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ABSTRACT: We offer an algorithm to determine the form of the
normal form for a vector field with a nilpotent linear part, when the
form of the normal form is known for each Jordan block of the lin-
ear part taken separately. The algorithm is based on the notion of
transvectant, from classical invariant theory.
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1. Introduction

There are well-known procedures for putting a system of differential
equations ẋ = Ax + v(x) (where v is a formal power series beginning
with quadratic terms) into normal form with respect to its linear part
A. Our concern here is with the description problem of normal form
theory: given A, to describe the normal form space of A, that is, the
set of all v such that Ax + v(x) is in normal form. Our main result is
a procedure that solves the description problem when A is a nilpotent
matrix in Jordan form, provided that the description problem is already
solved for each Jordan block of A taken separately. This procedure will
be illustrated with several examples that are already known, and one
(a 7× 7 matrix with three Jordan blocks) that, to our knowledge, has
not been handled before. Additional examples will appear in [6]. All of
the examples in this paper are calculated by hand, but some of those
in [6] are done by machine. The normal form for our 7× 7 matrix is so
large (i.e. has so many terms) that we will not write them all out, but
almost all of the work necessary to find them will be shown, and what
remains is entirely mechanical. With examples such as this, our ability
to compute normal forms has exceeded our ability to make practical use
of them. Further progress will probably depend on the development of
machine-based methods to obtain unfoldings, scalings, and bifurcation
diagrams, and to select from among the possible bifurcations the ones
that are relevant to a specific application.

The normal form space of a matrix A is not unique, but depends on
a choice of normal form style. When A is semisimple (diagonalizable),
the only useful normal form space is the space of all vector fields v that
commute with A in the sense that the Lie derivative LAv = 0, where

(LAv)(x) = v′(x)Ax− Av(x).

In this case the normal form space ker LA forms a module (the module
of equivariants) over the ring of invariants, that is, the ring ker DA of
scalar formal power series f such that DAf = 0, where

(DAf)(x) = f ′(x)Ax = (Ax) · Of(x).

These formal power series (for both vector and scalar fields) are equiva-
lent, by the Borel-Ritt theorem, to smooth functions modulo flat func-
tions. The invariants are constant along the flow eAt of Ax, and the
equivariants have flows that commute with the flow of Ax. In the
nilpotent case that we consider here, things are not quite so simple.

We adopt the following notations for nilpotent matrices. For each
positive integer k ≥ 2, Nk is the k× k nilpotent matrix having a single
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Jordan block (with the off-diagonal ones above the diagonal):

Nk =


0 1

0 1
0 1

0 1
0

 .
The matrices Mk and Hk are the k × k matrices

Mk =


0

(k − 1) 0
2(k − 2) 0

. . .
0


and

Hk =


(k − 1)

(k − 3)
(k − 5)

. . .
−(k − 1)

 .
The diagonal entries of Hk are either all odd or all even, and are sym-
metrical around zero. More generally, Nk,` will denote the matrices of
the form

Nk,` =

[
Nk 0
0 N`

]
,

and this notation is extended in the obvious way to define Mk,`, Hk,`,
and matrices with additional subscripts. The commutator brackets of
any such matrices M , N , and H (with the same subscripts) satisfy

[N,M ] = H, [H,N ] = 2N, [H,M ] = −2M.

That is, {N,M,H} is an sl(2) triad, forming a basis for a representation
of the Lie algebra sl(2).

There are two major normal form styles for vector fields having nilpo-
tent linear part. The vector field Nx+ v(x) is in inner product normal
form if v ∈ ker LN∗ , and in sl(2) normal form if v ∈ ker LM . Of course
ker LN∗ is a module over the ring ker DN∗ , and ker LM is a module over
ker DM . The inner product normal form style is more popular than
the sl(2) style, both because it is simpler to explain and because the
expressions for v in the sl(2) style involve numerical constants (“fudge
factors”) that make the style seem harder. But the sl(2) style has useful
mathematical structure that the inner product style lacks. Therefore
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we call attention to the following easy observation, which brings the
two styles closer together.

Lemma 1. The system ẋ = Nx+v(x) is in inner product normal form
if and only if ẋ = M∗x+ v(x) is in sl(2) normal form.

Before proving the lemma, we emphasize that it does not say that
Nx+v(x) and M∗x+v(x) are normal forms of the same system; in fact
the computational procedures for putting a system into normal form
involve different projection maps in the two styles.

Proof. The matrices {M∗, N∗, H} satisfy [M∗, N∗] = H, [H,M∗] =
2M∗, and [H,N∗] = 2N∗, so these also form an sl(2) triad. It follows
that M∗x+v(x) is in sl(2) normal form if and only if LN∗v = 0. This is
the same as the condition for Nx+ v(x) to be in inner product normal
form. �

From this point on, we focus on the description of ker LN∗ as a
module over the ring of invariants ker DN∗ . In view of Lemma 1, we
are describing either the inner product normal form with leading term
N , or the sl(2) normal form with leading term M∗. Of course M∗ is
as good a choice of canonical form for a nilpotent matrix as N , and
making this choice (when an sl(2) normal form is desired) has the effect
of removing the “fudge factors” from the higher order terms. (The
only “fudge factors” now appear in the linear term, and are simpler.)
Although our results can be applied to the inner product normal form,
the proofs are entirely dependent on sl(2) representation theory and
cannot be expressed in the language of the inner product theory alone.

This paper is an outgrowth of methods described in [4]. In that
paper, a method was given which “boosts” a description of the invariant
ring ker DN∗ to a description of the equivariant module ker LN∗ . We
have now realized that the same technique, stated differently, allows us
to describe the invariant ring ker DN∗ given the invariant rings of the
Jordan blocks in N∗. So the natural place to start is with the invariant
rings of the Jordan blocks. From there we obtain the invariant ring of
N∗, and then (by boosting) the equivariant module for N∗. This is the
order that will be followed below. Although we refer to [4] occasionally
to avoid repeating some details, this paper is largely independent of
[4], and a new reader should begin here and refer to [4] only as needed.
For a complete introduction to normal forms using notations consistent
with this paper and with [4], see [5]. Another exposition of our results,
rather different in style from the present one, will be forthcoming in
chapter 12 of [6]. (The paper [1] deals with a related problem, but treats
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only the Hilbert function for the invariants, which does not completely
identify the ring).

A central notion in this paper is the “box product,” defined and dis-
cussed in section 4. A quick abstract definition is as follows. Recall that
for any sl(2) representation space V with triad {X, Y, Z}, eigenvectors
of Z are called weight vectors, their eigenvalues are called weights, and
any weight vector in ker X is the top weight vector of an irreducible
subrepresentation. Since ker X is the span of all the top weight vec-
tors, all of V can be obtained from ker X by applying Y repeatedly. So
we may consider ker X as expressing the entire representation space in
“abridged form.” Now let Vk, k = 1, 2, be sl(2) representation spaces
with sl(2) triads {Xk, Yk, Zk}. Then V1 ⊗ V2 is a representation space
with triad {X, Y, Z}, where X = X1 ⊗ I + I ⊗X2 (and similarly for Y
and Z). We now define the box product by

(ker X1) � (ker X2) = ker X.

The box product is not equal to (ker X1) ⊗ (ker X2). Instead, it is
the “abridged form” (in the sense mentioned above) of the full tensor
product V1 ⊗ V2.

To begin to put the box product into a computationally useful form,
we use the notion of “external transvectant,” introduced in [4]. If
a ∈ ker X1 and b ∈ ker X2 are weight vectors with weights wa and wb,
and i is an integer in the range 0 ≤ i ≤ min(wa, wb), then (a, b)(i), the
i-th external transvectant of a and b, is the element of V1 ⊗ V2 defined
by

(1) (a, b)(i) =
i∑

j=0

(−1)jW ij
ab(Y

j
1 a)⊗ (Y i−j

2 b),

where

W ij
ab =

(
i

j

)
(wa − j)!

