Solving Constraint Satisfaction Problems with
Heuristic-based Evolutionary Algorithms

B. Craenen A.E. Eiben
Leiden University Leiden University
beraenen@cs.leidenuniv.nl gusz@cs.leidenuniv.nl

E. Marchiori

Leiden University
elena@cs.leidenuniv.nl

Abstract

During the last decade several approaches to solving constraint sat-
isfaction problems (CSPs) by evolutionary algorithms (EAs) have been
proposed. A number of EAs for solving CSPs employ heuristics based
on information over the structure of the constraints. In this paper we
perform a comparative study of heuristic based EAs. To this aim, we
conduct extensive experiments on a test suite consisting of randomly
generated binary CSPs. By the systematic setup of the test suite we
can draw conclusions on the (dis)advatages of the type and the usage
of heuristics in genetic algorithms for solving CSPs.

1 Introduction

Constraint satisfaction is a fundamental topic in artificial intelligence with
relevant applications in different areas, like planning, default reasoning,
scheduling, etc. Informally, a constraint satisfaction problem (CSP) con-
sists of finding an assignment of values to variables in such a way that the
restrictions imposed by the constraints are satisfied.

In general, constraint satisfaction problems are computationally intractable
(NP-hard). Therefore, besides trying to improve the efficiency of complete
algorithms by means of pruning techniques for reducing the size of the search
space, much effort has been spent in the design of heuristic algorithms which
have not guaranteed performance yet are able to give an answer in very short
time. In particular, in the last decade various approaches based on evolu-
tionary algorithms have been introduced. Evolutionary algorithms for solv-
ing constraint satisfaction problems can be roughly divided into two classes:
EAs using adaptive fitness functions ([1, 4, 5, 12, 13, 6, 18, 19]) and EAs
utilizing heuristics ([11, 16, 21, 22]). An experimental comparison of EAs of
the first kind is given in [7], using a large test suite consisting of randomly

generated binary CSPs, where the hardness of the problem instances is in-
fluenced by two parameters: constraint density and constraint tightness. In
this paper we describe heuristic based evolutionary algorithms and perform
experiments on the above mentioned test suite. This allows us to assess the
performance of the two classes of algorithms, and to draw conclusions on
the effectiveness of different GA based methods.

2 Random Binary CSPs over Finite Domains

We consider binary constraint satisfaction problems over finite domains,
where constraints act between pairs of variables. This is not restrictive
since any CSP can be reduced to a binary CSP by means of a suit able
transformation which involves the definition of more complex domains (cf.
[24]). A binary CSP is a triple (V,D,C) where V. = {x,...,z,} is a set
of variables, D = (Dy,..., D,) is a sequence of finite domains, such that z;
takes value from D;, and C'is a set of binary constraints. A binary constraint
cij is a subset of the cartesian product D; x D; consisting of the compatible
pairs of values for (z;,z;). For simplicity here and in the sequel we shall
assume that all the domains D; are equal (D; = D for i € [1,n]). An
instantiation « is a mapping o : V' — D, where «(x;) is the value associated
to z;. A solution o of a CSP is an instantiation such that (o(z;),0(z;)) is
in ¢;;, for every z;,x; in V' with i # j.

A class of random binary CSPs can be specified by means of four pa-
rameters (n,m,d,t), where n is the number of variables, m is the uniform
domain size, d is the probability that a constraint exists between two vari-
ables, and ¢ is the probability of a conflict between two values in a constraint.
CSPs exhibit a phase transition when a parameter is varied. At the phase
transition, problems change from being relatively easy to solve (i.e., almost
all problems have many solutions) to being very easy to prove unsolvable
(i.e., almost all problems have no solutions). Problems in the phase tran-
sition are identified as the most difficult to solve or to prove unsatisfiable
([2, 20, 23, 26]), and occur for higher density/tightness of the constraint
networks.

