
Solving Binary Constraint Satisfaction Problems Using
Evolutionary Algorithms with an Adaptive

Fitness Function

A.E. Eiben 1'2, J.I. van Hemert 1, E. Marchiori 1'2 and A.G. Steenbeek 2

1 Dept. of Comp. Science, Leiden University, P.O. Box 9512, 2300 RA Leiden, NL
2 CWI, P.O. Box 94079, 1090 GB Amsterdam, NL

A b s t r a c t . This paper presents a comparative study of Evolutionary
Algorithms (EAs) for Constraint Satisfaction Problems (CSPs). We focus
on EAs where fitness is based on penalization of constraint violations
and the penalties are adapted during the execution. Three different EAs
based on this approach are implemented. For highly connected constraint
networks, the results provide further empirical support to the theoretical
prediction of the phase transition in binary CSPs.

1 I n t r o d u c t i o n

Evolutionary algorithms are usually considered to be ill-suited for solving con-
straint satisfaction problems. Namely, the traditional search operators (mutation
and recombination) are 'blind' to the constraints, that is, parents satisfying a
certain constraint may very well result in an offspring that violates it. Further-
more, while EAs have a 'basic instinct' to optimize, there is no objective function
in a CSP - just a set of constraints to be satisfied. Despite such general argu-
ments, in the last years there have been reports on quite a few EAs for solving
CSPs having a satisfactory performance. Roughly speaking, these EAs can be
divided into two categories: those based on exploiting heuristic information on
the constraint network [6, 14, 21, 22], and those using a fitness function (penalty
function) that is adapted during the search [2, 4, 5, 7, 9, 10, 17, 18]. In this pa-
per we investigate three methods from the second category: the co-evolutionary
method by Paredis [17], the heuristic-based microgenetic algorithm by Dozier
et al [4], and the EA with stepwise adaptation of weights by Eiben et al. [10].
We implement three specific evolutionary algorithms based on the correspond-
ing methods, called COE, SAW, and MID, respectively, and compare them on a test
suite consisting of randomly generated binary CSPs with finite domains.

The results of the experiments are used to assess empirically the relative
performance of the three different methods within the same category, thereby
providing suggestions as to which implementation of the same general idea is
the most promising. We use randomly generated problem instances for the ex-
periments, where the hardness of the problem instances is influenced by two pa-
rameters: constraint density and constraint tightness. By running experiments
on 25 different combinations of these parameters we gain detailed feedback on
EA behavior and can validate theoretical predictions on the location of the

202

phase transition. In summary, on the 625 problem instances considered, MID
performs bet ter than the other two EAs with respect to the success rate (i.e.,
how many times a solution is found). The success rate of SAW is slightly worse on
harder problem instances corresponding to higher constraint density and tight-
ness, while the performance of C0E is rather unsatisfactory when compared with
the performance of one of the other two algorithms. Concerning the computa-
tional effort, it is worthwhile to note that SAW requires fewer fitness evaluations
to find a solution than the other two EAs. The obtained results show that for
higher constraint density and tightness, all three EAs are unable to find a so-
lution. This behavior is in accordance with theoretical predictions on the phase
transition in binary CSPs (cf. [23]).

The paper is organized as follows: the next section describes the notion of
constrained problems and it deals more specifically with random binary CSPs.
In Section 3 various evolutionary approaches for solving CSPs are discussed and
the three EAs COE, SAW, and MID are introduced. In Section 4 the experimental
setup is given, followed by the results. Finally, in Section 5 we summarize our
conclusions and we give some hints on future work.

2 C o n s t r a i n t s a t i s f a c t i o n p r o b l e m s

A constraint satisfaction problem (CSP) is a pair (S, 0), where S is a free search
space and r is a formula (Boolean function on S). A solution o /a constraint
satisfaction problem is an s E S with r = true. Usually a CSP is stated as a
problem of finding an instantiation of variables V l , . . . , v~ within the finite do-
mains D1, �9 . . , Dn such that constraints (relations) C l , . . . , Cm hold. The formula
r is then the conjunction of the given constraints. One may be interested in
one, some or all solutions, or only in the existence of a solution. We restrict our
discussion to finding one solution.

