Chapter 1

A basic kernel

In this chapter, we will show how to build and run the most basic of kernels'. In keeping with
programming tradition, we will call the kernel HelloWorld, although, as the world in which our
code operates gets destroyed almost as soon as it starts running, a more appropriate name might
have been GoodbyeWorld, cruel or not.

All source files corresponding to this chapter can be found atxs http://www.cs.vu.nl/~herbertb/
misc/writingkernels/src/basickernel_helloworld.tgz.

1.1 The bare basics: running on the (virtual) metal

Our aim is to build a real kernel that you can run on a normal x86 machine. Doing so has
two implications. First, we will not have any support if we do not add it to our kernel ourselves.
Specifically, none of the helpful libraries and services are available to help us write, run, and debug
our programs. Even printing on the screen, for instance, is not trivial. The C printf function
does not exist yet, and neither do any of the library function.

As an aside, while testing and coding, you probably do not want to reboot your machine every
single time you have made a small change to your kernel. It is better if we do all our development
on a virtual machine. To our kernel, these machines provide an illusion of hardware, but in reality
they are simply programs that run on our normal operating system. In this text, we will use
Qemu [1] as our virtual machine. Qemu is convenient and runs on Linux, BSD, Mac OS X, and
even Windows. It is important to emphasise, however, that the virtual machine is for convenience
only. All that we develop works equally well on real hardware.

You may wonder how this works. After all, a physical machine typically boots from a hard drive
partition?. The answer is deceptively simple. We will make a ‘boot image’, a file that pretends to
be a partition, and that contains the kernel, some code to load and execute that kernel, and every
thing else we need. Qemu can use this image as if it is a real partition and boot from it. So, if we
copy our kernel on a real partition, we boot from a real drive and if we copy it to our generated
boot image for Qemu, we can boot it in Qemu.

This brings us to the second implication: bootstrapping. We need a way to tell our machine to
pick up our kernel from disk, load it in memory with all bits at the right addresses and execute it.
While it is entirely possible to write such a bootloader from scratch, it is tedious and, certainly
on x86, it is not needed.

On the x86 platform we can avail ourselves of GNU’s Grand Unified Bootloader (GRUB),
familiar to most Linux users and even users of Solaris on x86. Grub implements the multiboot
specification, an open standard originally created in 1995, that describes how compliant (multi-
boot) kernels can be loaded. What it means exactly, to be multiboot compliant, is not very

1This document is inspired by Brandon Friesen’s Kernel Development Tutorial [2].
2PCs can also boot from floppy disks, CD ROMS, and these days even from USB sticks

2 CHAPTER 1. A BASIC KERNEL

important at this stage. We will just have to make sure that we are, so we can load our kernel
using Grub.

In this first implementation chapter, we will just try to get something up quickly, without
thinking about the hows and whys too much. Later, we will look at certain bits of the process
in more detail. In later chapters, we will add more functionality to our trivial HelloWorld kernel.
The idea is that after a few iterations, we will arrive at a kernel that is ‘useful’ in the sense that it
supports processes, virtual memory, keyboard input and console output, as well as a rudimentary
file system.

1.2 The kernel coder’s tools: what do we need?

In this text, we assume that we build our kernel on Linux, or cygwin® on Windows, so that we
can use a uniform and convenient set Unix tools. Cygwin needs to be installed and setup to
include a set of development tools, as described below. For Linux, I am using distributions like
Debian or Ubuntu, but there is no reason why you could not use some other distribution. The only
real difference is in the installation of software packages. On Debian/Ubuntu we use apt-get for
this purpose. While Red Hat, Slackware, and other distributions may not support this particular
command, they will have equivalent ways of installing software.
The things that you really need for this course are:

1. PC: just your normal working machine will do
2. gemu: a whole system emulator (www.qgemu.org/)
3. gee: the GNU C compiler (gcc.gnu.org/)

4. make: a utility for automatically building executable programs from source code
(www.gnu.org/software /make/)

5. gas: the GNU assembler and other binary utilities (www.gnu.org/software/binutils/)
6. grub: the Grand Unified Bootloader (www.gnu.org/software/grub/)

7. mtools: open source collection of tools to allow Unix Operating System to manipulate files
on an MS-DOS filesystem (www.gnu.org/software/mtools)

On Debian/Ubuntu you simply install software that is not yet available by means of apt-get.
For instance, to install all of the above, programs you may type:

sudo apt—get install gemu gcc—4.0 make binutils grub mtools

Depending on your current configuration, you may have some of these packages installed al-
ready. However, all of these programs are standard development tools that you can just install
using whatever your local equivalent of apt-get may be (except for the PC, which you obtain
with your local equivalent of euros). .

