Systems Security at VU University Amsterdam

Herbert Bos, Lorenzo Cavallaro, and Andrew S. Tanenbaum
Systems & Security Group
Department of Computer Science
Vrije Universiteit Amsterdam

Abstract—The systems and network security, and the secure
and reliable systems groups carry out research in computer and
network dependability at the Vrije Universiteit Amsterdam.
The former group, led by Prof. Herbert Bos, has a strong and
historical background in attack detection, dynamic analysis,
and reverse engineering of software. The secure and reliable
systems group, led by Prof. Andrew S. Tanenbaum, is instead
traditionally rooted on studying and guaranteeing dependabil-
ity properties of systems. The two groups interact in a natural
way and blend their knowledge and expertise to contribute on
the security of networks and systems.

I. SCOPE OF RESEARCH

With three full professors, four associate professors, and
two assistant professors, the Computer Systems section at
the Vrije Universiteit Amsterdam (VU University) is one of
the largest in the Netherlands. Moreover, the last research as-
sessment of Dutch universities in Computer Science over the
period 2002-2008 (published in 2010), gave the Computer
Systems section of the VU a top ranking (with maximum
scores on all evaluation criteria).

The broad area of security at systems level features promi-
nently in the section’s research interests. At VU University,
the area is covered by two separate, but closely collaborating
groups:

1) a group headed by Herbert Bos that works on Systems

and Network Security;

2) a group headed by Andrew S. Tanenbaum that works

on Secure and Reliable Systems.

The focus on Tanenbaum’s group leans towards reliability,
but also covers aspects of security, as witnessed by security
researchers like Lorenzo Cavallaro and Bruno Crispo that
make up the group. The focus in Bos’ group is mostly on
system-level security both at the host and in the network.
Both groups work primarily in low-level systems security.
So, while the groups do much at the VM, OS and assembly
level, there is less work on, say, Web security.

In the remainder of this document, we describe both
research thrusts in more detail. Examples of research topics
in the two groups are shown in Figure 1.

II. RESEARCH IN THE SYSTEMS AND NETWORK
SECURITY GROUP

The Systems and Network Security Group is very active
in the area of attack detection, dynamic analysis, and reverse

engineering.

Reverse engineering and security of legacy binaries:
In terms of resources, the main research area in this group is
that of reverse engineering of complex software. Funded by
an ERC Starting Grant as well as several smaller grants, the
group aims to tackle a fundamental problem in computer
science: to revert low-level assembly to high-level source
code. To do so, we use both static and dynamic analysis.

Most of the commercial software industry assumes that
compilation (the translation of source code to binary code),
is irreversible in practice for real applications. The research
question for our group is whether this irreversibility assump-
tion is reasonable. Specifically, we aim to demonstrate that
the assumption is false.

The application domains for this research direction are
two-fold. First, we want to be able to analyse what software
is doing. For instance, if we buy a program, we would like
to verify that it does what it is advertised to do (and not
what we would not like it to do). Second, we would like to
fix bugs in binary software. Specifically, we aim to protect
legacy binaries from memory corruption attacks.

In addition, the reverse engineering techniques that we
develop will be interesting for malware analysis. While
malware may use obfuscation techniques, it is difficult (or at
least expensive) to hide the use of certain data structures. In
general, code obfuscation will be an important research area
in our group. Specifically, we will work on detection, cir-
cumvention and improvement of code and data obfuscation
techniques.

Dynamic analysis: The research team developed a
variety of taint analysis solutions, of which the Argos full
system emulator is probably best known. Argos is used by
many organisations in many projects, mostly as a honeypot
or malware analysis engine. In general, we work on a variety
of high-interaction honeypot solutions—both for the client-
side and for server applications. In other projects, taint
tracking also features prominently. For instance, we work
on solutions for attack detection, (decoupled) protection
of mobile devices, intrusion recovery, that all depend on
dynamic taint analysis. In addition, we have developed our
own, very fast, dynamic binary translator with support for
taint tracking. We expect to build on this

Attack detection and analysis: Systems-level attack
detection and analysis permeates the research group. We

/[secure and "
i | reliable OS
(ERC)

attack

compiler
techniques

voting
machines

= secure and reliable systems s
= systems and networl security

o
.......

Figure 1.

already mentioned that we work on techniques to detect
attacks by means of taint tracking. However, we also work
on efficient solutions to detect attacks in the network. Part
of our effort here is in building network monitoring tools,
another part in abstract payload execution. Also, we collect,
run and analyse large traces of malware. Finally, we conduct
research in detecting attacks in constrained environments,
such as mobile phones and other ultraportables.

III. RESEARCH IN THE SECURE AND RELIABLE
SYSTEMS GROUP

The research interests of the Secure and Reliable Systems
Group broadly fall in the area of software dependability.
Supported by an ERC Advanced Grant, the research team
currently places particular emphasis on making operating
systems (OSes) more reliable and secure.