More specifically, we consider binary constraint satisfaction problems over
finite domains, where constraints act between pairs of variables. This is not
restrictive since any CSP can be reduced to a binary CSP by means of a suitable
transformation which involves the definition of more complex domains (cf. [24]).
A class of random binary CSPs can be specified by means of four parameters
(n, m, d, t), where n is the number of variables, m is the uniform domain size,
d is the probabili ty tha t a constraint exists between two variables, and t is the
probabili ty of a conflict between two values across a constraint. CSPs exhibit a
phase transition when a parameter is varied. At the phase transition, problems
change from being relatively easy to solve (i.e., almost all problems have many
solutions) to being very easy to prove unsolvable (i.e., almost all problems have
no solutions). The te rm mushy region is used to indicate that region where
the probabili ty that a problem is soluble changes from almost zero to almost
one. Within the mushy region, problems are in general difficult to solve or to
prove unsolvable. An important issue in the study of binary CSPs is to identify
those problem instances which are very hard to solve [3]. Recent theoretical
investigations ([23, 26]) allow one to predict where the hardest problem instances

203

should occur. Williams and Hogg in [26] develop a theory that predicts that
the phase transition occurs when per variable there are a critical number of
nogoods (i.e., of conflicts between that variable and all other ones) 3. Smith in
[23] conjectures that the phase transition occurs when problems have, on average,
just one solution.

An experimental investigation with a complete algorithm (i.e., an algorithm
that finds a solution or detects unsatisfiability) based on forward checking and
on conflict-directed backjumping, is given by Prosser in [20], which provides
empirical support to the theoretical prediction given in [23, 26] for higher den-
sity/tightness of the constraint networks. We will see that this trend is supported
also by our experimental investigation on three specific evolutionary algorithms
for CSPs. Being stochastic techniques, EAs are in general unable to detect incon-
sistency, so our analysis of hard instances for these algorithms will necessarily be
incomplete. However, we will see that the success rate of the three EAs on the
considered problems provides a neat indication of which (d,t) regions contain
hard problems for these EAs, indicating a phase transition which is in accordance
with the one identified using the theoretical prediction in [23, 26] for relatively
high values of d and t.

3 Constraint handling by penalties in EAs

There are several ways to handle constraints in an EA. At a high conceptual level
we can distinguish two cases, depending on whether they are handled indirect ly
or directly. Indirect constraint handling means that the constraints are incorpo-
rated in the fitness function f such that the optimality of f implies that the
constraints are satisfied. Then the optimization power of the EA can be used to
find a solution. By direct constraint handling here we mean that the constraints
are left as they are and 'something' is done in the EA to enforce them. Some
commonly used options are repair mechanisms, decoding algorithms and using
special reproduction operators [8, 15].

In the case of indirect constraint handling a lot of different fitness functions
can satisfy the above requirement. A common way of defining a suitable fitness
function is based on using penalties, usually penalizing the violation of each
constraint and making the fitness function (to be minimized) the sum of such
penalties. In the simplest case, each constraint violation scores one penalty point,
hence the fitness function is just counting the number of violated constraints.
A weighted sum, however, allows more appropriate measurement of quality, for
instance harder constraints can be given higher weights. This would give a rel-
atively high reward when satisfying them, thus directing the EAs attention to
such constraints. Natural as it may sound, this idea is not so trivial to im-
plement. The two main problems are that 1) estimating constraint hardness a
priori for setting the weight appropriately may require substantial problem spe-
cific knowledge or computational efforts, 2) the appropriate weights may change

3 Note that the expected number of nogoods per variable is d tm2(n - 1).

204

during the problem solving process. A possible t reatment for both problems is
to have the algorithm setting the weights (penalties) itself and re-adjusting the
weights during the search process.

