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Abstract This paper studies the scalability of an Evolutionary Algorithm (EA)

whose population is structured by means of a gossiping protocol and where the

evolutionary operators act exclusively within the local neighborhoods. This makes

the algorithm inherently suited for parallel execution in a peer-to-peer fashion

which, in turn, offers great advantages when dealing with computationally expen-

sive problems because distributed execution implies massive scalability. In this

paper we show another advantage of this algorithm: We experimentally demonstrate

that it scales up better than traditional alternatives even when executed in a

sequential fashion. In particular, we analyze the behavior of several EAs on well-

known deceptive trap functions with varying sizes and levels of deceptiveness. The

results show that the new EA requires smaller optimal population sizes and fewer

fitness evaluations to reach solutions. The relative advantage of the new EA is more

outstanding as problem hardness and size increase. In some cases the new algorithm

reduces the computational efforts of the traditional EAs by several orders of

magnitude.
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1 Introduction

Evolutionary Algorithms (EAs) are a set of population-based stochastic search

techniques able to solve optimization problems in reasonable time. However, for

very demanding applications and large problem instances the computational efforts

(running times) of EAs can be high. Fortunately, EAs are rather easy to execute in a

parallel fashion offering a straightforward way to improving scale-up properties

[30]. A remaining challenge in parallel EAs is the central management of the

evolutionary cycle (parent selection, reproduction, survivor selection) imposing

limitations on scalability.

Within this context, Peer-to-Peer (P2P) systems provide a powerful parallel

infrastructure able to constitute a single virtual computer composed of a potentially

large number of interconnected resources without central control [33]. Such a

computing paradigm defines a rich set of topologies for the interconnection of nodes

at application level, so-called overlay networks. The main idea behind a P2P EA is

to designate each individual in the population as a peer and adopt a population

structure defined by a P2P overlay network [39]. Then any given individual has a

limited number of neighbors and mating is restricted to the P2P neighborhood.

Interactions in such a spatially structured EA can be visualized as a graph where

vertices represent individuals and edges the relationships between them [35]. In this

sense, a traditional unstructured population (a.k.a. panmictic population) is

represented as a complete graph, whereas other approaches define a richer set of

population structures such as regular lattices [13], toroid [11] or small-world [12,

14, 31]. Based on these studies, the Evolvable Agent model (EvAg) presented in

[22] is a distributed and decentralized P2P EA in which the population structure is

defined by a gossiping protocol called newscast that behaves asymptotically as a

small-world graph [19, 20].

This paper analyzes the scalability of such an approach from two perspectives.

First, we investigate how population sizes scale with increasing problem size and

difficulty. To this end, we follow the population sizing theory [15] which states that

there is an optimal population size for a given problem instance that can be

determined under some conditions. In particular, we use the bisection method [32]

that determines the minimum population size N for a selectorecombinative Genetic

Algorithm (GA), i.e., a GA without mutation. The assumption of a selectorecomb-

inative GA is commonly made in population sizing studies as the only source of

diversity is then the initial population which stands for a worst case analysis [28].

Second, we look at the scale-up properties of the average number of evaluations to a

solution (AES), which is a device independent measure of computational effort that

can be used for all EAs, with or without mutation [8].

In order to assess EvAg scalability, we conduct experiments on trap functions

with different levels of deceptiveness [1]. These functions represent a set of

decomposable problems based on unitation and composed of m sub-functions in

which the total fitness is additively calculated by summing the partial fitness of

every sub-function. Hence, it is easy to scale the problem size by varying the

number of sub-functions m. In addition, each sub-function is composed of k bits

representing the building block (BB) size, and only one of the 2k possible
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combinations belongs to the optimal solution. By varying the value of k we can vary

the level of problem difficulty, from non-deceptive, through quasi-deceptive to

deceptive problems [7].