1.3 Preparing a Qemu boot image

At some point during this chapter, we will have a bootable kernel. Let us think about what to
do with it when we do. As mentioned, we will use Grub as a bootloader to load and start our
kernels. That means that we still need an image with grub installed on it. We also have to make
sure that our kernel is on the image. In addition, we will have to add a menu for grub that lists
all the kernels it can boot. Grub is quite powerful, you see, and it can boot a machine with any
of a set of kernels listed in the Grub menu. The menu is typically called the menu.1st file. In our

Swww.cygwin.com

1.3. PREPARING A QEMU BOOT IMAGE 3

case, we need to add an entry that points to our kernel. Summarising, we need to create an image
file and we need to store Grub, a grub menu, and a kernel on this image file.

The way we create a bootable image is by means of the dd tool and the programs that come
with mtools. The dd tool is a common Unix program whose primary purpose is the low-level
copying and conversion of raw data. We use dd to create an zero-filled image called core.img
with 088704 blocks of 512 bytes each.

dd if=/dev/zero of=core.img count=088704 bs=512

Now, we have to transform this raw image into something that carries a file system layout. We
use mtools for this purpose. First we make sure that all mtools’ commands work on our image
core.img.

echo "drive c: file=\"‘pwd‘/core.img\" partition=1" > ~/.mtoolsrc

The tools will automatically pick up the file .mtoolsrc from our home directory now. So we
no longer have to specify that we want to execute the following commands on this image.

First we create a c: partition. The ’-I’ option means that the parition table will be initialised
and all existing partitions, if any, destroyed. In our case, we do not have partitions yet, but we do
need a new partition table.

mpartition —I c:

Next, we create (option -c) a new partition, with 88 cylinders (-t), 16 heads (-h), and 63
sectors per track. Note that 88 %16 %63 = 88704. In other words, it matches the number of sectors
we made on our image.

mpartition —c —t 88 —h 16 —s 63 c:

Next, we have to format our newly created partition. We format it in MS DOS format (FAT16),
as this is nice and simple, and good enough for our purpose:

mformat c:

Given this file system image, we can add directories and copy files. For instance, let us create
the following two directories:

mmd c:/boot
mmd c:/boot/grub

We are getting there, but we are not done yet. We also have to make Grub available on the
image. It may well be that you are already using Grub on your real machine. If not, you need to
install it somewhere on your hard drive. I will assume that Grub lives in /boot/grub/ on your
real machine, which is where it will typically live if you are using Grub yourself. We need to copy
a few files to our new image. The precise use of each of these Grub files is not very important.
Suffice to say that Grub needs them all. We will copy them into the directory c:/boot/grub

mcopy /boot/grub/stagel c:/boot/grub
mcopy /boot/grub/stage2 c:/boot/grub
mcopy /boot/grub/fat_stagel_5 c:/boot/grub

Presently, we need a bit of Grub magic to provide a 'device map’. It is not very important,
but basically, the story is as follows. Grub has its own way of naming hard disks and partitions.
Not surprisingly, its conventions differ from the Linux device names. Linux uses such names as
/dev/hdal. The first hard disk on Linux is called /dev/hd0, while the floppy drive is called
/dev/£d0. The four primary partitions allowed per disk are numbered from 0 to 3. Logical
partitions are counted beginning with 4. So we end up with something like:

(hd0,0) first primary partition on first hard disk

(hd0,1) second primary partition

(hd0,2) third primary partition

(hd0,3) fourth primary partition (usually an extended partition)
(hd0,4) first logical partition

(hd0,5) second logical partition ...

4 CHAPTER 1. A BASIC KERNEL

All hard disks detected by the BIOS or other disk controllers are simpply counted according
to the boot sequence in the BIOS itself. As the BIOS device names do no match up with Linux
device names, we need a mapping between the two. Grub stores this mapping in a file called the
device map.