In this paper we investigate three evolutionary algorithms that represent
constraints by penalties and update the penalty function during the run. We
retrieve the specification of these EAs from the literature and maintain the
original parameter settings, whenever possible. Therefore, here we describe only
the main features of the algorithms and refer to the cited articles for further
details.

The first EA we consider is a heuristic-based microgenetic algorithm intro-
duced by Dozier et al in [4]. It is called microgenetic because it employs a small
population. Moreover, it incorporates heuristics in the reproduction mechanism
and in the fitness function in order to direct the search towards better individ-
uals. More precisely, the EA we implement works on a pool of 8 individuals. It
uses a roulette-wheel based selection mechanism, and the steady state reproduc-
tion mechanism where at each generation an offspring is created by mutating a
specific gene of the selected chromosome, called pivot gene, and that offspring
replaces the worse individual of the actual population. Roughly, the fitness func-
tion of a chromosome is determined by adding a suitable penalty term to the
number of constraint violations the chromosome is involved in. The penalty term
depends on the set of breakouts 4 whose values occur in the chromosome. The
set of breakouts is initially empty and it is modified during the execution by
increasing the weights of breakouts and by adding new breakouts according to
the technique used in the Iterative Descent Method ([16]). Therefore we have
named this algorithm MID, standing for Microgenetic Iterative Descent.

The basic concept behind the co-evolutionary approach is the idea of having
two populations constantly in battle with each other. This approach has been
tested by Paredis on different problems, such as neural net learning [18], con-
straint satisfaction [17, 18] and searching for cellular automata that solve the
density classification task [19]. The evolutionary algorithm used in the exper-
iments, denoted as C0E, is a steady-state EA, it has two populations, one is
called the solution population and the other is called the constraint population.
The fitness of an individual in either of these populations is based on a history of
encounters. An encounter means that an individual from the constraint popula-
tion is matched with an individual from the solution population. If the constraint
is not violated by the solution, the individual from the solution population gets
a point. If the constraint is violated the individual from the constraint popu-
lation gets a point. The fitness of an individual is the amount of points it has
obtained in the last 25 encounters. Every generation of the EA, 20 encounters
are executed by repeatedly selecting an individual from each population. Then
two parents are selected using linear ranked selection, with a bias of 1.5, as de-
scribed by Whitley [25]. The two parents are crossed using a two-point reduced
surrogate parents crossover, this makes sure that the children are different when

4 A breakout consists of two parts: I) a pair of values that violates a constraint; 2) a
weight associated to that pair.

205

the parents differ. The two resulting children are then mutated using adaptive
mutation. This means every allele has a chance of 0.001 of mutating, unless the
two children are the same then the chance is increased to 0.01. The size of the
constraint population is determined by the amount of constraints in the problem,
the solution population however has a fixed size of 50 individuals.

The third EA we are studying is the so-called SAW-ing EA. The Stepwise
Adaptation of Weights (SAW) mechanism has been introduced by Eiben and
van der Hauw [9] as an improved version of the weight adaptation mechanism of
Eiben, Rau~ and Ruttkay [6, 7]. In several comparisons the SAW-ing EA proved
to be a superior technique for solving specific CSPs [1, 10]. The basic idea behind
the SAW-ing mechanism is that constraints that are not satisfied after a certain
number of steps must be hard, thus must be given a high weight (penalty). The
realization of this idea constitutes of initializing the weights at 1 and re-setting
them by adding a value Aw after a certain period. Re-setting is only applied to
those constraints that are violated by the best individual of the given popula-
tion. Earlier studies indicated the good performance of a simple (1+1) scheme,
using a singleton population and exclusively mutation to create offspring. The
representation is based on a permutation of the problem variables; a permutat ion
is transformed to a partial instantiation by a simple decoder that considers the
variables in the order they occur in the chromosome and assigns the first pos-
sible domain value to that variable. If no value is possible without introducing
constraint violation, the variable is left uninstantiated. Uninstantiated variables
are, then, penalized and the fitness of the chromosome (a permutation) is the
total of these penalties. Let us note that penalizing uninstantiated variables is a
much rougher estimation of solution quality than penalizing violated constraints.
Yet, this option worked well for graph coloring, therefore we test it here without
much modification.

