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Abstract. In this paper we describe how the Stepwise Adaptation of
Weights (saw) technique can be applied in genetic programming. The
saw-ing mechanism has been originally developed for and successfully
used in eas for constraint satisfaction problems. Here we identify the
very basic underlying ideas behind saw-ing and point out how it can
be used for different types of problems. In particular, saw-ing is well-
suited for data mining tasks where the fitness of a candidate solution
is composed by ‘local scores’ on data records. We evaluate the power
of the saw-ing mechanism on a number of benchmark classification data
sets. The results indicate that extending the gp with the saw-ing feature
increases its performance when different types of misclassifications are
not weighted differently, but leads to worse results when they are.

1 Introduction

In constraint satisfaction problems (csp) a set of variables is given together
with their domains and a number of constraints on these variables. The task is
to find an instantiation of the variables such that all constraints are satisfied.
A commonly used approach to constraint satisfaction problems in evolutionary
computation is the use of penalty functions. Thus, an evolutionary algorithm
(ea) operates on populations consisting of vector instantiations as candidates
and the fitness of an arbitrary candidate is computed by adding up the penalties
for violating the given constraints. Formally, the fitness function f is defined as:

f(x) =
k∑
i=1

wi · χ(x, i) . (1)

where k is the number of constraints, wi is the penalty (or weight) assigned to
constraint i, and

χ(x, i) =
{

1 if x violates constraint i
0 otherwise . (2)

One of the main drawbacks to this approach is that the penalties, or weights,
for constraints need to be determined in accordance with the hardness of the
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constraints. After all, the ea will primarily ‘concentrate’ on satisfying those con-
straints that carry the highest penalties. Nevertheless, to determine how weights
should be assigned to constraints appropriately, might require substantial insight
into the problem, which might not be available, or only at substantial costs.

In the Stepwise Adaptation of Weights (saw) mechanism this problem is
circumvented by letting the ea defining the weights itself. In a saw-ing ea the
weights are initially set at a certain value (typically as wi = 1) and these weights
are repeatedly increased with a certain step size ∆w during the run. The general
mechanism is presented in Figure 1.

On-line weight update mechanism
set initial weights (thus fitness function f)
while not termination do

for the next Tp fitness evaluations do
let the ea go with this f

end for
redefine f and recalculate fitness of individuals

end while

Fig. 1. Stepwise adaptation of weights (saw)

Redefining the fitness function happens by adding ∆w to the weights of those
constraints that are violated by the best individual at the end of each period of Tp
fitness evaluations. This mechanism has been successfully applied to hard csps,
such as graph 3-coloring [4,5], 3-sat [1,3], and randomly generated binary csps
[6,9]. Extensive tests on graph coloring and 3-sat [2,8,13] showed that algorithm
performance is rather independent from the values of Tp and ∆w, thus they need
not to be fine tuned.

Looking carefully at the saw-ing mechanism one can observe that its ap-
plicability is not restricted to constrained problems. The basic concept behind
saw-ing is that the overall quality of a candidate solution is determined by ‘lo-
cal scores’ on some elementary units of quality judgment, like constraints in a
csp. Then, the quality of a candidate solution (the fitness used in an ea) can
be defined as a weighted sum of these local scores, where the weights should
reflect the importance, respectively hardness of the elementary units of quality
judgment.

A classification problem, as perceived in the rest of this paper, is defined by
a data set consisting of data records, where each of the records is assigned a
label, its class. The task is to find a model that takes a record as input and gives
the class of the record as output. A natural way of comparing models is by their
classification accuracy on the whole data set, the perfect model would generate
the right class for every (known) record. It is obvious that this problem fits the
above description: the overall quality of a candidate solution (the accuracy of
a model on the whole data set) is determined by local scores on some elemen-
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tary units of quality judgment (data records). Thus, an evolutionary algorithm
searching for a good model classifying the given records in a data set D could
use any suitable representation of such models and the fitness function can be
defined similarly to Equation 1 as follows.

f(x) =
∑
r∈D

wr · χ(x, r) . (3)

where χ(x, r) is now defined as

χ(x, r) =
{

1 if x classifies data record r incorrectly
0 otherwise (4)

More generally, the following formula can be used.

f(x) =
∑
r∈D

wr · error(x, r) . (5)

where error(x, r) is a measure of misclassification, generalizing the simple good/
no-good characterization by χ(x, r) in Equation 4.