The rest of this paper is structured as follows. Section 2 reviews the state of the

art literature related to P2P EAs. Section 3 outlines the overall architecture of the

Evolvable Agent model and provides some insights into the role that the population

structure plays on the EA performance. Section 4 explains the followed

methodology and experiments, including a description of trap functions and the

tuning of the population size. Section 5 presents the results of the experiments and

analyzes the scalability of the EAs tested. Finally, some conclusions are drawn in

Sect. 6 and some future lines of work proposed.

2 Related work

According to [2] parallel EA implementation is approached mainly by means of

three methodologies: master-slave, islands and fine grained models. However, not

all the models can be easily adapted to P2P systems due to issues such as

decentralization, massive scalability or fault tolerance.

– In the master-slave mode the algorithm runs on the master node and the

individuals are sent for evaluation to the slaves, in an approach usually called

farming. Such an architecture does not match decentralized structures and has

the obvious drawback of the master being a single point of failure. In addition,

scalability is often limited by master performance and incoming bandwidth.

– One of the most usual and widely studied approaches in parallel EAs is the

Island model (see [6] for a survey). The idea behind this model is that the global

panmictic population is split in several sub-populations or demes called islands.

The communication between islands is defined by a given topology, through

which they exchange individuals (migrants) with a certain rate and frequency.

The migration follows a selection policy in the source island and a replacement

policy in the target one. Practitioners generally use a fixed population size P in

studies of scalability, a fixed number of islands N and a population size per

island of P/n where n ¼ 1; . . .;N: That is the case described in [18] where the

authors show how the algorithmic results are highly sensitive to the number of

islands making the model vulnerable for highly dynamic systems such as P2P.

– In fine-grained approaches every individual within the population is placed on its

own processor and most of the works focus on the algorithmic effects of using

different neighborhood policies. For example, [13] studies the impact of regular

lattices on the selection pressure, of different graph structures such a toroid in [11]

or small-world in [12]. This last population structure has been empirically shown

to be competitive against panmictic EAs in [14, 31]. Finally, under the idea of

individuals evolving within a given set of neighbors, [39] presents a fine-grained

P2P EA showing the suitability of the approach for decentralized systems.

A first insight from Alba and Tomassini’s paper is that P2P EAs models

should be closer to fine grained approaches in order to be scalable. However,
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studying scalability in P2P optimization is not straightforward and is usually

approached in two complementary ways, using real environments [25] or

simulations [4]; either way presents its own advantages and drawbacks. On the

one hand, performing a real massively distributed and decentralized experiment

presents some challenges that, so far, pose a whole set of practical problems

beyond the state of the art. The main reason is the difficulty to gather a large

amount of reliable resources. Whenever the study of scalability is reduced to a

few peers, no conclusions about massive scalability can be drawn. However, if

the amount of peers is large enough, other questions, such as fault tolerance,

arise [29]. Some of the most relevant works that have tackled scalability are

detailed bellow:

– The DREAM project, [3], is one of the pioneering frameworks for P2P

Evolutionary Computation (EC). The project focuses on the distributed

processing of EAs and uses the P2P engine DRM (Distributed Resource

Machine) which is an implementation of the newscast protocol [19].

However, the island-based parallelization of DREAM was shown in [21] to

be insufficient for tackling large-scale decentralized scenarios. There are

some other frameworks based on DREAM as G2DGA [5] which uses G2P2P

instead of DRM and focuses on Genetic Algorithms among all the EAs

paradigms.

– Lee [27] proposes a parallel system for EC using the P2P framework JADE. The

optimization is performed by three kinds of agents: state agents for controlling

whether the peer is active or not, mobile agents for performing the evolutionary

computation and the synchronizing agent, a centralized agent for synchronizing

all the active peers. The algorithm’s execution time speeds-up linearly but the

scalability analysis is limited to eight nodes from which no conclusions about

true scalability can be drawn.