In our case, we have called the mapping file bmap, and we add an entry in it to say that (hd0)
is the core.img file. Plus we specify what sort of partition this is and that our boot partition hd0
is the first partition on disk. Finally, with setup we write the boot sector on the first disk:

echo "(hd0) core.img" > bmap
printf "geometry (hd0) 88 16 63 \n root (hd0,0) \n setup (hd0)\n" | /usr/sbin/grub \
—device —_map=bmap ——batch

All we need now is a menu and a working kernel. The latter is the topic of the remainder
of this chapter, but the former is easy. Let us assume that when we finally do have a working
kernel (HelloWorld or otherwise), we will call it kernel.bin and store it in c:/boot/grub/. In
anticipation of this kernel, we can make a Grub menu that contains an entry for it. To do so,
create a file called menu.1lst with the following content:

serial —unit=0 —stop=1 —speed=115200 —parity=no —word=8
terminal —timeout=0 serial console

default O

timeout = 0

title = mykernel

kernel=/boot/grub/kernel. bin

module=/boot/grub/additional_-modules

The first two lines specify that we can control our computer using a serial line. We specify the
speed of the connection (115200 bps), parity, and a few other things.

The next few lines specify that kernel 0 is called mkernel and that it is the default kernel that
will be immediately booted and that the kernel that goes with it is the one specified.

We now copy this file to core.img

mcopy menu. lst c:/boot/grub/

And we are done. That is, we have an image eagerly anticipating a kernel. As soon as we have
one, we can copy it to the image too:

mcopy kernel.bin c:/boot/grub/

Assuming there are no bugs in the kernel it will be booted as soon as we turn on the machine.
The equivalent to turning on the machine for Qemu is to start the virtual machine:

gemu —hda core.img

At this point, of course, this will not do anything yet. We first need the kernel. The remainder
of this chapter is devoted to creating a (trivial) kernel that can be booted either in the virtual
machine, or on real hardware. It will be equally unimpressive in either case. However, the first
HelloWorld in kernel terms is a giant leap forward. Once we have any code running on our machine,
we can also add any code we want.

1.4 A World kernel (without Hellos)

One thing that is easy to minimise but hard to avoid entirely in writing kernels is some assembly
language. The very first instructions that are executed are written in assembly (the “entry point”)
and so is some of the code that deals with interrupts, the code that turns on paging, etc. Assembly
language, even with an instruction set as ugly as that of the x86, should not frighten us. Most of
it is straightforward and where it is not, we will furnish ample explanation.

We want to use Grub. This implies, as mentioned earlier, that we should make our kernel
multiboot compliant. In the old days, every OS came with its own set of boot mechanims. If
the boot mechanism that came with your OS was not exactly what you wanted, tough. Making
multiple OSs (such as your HelloWorld kernel and Windows or Linux) coexist together peacefully,
was a real challenge. The multiboot specification addresses this problem. It specifies an interface

1.4. A WORLD KERNEL (WITHOUT HELLOS) 5

between the boot loader and the OS, so that any bootloader that is multiboot compliant should
be able to boot any OS that is also multiboot compliant. Grub certainly is multiboot compliant.
How do we make our kernel compliant too?

A minimum requirement to be multiboot compliant is to have a header with the following three
32 bit words somewhere in the first 8 KB of your file:

1. The multboot magic number: Oxbadboo?2

2. The multiboot header flags. The flags specify features that the OS requests or requires of
the bootloader (e.g., information about available memory that should be provided by grub
to our kernel). For now, we will set the flags to 0x03. We will look at the multiboot header
flags in a bit more detail later.

3. A checksum, which can simply be set to multibootHeaderFlags - multibootMagicNumber

Finally, it is time to have a look at some code. We will start with the most trivial kernel
written in C that we can imagine. Without printing anything, it will just add up two numbers
and die:

Listing 1.1: main.c

void cmain ()

{
}

int sum = 1+1; // even in this world 1 and 1 makes 2

As this trivial C program does not print anything to screen, we will not be able even to check
whether it runs, and if so, whether it runs correctly. Let us not worry about that now. We will
add basic I/O functions soon enough. First, we have to make sure that the C code gets executed.
Grub will not do this for us, but we can make it execute some bootstrap code in assembly that
subsequently calls into our C code.

Listing 1.2 shows very basic bootstrap code that allows us to call into our kernel. At first sight,
it looks like a sizeable program. However, the file contains hardly any assembly. Most of it is filled
with definitions (and comments!). In a nutshell, the following takes place:

1. Grub starts executing our kernel by means of a jump to the (assembly) entry point for our
kernel, which is the instruction at the address indicated by the global label start (line 26).
Now we are out of Grub’s clutches and executing our own code.