4 Experimental Setup and Results

To generate a test suite we have used a problem instance generator that was
loosely based on the generator of Gerry Dozier [2]. The generator first calculates

the number of constraints that will be produced using the equation ~(n-1) . d. 2
It then starts producing constraints by randomly choosing two variables and
assigning a constraint between them. When a constraint is assigned between
variable vi and vj, a table of conflicting values is generated. To produce a conflict
two values are chosen randomly, one for the first and one for the second variable.
When no conflict is present between the two values for the variables, a conflict
is produced. The number of conflicts in this table is determined in advance by
the equation rn(v i) �9 m (v j) �9 t where m (v i) is the domain size of variable i.

We have considered random binary constraints with n -- 15 variables and
uniform domains of m -- 15 elements. These values are common in the empirical
study of (random) CSPs. Later on we will discuss the effect of the varying of the
number of variables. Each algorithm has been tested on the same 625 problem
instances: for each combination of density d and tightness t (25 in total), we have

206

generated 25 instances and executed 10 independent runs on each instance. The
algorithm performance is evaluated by two measures. The Success Rate (SR)
is the percentage of instances where a solution has been found. The Average
number of Evaluations to Solution (AES) is the number of fitness evaluations,
i.e. the number of newly generated candidate solutions, in successful runs. Note,
that if a run did not find a solution, the number of steps to a solution is not
defined, consequently if for a certain combination of d and t SR = 0, then the
AES is not defined. The specific details of the three EAs used in this comparison
are mentioned in the previous section. Recall, that each variant is allowed to
generate 100000 candidate solutions, i.e., the algorithms terminate if a solution
is found or the limit of 100000 is reached.

density alg. tightness
0.1 0.3 0.5 0.7 0.9

COE 1.00 (3) 1.00 (15) 1.00 (449) 1.00 (2789) 0.62 (30852)
0.1 MID 1.00 (1) 1.00 (4) 1.00 (21) 1.00 (87) 0.96 (2923)

SAW 1.00 (1) 1.00 (1) 1.00 (2) 1.00 (9) 0.64 (1159)
COE 1.00 (96) 1.00 (11778) 0.18 (43217) 0.00 (-) 0.00 (-)

0.3 MID 1.00 (3) 1.00 (50) 1.00 (323) 0.52 (32412) 0.00 (-)
SAW 1.00 (1) 1.00 (2) 1.00 (36) 0.23 (21281) 0.00 (-)
COE 1.00 (1547) 0.08 (39679) 0.00 (-) 0.00 (-) 0.00 (-)

0.5 MID 1.00 (10) 1.00 (177) 0.90 (26792) 0.00 (-) 0.00 (-)
SAW' 1.00 (1) 1.00 (8) 0.74 (10722) 0.00 (-) 0.00 (-)
COE 1.00 (9056) 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-)

0.7 MID 1.00 (20) 1.00 (604) 0.00 (-) 0.00 (-) 0.00 (-)
SAW 1.00 (1) 1.00 (73) 0.00 (-) 0.00 (-) 0.00 (-)
COE 0.912 (28427) 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-)

0.9 MID 1.00 (33) 1.00 (8136) 0.00 (-) 0.00 (-) 0.00 (-)
SAW 1.00 (1) 1.00 (3848) 0.00 (-) 0.00 (-) 0.00 (-)

Table 1. Sucess rates and the corresponding AES values (within brackets) for the
co-evolutionary GA (COE), the Micro-genetic algorithm with Iterative Descent
(HID)~ and the SAW-ing GA (SAg)