– Folino and Spezzano [10] propose the P-CAGE environment for EC in P2P

systems which is a hybrid model combining islands with cellular EAs. Every

peer holds an island and every island a cellular EA. Despite results

outperforming canonical EAs (either regarding execution time or convergence

speed), the scalability analysis is limited to ten peers and the algorithm yields

the best performance with five peers which points to poor scalability.

On the other hand, using simulations simplifies the analysis and allows focusing

on the structural design since restrictions like the harnessing of computing power or

the peers’ failures disappear. The drawback in this case is that simulations imply a

certain number of assumptions about the real environment; hence, they have to be

well stated (e.g., representing a pessimistic scenario as in [4]). In addition to

approaches for real environments, some other works in the literature face the design

of P2P EAs by means of simulations, focusing on the viability of the approaches

rather than dealing with the harnessing of computing power.

– The self-organizing topology evolutionary algorithm (SOTEA) in [38] is an EA

designed for the sake of diversity maintenance. To this end, the authors focus on

a self-organized population structure with the shape of a complex network. The
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network co-evolves with the EA by following two rules (from which a power

law population structure emerges):

1. Reproduction rule: When a new offspring is created, SOTEA adds a new

node, this node is linked to its parent (asexual reproduction). The parent’s

connections are inherited by the offspring with certain probability Padd. In

addition, all inherited connections are lost by the parent with probability

Premove.

2. Competition rule: A randomly selected individual competes with its least fit

neighbor. From such a competition, the loser is killed and the winner

inherits all its connections. By following these two rules, SOTEA keeps a

better population diversity than the Cellular and Panmictic GA used as a

baseline for comparison.

– Within the line of self-organized algorithms, [24] and, [39] present a P2P EA

with two particular properties: autonomous selection and natural reproduction.

Autonomous selection means that the individuals in the population decide on

their own whether and when they want to reproduce and to survive without any

central control. To this end, they use information on their own fitness and

estimations about the total population to support decision making. The second

special feature, natural reproduction, means that birth and death decoupled [9].

That is, an individual can be removed without being replaced by a child and a

child can be born without removing an existing individual first. This is highly

uncommon in EAs and as a consequence, the population size varies at run-time

(just like in natural evolution) and a self-adjusting selection pressure mechanism

is needed to prevent population implosions or explosions.

Following the same idea of decentralization, we presented in [22] a formal model

for P2P EAs, it is the Evolvable Agent model that we analyze in this paper for large-

scale scenarios.

3 Overall model description

The overall architecture of our spatially structured EA consists of a population of

Evolvable Agents (EvAg), described below and initially proposed in [22], whose

design objective is to carry out the main steps of evolutionary computation

(selection, variation and evaluation of individuals [8]). To this aim, each EvAg

evolves within its neighborhood which is locally maintained by the P2P protocol

newscast. Newscast runs on every node and defines a self-organizing graph that

dynamically maintains constant some graphs properties such as a low average path

length or a high clustering coefficient from which emerges a small-world behavior.

3.1 Evolvable agent

We deliberately leave the definition for agent open with the basic constraint of being

just an encapsulated processing unit. This way future works could easily extend the
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EvAg definition (i.e., behavioral learning between agents, self-adaptive population

size adjustment during run-time [39] or load balancing mechanisms within a real

network [3]).

Table 1 shows the pseudo-code of an EvAg where the agent owns an evolving

solution (Sactual).

The mate selection takes place locally within a given neighborhood where each

agent selects the current solution from other agents (Sactual). Selected solutions are

stored in Sols ready to be recombined and mutated. Within this process a new

solution Snew0 is generated. If the newly generated solution Snew0 is better than the

old one Sactual, it replaces the current solution.