2. We make sure that the magic values for multiboot are stored almost immediately after the
entry point (lines 37-40).

3. Since these are values and not executable code, we jump over them (the jump in line 32 will
continue execution at line 42).

4. We want to leave assembly as quickly as possible. All we want is to set up a stack and then
start executing C code. By convention, stacks grow from high to low, so in line 47 we load
the stack pointer (esp) with the address of the top of the stack (space for the stack is defined
in line 64).

5. All we need to do now is call our C function (line 50); assume that we will call the function
to call ‘cmain’.

6. When we return from our C code we enter an infinite loop in line 53. The hlt instruction is
meant to halt the CPU when no immediate work needs to be done. It is run in Windows in
the System Idle Process.

OO0 O Uk W

CHAPTER 1. A BASIC KERNEL

Listing 1.2: boot.S: bootstrap code with kernel entry point

/% boot.S — bootstrap the kernel x/
/* first we give some definitions, to make our code more readable later x*/

#define ASM 1

#define MULTIBOOT-HEADER MAGIC 0x1BADBO002 /% magic no. for multiboot header */
#define MULTIBOOT-HEADER FLAGS 0z00000003 /x flags for multiboot header x/
#define STACK_SIZE 0x4000 /x size of our stack (16KB) x/

/x On some systems we have to jump from assembly to C by referring to
the C name prefized by an underscore. This is all defined during
configuration. We do not worry about it here and make sure we can
handle either (HAVE_ASM_USCORE is defined by configure). */

#ifdef HAVE_ASM_USCORE

define EXT.C(sym) _ #H# sym
#else

define EXT_C(sym) sym
#endif

/* The text segment wtill contain code, the data segment data
and the bss segment zero—filled static variables %/

.text

.globl start /% start is the global entry point into kermel x/
start :

/x As we need the multiboot magic values in the beginning of

our file , we will add them presently. The real code

continues right after those 3 long words, so jump owver them

jmp multiboot_entry

/* Align the multiboot header at a 32 bits boundary. =/

.align 4
multiboot_header: /x Now comes the multiboot header. */

.long MULTIBOOT HEADER_MAGIC
.long MULTIBOOT HEADER_FLAGS
.long — (MULTIBOOT_HEADER.MAGIC + MULTIBOOT HEADER FLAGS)

multiboot_entry :
/x We do not like assembly. All we want is to create a

a stack and start ezecuting C code x/

/x Initialize the stack pointer (definition of stack follows) %/
movl $(stack + STACK_SIZE), %esp

/* Now enter the C main function (EXT-C will handle the underscore, if needed)

call EXT_C(cmain)

/% Halt. When we return from C, we end up here. x/
loop: hlt

jmp loop
.section " .bss"

/+* We define our stack area. The .comm pseudo op declares
a common symbol (common means that if a symbol with the
same name ts defined in another object file, it can be
they can be merged (after all, we only need one stack).
If the loader (ld) does not find an ezisting definition ,
it will allocate STACK_SIZE bytes of wuninitialised
memory. */

.comm stack , STACK_SIZE

In the listing, we see that a program consists of three main segments. The text segment

contains the executable code, the data segment contains data, and the bss segment contains zero-
filled static variables. Given this, there is one more thing that we need to specify before we can
start compiling and running our code: the locations in memory where we want the linker to place
our segments. For instance, should the text segment start at physical address 0x100000, physical
address 0x200000, or somewhere else entirely? The same should be answered for the data and bss
segments. In addition, we must specify how the segments should be aligned and we must inform
the linker that ’start’ is the entry point of our code.

The linker is responsible for combining different output files (such as boot.S and main.c). By

1.4. A WORLD KERNEL (WITHOUT HELLOS) 7

means of a linker script, we can specify for each of the segments address, size, alignment, etc.
Without much explanation, we now give a linker script for our example kernel (see Figure 1.4).
The entry point is indicated by the start symbol. We define our (physical) start address to be
0x00100000 (1M). Thus, the text segment starts at physical address 0x00100000 which is aligned
at page size (4KB). A bit above the text segment starts our data segment? and a bit above that
we find our bss segment.