(wa − i)!
· (wb − i+ j)!

(wb − i)!
.

The external transvectants lie in (ker X1) � (ker X2), and if a and b
range over weight bases (bases consisting of weight vectors) for ker X1

and ker X2, then their external transvectants range over a basis for
(ker X1) � (ker X2). This will be spelled out in more detail, for our
specific applications, in section 3 below. These applications cannot be
done in the abstract setting, because they depend on the fact that our
representation spaces are formal power series rings. (Polynomial rings
would also work.) The simplest case of these calculations (because one
of the representation spaces is finite-dimensional) occurs in the boosting
argument, in section 6. The reader may wish to turn to section 6 after
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Lemma 8 in section 4, before studying the harder examples in section
4.

We conclude this section with one more remark that does work in the
abstract setting, that will be needed in section 4. With the same nota-
tions used above, put V 0

k = ker Xk ⊂ Vk for k = 1, 2. Define a vector
subspace W 0

k ⊂ V 0
k to be admissible if it has a basis consisting of weight

vectors. In that case, these weight vectors will be the top weight vectors
of irreducible representations, and the direct sum of these representa-
tions will be a new representation space Wk =

⊕∞
j=1 Y

jW 0
k ⊂ Vk (the

sum is actually finite). Notice that Wk is independent of the choice of
a weight basis for W 0

k . Now given two admissible subspaces W 0
1 ⊂ V 0

1

and W 0
2 ⊂ V 0

2 , everything that we said about box products can be
repeated: we can define

W 0
1 �W 0

2 = ker (X1|W1 ⊗ I + I ⊗X2|W2),

and this will have for a basis the transvectants (a, b)(i) as a and b
range over any (fixed choice of) weight bases for W 0

1 and W 0
2 . The box

product of subspaces that are not admissible cannot be defined.

2. Describing invariant rings by Stanley decompositions

The most effective way of describing the invariant ring associated
with a nilpotent matrix N is by a device from commutative algebra
called a Stanley decomposition, introduced for this purpose in [2]. In
this section we define Stanley decomposition and state the Stanley
decompositions for N2, N3, and N4. These will be used later to obtain
Stanley decompositions for the invariants of N2,3 and other nilpotent
matrices with more than one Jordan block. Derivations of the results
in this section may be found in section 4.7 of [5] and section 4 of [4].

We write R[[x1, . . . , xn]] for the ring of (scalar) formal power series
in x1, . . . , xn. A subalgebra R of R[[x1, . . . , xn]] is a subset that is both
a subring and a vector subspace. The subalgebra is graded if

R =
∞⊕
d=0

Rd,

where Rd is the vector subspace of R consisting of elements of degree d.
(The infinite direct sum should technically be called a direct product,
since an element of R can be a sum of infinitely many nonzero terms.
But a direct product is usually regarded as in “infinite tuple” rather
than a sum.) To define a Stanley decomposition of a graded subalgebra
R ⊂ R[[x1, . . . , xn]], we begin with the definition of a Stanley term.
A Stanley term is an expression of the form R[[f1, . . . , fk]]ϕ, where
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the elements f1, . . . , fk, ϕ are homogeneous polynomials and f1, . . . , fk
(not including ϕ) are required to be algebraically independent. The
Stanley term R[[f1, . . . , fk]]ϕ denotes the set of all expressions of the
form F (f1, . . . , fk)ϕ, where F is a formal power series in k variables.
When ϕ = 1, ϕ is omitted, and the Stanley term is a subalgebra,
otherwise it is only a subspace. A Stanley decomposition is a finite
direct sum of Stanley terms. (The integer k, and the entries f1, . . . , fk,
will in general be different in different terms of the decomposition. The
case in which all terms have the same f1, . . . , fk, and only the ϕ differ, is
known as a Hironaka decomposition.) The algebraic independence and
direct sum conditions in the definition of a Stanley decomposition imply
that each element of the subalgebra has a unique expression in the form
dictated by the Stanley decomposition. (The Stanley decomposition
itself is, however, not unique. For instance, the formal power series ring
R[[x]] in one variable has Stanley decompositions R[[x]], R ⊕ R[[x]]x,
and R⊕ Rx⊕ R[[x]]x2, among others.)

Throughout this paper we are concerned with doubly graded Stanley
decompositions graded by degree and weight. If N is any n×n nilpotent
matrix in upper Jordan form with sl(2) triad {N,M,H} as defined
above, we write

X = DN∗ , Y = DM∗ , Z = DH .

For instance,

X2 = DN∗
2

= (N∗
2x) · O = x1

∂

∂x2

.

The linear operators {X,Y,Z} themselves form an sl(2) triad operating
on R[[x1, . . . , xn]]. Eigenfunctions of Z are called weight functions,
and the eigenvalues are called weights. (The weight of f is denoted
wf .) Because H is diagonal, all monomials in (x1, . . . , xn) are weight
functions. Since each formal power series is a sum of monomials having
a degree and a weight, R[[x1, . . . , xn]] is doubly graded by degree and
weight. A polynomial f is called doubly homogeneous of type (d, w) if
every monomial in f has degree d and weight w. Weights are integers,
and unlike degrees can be negative, but invariants cannot have negative
weights. (This is because an invariant is the top weight vector of an
irreducible subrepresentation of sl(2).) A vector subspace V (which
may also be a subalgebra R) of ker X is doubly graded if

V =
∞⊕
d=0

∞⊕
w=0

Vdw,

where Vdw is the vector subspace of V consisting of doubly homogeneous
polynomials of degree d and weight w.
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A (doubly graded) Stanley decomposition of a doubly graded sub-
algebra R of ker X is an expression of R as a direct sum of vector
subspaces of the form R[[f1, . . . , fk]]ϕ, where f1, . . . , fk, ϕ are doubly
homogeneous polynomials (which, being invariants, have nonnegative
weights) and f1, . . . , fk are algebraically independent. From here on,
all Stanley decompositions we consider are of this kind, and we omit
the words “doubly graded.”

A standard monomial associated with a Stanley decomposition is an
expression of the form fm1

1 · · · fmk
k ϕ, where R[[f1, . . . , fk]]ϕ is a term

in the Stanley decomposition. Notice that “monomial” here means a
monomial in the basic invariants, which are polynomials in the origi-
nal variables x1, . . . , xn. The term “standard monomial” comes from
Gröbner basis theory, which is used to prove the existence of Stanley
decompositions (see [7], section 4 of [4], and appendix A5 of [5]). Given
a Stanley decomposition of ker X, its standard monomials of a given
degree (or of a given type) form a basis for the (finite-dimensional)
vector space of invariants of that degree (or type).

Next we give Stanley decompositions for rings of invariants associ-
ated with N2, N3, and N4.

The ring of invariants of N2 in R[x1, x2] is ker X2. This ring clearly
contains

α = x1,

which is of type (1,1), and in fact every element of ker X2 can be written
uniquely as a formal power series f(x1) in x1 alone. We express this
by the Stanley decomposition

ker X2 = R[[α]].

The invariants of N3 in R[[x1, x2, x3]] are described by the Stanley
decomposition

ker X3 = R[[α, β]]

with

α = x1, β = x2
2 − 2x1x3.

Here α is of type (1,2) and β is of type (2,0). Notice that although α
has the same form as for N2, it has a different weight.

The invariants of N4 in R[[x1, x2, x3, x4]] are described by the Stanley
decomposition

ker X4 = R[[α, β, δ]]⊕ R[[α, β, δ]]γ
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where

degree weight
α = x1 1 3
β = x2

2 − 2x1x3 2 2
γ = x3

2 − 3x1x2x3 + 3x2
1x4 3 3

and
δ = 9x2

1x
2
4 − 3x2

2x
2
3 − 18x1x2x3x4 + 8x1x

3
3 + 6x3

2x4

which is of type (4,0). The meaning of this Stanley decomposition is
that every element of ker X4 can be written uniquely in the form

f(α, β, δ) + g(α, β, δ)γ,

where f and g are formal power series. Thus α, β, and γ may occur
to any power, but γ can only occur to the first power. The reason for
this is that

γ2 = β3 + α2δ,

so any appearances of γ2 can be replaced by expressions in the other
basic invariants. This illustrates how Stanley decompositions enforce
uniqueness in the expression of invariants. A standard monomial for
this decomposition of ker X4 is any monomial αiβjγkδ` with k = 0 or
1.

