvements. To formulate it simply, the main
message of this paper is that using REVAC great performance
improvements are possible for many EAs at acceptable costs.

Our results also indicate that one has to be careful with
claims about robust parameters. In particular, we found that
using different EA performance measures for tuning can lead
to different optimal parameter vectors. In other words, RE-
VAC has disclosed the existence of ‘specialized generalists’,
that is, EAs that are generalists in the sense of performing
well on a large set of test problems (rather than on one
problem only), but are specialists in the sense that they
perform well only along one performance measure and not
along another one. This shows that the very notion of robust
parameters is questionable. The easy fix for this problem is
to extend the definition of robustness to two dimensions and
consider good performance over multiple problems and over
multiple performance measures separately. However, we feel
that it is more advisable to dedicate further research efforts
to this to sort out all related aspects.

Finally, the question arises what the outcome of the CEC-
2005 competition would have been, if all of the participants
had tuned their algorithm by REVAC. Definitely, some algo-
rithms would have benefited more from tuning than others.
The results, hence the final rankings, would have been most
likely different, but without further research it remains an
open question whether we crowned the wrong king.
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TABLE VI
RESULTS USING MEAN BEST FITNESS AS PERFORMANCE MEASURE

Parameter Vector AVG F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Recommended Parameters 7.7e-3 4.5e-15 2.2e-15 0.0e-15 4.5e-15 2.4e-11 4.7e-5 4.7e-7 2.0e-3 9.7e-4 7.9e-4 1.3e-4 8.6e-2
Best found using mean best fitness 2.0e-3 5.6e-7 6.7e-7 5.0e-7 7.9e-7 1.1e-5 4.9e-4 8.2e-5 2.0e-3 1.7e-4 2.0e-4 9.9e-5 4.6e-6
Best found using success-rate 3.0e-3 4.7e-9 5.1e-9 6.2e-9 6.8e-9 2.3e-7 5.8e-8 1.1e-7 2.0e-3 1.1e-4 1.3e-4 6.1e-7 4.0e-5
Best found using rank 2.5e-3 1.1e-7 1.2e-7 1.0e-7 2.0e-7 9.3e-7 1.3e-6 2.6e-7 2.0e-3 1.3e-4 1.2e-4 6.4e-6 2.6e-7
Parameter Vector F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25

Default Parameters 8.9e-5 3.4e-4 3.4e-2 1.1e-2 1.0e-3 8.4e-3 7.6e-3 8.2e-3 9.0e-3 7.7e-3 8.3e-3 2.3e-3 4.0e-3
Best found using mean best fitness 6.3e-5 3.3e-4 5.5e-3 6.5e-3 1.0e-3 3.0e-3 3.0e-3 3.0e-3 3.0e-3 7.3e-3 8.7e-3 2.0e-3 4.0e-3
Best found using success-rate 6.0e-5 1.0e-4 2.8e-2 7.8e-3 9.7e-4 3.2e-3 3.2e-3 3.8e-3 4.9e-3 7.2e-3 8.0e-3 2.0e-3 4.0e-3
Best found using rank 6.0e-5 1.5e-4 1.5e-2 7.4e-3 1.0e-3 3.0e-3 3.0e-3 3.0e-3 5.0e-3 7.2e-3 8.1e-3 2.0e-3 4.0e-3

TABLE VII
RESULTS USING SUCCESS-RATE AS PERFORMANCE MEASURE (ONLY SOLVED FUNCTIONS ARE SHOWN)

Parameter Vector Problems Solved SR F1 F2 F3 F4 F5 F6 F7 F9 F10 F11 F12 F16

Recommended Parameters 9 29.9 % 25 25 25 25 25 22 24 0 0 7 9 0
Best found by mean best fitness 5 1.4 % 25 22 25 19 0 0 0 0 0 0 2 0
Best found by success-rate 11 37.7 % 25 25 25 25 25 25 25 8 4 25 24 0
Best found by rank 11 29.9 % 25 25 25 25 16 11 25 4 4 0 25 2

TABLE VIII
RESULTS USING THE RANK AS PERFORMANCE MEASURE

Parameter Vector AVG F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Recommended Parameters 2.80 1 1 1 1 1 2 3 1 4 4 2 3
Best found using mean best fitness 2.44 1 4 1 4 4 4 4 1 3 3 4 4
Best found using success-rate 1.60 1 1 1 1 1 1 1 1 1 1 1 2
Best found using rank 1.48 1 1 1 1 3 3 1 1 2 1 3 1
Parameter Vector F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25

Recommended Parameters 4 4 4 4 2 4 4 4 4 4 3 4 1
Best found using mean best fitness 3 3 1 2 2 1 1 1 1 3 4 1 1
Best found using success-rate 1 1 3 3 1 3 3 3 3 1 1 1 1
Best found using rank 1 2 2 1 2 1 1 1 2 1 2 1 1

a

b

cd

e

(a) Tuned on Mean Best Fitness

a

b

cd

e

(b) Tuned on Success Rate

a

b

cd

e

(c) Tuned on Rank

Fig. 3. The good parameter ranges when using the three different performance measures. The parameter ranges from Table IV are scaled to [0, r]