2 A Library for Evolutionary Algorithm Programming

All experiments reported here are performed using our Library for Evolutionary
Algorithm Programming (leap). This library differs from the many libraries
for programming evolutionary algorithms that have been build as a toolkit, i.e.,
a loosely connected set of building blocks, that put together in the right way
provides a user with a functioning program. The problem with a toolkit is that
it is often difficult to learn and to maintain. Also most of them are aimed at one
specific area within evolutionary computation.

By using a framework instead of a toolkit we can overcome these problems.
A framework does not supply the user with loosely connected building blocks,
instead it provides an almost running algorithm. The user only has to put in the
last pieces of the puzzle and maybe has to change the parts of the framework that
are not appropriate for the problem. The framework will then provide a running
evolutionary algorithm using the provided pieces, substituting the changed parts.

When additions are made to the library, programs made with it can easily
make use of these additions, by only changing some lines of code in a specific
and predetermined place. As long as the new method is compatible with the old
one, in a high level specification sense, the library will produce a new evolution-
ary algorithm without much extra work. A selection mechanism could easily be
tested on different kind of algorithms, thus providing an easy way of sharing
techniques between different areas of research.

A preliminary version of leap can be downloaded from its Internet site1. The
library is programmed in c++, using the Standard Template Library (stl)2

1
leap: http://www.wi.leidenuniv.nl/~jvhemert/leap/

2 Available at: http://www.sgi.com/Technology/STL/

http://www.wi.leidenuniv.nl/~jvhemert/leap/
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and comes equipped with a programmers manual [10]. It has been build using
techniques from the paradigm Design Patterns [7]. A more detailed description
of leap can be found in [9].

3 An adaptive GP for data classification

The adaptive gp we study in this paper deviates in two aspects from the usual gp

for data classification. The first, and most important modification is the usage of
the saw-ing mechanism that repeatedly redefines the fitness function. The second
modification concerns the representation. Namely, here we apply a representation
based on so-called atomic expressions as leaves and only Boolean operators in
the body of the trees. This implies some changes in the implementation of the
mutation operator. The most important parameters of our gp are summarized
in Table 1, for more details we refer to [9].

Table 1. Main parameters of the adaptive gp

Parameter Value

Function set {and, or, nand, nor}
Atom set attribute greater or less

than a constant
Initial maximum tree depth 5
Maximum number of nodes 200
Initialization method ramped half-and-half

Algorithm type steady-state
Population size 1000
Parent selection linear ranking
Bias for linear ranked selection 1.5
Replacement strategy replace worse
Stop condition perfect classification or

40000 fitness evaluations

Mutation type 1. subtree replacement
2. subatomic mutation

Subatomic d parameter 0.1
Mutation probability 0.1
Crossover swap subtrees
Crossover probability 0.9
Crossover functions:atoms ratio 4:1

saw-ing update interval Tp 100
saw-ing ∆w parameter 1
saw-ing initial weights 1

3.1 Representation and mutation using atoms

In the design of the representation we are deviating from the idea of having a
function set of real valued operators and a special operator in the root of the
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tree that chooses the class depending on the values given by the subtrees [11].
Instead, we process numerical information at the leaves of a tree, transform it
into Boolean statements, and apply only Boolean functions in the body of the
tree. This is meant to increase the readability of the emerging models.

An atom is syntactically a predicate of the form operator(var, const), built
up from the following three items:
1. a variable indicating a field in the data set,
2. a constant between 0 and 1, and
3. a comparing operator, denoted by A< and A>.

Evaluating an atom operator(var, const) on a record r within this syntax amounts
to determining whether the value standing in the field var of r is smaller (for A<)
or larger (for A>) than the given constant const, returning a Boolean value as
answer. Notice that our gp fulfills the closure property because atoms produce a
Boolean output after processing the numerical arguments. In this representation
the conditional part of a rule could look like:

(A>(r1 , 0.347) nor A<(r0 , 0.674)) and A>(r1 , 0.240)

which, in turn, is represented by the tree in Figure 2.

NOR

AND

A (r1,0.240)
>

A (r0,0.674)
<

A (r1,0.347)
>

Fig. 2. Representation of a classification rule as a tree.