3. Invariants of matrices with multiple Jordan blocks

Consider a system with nilpotent linear part

N =

[
N̂ 0

0 Ñ

]
,

where N̂ and Ñ are nilpotent matrices of sizes n̂ × n̂ and ñ × ñ
respectively (n̂ + ñ = n), in (upper) Jordan form, and each may

consist of one or more Jordan blocks. Let {X,Y,Z}, {X̂, Ŷ, Ẑ}, and

{X̃, Ỹ, Z̃} be the associated triads of operators. Notice that the first
triad acts on R[[x1, . . . , xn]], the second on R[[x1, . . . , xbn]], and the third
on R[[xbn+1, . . . , xn]].

Suppose that f = f(x1, . . . , xbn) ∈ ker X̂ and g = g(xbn+1, . . . , xn) ∈
ker X̃ are weight invariants of weights wf and wg, and i is an integer in
the range 0 ≤ i ≤ min(wf , wg). Then we define external transvectant of
f and g of order i to be the polynomial (f, g)(i) ∈ R[[x1, . . . , xn]] given
by

(2) (f, g)(i) =
i∑

j=0

(−1)jW i,j
f,g(Ŷ

jf)(Ỹi−jg),
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where

W i,j
f,g =

(
i

j

)
(wf − j)!

(wf − i)!
· (wg − i+ j)!

(wg − i)!
.

(The proof of the next lemma explains why we omit the ⊗ occurring in
the abstract definition (1) in the introduction.) We say that a transvec-
tant (f, g)(i) is well-defined if i is in the proper range for f and g. Notice
that the zeroth transvectant is always well-defined and reduces to the

product: (f, g)(0) = fg. Given Stanley decompositions for ker X̂ and

ker X̃, the following theorem provides a basis for ker X in each degree.
This is a first step toward obtaining a Stanley decomposition for ker X.

Theorem 2. Each well-defined transvectant (f, g)(i) of f ∈ ker X̂ and

g ∈ ker X̃ belongs to ker X. If f and g are doubly homogeneous poly-
nomials of types (df , wf ) and (dg, wg) respectively, (f, g)(i) is a doubly
homogeneous polynomial of type (df + dg, wf + wg − 2i). Suppose that

Stanley decompositions for ker X̂ and ker X̃ are given. Then a basis for
the (finite-dimensional) subspace (ker X)d of homogeneous polynomials
in ker X with degree d is given by the set of all well-defined transvectants
(f, g)(i) where f is a standard monomial of the Stanley decomposition

for ker X̂, g is a standard monomial of the Stanley decomposition for

ker X̃, and df + dg = d.

Proof. The proof of this theorem is given in section 6 of [4] and will
not be repeated here in full. We will briefly outline the ideas used
in the proof, and make a small correction to Lemma 4 of [4]. Let
R[[x1, . . . , xbn]]bd denote the subspace of R[[x1, . . . , xbn]] consisting of el-

ements that are homogeneous of degree d̂, with similar notations for
the other rings. Then we may view R[[x1, . . . , xn]]d as the direct sum
of tensor products

R[[x1, . . . , xn]]d =
⊕

bd+ ed=d
R[[x1, . . . , xbn]]bd ⊗ R[[xbn+1, . . . , xn]]ed.

The tensor product may be replaced with the ordinary product of poly-
nomials, because there is no overlap between the variables appearing
in the polynomials in the two spaces being tensored. (This nonover-
lap condition implies that the ordinary product satisfies the algebraic
requirements for a tensor product map.) Furthermore, the sl(2) repre-
sentation on R[[x1, . . . , xn]]d given by {X,Y,Z} is the direct sum of the
tensor products of the sl(2) representations on the other spaces. (Recall

that the tensor product of the two Lie algebra representations {X̂, Ŷ, Ẑ}
and {X̃, Ỹ, Z̃} is defined to be {X̂⊗I+I⊗X̃, Ŷ⊗I+I⊗Ỹ, Ẑ⊗I+I⊗Z̃}.



NEW TRANSVECTANT ALGORITHM 11

In this case it reduces to {X̂ + X̃, Ŷ + Ỹ, Ẑ + Z̃}.) It follows that the
irreducible subrepresentations in R[[x1, . . . , xn]]bd+ ed are specified by the
Clebsch-Gordan theorem, and the top weight vectors (chain tops) of
these subrepresentations (chains) are given by the transvectants. There
are two small errors in Lemma 4 of [4]; s should be the minimum weight,
not the minimum length, of the two chains, and the transvectant is un-
defined, not zero, when i > s. �

The bases given by Theorem 2 are sufficient to determine ker X one
degree at a time, but to find all of ker X in this way would require find-
ing infinitely many transvectants. A Stanley decomposition for ker X

must be based on a finite number of basic invariants. To construct
such a decomposition, we must first find an alternative basis for each
(ker X)d that uses only a finite number of transvectants overall. (We
do not count zeroth transvectants, which are simply products. A Stan-
ley decomposition can produce an infinite number of products). Such
alternative bases can be found by the following replacement theorem.

Theorem 3. Any transvectant (f, g)(i) in the basis given by Theorem
2 can be replaced by a product (f1, g1)

(i1) · · · (fj, gj)(ij) of transvectants,
provided that f1 · · · fj = f , g1 · · · gj = g, and i1 + · · ·+ ij = i.

Since a zeroth transvectant is a product, the replacements given
by this theorem are best viewed as products of standard monomials

in ker X̂ and ker X̃ and transvectants (of order greater than zero) of
such monomials, subject to the conditions that the stripped form of
the product equals fg and the total transvectant order equals i. (The
“stripped form” of such a product is the form obtained by erasing the
transvectant signs. Thus the stripped form of (f1, g1)

(i1)(f2, g2)
(i2) is

f1g1f2g2.)

Proof. The main task is to show that the replacements proposed in
the theorem are linearly independent. We do this by contradiction.
We suppose that they are linearly dependent, that is, there exists a
nontrivial linear combination of replacements that is equal to zero. We

show that when X̂ is applied enough times to this linear combination,
the result is a nontrivial linear combination of terms that are already
known to be linearly independent. Since this is impossible, the original
supposition (of linear dependence) is impossible. The details depend
on the representation theory of sl(2). The proof is modelled on that of
Lemma 2 in [4], and the reader may wish to study this easier theorem
for motivation.

First, observe that

X̂i(f, g)(i) = cfg
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for some nonzero constant c. In fact X̂i annihilates all terms of (f, g)(i)

except the term that is a constant times (Ŷif)g, and multiplies this
term by a strictly positive number (positive because it is a sum of
weights of invariants). In this calculation we use the following facts:

that f ∈ ker X̂; that g depends only on (xbn+1, . . . , xn) and hence is also

annihilated by X̂; and that Ŷif 6= 0 because the weight of f is at least
i (or else the transvectant would not be defined). These remarks can
be extended to products of two or more transvectants. For instance,

X̂i+j(f, g)(i)(h, k)(j) = cfhgk

for some nonzero c because only the “dominant” term containing

(Ŷif)(Ŷjh)gk survives. In the following argument we use the word
“replacement” to mean “a product of the form proposed in the theorem
as a replacement for a transvectant.”

Next, observe that no two basis elements from Theorem 2 that have
the same stripped form can have the same weight. (If the stripped form
is fg, the basis elements will be (f, g)(i) for various i, and these all have
different weights.) Now any replacement for one of these basis elements
will have the same stripped form and the same weight. Therefore in
any full set of replacements, no two elements with the same stripped
form will have the same weight.

