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A b s t r a c t .  This paper presents a comparative study of Evolutionary 
Algorithms (EAs) for Constraint Satisfaction Problems (CSPs). We focus 
on EAs where fitness is based on penalization of constraint violations 
and the penalties are adapted during the execution. Three different EAs 
based on this approach are implemented. For highly connected constraint 
networks, the results provide further empirical support to the theoretical 
prediction of the phase transition in binary CSPs. 

1 I n t r o d u c t i o n  

Evolutionary algorithms are usually considered to be ill-suited for solving con- 
straint satisfaction problems. Namely, the traditional search operators (mutation 
and recombination) are 'blind' to the constraints, that  is, parents satisfying a 
certain constraint may very well result in an offspring that violates it. Further- 
more, while EAs have a 'basic instinct' to optimize, there is no objective function 
in a CSP - just a set of constraints to be satisfied. Despite such general argu- 
ments, in the last years there have been reports on quite a few EAs for solving 
CSPs having a satisfactory performance. Roughly speaking, these EAs can be 
divided into two categories: those based on exploiting heuristic information on 
the constraint network [6, 14, 21, 22], and those using a fitness function (penalty 
function) that  is adapted during the search [2, 4, 5, 7, 9, 10, 17, 18]. In this pa- 
per we investigate three methods from the second category: the co-evolutionary 
method by Paredis [17], the heuristic-based microgenetic algorithm by Dozier 
et al [4], and the EA with stepwise adaptation of weights by Eiben et al. [10]. 
We implement three specific evolutionary algorithms based on the correspond- 
ing methods, called COE, SAW, and MID, respectively, and compare them on a test 
suite consisting of randomly generated binary CSPs with finite domains. 

The results of the experiments are used to assess empirically the relative 
performance of the three different methods within the same category, thereby 
providing suggestions as to which implementation of the same general idea is 
the most promising. We use randomly generated problem instances for the ex- 
periments, where the hardness of the problem instances is influenced by two pa- 
rameters: constraint density and constraint tightness. By running experiments 
on 25 different combinations of these parameters we gain detailed feedback on 
EA behavior and can validate theoretical predictions on the location of the 
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phase transition. In summary,  on the 625 problem instances considered, MID 
performs bet ter  than the other two EAs with respect to the success rate (i.e., 
how many times a solution is found). The success rate  of SAW is slightly worse on 
harder problem instances corresponding to higher constraint density and tight- 
ness, while the performance of C0E is rather unsatisfactory when compared with 
the performance of one of the other two algorithms. Concerning the computa-  
tional effort, it is worthwhile to note that  SAW requires fewer fitness evaluations 
to find a solution than the other two EAs. The obtained results show that  for 
higher constraint density and tightness, all three EAs are unable to find a so- 
lution. This behavior is in accordance with theoretical predictions on the phase 
transition in binary CSPs (cf. [23]). 

The paper  is organized as follows: the next section describes the notion of 
constrained problems and it deals more specifically with random binary CSPs. 
In Section 3 various evolutionary approaches for solving CSPs are discussed and 
the three EAs COE, SAW, and MID are introduced. In Section 4 the experimental  
setup is given, followed by the results. Finally, in Section 5 we summarize our 
conclusions and we give some hints on future work. 

2 C o n s t r a i n t  s a t i s f a c t i o n  p r o b l e m s  

A constraint satisfaction problem (CSP) is a pair (S, 0), where S is a free search 
space and r is a formula (Boolean function on S). A solution o /a  constraint 
satisfaction problem is an s E S with r = true. Usually a CSP is stated as a 
problem of finding an instantiation of variables V l , . . . ,  v~ within the finite do- 
mains D1, �9 . . ,  Dn such that  constraints (relations) C l , . . . ,  Cm hold. The formula 
r is then the conjunction of the given constraints. One may be interested in 
one, some or all solutions, or only in the existence of a solution. We restrict our 
discussion to finding one solution. 