Table 1 summarizes the results of our experiments. Considering the success
rate it is clear that HID performs equally or better than the other two EAs in all
classes of instances. SAW has a lower SR than }IID on harder problem instances,
namely for the classes (d = 0.1, t = 0.9), (d = 0.3, t = 0.7), and (d = 0.5, t = 0.5),
but on two of these three ((d = 0.1, t = 0.9) and (d = 0.5, t = 0.5)) it is more
than twice as fast as HID, while being only approximately 30% less successful.
The performance of C0E is rather unsatisfactory also in relatively 'easy' classes,
like for examl)le tile one (;hm'a.cterized I)y (d = 0.7, t = 0.3).

207

These observations can be explained by observing that MID employs a strong
heuristic technique based on hill-climbing and an adaptive fitness function, while
SAW and C0E try to bias the search towards harder constraints in a more naive
way. Recall that the version of SAW we are testing here considers only the unin-
stantiated variables, not the violated constraints, as the basis of the fitness func-
tion. This gives a very rough quality est imate as compared to the constraint
based penalties of MID, i.e. using n variables instead of n(n-l) . d constraints.

2
In this light, the exhibited performance of SAW can be seen as remarkably good.
The method used in C0E for dealing with harder constraints does not prove to
be very effective. Concerning the computat ional effort (AES), it is worth noting
that SAW usually requires much less evaluations to find a solution than the other
two EAs. A possible reason for this fact could lay in the decoding mechanism
SAW is using. Simple and unbiased as this decoder may seem, it could represent
a successful heuristic.

The results of the experiments reported in Table 1 consider n = 15 variables
and m = 15 domain size. It is interesting to investigate how the results scale up
when we vary the number of variables n. The question of scaling up is interesting
already for its own sake, but here we also have a special reason to look at it.
In particular, measuring the performance of EAs by the AES is not as unbiased
as it may look at the first glance. Namely, the use of the hill-climbing heuristic
in MID, and the efforts spend on decoding in SAW are impor tant for their good
performance, but are invisible for the measure AES. In order to obtain a more
fair comparison, we look at the steepness of the AES curve when increasing the
problem size (n). We do not consider the CPU times, since it is much dependent
on implementational details, network load, etc. Figure 1 illustrates how the per-
formance of MID and SAW is affected by increasing n, when the other parameters
are set to m = 15, d = 0.3, and t = 0.3. (Note that we do not consider C0E
because of its poor performance.) We consider values of n ranging from 10 till
40 with step 5 and observe that increasing the number of variables does not
affect the success rates in this range of n values. The number of iterations that
are needed in order to find a solution, however, is heavily affected and for both
algorithms it exhibits a super-linear growth. Recall, tha t the exact heights of the
da ta points on the curves are not relevant, it is the growth rate we are looking at.
The two curves are similar in this respect, although up to n = 35 SAW is growing
at a visibly slower rate. However, since the two curves are crossing at the end,
we do not want to suggest a bet ter scale-up behavior for either algorithms.

Considering the results in Table 1 from the point of view of the problem
instances, we can observe success rates SR = 1 in the upper left corner, while
SR = 0 is typical in the lower right corner, separated by a 'diagonal ' indicating
the mushy region. Technically, for higher constraint density and tightness, all
three EAs are unable to find any solution. This is not surprising, because higher
density and tightness yield problems that are almost always unsatisfiable. An
other interesting aspect of the behavior of these algorithms is for which problem
instances their performance rapidly degrade. The most difficult CSPs seem to

2000 ~

igO0 i

1600

1400

1200

i000

SO0

600

400

200

208

Fig. 1. Scale-up values for the SAW and MID algorithms.

start in the classes where d > 0.3 and t = 0.7, and where d _> 0.5 and t =
0.5. These results are in accordance with theoretical predictions of the phase
transition for binary CSP problems ([23, 26]). In fact, according to e.g. Smith
prediction, for n = m = 15, the phase transition for binary CSPs is located to
t c r i t = 0.725 for d = 0.3, and to tcr~t -- 0.539 for d = 0.5.