Now suppose there exists a nontrivial linear combination of replace-
ments that is equal to zero. Then (since the weight subspaces are
independent) there will exist a nontrivial linear combination of replace-
ments of some fixed weight that equals zero. Let r denote the highest

total transvectant order occurring in these replacements. Apply X̂r to
the linear relation. This will annihilate all terms with total transvec-
tant order less than r, but at least one term will survive. Since we
began with replacements of equal weight, and no two replacements of
the same weight can have the same stripped form, we have a nontrivial
linear combination of distinct terms, each of which is a product of two

standard monomials, one from ker X̂ and one for ker X̃. These terms
must be linearly independent. Therefore the supposition at the begin-
ning of this paragraph is false. Therefore any set of replacements is
linearly independent.

Thus the map sending each basis element to its replacement is a one-
to-one correspondence of linearly independent vectors that preserves
degree and weight, and therefore restricts to a one-to-one map of a basis
for each “type subspace” (ker X)dw of ker X to a linearly independent
set in the same type subspace having the same cardinality, which must
then be another basis for the type subspace. Since ker X is the (infinite)
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direct sum of its type subspaces, the one-to-one correspondence holds
for the entire space. �

Of course we could equally well use X̃ in place of X̂ to prove the
theorem. This would only change the dominant term that survives.

The following corollary of the Replacement Theorem will play a cru-
cial role in our calculations.

Corollary 4. If wh = wk = r, so that (h, k)(r) has weight zero, then
whenever (fh, gk)(i+r) is well-defined, it may be replaced by (f, g)(i)(h, k)(r).

Proof. Clearly (fh, gk)(i+r) and (f, g)(i)(h, k)(r) have the same stripped
form and total transvectant order. It is only necessary to observe that
(f, g)(i) is well-defined. But wfh = wf +wh = wf +r ≥ i+r, so wf ≥ i,
and similarly wg ≥ i. �

The Replacement Theorem by itself is sufficient for doing some sim-
ple computations of Stanley decompositions. We illustrate this with
the examples N2,2, N2,3, and N2,2,2. In the next section we develop a
more powerful technique.

Knowing that ker X2 = R[[α]] where α = x1, we can calculate
ker X2,2 as follows. Let α = x1, β = x3, γ = (a, b)(1).

Theorem 5. ker X2,2 = R[[α, β, γ]].

Proof. According to Theorem 2, a basis for ker X2,2 is given by (αn, βm)(i)

for i = 0, . . . ,min{n,m}. By Theorem 3, the map (αm, βn)(i) 7→
αm−iβn−iγi gives a replacement for each basis element. The span of
these replacements is the indicated Stanley decomposition. �

For N2,3 we have N̂ = N2 and Ñ = N3, with X̂ = x1∂/∂x2 and

X̃ = x3∂/∂x4 + x4β/∂x5. Then, from the results above for X2 and X3

expressed in the proper variables, ker X̂ = R[[α]] with α = x1, and

ker X̃ = R[[β, γ]] with β = x3 and γ = x2
4− 2x3x4. The types of α, β, γ

are (1, 1), (1, 2), (2, 0) respectively. We can now compute ker X2,3 as
follows.

Theorem 6. ker X2,3 = R[[α, β, γ, (α2, β)(2)]]⊕R[[α, β, γ, (α2, β)(2)]](α, β)(1).

Proof. The basis elements are of the form (α`, βmγn)(r) with ` ≥ r
and 2m ≥ r. We divide these into two classes, r = 2j (even) and
r = 2j + 1 (odd), noting that in the former case m ≥ j and in the
latter case m > j. For r = 2j the basis elements are (α2j+p, βj+qγn)(2j).
For j = 0 we get R[[α, β, γ]]. For j ≥ 1 we replace these first by
αpβqγn(α2j, βj)(2j) and then by αpβqγnεj, where ε = (α2, β)(2), and get
R[[α, β, γ, ε]]ε; the two rings computed so far sum to R[[α, β, γ, ε]]. For
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r = 2j + 1 the basis elements are (α2j+1+p, βj+1+qγn)2j+1), which may
be replaced first by αpβqγn(α2j+1, βj+1)(2j+1) and then by αpβqγnεjδ,
where δ = (α, β)(1). This gives R[[α, β, γ, ε]]δ. �

To interpret the result of Theorem 6, observe that Ŷ = x2∂/∂x1 and

Ỹ = 2x4∂/∂x3 + 2x5β/∂x4. Then, from the definition of transvectant,
we find that

(α, β)(1) = 2x1x4 − 2x2x3

(α2, β)(2) = 8x2
1x5 − 8x1x2x4 + 4x2

2x3.

Thus the theorem states that every invariant for N2,3 can be written as

f(x1, x3, x
2
4 − 2x3x4, 8x

2
1x5 − 8x1x2x4 + 4x2

2x3)

+ g(x1, x3, x
2
4 − 2x3x4, 8x

2
1x5 − 8x1x2x4 + 4x2

2x3)(2x1x4 − 2x2x3).

In the sequel we shall omit this kind of calculation.
Next we compute ker X2,2,2, using the notation of [3]. That is, we

work in R[x1, y1, x2, y2, x3, y3] with αi = xi, of type (1, 1), and β1j =
(αi, βj)

(1) for i < j, of type (2, 0). From the calculation of ker X2,2

above, we have ker X2,2 = R[[α1, α2]] where R = R[[β12]]. This is
convenient because β12 has weight 0, and therefore can be factored out
of any transvectant in which it appears, using Theorem 3.

Theorem 7. ker X2,2,2 = R[[α1, α2, α3, β12, β13]]⊕R[[α2, α3, β12, β13, β23]]β23.

Proof. The basis elements (ignoring β12) are (αm1
1 αm2

2 , αm3
3 )(r) withm1+

m2 ≥ r and m3 ≥ r. We take the following cases.
If r = 0 we get R[[α1, α2, α3]], with R = R[[β12]] as above.
If r ≥ 1 and m1 ≥ r: Write m1 = r + s and m3 = r + t and

replace first by αs1α
m2
2 αt3(α

r
1, α

r
2)

(r) and then by αs1α
m1
2 αt3β

r
13. We get

R[[α1, α2, α3, β13]]β13.
If r ≥ 1 with m1 < r: Write m2 = (r − m1) + u and m3 = r +

t. Replace first by αu2α
t
3(α

m1
1 αr−m1

2 , αr3)
(r) and then by αu2α

t
3β

m1
13 β

r−m1
23 .

Remembering r −m1 > 0, we get R[[α2, α3, β13, β23]]β23.
Now we observe that the sum of the first two cases is

R[[α1, α2, α3]]⊕ R[[α1, α2, α3, β13]]β13 = R[[α1, α2, α3, β13]].

Adding the third case and using the definition of R gives the result
stated in the theorem. Notice that α1 is missing from the second term
and β23 from the first. This result agrees with [3]. �
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4. Box products of Stanley decompositions

The examples in the last section were worked using some elemen-
tary number theory to classify the terms. This requires a certain
amount of thought in each case. A more mechanical (and therefore
programmable) way of classifying terms is by using “expanded” Stan-
ley decompositions. We will illustrate this technique with an easy ex-
ample, redoing ker X2,3. Then we provide general definitions and a
proof that the technique is capable of computing all possible examples.
The Stanley decompositions produced by this method are long, but
can be simplified by combining terms to undo some of the expansion
performed at the beginning of the process.

Using the notation of Theorem 6, we first expand the Stanley de-
composition of ker X2 as

(3) ker X2 = R[[α]] = R⊕ Rα⊕ R[[α]]α2.

The three summands are constants, terms with exactly one factor of
α, and terms with at least two factors. Similarly we expand ker X3 as

(4) ker X3 = R[[β, γ]] = R[[γ]]⊕ R[[β, γ]]β,

classifying the terms into those having no factor of β and those with
at least one factor. The reason for these expansions will appear in
a moment, but notice that we stop at α2 and β because these terms
have equal weight (in this case 2). It is also important here that γ
has weight zero. We never expand on terms with weight zero. Finally,
notice that although we have expanded the originally given Stanley
decompositions, the standard monomials of the decomposition have
not changed.