3.2 Population structure as a complex network

To help understand the role of the population structure in a P2P EA, this section

introduces the structural design of a simple and easy understandable complex

network proposed in [37]. As described by the authors, the procedure for building a

small-world graph can start from a ring lattice with n vertices and k edges per

vertex. With a given probability p, each edge is rewired at random. Since the

procedure does not allow duplicate edges, no edge is generated whenever it matches

an existing one. This way for a rewiring factor of p = 0 the ring lattice is kept while

for p = 1 a random graph is generated. It has been shown that already for small

values of p, the average distance between two nodes decreases rapidly.

Figure 1 shows three instances of the Watts–Strogatz model in which the small-

world graph preserves the high clustering coefficient of regular lattices and the small

average path length of random graphs. Despite having a larger average path length

than complete graphs, the inhomogeneity in such kind of topologies was shown in

[12] to induce qualitatively similar selection pressures on EAs compared to

panmictic population structures.

The influence in the environmental selection pressure of such population

structures can be represented by their takeover time curves. Goldberg and Deb [16]

defines the takeover time as the time that it takes for a single, best individual to take

over the entire population without any other mechanism than selection. Hence,

takeover time is the proportion of best individuals formulated as a function of time.

Figure 2 shows that the takeover time curve in the Watts–Strogatz population

structure is similar to a panmictic one meaning that the induced selection pressures

with both topologies are roughly equivalent. As in Watts–Strogatz small-world

Table 1 EvAg
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topologies, this paper shows that P2P topologies can induce similar selection

pressures to the panmictic one, allowing in addition a better scalability behavior at

the lower edge cardinality of P2P systems.

3.3 Newscast as population structure

In principle, our method places no restrictions on the choice of population structure,

but this choice will have an impact on the dynamics of the algorithm. In this paper,

the newscast protocol is considered as neighborhood policy and topology builder.

Newscast is a dynamic and self-organized gossiping protocol for the maintenance

of unstructured P2P overlay networks [19] that we use as population structure for

our EA. Table 2 shows the pseudo-code of the main tasks involved in the self-

organized maintenance of a newscast topology. Each node keeps its own set of

neighbors by a cache that contains c 2 N entries, referring to c other nodes in the

population without duplicates. Each entry provides the following information about

Fig. 1 Watts-Strogatz graphs with n = 20 and k = 6. From left to right, the original ring lattice for
p = 0, a small-world graph for p = 0.2 and a random graph for p = 1

Fig. 2 Takeover time curves in a panmictic population structure, Watts–Strogatz population structure
with p = 0.2 and the original ring lattice with k = 2. Results are averaged from 50 independent runs for a
population size of n = 1, 600 and binary tournament
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a foreign node: A reference to the node, time-stamp of the entry creation (allowing

the replacement of old items), an agent identifier and specific application data.

There are two different tasks that the algorithm carries out within each node. The

active mode which pro-actively initiates a cache exchange once every fitness

evaluation (a.k.a. cycle) and the passive mode that waits for data-exchange requests.

In addition, the local selection procedure provides the EvAg with other agents’

current solutions (Sactual).

Every cycle each EvAgi initiates a cache exchange. It selects randomly a

neighbor EvAgj from its Cachei with uniform probability. Then EvAgi and EvAgj

exchange their caches and merge them following an aggregation function. In our

case, the aggregation consists of picking the freshest c items from Cachei [ Cachej

and merging them into a single cache that EvAgi and EvAgj will share. Figure 3

shows how the graph properties are dynamically self-organized from such a

decentralized process.

The cache size (c) plays here an important role. It represents the maximum

degree of a node, and therefore, influences the average path length and the

clustering coefficient. For example, Fig. 4 depicts the influence of the cache size on

Table 2 Newscast protocol in node EvAgi

Fig. 3 Convergence of the average path length (left) and clustering coefficient (right) bootstrapping from
a random and a Watts–Strogatz (ws) graph for a number of nodes n = 1, 600. It can be seen how the
algorithm converges to the same values after few cycles showing the independence of the newscast
protocol with respect to the initialization criterion
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the average path length and the clustering coefficient for different network sizes. A

smaller c implies a higher clustering coefficient and also a higher average path

length.