Monolithic operating systems (OSes) are in fact complex
pieces of software that usually offer very little reliability and
security guarantees. Faulty user-space applications can gen-
erally be restarted without affecting the existing concurrent
communications but those involving the faulty processes. On
the other hand, in a monolithic OS design, the kernel and
all its components share a common address space and any
component can potentially invoke arbitrary kernel functions.
In this scenario, it becomes extremely complicated—if not
impossible—to isolate and restart faulty kernel components as
it is generally hard to define their boundaries and interactions
(e.g., what kernel control paths are executed and how
information are shared). Unfortunately, run-time bugs are not
the only security threats an OS must deal with. For instance,
malicious components may undermine the security of the

..................
.........

decoupled
security

.

1

H
Y intrusion
recovery

detection

- ‘ corruption egacy binari
; ' /%v* <-..
| K S . . N ~
s et aint analysis dynamic -
‘ A) .

~.
............

i,

...............
-
.,

.......

reverse o X
engineering) e

(ERC)
\‘ security for
es

..........

payload

memory execution

-
o

analysis

honeypots
(client+server)

Examples of research topics in the system security groups at VU University

whole system from its root: kernel rootkits can be installed
on the system to replace or modify the legitimate behavior
of arbitrary subsystems of the OS to fulfill criminals will.

To withstand such threats, the group is exploring ap-
proaches to combine a careful OS design with automated
compiler-based instrumentation techniques. This spins off a
number of interesting research directions. For instance, com-
bining a modular operating system design with compiler-
based techniques enables low-overhead runtime address
space randomization (ASR) and fine-grained live update
support for arbitrary OS components. This ultimately shows
that is possible to build a polymorphic OS that constantly re-
randomizes itself, while keeping the overhead to a minimum.
Similarly, the same carefully planned OS design does not
expose any recovery infrastructure to the OS programmer
and drastically reduces the complexity of the problem space
considered. This allows effective crash recovery using au-
tomatic instrumentation in a nonintrusive way, achieving
transparent and component-agnostic recovery from crashes
occurring anywhere during the execution of the component’s
task.

Automated compiler-based instrumentation techniques on
their own enable a number of other interesting research
directions. For instance, program analysis can be lever-
aged to identify interesting programs invariants that can
be made available at runtime. Such properties can then
be asynchronously and dynamically checked by idle cores,
improving the dependability requirements of the whole
system, while keeping the runtime overhead to a mini-
mum. Moreover, compiler-based instrumentation enables to

experiment with generic fine-grained program transforma-
tions, e.g., taint-tracking, obfuscation, and address space
randomization, which improve the overall security of the
transformed application.

IV. OVERLAP

As indicated by Figure 1, the two research groups col-
laborate closely on a variety of projects. The heads of the
groups co-supervise Ph.D. students in the design of secure
and reliable operating systems, while members of the groups
also work together on several projects.

V. RESEARCH ENVIRONMENT

The Computer Systems section at VU University is one
of the largest Systems departments in the country with 3
full professors and a strong reputation in operating systems
and security (Minix, CVS, Argos, and Amoeba all started
here). The work on Minix sparked the development of Linux.
In recent years, prof. Tanenbaum was awarded a prestigious
Dutch Royal Society of Science (KNAW) Professorship, and
an equally prestigious ERC Advanced Grant. Similarly, there
was an ERC Starting Grant for prof. Herbert Bos, bringing
the current total to two—more than any other CS department
in the Netherlands. Two of the full professors are among the
top 10 most cited computer scientists in The Netherlands (at
nr. 1 and nr. 9, respectively), indicating the excellence of the
research environment.

Many of the section’s former Ph.D. students rank among
the top researchers in the world. Examples include Frans
Kaashoek (MIT), Robert van Renesse (Cornell), Leendert
van Doorn (AMD), Sape Mullender (Bell Labs), and Werner
Vogels (Amazon). One important quantitative measure of
academic reputation is citation impact. The Report on Sci-
ence and Technology Indicators issued by the Netherlands
Observatory for Science and Technology (NOWT, 2008),
shows that the CS Department at the VU ranks highest of
all CS departments in the Netherlands in impact score. The
high score is corroborated by other, independent studies.
The last assessment of research of Dutch universities in
Computer Science in over the period 2002-2008 (published
in 2010), gave the Computer Systems section of the VU
the top ranking (with a maximum score on all evaluation
criteria).

VI. OUTLOOK AND FUTURE RESEARCH DIRECTIONS

The research directions currently pursued by the sys-
tem security groups are relatively stable. Both groups are
partially funded by ERC grants that provide clout to the
research efforts. The group of Secure and Reliable systems
has a strong tradition of incorporating the fruits of the
research in a working system, centered on Minix-3. Unlike
most other operating systems the design of Minix-3 is
centered first on reliability, and second on performance.
Meanwhile, a lot of the effort in the Systems and Network

Security group in the next five years will be invested in
reverse engineering—with the goal of increasing the security
of systems. At the same time, attack detection, prevention,
and analysis remain very much on our radar too.