We want to consider all well-defined transvectants (f, g)(i) with f ∈
ker X2 and g ∈ ker X3, and provide most of them with replacements.
We consider cases for f and g according to the expanded Stanley de-
compositions.

1. If f ∈ R and g ∈ R[[γ]], no transvectants beyond the zeroth,
which is just the product fg, are possible; but f is just a number,
so the space obtained in this way is R[[γ]].

2. If f ∈ R and g ∈ R[[β, γ]]β, no transvectants beyond zero can
be formed and we obtain R[[β, γ]]β.

3. If f ∈ Rα and γ ∈ R[[γ]], no transvectants beyond the zeroth
can be formed because wγ = 0, and we get R[[γ]]α.

4. If f ∈ Rα and g ∈ R[[β, γ]]β, then the zeroth and first transvec-
tants can be formed, because wα = 1.
a. The zeroth transvectants give R[[β, γ]](α, β)(0) = R[[β, g]]αβ.
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b. The first transvectants give R[[β, γ]](α, β)(1).
5. If f ∈ Rα2 and g ∈ R[[γ]], no transvectants beyond the zeroth

can be formed, giving R[[γ]]α2.
6. Finally, if f ∈ R[[α]]α2 and g ∈ R[[β, γ]]β, we may write f = hα2

and g = kβ, with h ∈ R[[α]] and k ∈ R[[β, γ]]. Noting that
wα = 1 and wβ = 2, we divide the possible transvectants into
order zero, order one, and orders ≥ 2.
a. The zeroth transvectants give R[[α, β, γ]]α2β.
b. For the first transvectants, it follows from Theorem 3 that

(f, g)(1) = (hα2, kβ)(1) can be replaced by hkα(α, β)1. The
space spanned by these replacements is R[[α, β, γ]]α(α, β)(1).

c. Since α2 and β have equal weight 2, it follows from Corollary 4
that (f, g)(i) with i ≥ 2 can be replaced by (h, k)(i−2)(α2, β)(2)

in all cases. Here i− 2 ≥ 0, and the transvectants (h, k)(i−2)

span the entire space ker X2,3. Although it may appear that
we are going in circles, since ker X2,3 is just what we are trying
to find, the resulting terms span the space (ker X2,3)(α

2, β)(2).

Summing up the subspaces we have calculated gives

ker X2,3 = R[[γ]]⊕ R[[β, γ]]β ⊕ R[[γ]]α⊕ R[[β, γ]]αβ(5)

⊕ R[[β, γ]](α, β)(1) ⊕ R[[γ]]α2 ⊕ R[[ a, β, γ]]α2β

⊕ R[[α, β, γ]]α(α, β)(1) ⊕ (ker X2,3)(α
2, β)(2).

This is almost a Stanley decomposition, except for the last term. But
it is naturally set up for an iteration. Writing R = ker X2,3, letting S

denote the sum of all the terms in (5) except the last, and temporarily
putting ε = (α2, β)(2) (as in the proof of Theorem 6), we have

R = S⊕ Rε = S⊕ Sε⊕ Rε2 = · · · = S[[ε]].

That is, the zero-weight element ε should be entered into all of the
square brackets in the expression for S, and we will have the complete
Stanley decomposition for R. Therefore

ker X2,3 = R[[γ, ε]]⊕ R[[β, γ, ε]]β ⊕ R[[γ, ε]]α⊕ R[[β, γ, ε]]αβ

⊕ R[[β, γ, ε]](α, β)(1) ⊕ R[[γ, ε]]α2

⊕ R[[α, β, γ, ε]]α2β ⊕ R[[α, β, γ, ε]]α(α, b)(1).

As mentioned above, this comes out longer at first than the result of
Theorem 6, but the terms can be grouped and summed to give the
same result in the end.

Now we formalize this process and prove that it always works. Notice
that if we were to “multiply” the Stanley decompositions (3) and (4)
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with a multiplication that distributes over direct sum, this distributive
law would correspond exactly to the classification of cases that we have
used in the example. So we define the box product of the two spaces of

invariants, (ker X̂)�(ker X̃), to be the space spanned (over R, allowing
infinite sums) by the well-defined transvectants (f, g)(i) as f ranges over

the standard monomials of some Stanley decomposition for ker X̂ and
g ranges over the standard monomials of some Stanley decomposition

for ker X̃. It follows at once from Theorem 2 that the result does not
depend on the Stanley decompositions that are used, and that

(ker X̂) � (ker X̃) = ker X.

(This equation is the same as the abstract definition of box product
given at the end of section 1.) Furthermore, it follows from Theorem
3 that the box product is also spanned by any set of replacements for
the well-defined transvectants (f, g)(i).

In order to obtain a distributive law for the box product (over di-
rect sums), we must extend the definition of the box product to cer-

tain subspaces of ker X̂ and ker X̃. Suppose that R[[f1, . . . , fk]]ϕ ⊂
ker X̂ and R[[g1, . . . , g`]]ψ ⊂ ker X̃ are Stanley terms selected from

given Stanley decompositions for ker X̂ and ker X̃. We want to de-
fine (R[[f1, . . . , fk]]ϕ) � (R[[g1, . . . , g`]]ψ) as the space spanned by the
well-defined transvectants (f, g)(i), where f is a standard monomial in
R[[f1, . . . , fk]]ϕ and g is a standard monomial in R[[g1, . . . , g`]]ψ. At
first sight it appears that the box product of two such subspaces may
depend on the Stanley decomposition used, because the same subspace
may be spanned by a different set of standard monomials. But we
have already dealt with this question in the last paragraph of section

1: standard monomials are weight vectors, so the subspaces of ker X̂

and ker X̃ that we are dealing with are admissible (in the sense of
section 1), and therefore the box product is well defined.

The next lemma is now trivial, but essential to the method.

Lemma 8. Box distributes over direct sums of admissible subspaces:

If V̂ ⊂ ker X̂, Ṽ1 ⊂ ker X̃, and Ṽ2 ⊂ ker X̃ are admissible subspaces,

with Ṽ1 ∩ Ṽ2 = {0}, then Ṽ1 ⊕ Ṽ2 is admissible and

V̂ � (Ṽ1 ⊕ Ṽ2) = (V̂ � Ṽ1)⊕ (V̂ � Ṽ2),

and similarly for (V̂1 ⊕ V̂2) � Ṽ .

Proof. The standard monomials of the Stanley decomposition for ker X̃

that belong to Ṽ1⊕ Ṽ1 are partitioned into those in Ṽ1 and those in Ṽ2,
since the subspaces are admissible. �
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One further issue must be settled before proceeding: Is it legitimate
to use replacements for the transvectants in box products of Stanley
terms? The answer is a qualified yes. When the transvectants in a
basis for the box product are replaced, the span of the replacements
may not be exactly the same as the “true” box product, but (according
to Theorem 3) the new space will remain linearly independent of the
other subspaces in the direct sum, and will serve as a valid replacement
for the box product. In the sequel, when we compute box products we
actually compute replacements for box products in this sense. In fact,
we are able to show that many of the replacements that we use do
not modify the box product at all, but we omit the proof because the
result will not be used. (This applies to replacements that contain only
a single transvectant of order greater than zero. For replacements that
contain a product of transvectants, we do not have a clear answer, and
the box product space is probably modified.)

The main theorem is that the box product of ker X̂ and ker X̃ is
computable from given Stanley decompositions of these spaces, and the
result is a Stanley decomposition of ker X. The proof also serves as a
description of the computation procedure. Certain choices are required
at various points in the proof, and the efficiency of the calculation may
depend on the way these choices are made. In the proof, we write
= between subspaces that are clearly equal, and ∼= between subspaces
that serve as replacements for each other in the direct sums (even when
we know that these are actually equal).