More specifically, we consider binary constraint satisfaction problems over 
finite domains, where constraints act between pairs of variables. This is not 
restrictive since any CSP can be reduced to a binary CSP by means of a suitable 
transformation which involves the definition of more complex domains (cf. [24]). 
A class of random binary CSPs can be specified by means of four parameters  
(n, m, d, t), where n is the number  of variables, m is the uniform domain size, 
d is the probabili ty tha t  a constraint exists between two variables, and t is the 
probabili ty of a conflict between two values across a constraint. CSPs exhibit a 
phase transition when a parameter  is varied. At the phase transition, problems 
change from being relatively easy to solve (i.e., almost all problems have many 
solutions) to being very easy to prove unsolvable (i.e., almost all problems have 
no solutions). The te rm mushy region is used to indicate that  region where 
the probabili ty that  a problem is soluble changes from almost zero to almost 
one. Within the mushy region, problems are in general difficult to solve or to 
prove unsolvable. An important  issue in the study of binary CSPs is to identify 
those problem instances which are very hard to solve [3]. Recent theoretical 
investigations ([23, 26]) allow one to predict where the hardest  problem instances 
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should occur. Williams and Hogg in [26] develop a theory that  predicts that  
the phase transition occurs when per variable there are a critical number of 
nogoods (i.e., of conflicts between that  variable and all other ones) 3. Smith in 
[23] conjectures that  the phase transition occurs when problems have, on average, 
just one solution. 

An experimental investigation with a complete algorithm (i.e., an algorithm 
that finds a solution or detects unsatisfiability) based on forward checking and 
on conflict-directed backjumping, is given by Prosser in [20], which provides 
empirical support to the theoretical prediction given in [23, 26] for higher den- 
sity/tightness of the constraint networks. We will see that  this trend is supported 
also by our experimental investigation on three specific evolutionary algorithms 
for CSPs. Being stochastic techniques, EAs are in general unable to detect incon- 
sistency, so our analysis of hard instances for these algorithms will necessarily be 
incomplete. However, we will see that  the success rate of the three EAs on the 
considered problems provides a neat indication of which (d,t) regions contain 
hard problems for these EAs, indicating a phase transition which is in accordance 
with the one identified using the theoretical prediction in [23, 26] for relatively 
high values of d and t. 

3 Constraint handling by penalties in EAs 

There are several ways to handle constraints in an EA. At a high conceptual level 
we can distinguish two cases, depending on whether they are handled indirect ly  
or directly. Indirect constraint handling means that  the constraints are incorpo- 
rated in the fitness function f such that  the optimality of f implies that  the 
constraints are satisfied. Then the optimization power of the EA can be used to 
find a solution. By direct constraint handling here we mean that  the constraints 
are left as they are and 'something' is done in the EA to enforce them. Some 
commonly used options are repair mechanisms, decoding algorithms and using 
special reproduction operators [8, 15]. 

In the case of indirect constraint handling a lot of different fitness functions 
can satisfy the above requirement. A common way of defining a suitable fitness 
function is based on using penalties, usually penalizing the violation of each 
constraint and making the fitness function (to be minimized) the sum of such 
penalties. In the simplest case, each constraint violation scores one penalty point, 
hence the fitness function is just counting the number of violated constraints. 
A weighted sum, however, allows more appropriate measurement of quality, for 
instance harder constraints can be given higher weights. This would give a rel- 
atively high reward when satisfying them, thus directing the EAs attention to 
such constraints. Natural as it may sound, this idea is not so trivial to im- 
plement. The two main problems are that  1) estimating constraint hardness a 
priori for setting the weight appropriately may require substantial problem spe- 
cific knowledge or computational efforts, 2) the appropriate weights may change 

3 Note that the expected number of nogoods per variable is d tm2(n  - 1). 
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during the problem solving process. A possible t reatment  for both problems is 
to have the algorithm setting the weights (penalties) itself and re-adjusting the 
weights during the search process. 

In this paper we investigate three evolutionary algorithms that represent 
constraints by penalties and update the penalty function during the run. We 
retrieve the specification of these EAs from the literature and maintain the 
original parameter settings, whenever possible. Therefore, here we describe only 
the main features of the algorithms and refer to the cited articles for further 
details. 

The first EA we consider is a heuristic-based microgenetic algorithm intro- 
duced by Dozier et al in [4]. It is called microgenetic because it employs a small 
population. Moreover, it incorporates heuristics in the reproduction mechanism 
and in the fitness function in order to direct the search towards better individ- 
uals. More precisely, the EA we implement works on a pool of 8 individuals. It 
uses a roulette-wheel based selection mechanism, and the steady state reproduc- 
tion mechanism where at each generation an offspring is created by mutating a 
specific gene of the selected chromosome, called pivot gene, and that  offspring 
replaces the worse individual of the actual population. Roughly, the fitness func- 
tion of a chromosome is determined by adding a suitable penalty term to the 
number of constraint violations the chromosome is involved in. The penalty term 
depends on the set of breakouts 4 whose values occur in the chromosome. The 
set of breakouts is initially empty and it is modified during the execution by 
increasing the weights of breakouts and by adding new breakouts according to 
the technique used in the Iterative Descent Method ([16]). Therefore we have 
named this algorithm MID, standing for Microgenetic Iterative Descent. 