Based on such features, a newscast graph can be classified as small-world;

newscast has the small average path length of random graphs but, as shown in

Fig. 5, a much higher clustering coefficient [36].

Finally, Fig. 6 shows the takeover time curves for a panmictic and two different

parameterized newscast population structures. As explained in the previous section,

similar curves denote equivalent selection pressures induced by both kind of

topologies. Nevertheless, the node degree in complete graphs is n - 1 while the

average degree in newscast is approximately 2c pointing out a better scalability of

the small-world approach given that c � n. In fact, we use c = 20 within all the

settings of the experiments. Such value takes into account the recommendations in

[19] stating that the intended normal setting of newscast is c� n and demonstrating

that values from c = 20 prevent the spontaneous partitioning of the graph even

when it becomes very large. In addition, our work in [26] empirically shows a lack

of influence of c on the EvAg performance when c [ [0.005n, 0.15n], where n is the

population size.

Fig. 4 Average path length (left) and clustering coefficient (right) for different network and cache sizes
(c) averaged from 50 independent runs

Fig. 5 Clustering coefficients for equivalent random and newscast graphs (i.e., nodes have the same
number of edges, ten on the left and twenty on the right). The higher values in the newscast graphs point
to a small-world topology

Genet Program Evolvable Mach (2010) 11:227–246 235

123



4 Methodology and experimental setup

To investigate the scalability of the EvAg model, experiments were conducted on

different trap functions and compared against two canonical GAs, a steady-state GA

(SSGA) and a generational GA (GGA). EvAg was simulated following the same

steady-state scheme than the SSGA, however, the approaches differ in the

population structure. Whereas the population structure of the EvAg model is defined

by the newscast protocol, the canonical GAs are panmictic. To analyze scalability

three series of experiments were conducted:

In the first series, experiments use selectorecombinative versions of the GAs to

estimate optimal population sizes for the different problem instances. The reason for

using selectorecombinative GAs is that there are well defined models to establish

the population size and the number of evaluations required to solve a given trap

function instance [17], meanwhile, to the best of our knowledge there are no such

models when using mutation. To this end, in Sect. 4.1 we describe a method for

estimating the population size. The underlying idea is that without mutation, the

population size scales with respect to the problem instance since it becomes the only

source of diversity. In this context, [34] demonstrates the necessity of larger

population sizes when tackling larger problem instances.

To overcome the limitation of a mutationless GA, we switch mutation on in the

second series of experiments. The aim here is to gain some insight on the influence

of such a new source of diversity on the scalability order.

Finally, the third series focus on the analysis of the different approaches when

they are equally parameterized. Specifically, the largest instance of the fully

deceptive 4-trap function is considered to analyze the convergence of the fitness and

the evolution of genotypic diversity.

Within these series, the following metrics were used to assess the results [8]:

Fig. 6 A snapshot of a newscast population structure on the left. It can be visualized that the node degree
in newscast is smaller than in the panmictic case. On the right, takeover time curves for a panmictic and
two newscast population structures with c = 10 and c = 20. Results are averaged from 50 independent
runs for a population size of n = 1, 600 and binary tournament
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– The success rate (SR) measures the algorithm quality as the proportion in which

the algorithm is able to find the problem optimum out of all the runs.

– The average number of evaluations to solution (AES) stands for the number of

evaluations that the algorithm spends in those runs that yield success. Since

results do not follow a normal distribution, we have chosen the number of

evaluations to solution in the third quartile (AESQ3) as a central position value,

meaning that a 75% of the runs will stay below such a value.

– The convergence of the best fitness.

– The genotypic entropy is a measure of the population diversity defined on the

genotypic distances (Hg(P)).

HgðPÞ ¼ �
XN

j¼1

gj logðgjÞ ð1Þ

where gj is the fraction
nj

N of individuals in P having a Hamming distance j to the

optimal genotype, and N is the number of different distances.