The new representation also gives rise to a new operator, called subatomic
mutation. Every time an individual is selected for a mutation, we first choose a
node in the tree to work on. If this node is part of the function set, a subtree
mutation will be performed. If this node is a leave (an atom), we choose with
equal chance if this will be a subtree mutation or a subatomic mutation. A
subatomic mutation works by first selecting, with equal chance, if the operation
will be performed on the variable or on the constant. In case of a variable we
just randomly select a new variable. In case of the constant c a small number
∆c (−d < ∆c < d) is generated which is then added to the constant as follows3:

c′ =

0, if c+∆c < 0,
1, if c+∆c > 1,
c+∆c, otherwise.

3 The values for all records are between 0 and 1 in the data sets we consider.
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3.2 SAW-ing method for GP

As explained in the introduction, extending a gp with the saw-ing technique
can be done by using a fitness function in the spirit of Equation 3 or 5. The
test suite we use for the experiments consists of binary classification problems,
where exactly two disjoint classes are present. Denoting these classes by A and
Ā, it is thus sufficient to evolve models (classification rules) for class A only in
the form of

condition(r)←→ class(r) = A,

where r is a record and the candidate solutions (trees in the population) represent
the expression condition(·). Due to the Boolean typing of our trees, we can
directly interpret a tree x on a record r as true or false. According to the above
formula we have that a tree x classifies r into A iff x evaluates to true on r.
To simplify explanations later on we introduce the notation class(r) for the real
class of r and

predicted(x, r) =
{
A, if x is true on r,
Ā, if x is false on r.

for the class where a tree x classifies r into. With this notation we redefine χ
from Equation 4 to become:

χ(x, r) =
{

1 predicted(x, r) 6= class(r)
0 predicted(x, r) = class(r)

and the fitness function is to be minimized. The weights wr used in the fitness
function are initially set to one. During a run, after every Tp evaluations the gp

is interrupted and the weights are changed. A weight wr belonging to record r is
increased with ∆w if the best individual does not classify r correctly. After this
phase all individuals have to be re-evaluated using the new fitness function.

Note that the stop condition of our algorithm is based on counting the num-
ber of fitness evaluations. This is in accordance with the common practice of
generate-and-test style search methods. Because each newly created candidate
solution is immediately evaluated, the number of evaluations equals the num-
ber of points visited in the search space. Using the saw-ing technique, however,
an extra overhead of re-evaluations is created and it could be argued that we
should count the re-evaluations too. We do not do this for two reasons. Firstly, it
is the number of points visited in the search space that we really want to count.
Secondly, we can minimize the re-evaluation overhead by simply caching the
classification results for each individual. That is, the first time an individual is
evaluated it is assigned an additional bit-vector with the length of the number of
records. In this vector we store the result of each classified record. This enables
us to skip the time consuming evaluation of the individual x on each r when x is
re-evaluated, instead we can suffice with looking up the values from this vector.

The algorithm using the saw-ing mechanism will be called gp+saw and the
one without gp.
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4 Experiments and results

We have compared the gp and gp+saw techniques to other data classifying al-
gorithms on four different data sets from the Statlog4 [12] data set. All the exper-
iments involve an n-fold cross validation. The results are obtained by averaging
the classification error or misclassification cost over the n folds. We compare our
gp and gp+saw with four algorithms selected from the Statlog project. All the
selected algorithms were best in one of the data sets, and showed a reasonable
performance in the others. Also the default performance is reported, which is
calculated by using the very simple classifying rule of always going for the safe
prediction. For example in heart disease it is safe to say everyone has a heart
disease.

The first experiments involve the Australian Credit Approval and Pima Indi-
ans Diabetes data sets. The Australian Credit Approval data set has 690 records
and a 10-fold cross validation is performed. The Pima Indians Diabetes set has
768 records, and here a 12-fold cross validation is performed. When running the
algorithms gp and gp+saw we used the fitness function according to Equation 3
and the definition of χ above. The comparison is based on the average percent-
age of wrongly classified records in the test sets. The results in Table 2 show
that the performance of gp+saw is better than gp. For the Diabetes data set
gp+saw even manages to beat one (NaiveBay) of the Statlog algorithms.