The test suite we have used consists of problem instances produced
by a generator (see http://www.wi.leidenuniv.nl/home/jvhemert/csp-ea/)
loosely based on the generator of Gerry Dozier [1]. The generator first cal-
culates the number of constraints that will be produced using the equation
@ -d. It then starts producing constraints by randomly choosing two
variables and assigning a constraint between them. When a constraint is as-
signed between variable v; and v;, a table of conflicting values is generated.
To produce a conflict two values are chosen randomly, one for the first and
one for the second variable. When no conflict is present between the two
values for the variables, a conflict is produced. The number of conflicts in

this table is determined in advance by the equation m(v;) - m(v;) - t where
m(v;) is the domain size of variable i.

3 Heuristic EAs for CSPs

Heuristic EAs for CSPs share the same rationale. The uniform random part
of the EA and the heuristic-based components are used to counterbalance
each others deficiencies. The application of heuristics can improve the per-
formance of the blind random mechanism, while the random component can
compensate the strong bias that is introduced by the heuristics. We consider
three different EAs using these techniques: ESP-GA by E. Marchiori, which
uses a constraint processing phase and a probabilistic repair rule, H-GA by
Eiben et al., using heuristic genetic operators, and Arc-GA by M. C. Riff Ro-
jas, which uses two novel genetic operators and a new fitness function that
are guided by information from the constraint network. All algorithms use
the staightforward integer representation of chromosomes, where each gene
corresponds to one variable and the set of alleles for v; equals the domain
D;, that is, a chromosome is a sequence of integers where integer p in the
i-th entry indicates that the i-th variable is set to value p.

3.1 ESP-GAs

In [16], E. Marchiori suggests an approach for solving CSPs using GAs. The
idea is based on the ‘glass-boz’ approach [25] because it adjusts the CSP
in such a way that there is only one single (type of) primitive constraint.
By decomposing more complex constraints into primitive ones, the result-
ing constraints have the same granularity and therefore the same intrinsic
difficulty. This rewriting of constraints is done in two steps and is called
constraint processing. In the first step (elimination step), functional con-
straints are eliminated in order to reduce the number of variables in the
problem. This is done analogously to the method used, e.g., in GENOCOP
[17]. In the second step (splitting step), the resulting constraints are decom-
posed into a set of constraints in canonical form called primitive constraints.
The primitive constraints chosen in [16] are of the form o - v; — - v; # 7.
After the constraint processing phase all constraints have the same form,
hence a single repair rule can be used in the GA to enforce dependency
propagation. Because all constraints share a single repair rule, repairing an
individual can be performed locally by applying the repair rule to every vio-
lated constraint. This is done in the second phase (dependency propagation),
where the resulting CSP is solved using a GA that incorporates a form of
probabilistic repair rule of the form if «-p; —B-p; = v then modify p; or p;.
Finally, a GA with dependency propagation is used to find a solution.
The elimination of functional constraints reduces the number of variables
hence the complexity of the search space. Moreover, the transformation of

constraints into primitive ones smoothens the relative difficulty of the con-
straints, thus helping the GA to escape from those local optima derived
from the concentration of the search towards chromosomes that satisfy eas-
ier constraints. Finally, the dependency propagation phase seems to direct
further the search beyond local optima by small random improvements of
the chromosomes.

This method requires the setting of a number of parameters. In the
splitting step, one has to choose the class of primitive constraints. In the
propagation step, one has to decide which and how many chromosomes to
select for dependency propagation. This choice depends on the problem.
Moreover, one has to decide which rules to use for repairing chromosomes
that violate a primitive constraint. This choice depends on the form of the
primitive constraint. Moreover, there are various ways to change the value
of the selected variable.

3.1.1 Implementation Details

As mentioned in Section 2 the representation of the constraints is fixed,
where a constraint is characterized by a table of conflicting values. This is
a problem for the applicability of the ESP-GA technique, whose constraint
processing phase relies on the implicit assumption that CSPs are described
implicitely as formulas in a logic language. As expected, it turns out that
the use of a table of conflicting values for representing a constraint renders
unnecessary the application of the constraint processing phase. Therefore,
the ESP-GA reduces to the GA with dependency propagation. The results of
the experiments will indicate that this specialization of the ESP-GA technique
is not very effective for solving binary constraint satisfaction problems.