Theorem 9. A Stanley decomposition of ker X = ker X̂ � ker X̃ is
computable in a finite number of steps given Stanley decompositions of

ker X̂ and ker X̃.

Proof. The given Stanley decompositions define standard monomials in

ker X̂ and ker X̃. During the course of the proof we will preform various
expansions of these given decompositions, but the expansions will not
change the standard monomials. Therefore the notion of “admissible
subspace” does not change as we proceed. Each Stanley term in each
Stanley decomposition will be an admissible subspace. By Lemma 8,
we can compute ker X if we can compute any box product of the form
R[[f1, . . . , fk]]ϕ � R[[g1, . . . , g`]]ψ, where each factor is a Stanley term

from the given decompositions of ker X̂ and ker X̃. It turns out that
to do so, we must be able to compute any box product of this form in
which the factors are admissible.

Let p be the number of elements of weight > 0 in f1, . . . , fk, and
q the number of such elements in g1, . . . , g`. We proceed by double
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induction on p and q. We first construct the box product explicitly in
the case p = q = 0. Next we handle the general case p = 0 by induction
on q, by reducing calculations of the form (0, q) to calculations of the
form (0, q − 1) plus one calculation that is handled explicitly. Since
cases (p, q) and (q, p) are symmetric, we will also have handled (0, p).
Finally we handle the general case (p, q) by reduction to calculations
of the forms (p − 1, q), (p, q − 1), and (p − 1, q − 1), and some terms
that are handled explicitly. There is a special trick involved in this last
reduction that involves a formal iteration argument (as in the example
above).

Suppose p = q = 0. Then the box product is spanned by transvec-
tants of the form (fm1

1 · · · fmk
k ϕ, gn1

1 · · · gn`
` ψ)(i), which is well-defined if

and only if 0 ≤ i ≤ r, where r = min(wϕ, wψ. (The f and g factors add
no weight, and cannot support any higher transvectants.) By Theorem
3 each transvectant may be replaced by fm1

1 · · · fmk
k γn1

1 · · · gn`
` (ϕ, ψ)(i),

which remains well-defined. Therefore

R[[f1, . . . , fk]]ϕ�R[[g1, . . . , g`]]ψ ∼=
r⊕
i=0

R[[f1, . . . , fk, g1, . . . , g`]](ϕ, ψ)(i).

Now we make the induction hypothesis that all cases with p = 0 are
computable up through the case q − 1, and we discuss case q. Choose
one of the q elements of g1, . . . , g` having positive weight; we assume
the chosen element is g1. Then we may expand

R[[g1, . . . , g`]]ψ =

(
t−1⊕
ν=0

R[[g2, . . . , g`]]g
ν
1ψ

)
⊕ R[[g1, . . . , g`]]g

t
1ψ,

where t is the smallest integer such that wgt
1ψ
> wϕ. This decomposition

corresponds to classifying monomials according to the power of g1 that
occurs, with all powers greater than or equal to t assigned to the last
term. (Note that g1 is missing from the square brackets except in the
last term.) Now take the box product of R[[f1, . . . , fk]]ϕ times this
expression, and distribute the product according to Lemma 8. All of
the terms except the last are computable by the induction hypothesis.
We claim the last term is computable by the formula

R[[f1, . . . , fk]]ϕ�R[[g1, . . . , g`]]g
t
1ψ
∼=

wϕ⊕
i=0

R[[f1, . . . , fk, g1, . . . , g`]](ϕ, g
t
1ψ)(i).

This is because wϕ is an absolute limit to the order of transvectants in
this box product that will be well-defined, and any such transvectant
(fm1

1 · · · fmk
k ϕ, γn1

1 · · · gn`
` g

t
1ψ)(i) can be replaced by

fm1
1 · · · fmk

k γn1
1 · · · gn`

` (gt1ϕ, ψ)(i).
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Now we make the induction hypothesis that cases (p−1, q), (p, q−1),
and (p− 1, q− 1) can be handled, and we treat the case (p, q). Choose
one of the p functions in f1, . . . , fk having positive weight; we assume
the chosen element is f1. Similarly, choose a function of positive weight
from g1, . . . , g`, and suppose it is g1. Let s and t be the smallest integers
such that

s · wf1 = t · wg1 .
Expand

R[[f1, . . . , fk]]ϕ =

(
s−1⊕
µ=0

R[[f2, . . . , fk]]f
µ
1 ϕ

)
⊕ R[[f1, . . . , fk]]f

s
1ϕ

and

R[[g1, . . . , g`]]ψ =

(
t−1⊕
ν=0

R[[g2, . . . , g`]]g
ν
1ψ

)
⊕ R[[g1, . . . , g`]]g

t
1ψ.

Now take the box product of these last two expansions and distribute
the product. There are four kinds of terms. Terms that are missing
both f1 and g1 in square brackets are of type (p− 1, q− 1). Terms that
are missing f1 in square brackets, but not g1, are of type (p−1, q), and
there are likewise terms of type (p, q − 1). All of these can be handled
by the induction hypothesis. Finally, there is the term

R[[f1, . . . , fk]]f
s
1ϕ� R[[g1, . . . , g`]]g

t
1ψ.

There is no upper limit to the transvectant order that can occur here,
since in general there remain terms of positive weight in the square
brackets. However, setting r = s · wf1 = t · wg1 , we will show that this
box product is ∼= to(

r−1⊕
i=0

R[[f1, . . . , fk, g1, . . . , gk]](f
s
1 , g

t
1)

(i)

)
⊕ (R[[f1, . . . , fk]]ϕ� R[[g1, . . . , g`]]ψ)(f s1 , g

t
1)

(r).

The terms for transvectant orders≤ r−1 in this expression are obtained
in the usual way, by replacing (fm1

1 · · · fmk
k f s1ϕ, γ

n1
1 · · · gn`

` g
t
1ψ)(i) by

fm1
1 · · · fmk

k ϕγn1
1 · · · gn`

` ψ(f s1 , g
t
1)

(i). The final term is quite different from
any others considered until now, since it involves a box product of
subspaces as the coefficient of (f s1 , g

t
1)

(r). This term is obtained from
Corollary 4 using the fact that w(fs

1 ,g
t
1)(r) = 0: for any i ≥ 0, we replace

(fm1
1 · · · fmk

k ϕ, γn1
1 · · · gn`

` ψ)(i+r) by
(fm1

1 · · · fmk
k f s1ϕ, γ

n1
1 · · · gn`

` g
t
1ψ)(i)(f s1 , g

t
1)

(r).
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At this point we have reduced the calculation of R[[f1, . . . , fk]]ϕ �
R[[g1, . . . , g`]]ψ in case (p, q) to a number of terms computable by the
induction hypothesis or by explicit formula, plus one special term that
seems to lead in circles since it involves the very same box product that
we are trying to calculate. Thus our result has the form

R = S⊕ Rθ,

where θ has weight zero. But this implies R = S⊕(S⊕Rθ)θ = S⊕Sθ⊕
Rθ2. Continuing in this way we have R = S⊕Sθ⊕Sθ2⊕Sθ3⊕· · · , which
reduces to R = S[[θ]]; that is, we add the weight-zero element θ to the
ring S, allowing all powers. (Remember that these are formal power se-
ries rings, so we allow formal sums to infinity.) This simply means that
we erase the “unusual” term R[[f1, . . . , fk]]ϕ�R[[g1, . . . , g`]]ψ)(f s1 , g

t
1)

(r)

from our computation, and instead insert (f s1 , g
t
1)

(r) into the square
brackets in all the coefficient rings that have already been computed.
This does not affect the induction, because the new elements added
have weight zero, and the induction is on the numbers p and q of ele-
ments of positive weight. �

5. A new example

Since ker X2,2 = R[[α, β, γ]] and ker X3 = R[[δ, ε]], where the weights
of α, β, γ, δ, ε are 1, 1, 0, 2, 0, we have

ker X2,2,3 = R[[α, β, γ]] � R[[δ, ε]].