The basic concept behind the co-evolutionary approach is the idea of having 
two populations constantly in battle with each other. This approach has been 
tested by Paredis on different problems, such as neural net learning [18], con- 
straint satisfaction [17, 18] and searching for cellular automata  that solve the 
density classification task [19]. The evolutionary algorithm used in the exper- 
iments, denoted as C0E, is a steady-state EA, it has two populations, one is 
called the solution population and the other is called the constraint population. 
The fitness of an individual in either of these populations is based on a history of 
encounters. An encounter means that  an individual from the constraint popula- 
tion is matched with an individual from the solution population. If the constraint 
is not violated by the solution, the individual from the solution population gets 
a point. If the constraint is violated the individual from the constraint popu- 
lation gets a point. The fitness of an individual is the amount of points it has 
obtained in the last 25 encounters. Every generation of the EA, 20 encounters 
are executed by repeatedly selecting an individual from each population. Then 
two parents are selected using linear ranked selection, with a bias of 1.5, as de- 
scribed by Whitley [25]. The two parents are crossed using a two-point reduced 
surrogate parents crossover, this makes sure that  the children are different when 

4 A breakout consists of two parts: I) a pair of values that violates a constraint; 2) a 
weight associated to that pair. 
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the parents differ. The two resulting children are then mutated using adaptive 
mutation. This means every allele has a chance of 0.001 of mutating, unless the 
two children are the same then the chance is increased to 0.01. The size of the 
constraint population is determined by the amount of constraints in the problem, 
the solution population however has a fixed size of 50 individuals. 

The third EA we are studying is the so-called SAW-ing EA. The Stepwise 
Adaptation of Weights (SAW) mechanism has been introduced by Eiben and 
van der Hauw [9] as an improved version of the weight adaptation mechanism of 
Eiben, Rau~ and Ruttkay [6, 7]. In several comparisons the SAW-ing EA proved 
to be a superior technique for solving specific CSPs [1, 10]. The basic idea behind 
the SAW-ing mechanism is that  constraints that  are not satisfied after a certain 
number of steps must be hard, thus must be given a high weight (penalty). The 
realization of this idea constitutes of initializing the weights at 1 and re-setting 
them by adding a value Aw after a certain period. Re-setting is only applied to 
those constraints that  are violated by the best individual of the given popula- 
tion. Earlier studies indicated the good performance of a simple (1+1) scheme, 
using a singleton population and exclusively mutation to create offspring. The 
representation is based on a permutation of the problem variables; a permutat ion 
is transformed to a partial instantiation by a simple decoder that  considers the 
variables in the order they occur in the chromosome and assigns the first pos- 
sible domain value to that  variable. If no value is possible without introducing 
constraint violation, the variable is left uninstantiated. Uninstantiated variables 
are, then, penalized and the fitness of the chromosome (a permutation) is the 
total of these penalties. Let us note that  penalizing uninstantiated variables is a 
much rougher estimation of solution quality than penalizing violated constraints. 
Yet, this option worked well for graph coloring, therefore we test it here without 
much modification. 

4 Experimental Setup and Results 

To generate a test suite we have used a problem instance generator that  was 
loosely based on the generator of Gerry Dozier [2]. The generator first calculates 

the number of constraints that will be produced using the equation ~(n-1) . d. 2 
It then starts producing constraints by randomly choosing two variables and 
assigning a constraint between them. When a constraint is assigned between 
variable vi and vj, a table of conflicting values is generated. To produce a conflict 
two values are chosen randomly, one for the first and one for the second variable. 
When no conflict is present between the two values for the variables, a conflict 
is produced. The number of conflicts in this table is determined in advance by 
the equation rn(v i )  �9 m ( v j )  �9 t where m ( v i )  is the domain size of variable i. 