In order to remain as close as possible with the original GA based
approach in [16], we convert conflict tables into constraints of the form
a-v; — f3-vj # v, by setting v = |Dj| - p; — pj, where p;, p; are the values of
v; and v; respectively, and by setting o = D; and 3 = 1. To check violation
of a constraint of this form one enters the values for the specific variables.
If the result is the calculated y-value, the constraint is violated. It is not
difficult to prove that the above mentioned technique transforms a CSP into
an equivalent one.

The implementation of dependency propagation we consider is based on
the following choices:

- variable selection: The most restricted variable is chosen, that is, the one
with the smallest number of zeros on its row or column is selected. Counting
the zeros in the conflict table for every value of the two variables is enough
to determine which one of the variables is to be changed. With an equal
number of zeros, a random choice is made.

- value selection: A random value among those that do not cause conflict.
- constraints order: A random permutation of the constraints is chosen,

every time an individual is repaired. In this way each individual is repaired
with a different random constraint order and therefore population diversity
should be ensured. The other main features of the implemented GA are
illustrated in Table 1.

Crossover operator | One-point crossover

Mutation operator | Random mutation
Fitness function Number of violated constraints

Extra Repair rule

Table 1: GA features of ESP-GA

3.2 H-GAs

In [8, 10], Eiben et al. propose the possibility of using existing CSP heuristics
within GAs. Heuristics are commonly used in CSP solvers and are already
available for most classical CSPs, therefore, it is a natural idea to use these
heuristics in a GA. In [10], two heuristic operators are specified: an asexual
operator that transforms one individual into a new one and a multi-parent
operator that introduces a new individual based on two or more parents.
Both have been tested on the n-queens and the graph 4-coloring problem.
In this paper we will call the GAs as suggested by Eiben et al. heuristic
GAs: H-GAs.

Thorough this paper we maintain a subtle difference between two types of
unary search operators, i.e. operators that utilize one parent to create (one)
offspring. The name mutation stands for a unary operator that is completely
random, without any bias. The term asezual (heuristic) operator is used for
a unary operator that applies a bias when creating the offspring.

3.2.1 Asexual heuristic operator

The asexual heuristic operator selects a number of variables in a given in-
dividual, and then selects new values for these variables. There are three
defining parameters of the possible asexual operators: the number of vari-
ables to be modified, the criteria for selecting these variables, and the criteria
for the new values of these variables. Thus, different asexual operators can
be denoted by the triple (n,z,y) where n indicates the number of variables
to be modified — being either 1,2 or # (with # meaning that the number
of variables to be altered is chosen randomly but is at most one-fourth of
all variables in the individual) — and z and y indicate the selection criteria
for variable and value selection respectively. Both x and y can have two
values: r standing for random selection and b for a heuristic biased selection
((n,r,7) would thus be termed as ‘mutation’, while all other variants not).
In this paper we study the operator (#,b,b), meaning that each time the

operator is used, up to one fourth of the variables is changed, its variables
to be changed and the values they will be changed to are chosen using a
heuristic.

In [8] several measures or heuristics for selecting a variable to reinstatiate
as well as heuristics for selecting a (new) value for the selected variable are
considered. In accordance with [10] we implement a heuristic bias system
that changes the variable that is involved in the largest number of constraint
violations. It is expected that by changing this variable the largest improve-
ment to the individual can be made. The heuristic for selecting a new value
is based on the number of satisfied constraints under the given instantiation.
The heuristic counts the number of satisfied constraints for each different
value in the domain of the given variable and chooses one maximizing this
measure. It is expected that by using this measure on value selection, the
possibility of introducing a (new) conflict in the individual is the smallest.

3.3 Multi-parent heuristic crossover

The crossover operator of our H-GA is a multi-parent operator that uses a
heuristic to determine which values of the parents are selected for a child.
The basic mechanism of this crossover operators is scanning [9]. This oper-
ator examines all positions of the parents consecutively and per position it
chooses one of the values present in the parents to be included in the child
at the given position. Clearly, heuristics for value selection in the asexual
operator can be used in the scanning crossover too. Conform with the setup
in [10] the heuristics based on the number of satisfied constraints is used
in the scanning crossover during our experiments. The difference with the
asexual heuristic operator is that the heuristic will not evaluate all possible
values but only ose ones that are represented in the parents at the given
position. The multi-parent crossover is applied with 5 parents.