We conclude this section with some observations on the behavior of the fitness
function during the execution of these EAs. Figure 2 shows one typical run of
each of the two winning methods SAW and MID, plotting the fitness of the best
individual in the population during a run. The course of the fitness function in
a typical run of MID suggests that the in the first generations a relatively good
solution is found, where only few constraints remain to be satisfied. Then the
fitness starts to go up and down by the adaptive mechanism on breakouts, and
finally it jumps to zero (a solution). For SAW we see the penalty growing in the
beginning, because of the increasing weights. Seemingly things get only worse,
but then a solution is reached in just a few steps. A plausible interpretation of
this behavior is that the algorithm is first looking for well-suited weights that
make the problem 'easy', and solves the resulting problem (that is optimizes the
resulting 'easy' function) afterwards.

5 C o n c l u s i o n

In this paper we have performed a comparative experimental study on three
EAs for solving CSPs, which have the common feature of employing an adaptive
fitness function in order to direct the search.

Current work concerns investigating the performance of SAW if the same rep-
resentation is used as in MID, i.e. integers instead of permutations, and if the
fitness function is based on constraint violations instead of uninstantiated vari-
ables. Recall, that MID keeps the penalty term on violated constraints identical
during the search and is adapting the penalty term on breakouts only. SAW and
MID can thus be easily combined, if SAW-ing is applied to the first penalty term

209

1 6

1 4

1 2

/ ,

0
o iooo 2000 ~0oo 4000 sooo 6ooo

N~ber o f *valuation,

�9 sm-l. --

, J i i i

5000 i0000 15000 20000 25000 JO000
t,~b*r o f e v a l u a t i o n ,

Fig. 2. Fitness (to be minimized) of the best individual in the populat ion during
a run of MID (left) and SAW (right).

and the MID mechanism is used to tune the breakouts during the run.
Future work will also involve comparison of EAs of the second group men-

tioned in the Introduction, those based on using information on the given con-
straint network�9

References

1. Th. B~ick, A.E. Eiben, and M.E. Vink. A superior evolutionary algorithm for 3-
SAT. In D. Waagen N. Saravanan and A.E. Eiben, editors, Proceedings of the
7th Annual Conference on Evolutionary Programming, Lecture Notes in Computer
Science. Springer, 1998. in press.

2. J. Bowen and G. Dozier. Solving constraint satisfaction problems using a ge-
netic/systematic search hybride that realizes when to quit. In Eshelman [11],
pages 122-129.

3. P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problems
are. In Proceedings of the 12th International Conference on Artificial Intelligence,
pages 331-337. Morgan Kaufmann, 1991.

4. G. Dozier, J. Bowen, and D. Bahler. Solving small and large constraint satisfaction
problems using a heuristic-based microgenetic algorithms. In IEEE [12], pages
306-311.

5. G. Dozier, J. Bowen, and D. Bahler. Solving randomly generated constraint sat-
isfaction problems using a micro-evolutionary hybrid that evolves a population of
hill-climbers. In Proceedings of the 2nd IEEE Conference on Evolutionary Com-
putation, pages 614-619. IEEE Press, 1995.

6. A.E. Eiben, P.-E. Rau4, and Zs. Ruttkay. Constrained problems. In L. Chambers,
editor, Practical Handbook of Genetic Algorithms, pages 307-365. CRC Press, 1995.

7. A.E. Eiben and Zs. Ruttkay. Self-adaptivity for constraint satisfaction: Learning
penalty functions. In Proceedings of the 3rd IEEE Conference on Evolutionary
Computation, pages 258-261. IEEE Press, 1996.