The following transvectants will appear in the course of the calculation:

ζ = (α, δ)(1)

η = (β, δ)(1)

θ = (α2, δ)(2)

λ = (αβ, δ)(2)

µ = (β2, δ)(2).

Suppressing γ and ε and noticing that these will appear in every square
bracket of the box product, we compute

R[[α, β]] � R[[δ]] = (R[[β]]⊕ R[[β]]α⊕ R[[α, β]]a2) � (R⊕ R[[δ]]δ).

Distributing the box product gives three kinds of terms:

1. Three terms that are immediately computed in final form: R[[β]]⊕
R[[β]]α⊕ R[[α, β]]α2.
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2. Two box products that must be computed by further expan-
sion (according to the induction scheme in Theorem 9): R[[β]]�
R[[δ]]δ and R[[β]]α � R[[δ]]δ. When these are worked out, they
will recycle to themselves but not to the original box product
R[[α, β]] � R[[δ]].

3. One box product, R[[α, β]]α2�R[[δ]]δ, that will recycle to R[[α, β]]�
R[[δ]]. In fact

R[[α, β]]α2 � R[[δ]]δ = R[[α, β, δ]]α2δ ⊕ R[[α, β, δ]](α2, δ)(1)

⊕ (R[[α, β]] � R[[δ]])(α2, δ)(2).

According to the recycling rule, the last term here will be deleted
and θ = (α2, δ)(2), which has weight zero, will be added to all
square brackets (along with the other suppressed weight-zero in-
variants γ and ε).

Now we turn to the calculations in item 2 of the list. The first of
these is

R[[β]] � R[[δ]]δ = (R⊕ Rβ ⊕ R[[β]]β2) � (Rδ ⊕ R[[δ]]δ2).

Notice that δ is playing two roles: the factor R[[δ]]δ would appear in
the notation of Theorem 9 as R[[g1]]ψ. (In working through the details
that are not written out here, it was helpful to temporarily set ψ = δ
and write the product as R[[β]]�R[[δ]]ψ = (R⊕Rβ⊕R[[β]]β2)�(Rψ⊕
R[[δ]]δψ)). All of the six terms (after distributing the box product) can
be computed explicitly except the last, which recycles to R[[β]]�R[[δ]].
Handling this last term first, we have

R[[β]]β2 � R[[δ]]δ2 = R[[β, δ]]β2δ2 ⊕ R[[β, δ]]βδ(β, δ)(1)

⊕ (R[[β]] � R[[δ]]δ)(β2, δ)(2).

The last term will be deleted and µ = (β2, δ)(2) will be inserted in all the
square brackets resulting from this calculation (but not all the brackets
in the main calculation). For this reason we do not suppress µ, but
state it explicitly. The final result of this calculation, after recombining
terms whenever possible, is

R[[β]] � R[[δ]]δ = R[[β, δ, µ]]δ ⊕ R[[β, δ, µ]]η ⊕ R[[β, µ]]µ.

Notice that µ appears both inside and outside of brackets.
The second calculation in item 2 of the list is

R[[β]]α� R[[δ]]δ = (Rα⊕ Rαβ ⊕ R[[β]]αβ2) � (Rδ ⊕ R[[δ]]δ2).

All of the distributed terms are computable immediately except the
last, which contains a term that recycles to R[[β]]α� R[[δ]]d and once
again brings about the introduction of µ into every bracket (of this
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subcalculation). A new feature that arises is the need to make choices
when faced with a transvectant such as (αβ, δ)(1), which could be re-
placed by either α(β, δ)(1) = αη or β(α, δ)(1) = βζ. If we always favor
η over ζ in such cases, the final result for this calculation is

R[[β]]α� R[[δ]]δ = R[[β, δ, µ]]αδ ⊕ R[[δ, µ]]ζ ⊕ R[[β, δ, µ]]αη

⊕ R[[δ, µ]]λ⊕ R[[β, µ]]αµ.

To state the final result, let R = R[[γ, ε, θ]]. Then

ker X2,2,3 = R[[α, β]]

⊕ R[[β, δ, µ]]δ ⊕ R[[β, δ, µ]]η ⊕ R[[β, µ]]µ

⊕ R[[β, δ, µ]]αδ ⊕ R[[δ, µ]]ζ ⊕ R[[β, δ, µ]]αη

⊕ R[[δ, µ]]λ⊕ R[[β, µ]]αµ

⊕ R[[α, β, δ]]α2δ ⊕ R[[α, β, δ]]αζ.

6. Boosting to equivariants

In this section we describe the procedure for obtaining a Stanley
decomposition of the module of equivariants (or normal form space)
ker X from a Stanley decomposition of the ring of invariants ker X;
here X = LN∗ , just as X = DN∗ . As pointed out in the introduction,
this procedure was already completely described in section 5 of [4]. But
transvectants were not introduced in that paper until section 6, and
the connection between transvectants and section 5 was only briefly
explained in section 8. Now that we have recognized the central role of
transvectants in this theory, it seems appropriate to restate the “boost-
ing” process from the beginning in the language of transvectants, and
to provide examples of calculations in this language.

The starting point is that the module of all formal power series vector
fields on Rn can be viewed as the tensor product R[[x1, . . . , xn]]⊗ Rn,
and in fact the tensor product can be identified with the ordinary
product (of a scalar field times a constant vector) since (just as in the
case of a tensor product of two polynomial spaces with nonoverlapping
variables, used in previous sections) the ordinary product satisfies the
same algebraic rules as a tensor product. Specifically, every formal
power series vector field can be written as

f1(x)e1 + · · ·+ fn(x)en =

f1(x)
...

fn(x)

 ,
where the ei are the standard basis vectors of Rn.
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Next, the Lie derivative X = LN∗ can be expressed as the tensor
product of X and −N∗, that is, X = X ⊗ I + I ⊗ (−N∗). Under
the identification of ⊗ with ordinary product, this means X(fv) =
(Xf)v + f(−N∗v), where f ∈ R[[x1, . . . , xn]] and v ∈ Rn in agreement
with the following calculation (in which v′ = 0 because v is constant):

X(fv) = LN∗(fv)

= (DN∗f)v + f(LN∗v)

= (DN∗f)v + f(v′N∗x−N∗v)

= (DN∗f)v + f(−N∗v).

This kind of calculation also shows that the sl(2) representation (on
vector fields) with triad {X,Y,Z} is the tensor product of the repre-
sentation (on scalar fields) with triad {X,Y,Z} and the representation
(on Rn) with triad {−N∗,−M∗,−H}.

It follows (as in Theorem 2 above) that a basis for the normal form
space ker X is given by the well-defined transvectants (f, v)(i) as f
ranges over a basis for ker X ⊂ R[[x1, . . . , xn]] and v ranges over a basis
for ker N∗ ⊂ Rn. (Of course ker (−N∗) = ker N∗.) The first of these
bases is given by the standard monomials of a Stanley decomposition
for ker X. The second is given by the standard basis vectors er ∈ Rn

such that r is the index of the bottom row of a Jordan block in N∗ (or
equivalently, in N). It is useful to note that the weight of such an er is
one less than the size of the block. The definition (2) of transvectant
in this case becomes

(f, er)
(i) =

i∑
j=0

(−1)jW i,j
f,er

(Yjf)((−M∗)i−je4)

= (f, g)(i) = (−1)i
i∑

j=0

W i,j
f,g(Y

jf)((M∗)i−jg).

From here on, the computational procedures are the same as those used
in previous sections, except that infinite iterations never arise. We il-
lustrate this first by computing a Stanley decomposition for the normal
form of vector fields with linear part N4. This example was treated in
section 5 of [4], and thus provides a comparison of the previous method
and the new one.

We begin with ker X4 = R[[α, β, δ]]⊕R[[α, β, δ]]γ. Since δ has weight
zero, it is convenient to remove it from the calculation by setting R =
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R[[δ]] and writing

ker X4 = R[[α, β]]⊕ R[[α, β]]γ(6)

= R[[β]]⊕ R[[α, β]]α⊕ R[[α, β]]γ

= R⊕ Rβ ⊕ R[[β]]β2 ⊕ R[[α, β]]α⊕ R[[α, β]]γ.