Version 1 | Version 2 | Version 3
Main operator Asexual | Multi Multi

heuristic | parent parent

operator | operator | operator
Secondary operator | Random | Random | Asexual

mutation | mutation | heuristic

operator

Fitness function Number of violated constraints
Extra None

Table 2: Features of the three implemented versions of H-GA

As Table 2 discloses we use the asexual heuristic operator in a double
role. In the H-GA. 1 version it serves as the main search operator assisted by

(random) mutation. In H-GA. 3 it accompanies the multi-parent crossover in
a role which is mostly filled in by mutation.

3.4 Arc-GAs

In [21, 22] M.C. Riff-Rojas introduces a GA that solves CSPs by integrating
information about the constraint network in the fitness function and in the
genetic operators (crossover and mutation).

The basic idea of the arc-fitness function used in [21] is to use a penalty
function which measures for each unsatisfied constraint the so called error
evaluation, that is the number of variables occurring in that constraint plus
the number of those variables that are directly connected to these variables
in the constraint network. The error evaluation gives an indication of how
hard a constraint is, relatively to the instantiation represented by the chro-
mosome. The arc-fitness function of a chromosome is then the sum of the
error evaluations of all constraints that the chromosome does violate. We
denote by E.(chrom) the error evaluation of constraint ¢ with respect to the
instantiation described by the chromosome chrom.

In arc-mutation, a gene of a chromosome is randomly selected for mu-
tation, and a new value for the corresponding variable, say v, is chosen,
namely the value which minimizes the sum of the error-evaluations of the
constraints involving v.

For using arc-crossover first the constraints have to be ordered, which
is done in decreasing order according to their error-evaluation w.r.t. an
instantiation of the variables that violates all constraints. Thus ¢ = ¢ if
E.(unsat) > E.(unsat), where unsat denotes an instantiation (chromo-
some) violating all constraints. Given two parents, this ordering is used for
selecting constraints by enumerating them according to ». For the two vari-
ables of a selected constraint, say v, w, the following cases are distinguished:

1. If none of the two variables are instantiated yet in the offspring under
construction, and

(a) there is a parent which satisfies that constraint, then the parent
having the higher fitness provides its values for v, w.

(b) none of the parents satisfies the constraint, then a combination
of values for v, w from the parents is chosen which minimizes the
sum of the E.(unsat)’s, for all ¢ containing v or w whose other
variables are already instantiated in the offspring.

2. If only one variable, say v, is not instantiated in the offspring under
construction, then the value for v is chosen from the parent that min-
imizes the sum of the error-evaluations of the constraints involving
.

Although in [21] a new selection method is also proposed, it has not be
implemented in our algorithm, since this method is not used in [22] for most
of the additional abilities of the this selection method where incorporated
in the arc-fitness function. The GA features of the implemented algorithm
are summarized in Table 3.

Crossover operator | Arc-crossover operator

Mutation operator | Arc-mutation operator

Fitness function Arc-fitness

Extra None

Table 3: Features of Arc-GA

4 Experimental comparison

All three algorithms use a steady state GA, with a population of 10 individ-
uals. Per generation one crossover operation and two mutation operations
are performed, resulting in three fitness evaluations per generation. For par-
ent selection linear ranking with bias b = 1.5 is used and the replacement
strategy deletes the two worst members of the population.

The results in table 4 are obtained by testing the three methods (five
algorithms) on 25 classes of CSPs obtained by considering the combinations
of 5 different constraints tightness and 5 different density values. In each
class 10 instances are generated and 10 independent runs are performed on
each instance. The CSP instances have 15 variables and uniform domain
size of 15. All the algorithms stop if they find a solution or after 100000
fitness evaluations. In order to compare the results, two common measures
are used: the percentage of runs that found a solution the so-called success
rate (SR), and the average number of fitness evaluations to solution (AES)
in successful runs. Notice that in density-tightness combination (0.1, 0.1),
for several methods, the entry labelled AES contains the symbol 7, meaning
that a solution was found in the initial population.