4.1 A method for estimating the population size

The bisection method [32] estimates the optimal population size N to solve a

problem instance, that is, the lowest N for which 98% of the runs find the problem

optimum. To this end, a selectorecombinative GA is used to search the minimum

population size such that using random initialization it is able to converge to the

optimum without any other mechanism than recombination and selection.

Table 3 depicts the method based on bisection. The method begins with a small

population size which is doubled until the algorithm ensures a reliable convergence.

We define the reliability criterion as the convergence of the algorithm to the

optimum 49 out of 50 times (0.98 of SR). After that, the interval (min, max) is

halved several times and the population size adjusted within such a range until
max�min

min
[ threshold , where min and max stand respectively for the minimum and

maximum population size estimated and threshold for the accuracy of the

adjustment within such a range. This parameter has been set to 1
16

in order to

obtain a good adjustment of the population size.

Table 3 Population tuning

algorithm based on bisection
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4.2 The benchmark

Following Lobo and Lima’s recommendations [28] about choosing a test suite with

known population requirements and investigating the scalability on landscapes of

different characteristics, experiments were conducted on trap functions [1]. A trap

function is a piecewise-linear function defined on unitation (the number of ones in a

binary string). There are two distinct regions in the search space, one leading to a

global optimum and the other leading to the local optimum (see Fig. 7). In general, a

trap function is defined by the following equation:

trapðuð x!ÞÞ ¼
a
zðz� uð x!ÞÞ; if uð x!Þ� z
b

l�zðuð x!Þ� zÞ; otherwise

�
ð2Þ

where uð x!Þ is the unitation function, a is the local optimum, b is the global

optimum, l is the problem size and z is a slope-change location separating the

attraction basin of the two optima.

For the following experiments, 2-trap, 3-trap and 4-trap functions were designed

with the following parameter values: a = l - 1, b = l, and z = l - 1. With these

settings,1 2-trap is not deceptive, 4-trap is deceptive and 3-trap lies in the region

between deception and non-deception. Under these conditions, it is possible not

only to examine the scalability on trap functions, but also to investigate how the

scalability varies when changing from non-deceptive to deceptive search land-

scapes. Scalability tests were performed by juxtaposing m trap functions in binary

strings of length L and summing the fitness of each sub-function to obtain the total

fitness.

All settings are summarized in Table 4,2 operators as binary tournament or

uniform crossover are standard in GAs.

The baseline for comparison are two panmictic GAs that follow an steady-state

and a generational scheme and have no mutation in order to meet the selectore-

combinative criterion of the bisection method. Since the methodology imposes a SR

of 0.98 in the results, the AESQ3 has been used as an appropriate metric to measure

the computational effort to reach the success criterion. A more efficient algorithm

needs a smaller number of evaluations. Finally, the cache size of newscast has been

fixed to 20 based on the results in [26] which shows the robustness of the EvAg

Fig. 7 Generalized l-trap
function

1 Originally, Ackley’s trap functions use z ¼ 3l
4

, however, [7] demonstrates that trap functions are fully

easy under such settings.
2 All the source code for the experiments is available from our Subversion repository at

http://www.forja.rediris.es/svn/geneura/evogen published under GPL v3. Accessed on September 2009.

238 Genet Program Evolvable Mach (2010) 11:227–246

123

http://www.forja.rediris.es/svn/geneura/evogen


model regarding such a parameter. Setting a different cache size does not alter the

quality of the solutions.

5 Analysis of results

Figure 8 depicts the scalability of the population size (N) and the required number

of evaluations to reach the problem optimum (AESQ3) for the three approaches

under study on 2, 3, and 4-trap functions. All the graphics show that either the

population size or the computational effort fit with a polynomial order of scalability

with base the length of the chromosome (L) and different exponents depending on

the problem difficulty and the approach itself.