REFERENCES

[1] Jorrit N. Herder Andrew S. Tanenbaum and Herbert Bos. Can
We Make Operating Systems Reliable and Secure? [EEE
Computer, ISSN 0018-9162, 39(4):44-51, May 2006.

[2] Herbert Bos, Willem de Bruijn, Mihai Cristea, Trung Nguyen,
and Georgios Portokalidis. FFPF: Fairly Fast Packet Filters.
In Proceedings of OSDI’04, San Francisco, CA, December
2004.

[3] Herbert Bos and Kaiming Huang. Towards software-based
signature detection for intrusion prevention on the network
card. In Proceedings of Eighth International Symposium on
Recent Advances in Intrusion Detection (RAID2005), Seattle,
WA, September 2005.

[4] Herbert Bos and Bart Samwel. Safe kernel programming
in the OKE. In Proceedings of the Fifth IEEE Conference
on Open Architectures and Network Programming (OPE-
NARCH’02), pages 141-152, New York, USA, June 2002.

[5] Willem de Bruijn, Herbert Bos, and Henri Bal. Application-
tailored I/O with Streamline. ACM Transactions on Computer
Systems (TOCS), 2011.

[6] Willem de Bruijn, Asia Slowinska, Kees van Reeuwijk,
Tomas Hruby, Li Xu, and Herbert Bos. SafeCard: a Gigabit
IPS on the network card. In Proceedings of 9th Interna-
tional Symposium on Recent Advances in Intrusion Detection
(RAID’06), Hamburg, Germany, September 2006.

[7] Cristiano Giuffrida, Lorenzo Cavallaro, and Andrew S. Tanen-
baum. We Crashed, Now What? In Proceedings of the
6th Workshop on Hot Topics in System Dependability (Hot-
Dep’10), Oct 2010.

[8] Lorenzo Martignoni, Aristide Fattori, Roberto Paleari, and
Lorenzo Cavallaro. Live and Trustworthy Forensic Anal-
ysis of Commodity Production Systems. In 13th Interna-
tional Symposium on Recent Advances in Intrusion Detection
(RAID), 2010.

[9] Srijith Nair. Remote Policy Enforcement Using Java Virtual
Machine. PhD thesis, VU University Amsterdam, 2010.

[10] N. Paul and A. S. Tanenbaum. Trustworthy Voting: From
Machine to System. IEEE Computer, pages 23—-29, May 2009.

[11] Georgios Portokalidis and Herbert Bos. Eudaemon: Involun-
tary and On-Demand Emulation Against Zero-Day Exploits.
In Proceedings of ACM SIGOPS EUROSYS’ 08, pages 287—
299, Glasgow, Scotland, UK, April 2008. ACM SIGOPS.

[12] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis,
and Herbert Bos. Paranoid Android: Versatile Protection For
Smartphones. In Proceedings of the 26th Annual Computer
Security Applications Conference (ACSAC), Austin, Texas,
December 2010.

(13]

(14]

(15]

(16]

(17]

(18]

[19]

Georgios Portokalidis, Asia Slowinska, and Herbert Bos.
Argos: an Emulator for Fingerprinting Zero-Day Attacks. In
Proc. ACM SIGOPS EUROSYS 2006, Leuven, Belgium, April
2006.

Christian Rossow, Christian J. Dietrich, Herbert Bos, Lorenzo
Cavallaro, Marteen van Steen, Felix C. Freiling, and Norbert
Pohlmann. Sandnet: Network Traffic Analysis of Malicious
Software. In Ist Workshop on Building Analysis Datasets
and Gathering Experience Returns for Security (BADGERS),
April 2011.

Asia Slowinska and Herbert Bos. The age of data: pinpointing
guilty bytes in polymorphic buffer overflows on heap or stack.
In 23rd Annual Computer Security Applications Conference
(ACSAC’07), Miami, FLA, December 2007.

Asia Slowinska and Herbert Bos. Pointless Tainting? Evalu-
ating the Practicality of Pointer Tainting . In Proceedings of
ACM SIGOPS EUROSYS, Nuremberg, Germany, March-April
20009.

Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard:
a dynamic excavator for reverse engineering data structures.
In Proceedings of NDSS 2011, San Diego, CA, 2011.

Cristiano Giuffrida Stefano Ortolani and Bruno Crispo. Bait
your Hook: a Novel Detection Technique for Keyloggers. In
Proceedings of the 13th International Symposium on Recent
Advances in Intrusion Detection, pages 200-217, 2010.

Yves Younan, Pieter Philippaerts, Lorenzo Cavallaro,
R. Sekar, Frank Piessens, and Wouter Joosen. PAriCheck:
an Efficient Pointer Arithmetic Checker for C Programs. In
Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, pages 145-156,
Beijing, China, 2010. ACM.