Entries in boldface are used to highlight the best result for the considered
class of CSPs. It is worth to note that the three versions of H-GA seem to
do the least amount of hidden work comparable to the other measures while
ESP-GA seems to do the most amount of hidden work with Arc-GA somewhere
between these two GAs. These because Arc-GA uses heuristics more often,
in the crossover and mutation operator as well as in repair method.

Table 4 gives some indication of what is called the landscape of solvability
of the different GAs. One can observe success rates SR = 1 in the upper
left corner, while SR = 0 is typical in the lower right corner, separated by
a ‘diagonal’ indicating the mushy region. Technically, for higher const raint
density and tightness, all three EAs are unable to find any solution. This

den- alg tightness

sity 0.1 | 0.3 0.5 | 0.7 | 0.9
ESP-GA 1(4) 1(23) 1(78) 0.91(600) 0.45(13559)
H-GA.1 || 1(11) 1(54) 1(169) 1(643) 0.72(10419)

0.1 | H-GA.2 || 1(12) 1(88) 1(315) 1(1325) 0.61(15254)
H-GA.3 1(7) 1(23) 1(53) 1(484) 0.64(14752)
Arc-GA 1(4) 1(32) 1(79) 0.99(211) 0.27(14131)
ESP-GA || 1(23) 1(132) 0.91(5699) | 0.01(8366) 0()
H-GA.1 || 1(50) 1(441) 1(4481) 0.02(69632) 0()

0.3 | H-GA.2 || 1(70) 1(704) 1(4921) 0.05(22954) 0()
H-GA.3 || 1(26) 1(119) 0.97(3587) 0() 0()
Arc-GA || 1(33) 1(175) 0.91(617) | 0.02(25802) 0()
ESP-GA || 1(36) 1(891) 0.19(4371) 0() 0()
H-GA.1 || 1(121) 1(1671) 0.08(43337) 0() 0()

0.5 | H-GA.2 || 1(188) 1(1861) 0.07(36780) 0() 0()
H-GA.3 || 1(47) 1(498) 0.07(21083) 0() 0()
Arc-GA || 1(95) 1(388) 0.01(554) 0() 0()
ESP-GA || 1(52) 0.91(8190) 0() 0() 0()
H-GA.1 || 1(204) 1(5950) 0() 0() 0()

0.7 | H-GA.2 || 1(428) 1(8454) 0() 0() 0()
H-GA.3 || 1(61) 0.95(8960) 0() 0() 0()
Arc-GA || 1(138) | 0.71(1230) 0() 0() 0()
ESP-GA || 1(69) | 0.42(12180) 0() 0() 0()
H-GA.1 || 1(338) | 0.37(35593) 0() 0() 0()

0.9 | H-GA.2 || 1(487) | 0.4(32954) 0() 0() 0()
H-GA.3 || 1(92) | 0.13(21457) 0() 0() 0()
Arc-GA || 1(164) | 0.04(1193) 0() 0() 0()

Table 4: SR and AES (within parenthesis) for ESP-GA, Arc-GA and the three
versions of H-GA

is not surprising, because higher density and tightness yield prob lems that
are almost always unsatisfiable. Another interesting aspect of the behavior
of these algorithms is for which problem instances their performance rapidly
degrade. The most difficult CSPs seem to start in the classes where d > 0.3
and £ = 0.7, and where d > 0.5 and £ = 0.5. The se results are in accordance
with theoretical predictions of the phase tra nsition for binary CSP problems
([23, 26]).

In the mushy region Arc-GA has worse performance. Only in density-
tightness combinations (0.1,0.7) and (0.3,0.7) does Arc-GA have a larger SR
than ESP-GA although this difference is small. Compared to the third version
of H-GA in density-tightness combination (0.3,0.7), Arc-GA still finds a few
solutions while the third version does not.