Listing 1.3: link.ld: Linker script for simple kernel

ENTRY (start)

phys = 0x00100000 ;
SECTIONS

{

.text phys : AT(phys) {
code = . ;
*(.text)
*(.rodata)
. = ALIGN(4096) ;

}

.data : AT(phys + (data — code))
data = .;
*(.data)
. = ALIGN(4096) ;

.bss : AT(phys + (bss — code))

bss = . ;

#(.bss)

. = ALIGN(4096) ;
}
end = . ;

}

With the linker script we have all the pieces of our puzzle. Compiling the code is straightforward
and so is running our shiny new kernel under Qemu. Since we will be doing a lot of compiling
in the course of this text, we will use a Makefile, to capture the compilation commands. For our
code, the Makefile below will do.

Listing 1.4: Makefile

CFLAGS := —fno—stack—protector —fno—builtin —nostdinc —O —g —Wall —1I.
all: kernel.bin
kernel.bin: boot.o main.o
ld —T link.ld —o kernel.bin boot.o main.o
@echo Done!
clean:

rm —f *x.0 *.bin

You may wonder what all the options are that are specified in CFLAGS. As you probably
know, CFLAGS are the options that are passed to the C compiler. In this case, we specify that we
do not want gcc to muck around with our addresses much, that we are not interested in all sorts
of libraries and that we want to compile it with some (but not much) optimisation and with all
debugging symbols present. Table 1.1 briefly explains the exact meaning of the various options.

At this point, we are solely interested in building the kernel and running it. Assuming all code
and the core.img file are in the same directory, we simply execute the following:
make

mcopy kernel.bin c:/boot/grub/
gemu —hda core.img

You may not be very impressed as you do not actually see anything. But really, we just made
the most important step of all. We are executing our new kernel’s code that we programmed in
C! All we need now is some I/O functions to allow our kernel to send its greetings to the world.

4data - code means the offset of the data segment relative to the text segment, as code is defined as pointing
to the start of the text segment.

8 CHAPTER 1. A BASIC KERNEL

option meaning

-fno-stack-protector | Do not emit extra code to check for buffer overflows, such as stack smashing
attacks.

-fno-builtin Don’t recognize built-in functions that do not begin with __builtin_ as prefix.

Gcee normally treats certain built-in functions (like memcpy, and printf) differ-
ently to make the resulting code smaller and faster. This option makes it easier
to set breakpoints.

-nostdinc Do not search the standard system directories for header files. Only the direc-
tories you have specified with -I options (plus that of current file).

-0 Optimise compilation (makes code run faster)

-g Produce debugging information in the OS’s native format

-Wall Enables all warnings about constructions that some users consider question-

able, and that are easy to avoid (or modify to prevent the warning), even in
conjunction with macros.
-L. Also look for header (include) files in the current directory.

Table 1.1: gcc options explained

1.5 Hello World!

The problem with I/O is that functions like printf are not supported in our trivial kernel. If we
want to print things on the screen, we will have to write all the required support ourselves. For
simple, console-based 10 with VGA, this is not very hard to do.

In this section we will add minimal support functions to make a programmer’s life easier and
to allow for printing on screen. Since we are now in C, adding functions itself is straightforward.
For instance, let us start by adding a few memory manipulation functions in a separate file mem. c.
These functions are so simple that we simply give them without any explanation. We will see
shortly why we need these functions. At any rate, they are good functions to have.

Listing 1.5: mem.c: simple memory functions

/*x Convenient functions for manipulating memory. We do not have
standard libc functions, so we must implement everything ourselves
*/
unsigned char sxmemcpy(unsigned char xdest, const unsigned char xsrc, int count)

{
int i;
for (i=0; i<count;i++) dest[i]=src[i];
return dest;

}

unsigned char sxmemset(unsigned char xdest, unsigned char val, int count)

{
int i;
for (i=0; i<count;i++) dest[i]=val;
return dest ;

1.5.1 Basic I/O

Memory copies and initialisations are all well and good, but it is I/O we are aiming for. Our basic
strategy is to provide two fundamental I/O functions (inportb() and outportb()) that allow us
to read and write I/O ports. For instance, we may use inportb to read a single byte from the
keyboard, and outportb to write a single byte to the screen.

These fundamental functions map exactly on two fundamental instructions in the x86 instruc-
tion set for performing I/O: inb and outb. Unfortunately, these instructions are only available
from assembly, but the assembly is really simple (one instruction) and can be easily wrapped in a
C function. Listing 1.5.2 shows how this is implemented in C using a (tiny) bit of inline assembly.