The first conclusion that can be easily drawn from results is a better scalability of

the EvAg approach with respect to the population size, specially when the problem

difficulty increases from 2 to 4-trap. That is, increasing the problem difficulty makes

that the GGA and SSGA face extreme difficulties to track the problem optimum,

thus requiring a higher population size N to prevent that the algorithm gets stuck in

local optima. From a computational perspective, this fact can be translated into a

more efficient use of the running platform since the EvAg approach will require a

smaller amount of computational resources. Additionally, results on AESQ3 are

clearly correlated to the population size, SSGA scales better than GGA and it is

roughly similar to EvAg in 2 and 3-trap. Nevertheless, as the problem difficulty

increases to 4-trap, EvAg scales clearly better.

In the second series of experiments we consider a more realistic GA setup and

switch mutation on. This implies that we have to specify values for the mutation rate

parameter pm. Strictly speaking, we should also recalibrate population sizes, since

the bisection method only gives good estimates for selectorecombinative GAs.

However, an extensive parameter sweep goes far beyond the scope of this paper and

therefore we will use the common ‘‘1
L heuristic’’ for setting the mutation rates and

keep the population sizes that were used in the first series of experiments.

Table 4 Parameters of the

experiments
Trap instances

BB size 2, 3, 4

Individual length (L) 12, 24, 36, 48, 60

GA settings

GA Selectorecombinative SSGA

Selectorecombinative GGA

Selectorecombinative EvAg

Population size Tuning algorithm

Selection of Parents Binary Tournament

Recombination Uniform crossover, pc = 1.0

Newscast settings

Cache size 20
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Obviously, in this case we only need to look at the AESQ3 results. The outcomes of

these experiments are shown in Fig. 9 in which curves appear shifted with respect to

the selectorecombinative version in Fig. 8 but approximately keeping the same

scalability order. Table 5 compares such estimated complexity orders with mutation

switched off and on, showing that mutation does not alter the order in algorithm

performance, and exponents are roughly the same, with only the constant in the

power law changing.

In the last series of experiments we try to gain more detailed insights in the

differences between the three approaches to population management. To this end,

we run the GGA, SSGA, and EvAg models using the same settings on a problem

instance, summarized in Table 6 (recall, that in the previous experiments, GGA,

Fig. 8 Scalability in trap functions based on the population tuning algorithm and the
selectorecombinative versions of the generational GA (GGA), steady-state GA (SSGA) and the
Evolvable Agent (EvAg). On the left the estimated population sizes N and the evaluations to solution in
third quartile AESQ3 on the right. Results are obtained over 50 independent runs and depicted in a log-log
scale as a function of the length of the chromosome, L
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SSGA, and EvAg used different parameters on any given problem instance). We

choose the largest instance of the most difficult problem under study (L = 36 in 4-

trap) for this purpose, where the differences in scalability between the approaches

are most visible. On this instance, the population size for the selectorecombinative

EvAg was estimated to 600 and the AESQ3 to 393000. Switching mutation on

implies that N = 600 is oversized for the EvAg approach since mutation represents

Fig. 9 Reproduction of the results in Fig. 8 with mutation switched on
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a new source of diversity, however, the highest scalability orders of SSGA and GGA

indicate that such a population size will remain undersized in both cases.

The results in Fig. 10 show that EvAg is still converging towards the optimum

while the SSGA and GGA stagnates at early stages of the search. Despite the SSGA

performing a more exploitative search than the GGA, as shown by the genotypic

entropy converging to zero, both cases lost track of the optimum, a fact that might

be explained by an undersized population size. On the other hand, the evolution of

diversity of the EvAg approach indicates that the algorithm is still converging when

the termination criterion is met. Since a selectorecombinative EvAG is able to find

the optimum in such number of evaluations it is straightforward to see that the

population size is oversized in this case. Given that the three approaches are equally

parameterized and that SSGA shares the same reproductive scheme than the EvAg,

it is within the population structure of the EvAg where the genetic diversity is

preserved at a higher level and consequently the population size N can be reduced.