ESP-GA has a mixed performance. In density-tightness combinations
(0.1,0.7), (0.1,0.9), (0.3,0.5), (0.3,0.7) and (0.7,0.3), ESP-GA does not perform
as well as the other GAs, always being out-performed by at least one of the

other GAs. In density-tightness combinations (0.5,0.5) and (0.9,0.3), the
opposite is the case. In these two combinations ESP-GA performs best while
these two combinations are hard to solve for all GAs. However, in general
ESP-GA performs slightly better than Arc-GA. The third version of H-GA fails
to find any solution in density-tightness combinations (0.3,0.7), (0.3,0.5) and
(0.7,0.3). This indicates that the third version of H-GA is not effective for
solving hard binary CSP instances. The difference between the first and the
second version of H-GA is small. In density-tightness combinations (0.1,0.9)
and (0.5,0.5) the first version has a slightly better SR than the second version
while in density-tightness combinations (0.3,0.9) and (0.9,0.3) the second
version of H-GA is slightly better than the first version. When reviewing AES,
the first version performs slightly better than the second version. Therefore
we can conclude that the first version H-GA performs slightly better that the
second version.

In summary, the results of our experiments seem to indicate that the
algorithms have comparable performance, where first two versions of H-GA
perform slightly better than the other GAs.

5 Conclusions

This paper contains an experimental study on binary constraint satisfac-
tion problems of three different heuristic based GAs. The results of the
experiments indicate that the three methods have comparable performance.

It is interesting to compare the results with those reported in [7], where
three GA based algorithms using adaptive fitness functions have been tested
on the same benchmark instances used in our experiments. The best perfor-
mance is there obtained by a GA-based algorithm by Dozier et al [4], there
called MIDA (microgenetic iterative descendent genetic algorithm) which em-
ploys heuristic information in the reproduction operator as well as an adap-
tive mechanism in the fitness function that increases the penalty of con-
straints that are more often unsatisfied.

In Table 5 we report the success rates obtained by MIDA (the winner in
[7]) and those for H-GA.1 (the winner in the present study). The figures
indicate that MIDA can solve CSPs much better than the algorithms studied
in this paper. The MIDA is also faster w.r.t. AES in all cases (figures not
reported here). The success of MIDA most probably comes from the fact that
it actually belongs to both classes of EAs mentioned in the introduction:
it uses a heuristic method incorporated into the mutation operator and an
adaptive mechanism redefining the fitness function during the run. It is
reasonable to assume that the search for a solution does profit from the
combination of the heuristic mutation and the adaptive fitness function.
Future work is directed to assess the performance of combination of the
heuristics applied in H-GA.1 and the adaptive fitness adjusting mechanism

10

den- alg tightness
sity 01] 03] 05] 07|09
0.1 MIDA 1 1 1 1 0.96
H-GA.1 1 1 1 1 0.72
0.3 MIDA 1 1 1 0.52 0
H-GA.1 1 1 1 0.02 0
0.5 MIDA 1 1 0.9 0 0
H-GA.1 1 1 0.08 0 0
0.7 MIDA 1 1 0 0 0
H-GA.1 1 1 0 0 0
0.9 MIDA 1 1 0 0 0
H-GA.1 1 |0.37 0 0 0

Table 5: Success rates for MIDA and H-GA. 1

called SAW-ing from [7].

References

[1]

3]

J. Bowen and G. Dozier. Solving constraint satisfaction problems using
a genetic/systematic search hybride that realizes when to quit. In L.J.
Eshelman, editor, Proceedings of the 6th International Conference on
Genetic Algorithms, pages 122-129. Morgan Kaufmann, 1995.

P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard
problems are. In J. Mylopoulos and R. Reiter, editors, Proceedings of
the 12th IJCAI-91, volume 1, pages 331-337, Morgan Kaufmann, 1991.
Morgan Kaufmann.

Y. Davidor, H.-P. Schwefel, and R. Méanner, editors. Proceedings of the
3rd Conference on Parallel Problem Solving from Nature, number 866
in Lecture Notes in Computer Science. Springer-Verlag, 1994.

G. Dozier, J. Bowen, and D. Bahler. Solving small and large constraint
satisfaction problems using a heuristic-based microgenetic algorithm.
In IEEE [14], pages 306-311.