8. A.E. Eiben and Zs. Ruttkay. Constraint satisfaction problems. In Th. B~ick,
D. Fogel, and M. Michalewicz, editors, Handbook of Evolutionary Algorithms, pages
C5.7:1-C5.7:8. IOP Publishing Ltd. and Oxford University Press, 1997.

210

9. A.E. Eiben and J.K. van der Hauw. Adaptive penalties for evolutionary graph-
coloring. In J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers,
editors, Artificial Evolution'97, number 1363 in LNCS, pages 95-106. Springer,
Berlin, 1997.

10. A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Graph coloring with adaptive
evolutionary algorithms. Journal of Heuristics, 4:25-46, 1998.

11. L.J. Eshelman, editor. Proceedings of the 6th International Conference on Genetic
Algorithms. Morgan Kaufmann, 1995.

12. Proceedings of the 1st IEEE Co.nferenee on Evolutionary Computation. IEEE Press,
1994.

13. Proceedings of the ~th IEEE Conference on Evolutionary Computation. IEEE Press,
1997.

14. E. Marchiori. Combining constraint processing and genetic algorithms for con-
straint satisfaction problems. In Th. B~ck, editor, Proceedings of the 7th Inter-
national Conference on Genetic Algorithms, pages 330-337. Morgan Kaufmann,
1997.

15. Z. Michalewicz and M. Michalewicz. Pro-life versus pro-choice strategies in evolu-
tionary computation techniques. In Palaniswami M., Attikiouzel Y., Marks R.J.,
Fogel D., and Fukuda T., editors, Computational Intelligence: A Dynamic System
Perspective, pages 137-151. IEEE Press, 1995.

16. P. Morris. The breakout method for escaping from local minima. In Proceedings
of the 11th National Conference on Artificial Intelligence, AAAL93, pages 40-45.
AAAI Press/The MIT Press, 1993.

17. J. Paredis. Co-evolutionary constraint satisfaction. In Y. Davidor, H.-P. Schwefel,
and R. Ms editors, Proceedings of the 3rd Conference on Parallel Problem
Solving from Nature, number 866 in Lecture Notes in Computer Science, pages
46-56. Springer-Verlag, 1994.

18. J. Paredis. Co-evolutionary computation. Artificial Life, 2(4):355-375, 1995.
19. J. Paredis. Coevolving cellular automata: Be aware of the red queen. In Thomas

Bs editor, Proceedings of the Seventh International Conference on Genetic Al-
gorithms (ICGA97), San Francisco, CA, 1997. Morgan Kaufmann.

20. P. Prosser. An empirical study of phase transitions in binary constraint satisfaction
problems. Artificial Intelligence, 81:81-109, 1996.

21. M.C. Riff-Rojas. Using the knowledge of the constraint network to design an
evolutionary algorithm that solves CSP. In IEEE [13], pages 279-284.

22. M.C. Riff-Rojas. Evolutionary search guided by the constraint network to solve
CSP. In IEEE [13], pages 337-348.

23. B.M. Smith. Phase transition and the mushy region in constraint satisfaction
problems. In A. G. Cohn~ editor~ Proceedings of the 11th European Conference on
Artificial Intelligence, pages 100-104. Wiley, 1994.

24. E. Tsang. Foundation of Constraint Satisfaction. Academic Press, 1993.
25. D. Whitley. The GENITOR algorithm and selection pressure: Why rank-based

allocation of reproductive trials is best. In J. David Schaffer, editor, Proceedings
of the Third International Conference on Genetic Algorithms (ICGA'89), pages
116-123, San Mateo, California, 1989. Morgan Kaufmann Publishers, Inc.

26. C.P. Williams and T. Hogg. Exploiting the deep structure of constraint problems.
Artificial Intelligence, 70:73-117, 1994.