Table 2. Classification error for the test phase on the Australian Credit Approval
and Pima Indians Diabetes data sets

algorithm Australian Diabetes

Cal5 0.131 0.250
Discrim 0.141 0.225
LogDisc 0.141 0.223
NaiveBay 0.151 0.262
gp 0.246 0.283
gp+saw 0.242 0.258
Default 0.440 0.350

The German Credit and Heart Disease data sets have respectively a size
of 1000 and 270 records. Here the experiments consist of a 10-fold and a 9-
fold cross validation test. The results are compared using a measure called the
Average Misclassification Cost. This is calculated by using a cost matrix, which
assigns a cost to each pair of true (rows) and predicted (columns) values. The
cost matrix for these two data sets is the same:

class good/absent bad/present
good credit/heart disease absent 0 1
bad credit/heart disease present 5 0

4 Available at: http://www.ncc.up.it/liacc/ML/statlog

http://www.ncc.up.it/liacc/ML/statlog
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According to this table we ran the algorithms gp and gp+saw on these two
problems using the fitness function in Equation 5 and the definition of error(x, r)
as follows.

error(x, r) =

0 predicted(x, r) = class(r)
1 predicted(x, r) = A and class(r) = Ā
5 predicted(x, r) = Ā and class(r) = A

where class A stands for ‘good credit’ and ‘heart disease absent’, respectively.
Results show that for the German Credit data set, gp has a reasonable

performance, obtaining a classification cost close to the best. However for the
Heart Disease data set, both gp and gp+saw have an inferior performance,
although still better than the Default measure.

Table 3. Average Misclassification Costs for the German Credit and Heart
Disease data set

algorithm German Heart

Cal5 0.603 0.444
Discrim 0.535 0.393
LogDisc 0.538 0.396
NaiveBay 0.703 0.374
gp 0.579 0.456
gp+saw 0.943 0.537
Default 0.700 0.560

5 Conclusions and further research

The basic motivation for this study comes from the observation that the com-
position of the fitness function in a penalty based ea for csps is very similar
to that of an ea (gp) for data classification. It is thus a natural question to in-
vestigate whether the saw-ing mechanism, which can substantially increase the
performance of an ea on csps, can lead to improvements on data classification
problems as well.

Regarding the results of our experiments two cases can be distinguished. In
case of the Australian Credit Approval and the Pima Indians Diabetes data sets
gp+saw clearly outperforms gp alone. This confirms that saw-ing forms a useful
extension of the standard machinery, leading to better results at low costs. On
the German Credit and the Heart Disease data sets, however, the outcomes are
reversed. When looking for an explanation of this result it immediately occurs
that the latter two problems differ from the first two, because a cost matrix
biases the measurement of misclassifications. It could be hypothesized that this
‘skewed’ measurement interferes negatively with the re-weighting mechanism of
saw-ing, misleading the gp+saw algorithm. Namely, the saw-ing mechanism
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increases the weights of misclassified records, regardless to the low (1) or high
(5) contribution of this misclassification to the fitness value (to be minimized).

Current research is concerned with further investigation of the German Credit
and the Heart Disease problems. The first experiments support the hypothesis
that the inferiority of gp+saw is caused by the ‘skewed’ measurement of mis-
classifications. Evaluating the outcomes of the experiments disregarding the cost
matrix during validation, counting only the percentage of misclassifications as a
result, yields better results for gp+saw as can be seen in Table 4.

Table 4. Classification error for the test phase for the German Credit and Heart
Disease data set

algorithm German Heart

gp 0.382 0.278
gp+saw 0.351 0.270

Although these outcomes are not anymore comparable with the benchmark
techniques from Statlog, they provide evidence that saw-ing can increase gp

performance on the third and fourth data sets too. Presently we are working on
a modified version of the saw-ing mechanism that does take the cost matrix into
account when re-defining weights of records. We are also testing the gp and the
gp+saw algorithms on large real world data sets from finance.

Future research is divided into two main parts. The first part concerns the
implementation of the traditional gp approach to data classification tasks, and
its comparison with the present variant where we use an atom-based repre-
sentation and a steady-state population model. The second part is the devel-
opment of leap, where the main focus will be on the extension of the func-
tionalities and the possible integration of leap with another library called eo

(Evolvable|Evolutionary objects)5.
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