We have considered random binary constraints with n -- 15 variables and 
uniform domains of m -- 15 elements. These values are common in the empirical 
study of (random) CSPs. Later on we will discuss the effect of the varying of the 
number of variables. Each algorithm has been tested on the same 625 problem 
instances: for each combination of density d and tightness t (25 in total), we have 
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generated 25 instances and executed 10 independent runs on each instance. The 
algorithm performance is evaluated by two measures. The Success Rate (SR) 
is the percentage of instances where a solution has been found. The Average 
number of Evaluations to Solution (AES) is the number of fitness evaluations, 
i.e. the number of newly generated candidate solutions, in successful runs. Note, 
that if a run did not find a solution, the number of steps to a solution is not 
defined, consequently if for a certain combination of d and t SR = 0, then the 
AES is not defined. The specific details of the three EAs used in this comparison 
are mentioned in the previous section. Recall, that  each variant is allowed to 
generate 100000 candidate solutions, i.e., the algorithms terminate if a solution 
is found or the limit of 100000 is reached. 

density alg. tightness 
0.1 0.3 0.5 0.7 0.9 

COE 1.00 (3) 1.00 (15) 1.00 (449) 1.00 (2789) 0.62 (30852) 
0.1 MID 1.00 (1) 1.00 (4) 1.00 (21) 1.00 (87) 0.96 (2923) 

SAW 1.00 (1) 1.00 (1) 1.00 (2) 1.00 (9) 0.64 (1159) 
COE 1.00 (96) 1.00 (11778) 0.18 (43217) 0.00 (-) 0.00 (-) 

0.3 MID 1.00 (3) 1.00 (50) 1.00 (323) 0.52 (32412) 0.00 (-) 
SAW 1.00 (1) 1.00 (2) 1.00 (36) 0.23 (21281) 0.00 (-) 
COE 1.00 (1547) 0.08 (39679) 0.00 (-) 0.00 (-) 0.00 (-) 

0.5 MID 1.00 (10) 1.00 (177) 0.90 (26792) 0.00 (-) 0.00 (-) 
SAW' 1.00 (1) 1.00 (8) 0.74 (10722) 0.00 (-) 0.00 (-) 
COE 1.00 (9056) 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-) 

0.7 MID 1.00 (20) 1.00 (604) 0.00 (-) 0.00 (-) 0.00 (-) 
SAW 1.00 (1) 1.00 (73) 0.00 (-) 0.00 (-) 0.00 (-) 
COE 0.912 (28427) 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-) 

0.9 MID 1.00 (33) 1.00 (8136) 0.00 (-) 0.00 (-) 0.00 (-) 
SAW 1.00 (1) 1.00 (3848) 0.00 (-) 0.00 (-) 0.00 (-) 

Table  1. Sucess rates and the corresponding AES values (within brackets) for the 
co-evolutionary GA (COE), the Micro-genetic algorithm with Iterative Descent 
(HID)~ and the SAW-ing GA (SAg) 

Table 1 summarizes the results of our experiments. Considering the success 
rate it is clear that  HID performs equally or better than the other two EAs in all 
classes of instances. SAW has a lower SR than }IID on harder problem instances, 
namely for the classes (d = 0.1, t = 0.9), (d = 0.3, t = 0.7), and (d = 0.5, t = 0.5), 
but on two of these three ((d = 0.1, t = 0.9) and (d = 0.5, t = 0.5)) it is more 
than twice as fast as HID, while being only approximately 30% less successful. 
The performance of C0E is rather unsatisfactory also in relatively 'easy' classes, 
like for examl)le tile one (;hm'a.cterized I)y (d = 0.7, t = 0.3). 
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These observations can be explained by observing that  MID employs a strong 
heuristic technique based on hill-climbing and an adaptive fitness function, while 
SAW and C0E try to bias the search towards harder constraints in a more naive 
way. Recall that  the version of SAW we are testing here considers only the unin- 
stantiated variables, not the violated constraints, as the basis of the fitness func- 
tion. This gives a very rough quality est imate as compared to the constraint  
based penalties of MID, i.e. using n variables instead of n(n-l) . d constraints. 

2 
In this light, the exhibited performance of SAW can be seen as remarkably good. 
The method used in C0E for dealing with harder constraints does not prove to 
be very effective. Concerning the computat ional  effort (AES), it is worth noting 
that  SAW usually requires much less evaluations to find a solution than the other 
two EAs. A possible reason for this fact could lay in the decoding mechanism 
SAW is using. Simple and unbiased as this decoder may seem, it could represent 
a successful heuristic. 