Hence, the EvAg approach scales better on difficult problems. With a lower optimal

N, EvAg needs fewer evaluations to reach the optimum when compared to

panmictic GAs.

Finally, the normality of such results were analyzed using the Anderson-Darling

test which refutated the null hypothesis on the normality of the data. Therefore, a

non-parametric Wilcoxon test was used to compare the quality of fitness between

the EvAg and the SSGA and GGA approaches. Table 7 presents the Wilcoxon

analysis of the data which shows significant differences for the EvAg approach with

respect to the SSGA and the GGA.

Table 5 Complexity orders of the AESQ3 scalability in O notation

GGA mutation SSGA mutation EvAg mutation

Off On Off On Off On

2-Trap O(L1.804) O(L1.833) O(L1.607) O(L1.6) O(L1.738) O(L1.714)

3-Trap O(L3.24) O(L3.422) O(L2.454) O(L2.583) O(L2.498) O(L2.843)

4-Trap O(L9.219) O(L10.17) O(L6.169) O(L6.949) O(L4.451) O(L4.33)

Fig. 10 Best fitness convergence (left) and evolution of the diversity expressed as the entropy based on
the hamming distances between the genotypes (right). Graphs plotted represent the average of 50
independent runs
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6 Conclusions

The Evolvable Agent is a spatially structured model designed for Evolutionary

Computation in P2P infrastructures. The model defines the population structure by

means of the gossiping protocol newscast that behaves asymptotically as a small-

world graph. The influence of such kind of structures in the environmental selection

pressure of EAs is close to that in panmictic populations used by default in

canonical GA approaches. Nevertheless, as it has been shown in this paper the

inhomogeneities of small-world structured population play an important role in the

preservation of the genetic diversity, and have, therefore, a positive effect on

scalability.

The EvAg model has demonstrated good scalability on trap functions with search

landscapes of different difficulties. We found that EvAg scales better than a GGA

and an SSGA that only differ from it in the population structure. Based on various

scenarios with and without mutation we can conclude that EvAg needs fewer

evaluations to reach a solution in addition to requiring smaller populations. The

improvement is much more noticeable as the problem difficulty increases showing

Table 6 Parameters for the

third series of experiments
Trap instance

BB size 4

Individual length (L) 36

GA settings

GA SSGA

GGA

EvAg

Population size 600

Termination condition Max. eval. = 393,000

Selection of parents Binary tournament

Recombination Uniform crossover, pc = 1.0

Mutation Bit-flip mutation, pm ¼ 1
L

Newscast settings

Cache size 20

Table 7 Wilcoxon test comparing the best fitness distributions of equally parameterized SSGA, GGA

and EvAg in 4-trap

Problem instance Algorithm Avg. fitness ± r Wilcoxon test Significantly

different?

Trap4 GGA 28.02 ± 0.14 W = 2,500 p-value \ 2.22e-16 Yes

L = 36 SSGA 31.88 ± 1.15 W = 2,476 p-value \ 2.22e-16 Yes

N = 600

M. Eval. = 393,000 EvAg 34.82 ± 0.66 – –

Results are obtained over 50 independent runs
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thereby the adequacy of the P2P approach for tackling large instances of difficult

problems.

To gain more detailed insights, the runtime behavior of equally parameterized

EvAg, SSGA, and GGA approaches has been analyzed in depth on our largest fully

deceptive problem instance. The results show that EvAg can maintain higher

population diversity and better progress in fitness. As a consequence, an oversized

population for the EvAg model still remains undersized for the canonical

approaches that get lost in local optima.

As future lines of work, we intend to assess the EvAg behavior on a wider range

of problem landscapes and study the dynamics of the approach taking into account

issues such as asynchrony, heterogeneity and fault tolerance in addition to the study

of churn in [23].
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