Listing 1.6: basicio.c: the primitive I/O functions inbyte and outbyte

/*x We use inbyte for reading from the I/O ports to get data from x
devices such as the keyboard. To do so, we meed the ’inb’

1.5. HELLO WORLD! 9

instruction , which is only accessible from assemby. So the C
function is simply a wrapper around a single assembly
instruction .

*/

uint8_t inbyte (uint_16_-t port)

uint8_t ret;
——asm__ __volatile__ ("inb %1, %0" : "=a" (ret) : "d" (port));
return ret;

}

/* We use outbyte to write to I/O ports, i.e., to send bytes to
* devices. Again, we use inline assembly for the stuff that cannot be
* done in C. x/

void outbyte (uintl6_-t port, uint8_t data)

_—asm__ __volatile__ ("outb %1, %0" : : "d" (port), "a" (data));

Inline assembly is easily worth a book in its own right®, but in this chapter, we limit ourself
to fairly mundane usage. In the first function, we see that the instruction inb is called with two
parameters. The second argument (right after the first colon) lists all the output registers. In this
case, the return value ret will be returned in the a register (the =a ‘constraint’ means that the
return valie will be in eax). As input (specified after the second colon) it takes an operand in the
d (which indicates edx) register and which represents an I/O port. The outbyte function works
similarly. It does not have output operands, but takes two inputs: the I/O port (in register edx)
and a data byte (in the eax register).

1.5.2 Writing to screen

We will show how the above two functions, inbyte and outbyte help us print characters on the
screen. We limit ourselves to fairly simple VGA-based output. VGA stands for Video Graphics
Array and represents an interface between a computer and its corresponding monitor. The VGA
card is easily the most common video card, supported by almost any video card. Better still, it is
really easy to program VGA in (colour) text mode.

In a nutshell, the card offers an area of memory that starts at address 0xB8000°® to which we
can simply write characters consisting of two byte values: the character itself is in the lower byte,
while an attribute byte is the highest byte. The attribute byte represents the background colour
in its most significant four bits and the foreground colour in its least significant four bits. You can
play with these colours yourself. For example: black is 0x0, and white is 0xF, so we can print a
black on white ‘B’ by storing the value (0xF0<<8) | B’ at the appropriate position in the memory
area.

The memory area itself is flat but represents an 80x25 matrix of these 16-bit characters laid out
as 25 consecutive lines. The origin (0, 0) represents the top left corner. The first 80 characters (of
16b each)represent the top line. The next 80 characters represent the next line, and so on. This
means that if we want to print a character at position (z,y), we have to calculate the offset from
the base address as follows: of fset = y %80+ z. We can print a black ‘B’ on a white background
at location (1,2) as follows:

#define VGASTART 0xB8000

uintl6_t addr = VGASTART + 2x80 + 1;
xaddr = (0xF0<<8)|’B’

Rather than printing each character individually, we will write a few functions to facilitate the
printing of strings and other values. The code is extremey straightforward and we give it without
further explanation.

5In fact, the web hosts several long tutorials on the topic, such as http://www.ibiblio.org/gferg/ldp/
GCC-Inline-Assembly-HOWTO.html and http://www.ibm.com/developerworks/linux/library/l-ia.html

6VGA offers other memory areas as well. For instance, if you want to use graphics, you want to use the area
that starts at 0xA0000 (and set the card to mode 0x13),

10

CHAPTER 1.

Listing 1.7: scrn.c: Functions for printing to screen

#include "types.h" // uwintl6_t, etc.

#include "mem

h // memcpy and memset

#include "basicio.h" // inbyte and outbyte

#define COLOURS 0xFO

#define COLS
#define ROWS

80
25

#define VGASTART 0xB8000
#define PRINTABLE(c) (c>=’ ’) /% is this a printable character? x/

uintl6_t =Scrn; // screen area
int Curx, Cury = 0; // current cursor coordinates
uintl6_t EmptySpace = COLOURS << 8 | 0x20; /% 0xz20 is ascii value of space %/

// scroll the

screen (a ’copy and blank’ operation)

void scroll (void)

int dist =

if (dist >
uint8_t =

Cury — ROWS + 1;

0) {

newstart = ((uint8_t%) Scrn) + dist * COLS x2;

int bytesToCopy = (ROWS-dist)*xCOLSx*2;

uintl6.-t

*newblankstart = Scrn + (ROWS-dist) x COLS;

int bytesToBlank = dist+«COLS%*2;

E——
memset ((

}
}

uint8_t x)Scrn, newstart, bytesToCopy);
uint8_t *) newblankstart , EmptySpace, bytesToBlank);