The only basis element ker N∗
4 is e4, the bottom row of the single

Jordan block, and its weight is 3. So ker N∗
4 = Re4. The expansions in

(6) are terminated with β2 and α because these (having weights 4 and
3 respectively) are sufficient to match the weight 3 of e4, which puts a
maximum on the transvectants that can be well-defined. Now we only
need to compute the box product

ker X4 = (ker X4) � (Re4).
Distributing the box product over the decomposition (6) gives the fol-
lowing cases.

1. If f ∈ R the only transvectant that can be formed is (f, e4)
(0) =

fe4. So
R � Re4 ∼= Re4.

2. If f ∈ Rβ then f = gβ with g ∈ R (having weight zero). Then
(f, e4)

(i) can be formed for i = 0, 1, 2, and can be replaced by
g(β, e4)

(i). Therefore

Rβ � Re4 ∼= Rβe4 ⊕ R(β, e4)
(1) ⊕ R(β, e4)

(2).

3. If f ∈ R[[β]]β2 then f = gβ2 with g ∈ R[[β]] (with unlimited
weight). We can form (f, e4)

(i) for i = 0, 1, 2, 3, the limit coming
from e4. These can be replaced by gβ(β, e4)

(i) if i = 0, 1, 2 and
by g(β2, e4)

(3) if i = 3. Therefore

R[[β]]β2 � Re4 ∼= R[[β]]β2e4 ⊕ R[[β]]β(β, e4)
(1)

⊕ R[[β]]β(β, e4)
(2) ⊕ R[[β]](β2, e4)

(3).

4. If f ∈ R[[α, β]]α then f = gα with g ∈ R[[α, β]]. Transvectants
(f, e4)

(i) can be formed with i = 0, 1, 2, 3 and can be replaced by
g(α, e4)

(i). Therefore

R[[α, β]]α� Re4 ∼= R[[α, β]]αe4 ⊕ R[[α, β]](α, e4)
(1)

⊕ R[[α, β]](α, e4)
(2) ⊕ R[[α, β]](α, e4)

(3).

5. Since the weights of α and γ are equal, the last calculation is
almost the same:

R[[α, β]]γ � Re4 ∼= R[[α, β]]γe4 ⊕ R[[α, β]](γ, e4)
(1)

⊕ R[[α, β]](γ, e4)
(2) ⊕ R[[α, β]](γ, e4)

(3).
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Before adding the terms from these different cases, we observe the
following collapses that take place:

Re4 ⊕ Rβe4 ⊕ R[[β]]β2e4 ⊕ R[[α, β]]αe4 = R[[α, β]]e4

R(β, e4)
(1) ⊕ R[[β]]β(β, e4)

(1) = R[[β]](β, e4)
(1)

R(β, ε4)
(2) ⊕ R[[β]]β(β, e4)

(2) = R[[β]](β, e4)
(2).

Therefore we finally have

ker X4 = R[[α, β]]e4 ⊕ R[[β]](β, e4)
(1) ⊕ R[[β]](β, e4)

(2) ⊕ R[[β]](β2, e4)
(3)

(7)

⊕ R[[α, β]](α, e4)
(1) ⊕ R[[α, β]](α, e4)

(2) ⊕ R[[α, β]](α, e4)
(3)

⊕ R[[α, β]]γe4 ⊕ R[[α, β]](γ, e4)
(1) ⊕ R[[α, β]](γ, e4)

(2) ⊕ R[[α, β]](γ, e4)
(3).

To complete the calculation, it is necessary to compute the transvec-
tants that appear in the Stanley decomposition. These are all of the
form (f, e4)

(i) for i = 0, 1, 2, 3. These can be computed once and for
all, and then the individual f that are needed (namely α, β, and β2,
expressed in terms of x1, . . . , x4) can be substituted in. Of course

(f, e4)
(0) = fe4 =


0
0
0
f

 .
For i = 1 we have, from the definition of transvectant,

(f, e4)
(1) = wff(−M∗)e4 − we4(Yf)e4

= wff


0
0
−3
0

−


0
0
0

3Yf



= −3


0
0
wff
Yf



= −3


0
0

Xg
g

 with g = Yf.
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Similar calculations show that

(f, e4)
(2) = 6


0

X2g
Xg
g

 with g = Y2f

(f, e4)
(3) = −6


X3g
X2g
Xg
g

 with g = Y3f.

The nonzero constant factors 3, 6, and -6 may be ignored, because we
are only concerned with computing basis elements. The forms using g
(in place of f) are convenient because they avoid confusing constant
factors (including wf ). But in practice, one does not want to apply Y

several times to f to find g, and then undo this by applying X several
times to g. Instead, the rule that X(Yif) = i(wf + 1 − i)Yi−1f allows
the constant factors to be restored.

For comparison with [4] and section 4.7 of [5], it is helpful to notice
that Yif ∈ ker Xi+1. The procedure in [4] and [5] calls for putting
elements such as g from a Stanley decomposition of ker X3, filtered by
ker X ⊂ ker X2 ⊂ ker X3 ⊂ ker X4, into the into the bottom position
of a vector to form 

0
0
0
g

 .
These vectors form a basis for the simplified normal form, and the inner
product normal form is then “reconstructed” by passing to

X3g
X2g
Xg
g

 .
Some of the top entries may be zero, depending on the position of g in
the filtration. This is clearly the same result, up to a constant factor, as
we have obtained here. Also note that our Stanley decomposition has
11 terms, just as the one in equation (40) of [4] or (4.7.30) of [5]. One
small difference is that the earlier method allows expressions in g such
as YβY2β, which do not exactly fit the form coming from transvectants;
the current method would use Y3β2.

Finally, we turn to the example of N2,2,3. As mentioned in the intro-
duction, the normal form space for this example is quite large, and we
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only compute a few terms. The basis elements for ker N∗
2,2,3 are e2, e4,

and e7. Therefore we need to compute the box product of the invariant
ring ker X2,2,3, computed in section 5, with Re2 ⊕Re4 ⊕Re7. We con-
sider the part coming from the particular term R[[δ, µ]]η in ker X2,2,3.
We have

R[[δ, µ]]η � (Re2 ⊕ Re4 ⊕ Re7) =

(R[[δ, µ]]η � Re2)⊕ (R[[δ, µ]]η � Re4)⊕ (R[[δ, µ]]η � Re7) =

(R[[δ, µ]]η � Re2)⊕ (R[[δ, µ]]η � Re4)⊕ (R[[µ]]η � Re7)⊕ (R[[δ, µ]]δη � Re7) =

R[[δ, µ]](η, e2)
(0) ⊕ R[[δ, µ]](η, e2)

(1)⊕
R[[δ, µ]](η, e4)

(0) ⊕ R[[δ, µ]](η, e4)
(1)⊕

R[[µ]](η, e7)
(0) ⊕ R[[µ]](η, e7)

(1)⊕
R[[δ, µ]](δη, e7)

(0) ⊕ R[[δ, µ]](δη, e7)
(1) ⊕ R[[δ, µ]](δη, e7)

(2).

Notice that R[[δ, µ]]η does not need to be expanded when the box
product with Re2 or Re4 is taken, because e2 and e4 have weight 1,
which equals the weight of η. But it does need to be expanded (in δ)
when the box product with Re7 is taken, because e7 has weight 2 and
can support transvectants up to order 2. Bringing out one δ forms δη,
which has weight 3 and can support the required transvectants. In the
last line we can now replace (δη, e7)

(i) with δ(η, e7)
(i) for i = 0 and 1,

but not for i = 2. After these replacements, the terms for i = 0 and 1
can be recombined with terms in the previous line:

R[[µ]](η, e7)
(i) ⊕ R[[δ, µ]]δ(η, e7)

(i) = R[[δ, µ]](η, e7)
(i).
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