G. Dozier, J. Bowen, and D. Bahler. Solving randomly generated con-
straint satisfaction problems using a micro-evolutionary hybrid that
evolves a population of hill-climbers. In Proceedings of the 2nd IEEE
Conference on Evolutionary Computation, pages 614-619. IEEE Press,
1995.

A E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Graph coloring
with adaptive evolutionary algorithms. Journal of Heuristics, 4(1):25—
46, 1998.

11

[7]

[17]

[18]

[19]

A E. Eiben, J.I. van Hemert, E. Marchiori, and A.G. Steenbeek. Solving
binary constraint satisfaction problems using evolutionary algorithms
with an adaptive fitness function. In A.E. Eiben, Th. Back, M. Schoe-
nauer, and H.-P. Schwefel, editors, Proceedings of the 5th Conference
on Parallel Problem Solving from Nature, number 1498 in LNCS, pages
196-205, Berlin, 1998. Springer.

A.E. Eiben, P-E. Raué, and Zs. Ruttkay. Heuristic genetic algorithms
for constrained problems, part i: Principles. Technical Report TR-337,
Free University Amsterdam, 1993.

A.E. Eiben, P-E. Raué, and Zs. Ruttkay. Genetic algorithms with
multi-parent recombination. In Davidor et al. [3], pages 78-87.

A E. Eiben, P-E. Raué, and Zs. Ruttkay. Solving constraint satisfaction
problems using genetic algorithms. In IEEE [14], pages 542-547.

A.E. Eiben, P.-E. Raué, and Zs. Ruttkay. Constrained problems. In
L. Chambers, editor, Practical Handbook of Genetic Algorithms, pages
307-365. CRC Press, 1995.

A E. Eiben and Zs. Ruttkay. Self-adaptivity for constraint satisfaction:
Learning penalty functions. In Proceedings of the 3rd IEEE Conference
on Evolutionary Computation, pages 258-261. IEEE Press, 1996.

A E. Eiben and J.K. van der Hauw. Adaptive penalties for evolutionary
graph-coloring. In J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer, and
D. Snyers, editors, Artificial Evolution’97, number 1363 in LNCS, pages
95-106. Springer, Berlin, 1997.

Proceedings of the 1st IEEE Conference on Evolutionary Computation.
IEEE Press, 1994.

Proceedings of the 4th IEEE Conference on Evolutionary Computation.
IEEE Press, 1997.

E. Marchiori. Combining constraint processing and genetic algorithms
for constraint satisfaction problems. In Th. Béck, editor, Proceedings
of the 7th International Conference on Genetic Algorithms, pages 330—
337. Morgan Kaufmann, 1997.

7. Michalewicz. Genetic Algorithms + Data structures = FEwvolution
programs. Springer, Berlin, 3rd edition, 1996.

J. Paredis. Co-evolutionary constraint satisfaction. In Davidor et al.
[3], pages 46-56.

J. Paredis. Co-evolutionary computation. Artificial Life, 2(4):355-375,
1995.

12

[20]

[21]

[22]

[23]

P. Prosser. An empirical study of phase transitions in binary constraint
satisfaction problems. Artificial Intelligence, 81:81-109, 1996.

M.C. Riff-Rojas. Using the knowledge of the constraint network to
design an evolutionary algorithm that solves CSP. In IEEE [15], pages
279-284.

M.C. Riff-Rojas. Evolutionary search guided by the constraint network
to solve CSP. In IEEE [15], pages 337-348.

B.M. Smith. Phase transition and the mushy region in constraint sat-
isfaction problems. In A. G. Cohn, editor, Proceedings of the 11th
European Conference on Artificial Intelligence, pages 100-104. Wiley,
1994.

E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press
Limited, 1993.

P. van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing
in cc(fd). In A. Podelski, editor, Constraint Programming: Basics and
Trends. Springer-Verlag, 1995.

C.P. Williams and T. Hogg. Exploiting the deep structure of constraint
problems. Artificial Intelligence, 70:73-117, 1994.

13