// Print a character on the screen

void putchar

{

(uint8_-t c¢)

uintl6_-t =*xaddr;

// first handle a few special characters
// tab —> move cursor in steps of 4

if(c == ’\t’) Curx = ((Curx + 4)/4)=x4;

// carriage return —> reset x pos

else if(c
// mewlin
else if(c

{

= ’\r’) Curx = 0;
e: reset x pos and go to newline

— ’\n’)

Curx = 0;
Cury++;

// backspace —> cursor mowves left

else if(c

== 0x08 && Curx != 0) Curx——;

// finally , if a nmnormal character, print it
else if (PRINTABLE(c))

addr = Scrn + (Cury * COLS + Curx);

*addr

= (COLOURS<<8) | c;

Curx+-+;

// if we have reached the end of the line, move to the next
if (Curx >= COLS)

{

Curx = 0;
Cury++;

// also s

scroll ();

}

croll if nmeeded

// print a longer string
void puts(unsigned char xstr)

while (xstr) { putchar(xstr); str4++;}

}

void itoa (char xbuf, int base, int d)

{

char *xp = buf;
char *xpl, *p2;
unsigned long ud = d;

A BASIC KERNEL

1.5. HELLO WORLD!

int divisor = 10;

¢

/x If %d is specified and D is minus, put ‘—

if (base == ’d’ & d < 0)
*pid = -7
buf++;
ud = —d;

else if (base == ’x7)

divisor = 16;
/* Divide UD by DIVISOR until UD == 0. x/
do

{

int remainder = ud % divisor;

#*p++ = (remainder < 10) ? remainder + ’0°

}
while (ud /= divisor);

/* Terminate BUF. x/
*p = 0;

/* Reverse BUF. x/
pl = buf;

p2 = p — 13

while (pl < p2)

{
char tmp = *pl;
*pl = %xp2;
*p2 = tmp;
pl++;
p2——;

// Format a string and print it on the screen,
// function printf.

void
printf (const char xformat, ...)
{
char *xarg = (char xx) &format;
int c;

char buf[20];

arg++;
while ((c¢ = *format++) != 0)
if (c != %)
putchar (c);
else

{

char xp;

c = xformat—+-+;
switch (c¢)

case ’d’:
case ’u’:
case ’x’:
itoa (buf, c, *((int %) arg++));
p = buf;
goto string;
break;
case ’s’:

p = *xarg++;
if (p = NULL)

p = "(null)";
string :
while (xp)
putchar (*p++);
break;
default :

putchar (*((int %) arg++));

in the head.

remainder +

Jjust

like

the

*/

’a’ — 10;

libe

11

12 CHAPTER 1. A BASIC KERNEL

break;

}

// Clear the screen
void clear ()

{
int i;
for(i = 0; i < ROWS«COLS; i++) putchar (’ ?);
Curx = Cury = 0;
//Scrn[i] = EmptySpace;
b

// init and clear the screen
void vga_init (void)

Scrn = (unsigned short *)VGASTART;
clear ();

We wrap up our very basic kernel with a simple main function. It prints its greeting and starts
an endless loop. It still is not much, but we do have a kernel with primitive I/O. In the next few
chapters we will add (more interesting) drivers and other interesting features to our basic kernel.

Listing 1.8: main.c: simple main function

void cmain (unsigned long magic, unsigned long addr)

{
vga_init ();
puts ((uint8_t*)"hello world!");
for (;;); // start infinite loop
}

We are done with the first chapter. Assuming that we saved the main function in main.c,
memset and memcopy in mem.c, inbyte and outbyte in basicio.c, vga functions in scrn.c, and
bootstrap code in boot.S and that we included the appropriate header files everywhere, we can
now simply build the kernel and boot it. Here is the makefile:

Listing 1.9: Makefile: hello world with VGA output

CFLAGS := —fno—stack—protector —fno—builtin —nostdinc —O —g —Wall —1I.
all: kernel . bin
kernel . bin: boot.o main.o mem.o basicio.o scrn.o

ld —T link.ld —o kernel.bin boot.o main.o mem.o basicio.o scrn.o
@echo Done!

Bibliography

[1] F. Bellard. Qemu, a fast and portable dynamic translator. In USENIX ATEC "05, 2005.

[2] B. Friesen. Bran’s kernel development tutorial. http://www.osdever.net/bkerndev/index.
php.

13