The results of the experiments reported in Table 1 consider n = 15 variables 
and m = 15 domain size. It  is interesting to investigate how the results scale up 
when we vary the number of variables n. The question of scaling up is interesting 
already for its own sake, but here we also have a special reason to look at it. 
In particular, measuring the performance of EAs by the AES is not as unbiased 
as it may look at the first glance. Namely, the use of the hill-climbing heuristic 
in MID, and the efforts spend on decoding in SAW are impor tant  for their good 
performance, but are invisible for the measure AES. In order to obtain a more 
fair comparison, we look at the steepness of the AES curve when increasing the 
problem size (n). We do not consider the CPU times, since it is much dependent 
on implementational details, network load, etc. Figure 1 illustrates how the per- 
formance of MID and SAW is affected by increasing n, when the other parameters  
are set to m = 15, d = 0.3, and t = 0.3. (Note that  we do not consider C0E 
because of its poor performance.) We consider values of n ranging from 10 till 
40 with step 5 and observe that  increasing the number  of variables does not 
affect the success rates in this range of n values. The number  of iterations that  
are needed in order to find a solution, however, is heavily affected and for both  
algorithms it exhibits a super-linear growth. Recall, tha t  the exact heights of the 
da ta  points on the curves are not relevant, it is the growth rate we are looking at. 
The two curves are similar in this respect, although up to n = 35 SAW is growing 
at a visibly slower rate. However, since the two curves are crossing at the end, 
we do not want to suggest a bet ter  scale-up behavior for either algorithms. 

Considering the results in Table 1 from the point of view of the problem 
instances, we can observe success rates SR = 1 in the upper  left corner, while 
SR = 0 is typical in the lower right corner, separated by a 'diagonal '  indicating 
the mushy region. Technically, for higher constraint density and tightness, all 
three EAs are unable to find any solution. This is not surprising, because higher 
density and tightness yield problems that  are almost always unsatisfiable. An 
other interesting aspect of the behavior of these algorithms is for which problem 
instances their performance rapidly degrade. The most  difficult CSPs seem to 
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Fig.  1. Scale-up values for the SAW and MID algorithms. 

start in the classes where d > 0.3 and t = 0.7, and where d _> 0.5 and t = 
0.5. These results are in accordance with theoretical predictions of the phase 
transition for binary CSP problems ([23, 26]). In fact, according to e.g. Smith 
prediction, for n = m = 15, the phase transition for binary CSPs is located to 
t c r i t  = 0.725 for d = 0.3, and to tcr~t  -- 0.539 for d = 0.5. 

We conclude this section with some observations on the behavior of the fitness 
function during the execution of these EAs. Figure 2 shows one typical run of 
each of the two winning methods SAW and MID, plotting the fitness of the best 
individual in the population during a run. The course of the fitness function in 
a typical run of MID suggests that  the in the first generations a relatively good 
solution is found, where only few constraints remain to be satisfied. Then the 
fitness starts to go up and down by the adaptive mechanism on breakouts, and 
finally it jumps to zero (a solution). For SAW we see the penalty growing in the 
beginning, because of the increasing weights. Seemingly things get only worse, 
but then a solution is reached in just a few steps. A plausible interpretation of 
this behavior is that  the algorithm is first looking for well-suited weights that 
make the problem 'easy', and solves the resulting problem (that is optimizes the 
resulting 'easy' function) afterwards. 

5 C o n c l u s i o n  

In this paper we have performed a comparative experimental study on three 
EAs for solving CSPs, which have the common feature of employing an adaptive 
fitness function in order to direct the search. 

Current work concerns investigating the performance of SAW if the same rep- 
resentation is used as in MID, i.e. integers instead of permutations, and if the 
fitness function is based on constraint violations instead of uninstantiated vari- 
ables. Recall, that MID keeps the penalty term on violated constraints identical 
during the search and is adapting the penalty term on breakouts only. SAW and 
MID can thus be easily combined, if SAW-ing is applied to the first penalty term 
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Fig.  2. Fitness (to be minimized) of the best individual in the populat ion during 
a run of MID (left) and SAW (right). 

and the MID mechanism is used to tune the breakouts during the run. 
Future work will also involve comparison of EAs of the second group men- 

tioned in the Introduction, those based on using information on the given con- 
straint network�9 
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